kmemtrace: SLOB hooks.
[linux-2.6/kmemtrace.git] / net / ipv4 / tcp_ipv4.c
blobffe869ac1bcf15b51abd801b3b3b4533da0b530e
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
10 * IPv4 specific functions
13 * code split from:
14 * linux/ipv4/tcp.c
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
18 * See tcp.c for author information
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
27 * Changes:
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
36 * ACK bit.
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen semantics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
47 * coma.
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
89 #ifdef CONFIG_TCP_MD5SIG
90 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
91 __be32 addr);
92 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
93 __be32 saddr, __be32 daddr,
94 struct tcphdr *th, int protocol,
95 unsigned int tcplen);
96 #endif
98 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
99 .lhash_lock = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
100 .lhash_users = ATOMIC_INIT(0),
101 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
104 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
106 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
107 ip_hdr(skb)->saddr,
108 tcp_hdr(skb)->dest,
109 tcp_hdr(skb)->source);
112 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
114 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 struct tcp_sock *tp = tcp_sk(sk);
117 /* With PAWS, it is safe from the viewpoint
118 of data integrity. Even without PAWS it is safe provided sequence
119 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
121 Actually, the idea is close to VJ's one, only timestamp cache is
122 held not per host, but per port pair and TW bucket is used as state
123 holder.
125 If TW bucket has been already destroyed we fall back to VJ's scheme
126 and use initial timestamp retrieved from peer table.
128 if (tcptw->tw_ts_recent_stamp &&
129 (twp == NULL || (sysctl_tcp_tw_reuse &&
130 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
131 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
132 if (tp->write_seq == 0)
133 tp->write_seq = 1;
134 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
135 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
136 sock_hold(sktw);
137 return 1;
140 return 0;
143 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
145 /* This will initiate an outgoing connection. */
146 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
148 struct inet_sock *inet = inet_sk(sk);
149 struct tcp_sock *tp = tcp_sk(sk);
150 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151 struct rtable *rt;
152 __be32 daddr, nexthop;
153 int tmp;
154 int err;
156 if (addr_len < sizeof(struct sockaddr_in))
157 return -EINVAL;
159 if (usin->sin_family != AF_INET)
160 return -EAFNOSUPPORT;
162 nexthop = daddr = usin->sin_addr.s_addr;
163 if (inet->opt && inet->opt->srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet->opt->faddr;
169 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
170 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
171 IPPROTO_TCP,
172 inet->sport, usin->sin_port, sk, 1);
173 if (tmp < 0) {
174 if (tmp == -ENETUNREACH)
175 IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
176 return tmp;
179 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
180 ip_rt_put(rt);
181 return -ENETUNREACH;
184 if (!inet->opt || !inet->opt->srr)
185 daddr = rt->rt_dst;
187 if (!inet->saddr)
188 inet->saddr = rt->rt_src;
189 inet->rcv_saddr = inet->saddr;
191 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
192 /* Reset inherited state */
193 tp->rx_opt.ts_recent = 0;
194 tp->rx_opt.ts_recent_stamp = 0;
195 tp->write_seq = 0;
198 if (tcp_death_row.sysctl_tw_recycle &&
199 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
200 struct inet_peer *peer = rt_get_peer(rt);
202 * VJ's idea. We save last timestamp seen from
203 * the destination in peer table, when entering state
204 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
205 * when trying new connection.
207 if (peer != NULL &&
208 peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
209 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
210 tp->rx_opt.ts_recent = peer->tcp_ts;
214 inet->dport = usin->sin_port;
215 inet->daddr = daddr;
217 inet_csk(sk)->icsk_ext_hdr_len = 0;
218 if (inet->opt)
219 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
221 tp->rx_opt.mss_clamp = 536;
223 /* Socket identity is still unknown (sport may be zero).
224 * However we set state to SYN-SENT and not releasing socket
225 * lock select source port, enter ourselves into the hash tables and
226 * complete initialization after this.
228 tcp_set_state(sk, TCP_SYN_SENT);
229 err = inet_hash_connect(&tcp_death_row, sk);
230 if (err)
231 goto failure;
233 err = ip_route_newports(&rt, IPPROTO_TCP,
234 inet->sport, inet->dport, sk);
235 if (err)
236 goto failure;
238 /* OK, now commit destination to socket. */
239 sk->sk_gso_type = SKB_GSO_TCPV4;
240 sk_setup_caps(sk, &rt->u.dst);
242 if (!tp->write_seq)
243 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
244 inet->daddr,
245 inet->sport,
246 usin->sin_port);
248 inet->id = tp->write_seq ^ jiffies;
250 err = tcp_connect(sk);
251 rt = NULL;
252 if (err)
253 goto failure;
255 return 0;
257 failure:
259 * This unhashes the socket and releases the local port,
260 * if necessary.
262 tcp_set_state(sk, TCP_CLOSE);
263 ip_rt_put(rt);
264 sk->sk_route_caps = 0;
265 inet->dport = 0;
266 return err;
270 * This routine does path mtu discovery as defined in RFC1191.
272 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
274 struct dst_entry *dst;
275 struct inet_sock *inet = inet_sk(sk);
277 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278 * send out by Linux are always <576bytes so they should go through
279 * unfragmented).
281 if (sk->sk_state == TCP_LISTEN)
282 return;
284 /* We don't check in the destentry if pmtu discovery is forbidden
285 * on this route. We just assume that no packet_to_big packets
286 * are send back when pmtu discovery is not active.
287 * There is a small race when the user changes this flag in the
288 * route, but I think that's acceptable.
290 if ((dst = __sk_dst_check(sk, 0)) == NULL)
291 return;
293 dst->ops->update_pmtu(dst, mtu);
295 /* Something is about to be wrong... Remember soft error
296 * for the case, if this connection will not able to recover.
298 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
299 sk->sk_err_soft = EMSGSIZE;
301 mtu = dst_mtu(dst);
303 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
304 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
305 tcp_sync_mss(sk, mtu);
307 /* Resend the TCP packet because it's
308 * clear that the old packet has been
309 * dropped. This is the new "fast" path mtu
310 * discovery.
312 tcp_simple_retransmit(sk);
313 } /* else let the usual retransmit timer handle it */
317 * This routine is called by the ICMP module when it gets some
318 * sort of error condition. If err < 0 then the socket should
319 * be closed and the error returned to the user. If err > 0
320 * it's just the icmp type << 8 | icmp code. After adjustment
321 * header points to the first 8 bytes of the tcp header. We need
322 * to find the appropriate port.
324 * The locking strategy used here is very "optimistic". When
325 * someone else accesses the socket the ICMP is just dropped
326 * and for some paths there is no check at all.
327 * A more general error queue to queue errors for later handling
328 * is probably better.
332 void tcp_v4_err(struct sk_buff *skb, u32 info)
334 struct iphdr *iph = (struct iphdr *)skb->data;
335 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
336 struct tcp_sock *tp;
337 struct inet_sock *inet;
338 const int type = icmp_hdr(skb)->type;
339 const int code = icmp_hdr(skb)->code;
340 struct sock *sk;
341 __u32 seq;
342 int err;
344 if (skb->len < (iph->ihl << 2) + 8) {
345 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
346 return;
349 sk = inet_lookup(dev_net(skb->dev), &tcp_hashinfo, iph->daddr, th->dest,
350 iph->saddr, th->source, inet_iif(skb));
351 if (!sk) {
352 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
353 return;
355 if (sk->sk_state == TCP_TIME_WAIT) {
356 inet_twsk_put(inet_twsk(sk));
357 return;
360 bh_lock_sock(sk);
361 /* If too many ICMPs get dropped on busy
362 * servers this needs to be solved differently.
364 if (sock_owned_by_user(sk))
365 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
367 if (sk->sk_state == TCP_CLOSE)
368 goto out;
370 tp = tcp_sk(sk);
371 seq = ntohl(th->seq);
372 if (sk->sk_state != TCP_LISTEN &&
373 !between(seq, tp->snd_una, tp->snd_nxt)) {
374 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
375 goto out;
378 switch (type) {
379 case ICMP_SOURCE_QUENCH:
380 /* Just silently ignore these. */
381 goto out;
382 case ICMP_PARAMETERPROB:
383 err = EPROTO;
384 break;
385 case ICMP_DEST_UNREACH:
386 if (code > NR_ICMP_UNREACH)
387 goto out;
389 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
390 if (!sock_owned_by_user(sk))
391 do_pmtu_discovery(sk, iph, info);
392 goto out;
395 err = icmp_err_convert[code].errno;
396 break;
397 case ICMP_TIME_EXCEEDED:
398 err = EHOSTUNREACH;
399 break;
400 default:
401 goto out;
404 switch (sk->sk_state) {
405 struct request_sock *req, **prev;
406 case TCP_LISTEN:
407 if (sock_owned_by_user(sk))
408 goto out;
410 req = inet_csk_search_req(sk, &prev, th->dest,
411 iph->daddr, iph->saddr);
412 if (!req)
413 goto out;
415 /* ICMPs are not backlogged, hence we cannot get
416 an established socket here.
418 BUG_TRAP(!req->sk);
420 if (seq != tcp_rsk(req)->snt_isn) {
421 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
422 goto out;
426 * Still in SYN_RECV, just remove it silently.
427 * There is no good way to pass the error to the newly
428 * created socket, and POSIX does not want network
429 * errors returned from accept().
431 inet_csk_reqsk_queue_drop(sk, req, prev);
432 goto out;
434 case TCP_SYN_SENT:
435 case TCP_SYN_RECV: /* Cannot happen.
436 It can f.e. if SYNs crossed.
438 if (!sock_owned_by_user(sk)) {
439 sk->sk_err = err;
441 sk->sk_error_report(sk);
443 tcp_done(sk);
444 } else {
445 sk->sk_err_soft = err;
447 goto out;
450 /* If we've already connected we will keep trying
451 * until we time out, or the user gives up.
453 * rfc1122 4.2.3.9 allows to consider as hard errors
454 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
455 * but it is obsoleted by pmtu discovery).
457 * Note, that in modern internet, where routing is unreliable
458 * and in each dark corner broken firewalls sit, sending random
459 * errors ordered by their masters even this two messages finally lose
460 * their original sense (even Linux sends invalid PORT_UNREACHs)
462 * Now we are in compliance with RFCs.
463 * --ANK (980905)
466 inet = inet_sk(sk);
467 if (!sock_owned_by_user(sk) && inet->recverr) {
468 sk->sk_err = err;
469 sk->sk_error_report(sk);
470 } else { /* Only an error on timeout */
471 sk->sk_err_soft = err;
474 out:
475 bh_unlock_sock(sk);
476 sock_put(sk);
479 /* This routine computes an IPv4 TCP checksum. */
480 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
482 struct inet_sock *inet = inet_sk(sk);
483 struct tcphdr *th = tcp_hdr(skb);
485 if (skb->ip_summed == CHECKSUM_PARTIAL) {
486 th->check = ~tcp_v4_check(len, inet->saddr,
487 inet->daddr, 0);
488 skb->csum_start = skb_transport_header(skb) - skb->head;
489 skb->csum_offset = offsetof(struct tcphdr, check);
490 } else {
491 th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
492 csum_partial((char *)th,
493 th->doff << 2,
494 skb->csum));
498 int tcp_v4_gso_send_check(struct sk_buff *skb)
500 const struct iphdr *iph;
501 struct tcphdr *th;
503 if (!pskb_may_pull(skb, sizeof(*th)))
504 return -EINVAL;
506 iph = ip_hdr(skb);
507 th = tcp_hdr(skb);
509 th->check = 0;
510 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
511 skb->csum_start = skb_transport_header(skb) - skb->head;
512 skb->csum_offset = offsetof(struct tcphdr, check);
513 skb->ip_summed = CHECKSUM_PARTIAL;
514 return 0;
518 * This routine will send an RST to the other tcp.
520 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
521 * for reset.
522 * Answer: if a packet caused RST, it is not for a socket
523 * existing in our system, if it is matched to a socket,
524 * it is just duplicate segment or bug in other side's TCP.
525 * So that we build reply only basing on parameters
526 * arrived with segment.
527 * Exception: precedence violation. We do not implement it in any case.
530 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
532 struct tcphdr *th = tcp_hdr(skb);
533 struct {
534 struct tcphdr th;
535 #ifdef CONFIG_TCP_MD5SIG
536 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
537 #endif
538 } rep;
539 struct ip_reply_arg arg;
540 #ifdef CONFIG_TCP_MD5SIG
541 struct tcp_md5sig_key *key;
542 #endif
544 /* Never send a reset in response to a reset. */
545 if (th->rst)
546 return;
548 if (skb->rtable->rt_type != RTN_LOCAL)
549 return;
551 /* Swap the send and the receive. */
552 memset(&rep, 0, sizeof(rep));
553 rep.th.dest = th->source;
554 rep.th.source = th->dest;
555 rep.th.doff = sizeof(struct tcphdr) / 4;
556 rep.th.rst = 1;
558 if (th->ack) {
559 rep.th.seq = th->ack_seq;
560 } else {
561 rep.th.ack = 1;
562 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
563 skb->len - (th->doff << 2));
566 memset(&arg, 0, sizeof(arg));
567 arg.iov[0].iov_base = (unsigned char *)&rep;
568 arg.iov[0].iov_len = sizeof(rep.th);
570 #ifdef CONFIG_TCP_MD5SIG
571 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
572 if (key) {
573 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
574 (TCPOPT_NOP << 16) |
575 (TCPOPT_MD5SIG << 8) |
576 TCPOLEN_MD5SIG);
577 /* Update length and the length the header thinks exists */
578 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
579 rep.th.doff = arg.iov[0].iov_len / 4;
581 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[1],
582 key,
583 ip_hdr(skb)->daddr,
584 ip_hdr(skb)->saddr,
585 &rep.th, IPPROTO_TCP,
586 arg.iov[0].iov_len);
588 #endif
589 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
590 ip_hdr(skb)->saddr, /* XXX */
591 sizeof(struct tcphdr), IPPROTO_TCP, 0);
592 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
594 ip_send_reply(dev_net(skb->dst->dev)->ipv4.tcp_sock, skb,
595 &arg, arg.iov[0].iov_len);
597 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
598 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
601 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
602 outside socket context is ugly, certainly. What can I do?
605 static void tcp_v4_send_ack(struct tcp_timewait_sock *twsk,
606 struct sk_buff *skb, u32 seq, u32 ack,
607 u32 win, u32 ts)
609 struct tcphdr *th = tcp_hdr(skb);
610 struct {
611 struct tcphdr th;
612 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
613 #ifdef CONFIG_TCP_MD5SIG
614 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
615 #endif
617 } rep;
618 struct ip_reply_arg arg;
619 #ifdef CONFIG_TCP_MD5SIG
620 struct tcp_md5sig_key *key;
621 struct tcp_md5sig_key tw_key;
622 #endif
624 memset(&rep.th, 0, sizeof(struct tcphdr));
625 memset(&arg, 0, sizeof(arg));
627 arg.iov[0].iov_base = (unsigned char *)&rep;
628 arg.iov[0].iov_len = sizeof(rep.th);
629 if (ts) {
630 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
631 (TCPOPT_TIMESTAMP << 8) |
632 TCPOLEN_TIMESTAMP);
633 rep.opt[1] = htonl(tcp_time_stamp);
634 rep.opt[2] = htonl(ts);
635 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
638 /* Swap the send and the receive. */
639 rep.th.dest = th->source;
640 rep.th.source = th->dest;
641 rep.th.doff = arg.iov[0].iov_len / 4;
642 rep.th.seq = htonl(seq);
643 rep.th.ack_seq = htonl(ack);
644 rep.th.ack = 1;
645 rep.th.window = htons(win);
647 #ifdef CONFIG_TCP_MD5SIG
649 * The SKB holds an imcoming packet, but may not have a valid ->sk
650 * pointer. This is especially the case when we're dealing with a
651 * TIME_WAIT ack, because the sk structure is long gone, and only
652 * the tcp_timewait_sock remains. So the md5 key is stashed in that
653 * structure, and we use it in preference. I believe that (twsk ||
654 * skb->sk) holds true, but we program defensively.
656 if (!twsk && skb->sk) {
657 key = tcp_v4_md5_do_lookup(skb->sk, ip_hdr(skb)->daddr);
658 } else if (twsk && twsk->tw_md5_keylen) {
659 tw_key.key = twsk->tw_md5_key;
660 tw_key.keylen = twsk->tw_md5_keylen;
661 key = &tw_key;
662 } else
663 key = NULL;
665 if (key) {
666 int offset = (ts) ? 3 : 0;
668 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
669 (TCPOPT_NOP << 16) |
670 (TCPOPT_MD5SIG << 8) |
671 TCPOLEN_MD5SIG);
672 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
673 rep.th.doff = arg.iov[0].iov_len/4;
675 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[offset],
676 key,
677 ip_hdr(skb)->daddr,
678 ip_hdr(skb)->saddr,
679 &rep.th, IPPROTO_TCP,
680 arg.iov[0].iov_len);
682 #endif
683 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
684 ip_hdr(skb)->saddr, /* XXX */
685 arg.iov[0].iov_len, IPPROTO_TCP, 0);
686 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
687 if (twsk)
688 arg.bound_dev_if = twsk->tw_sk.tw_bound_dev_if;
690 ip_send_reply(dev_net(skb->dev)->ipv4.tcp_sock, skb,
691 &arg, arg.iov[0].iov_len);
693 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
696 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
698 struct inet_timewait_sock *tw = inet_twsk(sk);
699 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
701 tcp_v4_send_ack(tcptw, skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
702 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
703 tcptw->tw_ts_recent);
705 inet_twsk_put(tw);
708 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb,
709 struct request_sock *req)
711 tcp_v4_send_ack(NULL, skb, tcp_rsk(req)->snt_isn + 1,
712 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
713 req->ts_recent);
717 * Send a SYN-ACK after having received a SYN.
718 * This still operates on a request_sock only, not on a big
719 * socket.
721 static int __tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
722 struct dst_entry *dst)
724 const struct inet_request_sock *ireq = inet_rsk(req);
725 int err = -1;
726 struct sk_buff * skb;
728 /* First, grab a route. */
729 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
730 return -1;
732 skb = tcp_make_synack(sk, dst, req);
734 if (skb) {
735 struct tcphdr *th = tcp_hdr(skb);
737 th->check = tcp_v4_check(skb->len,
738 ireq->loc_addr,
739 ireq->rmt_addr,
740 csum_partial((char *)th, skb->len,
741 skb->csum));
743 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
744 ireq->rmt_addr,
745 ireq->opt);
746 err = net_xmit_eval(err);
749 dst_release(dst);
750 return err;
753 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req)
755 return __tcp_v4_send_synack(sk, req, NULL);
759 * IPv4 request_sock destructor.
761 static void tcp_v4_reqsk_destructor(struct request_sock *req)
763 kfree(inet_rsk(req)->opt);
766 #ifdef CONFIG_SYN_COOKIES
767 static void syn_flood_warning(struct sk_buff *skb)
769 static unsigned long warntime;
771 if (time_after(jiffies, (warntime + HZ * 60))) {
772 warntime = jiffies;
773 printk(KERN_INFO
774 "possible SYN flooding on port %d. Sending cookies.\n",
775 ntohs(tcp_hdr(skb)->dest));
778 #endif
781 * Save and compile IPv4 options into the request_sock if needed.
783 static struct ip_options *tcp_v4_save_options(struct sock *sk,
784 struct sk_buff *skb)
786 struct ip_options *opt = &(IPCB(skb)->opt);
787 struct ip_options *dopt = NULL;
789 if (opt && opt->optlen) {
790 int opt_size = optlength(opt);
791 dopt = kmalloc(opt_size, GFP_ATOMIC);
792 if (dopt) {
793 if (ip_options_echo(dopt, skb)) {
794 kfree(dopt);
795 dopt = NULL;
799 return dopt;
802 #ifdef CONFIG_TCP_MD5SIG
804 * RFC2385 MD5 checksumming requires a mapping of
805 * IP address->MD5 Key.
806 * We need to maintain these in the sk structure.
809 /* Find the Key structure for an address. */
810 static struct tcp_md5sig_key *
811 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
813 struct tcp_sock *tp = tcp_sk(sk);
814 int i;
816 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
817 return NULL;
818 for (i = 0; i < tp->md5sig_info->entries4; i++) {
819 if (tp->md5sig_info->keys4[i].addr == addr)
820 return &tp->md5sig_info->keys4[i].base;
822 return NULL;
825 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
826 struct sock *addr_sk)
828 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
831 EXPORT_SYMBOL(tcp_v4_md5_lookup);
833 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
834 struct request_sock *req)
836 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
839 /* This can be called on a newly created socket, from other files */
840 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
841 u8 *newkey, u8 newkeylen)
843 /* Add Key to the list */
844 struct tcp_md5sig_key *key;
845 struct tcp_sock *tp = tcp_sk(sk);
846 struct tcp4_md5sig_key *keys;
848 key = tcp_v4_md5_do_lookup(sk, addr);
849 if (key) {
850 /* Pre-existing entry - just update that one. */
851 kfree(key->key);
852 key->key = newkey;
853 key->keylen = newkeylen;
854 } else {
855 struct tcp_md5sig_info *md5sig;
857 if (!tp->md5sig_info) {
858 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
859 GFP_ATOMIC);
860 if (!tp->md5sig_info) {
861 kfree(newkey);
862 return -ENOMEM;
864 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
866 if (tcp_alloc_md5sig_pool() == NULL) {
867 kfree(newkey);
868 return -ENOMEM;
870 md5sig = tp->md5sig_info;
872 if (md5sig->alloced4 == md5sig->entries4) {
873 keys = kmalloc((sizeof(*keys) *
874 (md5sig->entries4 + 1)), GFP_ATOMIC);
875 if (!keys) {
876 kfree(newkey);
877 tcp_free_md5sig_pool();
878 return -ENOMEM;
881 if (md5sig->entries4)
882 memcpy(keys, md5sig->keys4,
883 sizeof(*keys) * md5sig->entries4);
885 /* Free old key list, and reference new one */
886 kfree(md5sig->keys4);
887 md5sig->keys4 = keys;
888 md5sig->alloced4++;
890 md5sig->entries4++;
891 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
892 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
893 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
895 return 0;
898 EXPORT_SYMBOL(tcp_v4_md5_do_add);
900 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
901 u8 *newkey, u8 newkeylen)
903 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
904 newkey, newkeylen);
907 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
909 struct tcp_sock *tp = tcp_sk(sk);
910 int i;
912 for (i = 0; i < tp->md5sig_info->entries4; i++) {
913 if (tp->md5sig_info->keys4[i].addr == addr) {
914 /* Free the key */
915 kfree(tp->md5sig_info->keys4[i].base.key);
916 tp->md5sig_info->entries4--;
918 if (tp->md5sig_info->entries4 == 0) {
919 kfree(tp->md5sig_info->keys4);
920 tp->md5sig_info->keys4 = NULL;
921 tp->md5sig_info->alloced4 = 0;
922 } else if (tp->md5sig_info->entries4 != i) {
923 /* Need to do some manipulation */
924 memmove(&tp->md5sig_info->keys4[i],
925 &tp->md5sig_info->keys4[i+1],
926 (tp->md5sig_info->entries4 - i) *
927 sizeof(struct tcp4_md5sig_key));
929 tcp_free_md5sig_pool();
930 return 0;
933 return -ENOENT;
936 EXPORT_SYMBOL(tcp_v4_md5_do_del);
938 static void tcp_v4_clear_md5_list(struct sock *sk)
940 struct tcp_sock *tp = tcp_sk(sk);
942 /* Free each key, then the set of key keys,
943 * the crypto element, and then decrement our
944 * hold on the last resort crypto.
946 if (tp->md5sig_info->entries4) {
947 int i;
948 for (i = 0; i < tp->md5sig_info->entries4; i++)
949 kfree(tp->md5sig_info->keys4[i].base.key);
950 tp->md5sig_info->entries4 = 0;
951 tcp_free_md5sig_pool();
953 if (tp->md5sig_info->keys4) {
954 kfree(tp->md5sig_info->keys4);
955 tp->md5sig_info->keys4 = NULL;
956 tp->md5sig_info->alloced4 = 0;
960 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
961 int optlen)
963 struct tcp_md5sig cmd;
964 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
965 u8 *newkey;
967 if (optlen < sizeof(cmd))
968 return -EINVAL;
970 if (copy_from_user(&cmd, optval, sizeof(cmd)))
971 return -EFAULT;
973 if (sin->sin_family != AF_INET)
974 return -EINVAL;
976 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
977 if (!tcp_sk(sk)->md5sig_info)
978 return -ENOENT;
979 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
982 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
983 return -EINVAL;
985 if (!tcp_sk(sk)->md5sig_info) {
986 struct tcp_sock *tp = tcp_sk(sk);
987 struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
989 if (!p)
990 return -EINVAL;
992 tp->md5sig_info = p;
993 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
996 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
997 if (!newkey)
998 return -ENOMEM;
999 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1000 newkey, cmd.tcpm_keylen);
1003 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1004 __be32 saddr, __be32 daddr,
1005 struct tcphdr *th, int protocol,
1006 unsigned int tcplen)
1008 struct scatterlist sg[4];
1009 __u16 data_len;
1010 int block = 0;
1011 __sum16 old_checksum;
1012 struct tcp_md5sig_pool *hp;
1013 struct tcp4_pseudohdr *bp;
1014 struct hash_desc *desc;
1015 int err;
1016 unsigned int nbytes = 0;
1019 * Okay, so RFC2385 is turned on for this connection,
1020 * so we need to generate the MD5 hash for the packet now.
1023 hp = tcp_get_md5sig_pool();
1024 if (!hp)
1025 goto clear_hash_noput;
1027 bp = &hp->md5_blk.ip4;
1028 desc = &hp->md5_desc;
1031 * 1. the TCP pseudo-header (in the order: source IP address,
1032 * destination IP address, zero-padded protocol number, and
1033 * segment length)
1035 bp->saddr = saddr;
1036 bp->daddr = daddr;
1037 bp->pad = 0;
1038 bp->protocol = protocol;
1039 bp->len = htons(tcplen);
1041 sg_init_table(sg, 4);
1043 sg_set_buf(&sg[block++], bp, sizeof(*bp));
1044 nbytes += sizeof(*bp);
1046 /* 2. the TCP header, excluding options, and assuming a
1047 * checksum of zero/
1049 old_checksum = th->check;
1050 th->check = 0;
1051 sg_set_buf(&sg[block++], th, sizeof(struct tcphdr));
1052 nbytes += sizeof(struct tcphdr);
1054 /* 3. the TCP segment data (if any) */
1055 data_len = tcplen - (th->doff << 2);
1056 if (data_len > 0) {
1057 unsigned char *data = (unsigned char *)th + (th->doff << 2);
1058 sg_set_buf(&sg[block++], data, data_len);
1059 nbytes += data_len;
1062 /* 4. an independently-specified key or password, known to both
1063 * TCPs and presumably connection-specific
1065 sg_set_buf(&sg[block++], key->key, key->keylen);
1066 nbytes += key->keylen;
1068 sg_mark_end(&sg[block - 1]);
1070 /* Now store the Hash into the packet */
1071 err = crypto_hash_init(desc);
1072 if (err)
1073 goto clear_hash;
1074 err = crypto_hash_update(desc, sg, nbytes);
1075 if (err)
1076 goto clear_hash;
1077 err = crypto_hash_final(desc, md5_hash);
1078 if (err)
1079 goto clear_hash;
1081 /* Reset header, and free up the crypto */
1082 tcp_put_md5sig_pool();
1083 th->check = old_checksum;
1085 out:
1086 return 0;
1087 clear_hash:
1088 tcp_put_md5sig_pool();
1089 clear_hash_noput:
1090 memset(md5_hash, 0, 16);
1091 goto out;
1094 int tcp_v4_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1095 struct sock *sk,
1096 struct dst_entry *dst,
1097 struct request_sock *req,
1098 struct tcphdr *th, int protocol,
1099 unsigned int tcplen)
1101 __be32 saddr, daddr;
1103 if (sk) {
1104 saddr = inet_sk(sk)->saddr;
1105 daddr = inet_sk(sk)->daddr;
1106 } else {
1107 struct rtable *rt = (struct rtable *)dst;
1108 BUG_ON(!rt);
1109 saddr = rt->rt_src;
1110 daddr = rt->rt_dst;
1112 return tcp_v4_do_calc_md5_hash(md5_hash, key,
1113 saddr, daddr,
1114 th, protocol, tcplen);
1117 EXPORT_SYMBOL(tcp_v4_calc_md5_hash);
1119 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1122 * This gets called for each TCP segment that arrives
1123 * so we want to be efficient.
1124 * We have 3 drop cases:
1125 * o No MD5 hash and one expected.
1126 * o MD5 hash and we're not expecting one.
1127 * o MD5 hash and its wrong.
1129 __u8 *hash_location = NULL;
1130 struct tcp_md5sig_key *hash_expected;
1131 const struct iphdr *iph = ip_hdr(skb);
1132 struct tcphdr *th = tcp_hdr(skb);
1133 int length = (th->doff << 2) - sizeof(struct tcphdr);
1134 int genhash;
1135 unsigned char *ptr;
1136 unsigned char newhash[16];
1138 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1141 * If the TCP option length is less than the TCP_MD5SIG
1142 * option length, then we can shortcut
1144 if (length < TCPOLEN_MD5SIG) {
1145 if (hash_expected)
1146 return 1;
1147 else
1148 return 0;
1151 /* Okay, we can't shortcut - we have to grub through the options */
1152 ptr = (unsigned char *)(th + 1);
1153 while (length > 0) {
1154 int opcode = *ptr++;
1155 int opsize;
1157 switch (opcode) {
1158 case TCPOPT_EOL:
1159 goto done_opts;
1160 case TCPOPT_NOP:
1161 length--;
1162 continue;
1163 default:
1164 opsize = *ptr++;
1165 if (opsize < 2)
1166 goto done_opts;
1167 if (opsize > length)
1168 goto done_opts;
1170 if (opcode == TCPOPT_MD5SIG) {
1171 hash_location = ptr;
1172 goto done_opts;
1175 ptr += opsize-2;
1176 length -= opsize;
1178 done_opts:
1179 /* We've parsed the options - do we have a hash? */
1180 if (!hash_expected && !hash_location)
1181 return 0;
1183 if (hash_expected && !hash_location) {
1184 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash expected but NOT found "
1185 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1186 NIPQUAD(iph->saddr), ntohs(th->source),
1187 NIPQUAD(iph->daddr), ntohs(th->dest));
1188 return 1;
1191 if (!hash_expected && hash_location) {
1192 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash NOT expected but found "
1193 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1194 NIPQUAD(iph->saddr), ntohs(th->source),
1195 NIPQUAD(iph->daddr), ntohs(th->dest));
1196 return 1;
1199 /* Okay, so this is hash_expected and hash_location -
1200 * so we need to calculate the checksum.
1202 genhash = tcp_v4_do_calc_md5_hash(newhash,
1203 hash_expected,
1204 iph->saddr, iph->daddr,
1205 th, sk->sk_protocol,
1206 skb->len);
1208 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1209 if (net_ratelimit()) {
1210 printk(KERN_INFO "MD5 Hash failed for "
1211 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)%s\n",
1212 NIPQUAD(iph->saddr), ntohs(th->source),
1213 NIPQUAD(iph->daddr), ntohs(th->dest),
1214 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1216 return 1;
1218 return 0;
1221 #endif
1223 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1224 .family = PF_INET,
1225 .obj_size = sizeof(struct tcp_request_sock),
1226 .rtx_syn_ack = tcp_v4_send_synack,
1227 .send_ack = tcp_v4_reqsk_send_ack,
1228 .destructor = tcp_v4_reqsk_destructor,
1229 .send_reset = tcp_v4_send_reset,
1232 #ifdef CONFIG_TCP_MD5SIG
1233 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1234 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1236 #endif
1238 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1239 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1240 .twsk_unique = tcp_twsk_unique,
1241 .twsk_destructor= tcp_twsk_destructor,
1244 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1246 struct inet_request_sock *ireq;
1247 struct tcp_options_received tmp_opt;
1248 struct request_sock *req;
1249 __be32 saddr = ip_hdr(skb)->saddr;
1250 __be32 daddr = ip_hdr(skb)->daddr;
1251 __u32 isn = TCP_SKB_CB(skb)->when;
1252 struct dst_entry *dst = NULL;
1253 #ifdef CONFIG_SYN_COOKIES
1254 int want_cookie = 0;
1255 #else
1256 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1257 #endif
1259 /* Never answer to SYNs send to broadcast or multicast */
1260 if (skb->rtable->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1261 goto drop;
1263 /* TW buckets are converted to open requests without
1264 * limitations, they conserve resources and peer is
1265 * evidently real one.
1267 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1268 #ifdef CONFIG_SYN_COOKIES
1269 if (sysctl_tcp_syncookies) {
1270 want_cookie = 1;
1271 } else
1272 #endif
1273 goto drop;
1276 /* Accept backlog is full. If we have already queued enough
1277 * of warm entries in syn queue, drop request. It is better than
1278 * clogging syn queue with openreqs with exponentially increasing
1279 * timeout.
1281 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1282 goto drop;
1284 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1285 if (!req)
1286 goto drop;
1288 #ifdef CONFIG_TCP_MD5SIG
1289 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1290 #endif
1292 tcp_clear_options(&tmp_opt);
1293 tmp_opt.mss_clamp = 536;
1294 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
1296 tcp_parse_options(skb, &tmp_opt, 0);
1298 if (want_cookie && !tmp_opt.saw_tstamp)
1299 tcp_clear_options(&tmp_opt);
1301 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1302 /* Some OSes (unknown ones, but I see them on web server, which
1303 * contains information interesting only for windows'
1304 * users) do not send their stamp in SYN. It is easy case.
1305 * We simply do not advertise TS support.
1307 tmp_opt.saw_tstamp = 0;
1308 tmp_opt.tstamp_ok = 0;
1310 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1312 tcp_openreq_init(req, &tmp_opt, skb);
1314 if (security_inet_conn_request(sk, skb, req))
1315 goto drop_and_free;
1317 ireq = inet_rsk(req);
1318 ireq->loc_addr = daddr;
1319 ireq->rmt_addr = saddr;
1320 ireq->opt = tcp_v4_save_options(sk, skb);
1321 if (!want_cookie)
1322 TCP_ECN_create_request(req, tcp_hdr(skb));
1324 if (want_cookie) {
1325 #ifdef CONFIG_SYN_COOKIES
1326 syn_flood_warning(skb);
1327 req->cookie_ts = tmp_opt.tstamp_ok;
1328 #endif
1329 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1330 } else if (!isn) {
1331 struct inet_peer *peer = NULL;
1333 /* VJ's idea. We save last timestamp seen
1334 * from the destination in peer table, when entering
1335 * state TIME-WAIT, and check against it before
1336 * accepting new connection request.
1338 * If "isn" is not zero, this request hit alive
1339 * timewait bucket, so that all the necessary checks
1340 * are made in the function processing timewait state.
1342 if (tmp_opt.saw_tstamp &&
1343 tcp_death_row.sysctl_tw_recycle &&
1344 (dst = inet_csk_route_req(sk, req)) != NULL &&
1345 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1346 peer->v4daddr == saddr) {
1347 if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1348 (s32)(peer->tcp_ts - req->ts_recent) >
1349 TCP_PAWS_WINDOW) {
1350 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
1351 goto drop_and_release;
1354 /* Kill the following clause, if you dislike this way. */
1355 else if (!sysctl_tcp_syncookies &&
1356 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1357 (sysctl_max_syn_backlog >> 2)) &&
1358 (!peer || !peer->tcp_ts_stamp) &&
1359 (!dst || !dst_metric(dst, RTAX_RTT))) {
1360 /* Without syncookies last quarter of
1361 * backlog is filled with destinations,
1362 * proven to be alive.
1363 * It means that we continue to communicate
1364 * to destinations, already remembered
1365 * to the moment of synflood.
1367 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
1368 "request from " NIPQUAD_FMT "/%u\n",
1369 NIPQUAD(saddr),
1370 ntohs(tcp_hdr(skb)->source));
1371 goto drop_and_release;
1374 isn = tcp_v4_init_sequence(skb);
1376 tcp_rsk(req)->snt_isn = isn;
1378 if (__tcp_v4_send_synack(sk, req, dst) || want_cookie)
1379 goto drop_and_free;
1381 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1382 return 0;
1384 drop_and_release:
1385 dst_release(dst);
1386 drop_and_free:
1387 reqsk_free(req);
1388 drop:
1389 return 0;
1394 * The three way handshake has completed - we got a valid synack -
1395 * now create the new socket.
1397 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1398 struct request_sock *req,
1399 struct dst_entry *dst)
1401 struct inet_request_sock *ireq;
1402 struct inet_sock *newinet;
1403 struct tcp_sock *newtp;
1404 struct sock *newsk;
1405 #ifdef CONFIG_TCP_MD5SIG
1406 struct tcp_md5sig_key *key;
1407 #endif
1409 if (sk_acceptq_is_full(sk))
1410 goto exit_overflow;
1412 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1413 goto exit;
1415 newsk = tcp_create_openreq_child(sk, req, skb);
1416 if (!newsk)
1417 goto exit;
1419 newsk->sk_gso_type = SKB_GSO_TCPV4;
1420 sk_setup_caps(newsk, dst);
1422 newtp = tcp_sk(newsk);
1423 newinet = inet_sk(newsk);
1424 ireq = inet_rsk(req);
1425 newinet->daddr = ireq->rmt_addr;
1426 newinet->rcv_saddr = ireq->loc_addr;
1427 newinet->saddr = ireq->loc_addr;
1428 newinet->opt = ireq->opt;
1429 ireq->opt = NULL;
1430 newinet->mc_index = inet_iif(skb);
1431 newinet->mc_ttl = ip_hdr(skb)->ttl;
1432 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1433 if (newinet->opt)
1434 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1435 newinet->id = newtp->write_seq ^ jiffies;
1437 tcp_mtup_init(newsk);
1438 tcp_sync_mss(newsk, dst_mtu(dst));
1439 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1440 tcp_initialize_rcv_mss(newsk);
1442 #ifdef CONFIG_TCP_MD5SIG
1443 /* Copy over the MD5 key from the original socket */
1444 if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1446 * We're using one, so create a matching key
1447 * on the newsk structure. If we fail to get
1448 * memory, then we end up not copying the key
1449 * across. Shucks.
1451 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1452 if (newkey != NULL)
1453 tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1454 newkey, key->keylen);
1456 #endif
1458 __inet_hash_nolisten(newsk);
1459 __inet_inherit_port(sk, newsk);
1461 return newsk;
1463 exit_overflow:
1464 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
1465 exit:
1466 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
1467 dst_release(dst);
1468 return NULL;
1471 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1473 struct tcphdr *th = tcp_hdr(skb);
1474 const struct iphdr *iph = ip_hdr(skb);
1475 struct sock *nsk;
1476 struct request_sock **prev;
1477 /* Find possible connection requests. */
1478 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1479 iph->saddr, iph->daddr);
1480 if (req)
1481 return tcp_check_req(sk, skb, req, prev);
1483 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1484 th->source, iph->daddr, th->dest, inet_iif(skb));
1486 if (nsk) {
1487 if (nsk->sk_state != TCP_TIME_WAIT) {
1488 bh_lock_sock(nsk);
1489 return nsk;
1491 inet_twsk_put(inet_twsk(nsk));
1492 return NULL;
1495 #ifdef CONFIG_SYN_COOKIES
1496 if (!th->rst && !th->syn && th->ack)
1497 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1498 #endif
1499 return sk;
1502 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1504 const struct iphdr *iph = ip_hdr(skb);
1506 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1507 if (!tcp_v4_check(skb->len, iph->saddr,
1508 iph->daddr, skb->csum)) {
1509 skb->ip_summed = CHECKSUM_UNNECESSARY;
1510 return 0;
1514 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1515 skb->len, IPPROTO_TCP, 0);
1517 if (skb->len <= 76) {
1518 return __skb_checksum_complete(skb);
1520 return 0;
1524 /* The socket must have it's spinlock held when we get
1525 * here.
1527 * We have a potential double-lock case here, so even when
1528 * doing backlog processing we use the BH locking scheme.
1529 * This is because we cannot sleep with the original spinlock
1530 * held.
1532 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1534 struct sock *rsk;
1535 #ifdef CONFIG_TCP_MD5SIG
1537 * We really want to reject the packet as early as possible
1538 * if:
1539 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1540 * o There is an MD5 option and we're not expecting one
1542 if (tcp_v4_inbound_md5_hash(sk, skb))
1543 goto discard;
1544 #endif
1546 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1547 TCP_CHECK_TIMER(sk);
1548 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1549 rsk = sk;
1550 goto reset;
1552 TCP_CHECK_TIMER(sk);
1553 return 0;
1556 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1557 goto csum_err;
1559 if (sk->sk_state == TCP_LISTEN) {
1560 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1561 if (!nsk)
1562 goto discard;
1564 if (nsk != sk) {
1565 if (tcp_child_process(sk, nsk, skb)) {
1566 rsk = nsk;
1567 goto reset;
1569 return 0;
1573 TCP_CHECK_TIMER(sk);
1574 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1575 rsk = sk;
1576 goto reset;
1578 TCP_CHECK_TIMER(sk);
1579 return 0;
1581 reset:
1582 tcp_v4_send_reset(rsk, skb);
1583 discard:
1584 kfree_skb(skb);
1585 /* Be careful here. If this function gets more complicated and
1586 * gcc suffers from register pressure on the x86, sk (in %ebx)
1587 * might be destroyed here. This current version compiles correctly,
1588 * but you have been warned.
1590 return 0;
1592 csum_err:
1593 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1594 goto discard;
1598 * From tcp_input.c
1601 int tcp_v4_rcv(struct sk_buff *skb)
1603 const struct iphdr *iph;
1604 struct tcphdr *th;
1605 struct sock *sk;
1606 int ret;
1608 if (skb->pkt_type != PACKET_HOST)
1609 goto discard_it;
1611 /* Count it even if it's bad */
1612 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1614 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1615 goto discard_it;
1617 th = tcp_hdr(skb);
1619 if (th->doff < sizeof(struct tcphdr) / 4)
1620 goto bad_packet;
1621 if (!pskb_may_pull(skb, th->doff * 4))
1622 goto discard_it;
1624 /* An explanation is required here, I think.
1625 * Packet length and doff are validated by header prediction,
1626 * provided case of th->doff==0 is eliminated.
1627 * So, we defer the checks. */
1628 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1629 goto bad_packet;
1631 th = tcp_hdr(skb);
1632 iph = ip_hdr(skb);
1633 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1634 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1635 skb->len - th->doff * 4);
1636 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1637 TCP_SKB_CB(skb)->when = 0;
1638 TCP_SKB_CB(skb)->flags = iph->tos;
1639 TCP_SKB_CB(skb)->sacked = 0;
1641 sk = __inet_lookup(dev_net(skb->dev), &tcp_hashinfo, iph->saddr,
1642 th->source, iph->daddr, th->dest, inet_iif(skb));
1643 if (!sk)
1644 goto no_tcp_socket;
1646 process:
1647 if (sk->sk_state == TCP_TIME_WAIT)
1648 goto do_time_wait;
1650 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1651 goto discard_and_relse;
1652 nf_reset(skb);
1654 if (sk_filter(sk, skb))
1655 goto discard_and_relse;
1657 skb->dev = NULL;
1659 bh_lock_sock_nested(sk);
1660 ret = 0;
1661 if (!sock_owned_by_user(sk)) {
1662 #ifdef CONFIG_NET_DMA
1663 struct tcp_sock *tp = tcp_sk(sk);
1664 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1665 tp->ucopy.dma_chan = get_softnet_dma();
1666 if (tp->ucopy.dma_chan)
1667 ret = tcp_v4_do_rcv(sk, skb);
1668 else
1669 #endif
1671 if (!tcp_prequeue(sk, skb))
1672 ret = tcp_v4_do_rcv(sk, skb);
1674 } else
1675 sk_add_backlog(sk, skb);
1676 bh_unlock_sock(sk);
1678 sock_put(sk);
1680 return ret;
1682 no_tcp_socket:
1683 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1684 goto discard_it;
1686 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1687 bad_packet:
1688 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1689 } else {
1690 tcp_v4_send_reset(NULL, skb);
1693 discard_it:
1694 /* Discard frame. */
1695 kfree_skb(skb);
1696 return 0;
1698 discard_and_relse:
1699 sock_put(sk);
1700 goto discard_it;
1702 do_time_wait:
1703 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1704 inet_twsk_put(inet_twsk(sk));
1705 goto discard_it;
1708 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1709 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1710 inet_twsk_put(inet_twsk(sk));
1711 goto discard_it;
1713 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1714 case TCP_TW_SYN: {
1715 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1716 &tcp_hashinfo,
1717 iph->daddr, th->dest,
1718 inet_iif(skb));
1719 if (sk2) {
1720 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1721 inet_twsk_put(inet_twsk(sk));
1722 sk = sk2;
1723 goto process;
1725 /* Fall through to ACK */
1727 case TCP_TW_ACK:
1728 tcp_v4_timewait_ack(sk, skb);
1729 break;
1730 case TCP_TW_RST:
1731 goto no_tcp_socket;
1732 case TCP_TW_SUCCESS:;
1734 goto discard_it;
1737 /* VJ's idea. Save last timestamp seen from this destination
1738 * and hold it at least for normal timewait interval to use for duplicate
1739 * segment detection in subsequent connections, before they enter synchronized
1740 * state.
1743 int tcp_v4_remember_stamp(struct sock *sk)
1745 struct inet_sock *inet = inet_sk(sk);
1746 struct tcp_sock *tp = tcp_sk(sk);
1747 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1748 struct inet_peer *peer = NULL;
1749 int release_it = 0;
1751 if (!rt || rt->rt_dst != inet->daddr) {
1752 peer = inet_getpeer(inet->daddr, 1);
1753 release_it = 1;
1754 } else {
1755 if (!rt->peer)
1756 rt_bind_peer(rt, 1);
1757 peer = rt->peer;
1760 if (peer) {
1761 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1762 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1763 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1764 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1765 peer->tcp_ts = tp->rx_opt.ts_recent;
1767 if (release_it)
1768 inet_putpeer(peer);
1769 return 1;
1772 return 0;
1775 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1777 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1779 if (peer) {
1780 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1782 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1783 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1784 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1785 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1786 peer->tcp_ts = tcptw->tw_ts_recent;
1788 inet_putpeer(peer);
1789 return 1;
1792 return 0;
1795 struct inet_connection_sock_af_ops ipv4_specific = {
1796 .queue_xmit = ip_queue_xmit,
1797 .send_check = tcp_v4_send_check,
1798 .rebuild_header = inet_sk_rebuild_header,
1799 .conn_request = tcp_v4_conn_request,
1800 .syn_recv_sock = tcp_v4_syn_recv_sock,
1801 .remember_stamp = tcp_v4_remember_stamp,
1802 .net_header_len = sizeof(struct iphdr),
1803 .setsockopt = ip_setsockopt,
1804 .getsockopt = ip_getsockopt,
1805 .addr2sockaddr = inet_csk_addr2sockaddr,
1806 .sockaddr_len = sizeof(struct sockaddr_in),
1807 .bind_conflict = inet_csk_bind_conflict,
1808 #ifdef CONFIG_COMPAT
1809 .compat_setsockopt = compat_ip_setsockopt,
1810 .compat_getsockopt = compat_ip_getsockopt,
1811 #endif
1814 #ifdef CONFIG_TCP_MD5SIG
1815 static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1816 .md5_lookup = tcp_v4_md5_lookup,
1817 .calc_md5_hash = tcp_v4_calc_md5_hash,
1818 .md5_add = tcp_v4_md5_add_func,
1819 .md5_parse = tcp_v4_parse_md5_keys,
1821 #endif
1823 /* NOTE: A lot of things set to zero explicitly by call to
1824 * sk_alloc() so need not be done here.
1826 static int tcp_v4_init_sock(struct sock *sk)
1828 struct inet_connection_sock *icsk = inet_csk(sk);
1829 struct tcp_sock *tp = tcp_sk(sk);
1831 skb_queue_head_init(&tp->out_of_order_queue);
1832 tcp_init_xmit_timers(sk);
1833 tcp_prequeue_init(tp);
1835 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1836 tp->mdev = TCP_TIMEOUT_INIT;
1838 /* So many TCP implementations out there (incorrectly) count the
1839 * initial SYN frame in their delayed-ACK and congestion control
1840 * algorithms that we must have the following bandaid to talk
1841 * efficiently to them. -DaveM
1843 tp->snd_cwnd = 2;
1845 /* See draft-stevens-tcpca-spec-01 for discussion of the
1846 * initialization of these values.
1848 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1849 tp->snd_cwnd_clamp = ~0;
1850 tp->mss_cache = 536;
1852 tp->reordering = sysctl_tcp_reordering;
1853 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1855 sk->sk_state = TCP_CLOSE;
1857 sk->sk_write_space = sk_stream_write_space;
1858 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1860 icsk->icsk_af_ops = &ipv4_specific;
1861 icsk->icsk_sync_mss = tcp_sync_mss;
1862 #ifdef CONFIG_TCP_MD5SIG
1863 tp->af_specific = &tcp_sock_ipv4_specific;
1864 #endif
1866 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1867 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1869 atomic_inc(&tcp_sockets_allocated);
1871 return 0;
1874 int tcp_v4_destroy_sock(struct sock *sk)
1876 struct tcp_sock *tp = tcp_sk(sk);
1878 tcp_clear_xmit_timers(sk);
1880 tcp_cleanup_congestion_control(sk);
1882 /* Cleanup up the write buffer. */
1883 tcp_write_queue_purge(sk);
1885 /* Cleans up our, hopefully empty, out_of_order_queue. */
1886 __skb_queue_purge(&tp->out_of_order_queue);
1888 #ifdef CONFIG_TCP_MD5SIG
1889 /* Clean up the MD5 key list, if any */
1890 if (tp->md5sig_info) {
1891 tcp_v4_clear_md5_list(sk);
1892 kfree(tp->md5sig_info);
1893 tp->md5sig_info = NULL;
1895 #endif
1897 #ifdef CONFIG_NET_DMA
1898 /* Cleans up our sk_async_wait_queue */
1899 __skb_queue_purge(&sk->sk_async_wait_queue);
1900 #endif
1902 /* Clean prequeue, it must be empty really */
1903 __skb_queue_purge(&tp->ucopy.prequeue);
1905 /* Clean up a referenced TCP bind bucket. */
1906 if (inet_csk(sk)->icsk_bind_hash)
1907 inet_put_port(sk);
1910 * If sendmsg cached page exists, toss it.
1912 if (sk->sk_sndmsg_page) {
1913 __free_page(sk->sk_sndmsg_page);
1914 sk->sk_sndmsg_page = NULL;
1917 atomic_dec(&tcp_sockets_allocated);
1919 return 0;
1922 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1924 #ifdef CONFIG_PROC_FS
1925 /* Proc filesystem TCP sock list dumping. */
1927 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1929 return hlist_empty(head) ? NULL :
1930 list_entry(head->first, struct inet_timewait_sock, tw_node);
1933 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1935 return tw->tw_node.next ?
1936 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1939 static void *listening_get_next(struct seq_file *seq, void *cur)
1941 struct inet_connection_sock *icsk;
1942 struct hlist_node *node;
1943 struct sock *sk = cur;
1944 struct tcp_iter_state* st = seq->private;
1945 struct net *net = seq_file_net(seq);
1947 if (!sk) {
1948 st->bucket = 0;
1949 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1950 goto get_sk;
1953 ++st->num;
1955 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1956 struct request_sock *req = cur;
1958 icsk = inet_csk(st->syn_wait_sk);
1959 req = req->dl_next;
1960 while (1) {
1961 while (req) {
1962 if (req->rsk_ops->family == st->family &&
1963 net_eq(sock_net(req->sk), net)) {
1964 cur = req;
1965 goto out;
1967 req = req->dl_next;
1969 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1970 break;
1971 get_req:
1972 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1974 sk = sk_next(st->syn_wait_sk);
1975 st->state = TCP_SEQ_STATE_LISTENING;
1976 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1977 } else {
1978 icsk = inet_csk(sk);
1979 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1980 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1981 goto start_req;
1982 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1983 sk = sk_next(sk);
1985 get_sk:
1986 sk_for_each_from(sk, node) {
1987 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
1988 cur = sk;
1989 goto out;
1991 icsk = inet_csk(sk);
1992 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1993 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1994 start_req:
1995 st->uid = sock_i_uid(sk);
1996 st->syn_wait_sk = sk;
1997 st->state = TCP_SEQ_STATE_OPENREQ;
1998 st->sbucket = 0;
1999 goto get_req;
2001 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2003 if (++st->bucket < INET_LHTABLE_SIZE) {
2004 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
2005 goto get_sk;
2007 cur = NULL;
2008 out:
2009 return cur;
2012 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2014 void *rc = listening_get_next(seq, NULL);
2016 while (rc && *pos) {
2017 rc = listening_get_next(seq, rc);
2018 --*pos;
2020 return rc;
2023 static void *established_get_first(struct seq_file *seq)
2025 struct tcp_iter_state* st = seq->private;
2026 struct net *net = seq_file_net(seq);
2027 void *rc = NULL;
2029 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
2030 struct sock *sk;
2031 struct hlist_node *node;
2032 struct inet_timewait_sock *tw;
2033 rwlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2035 read_lock_bh(lock);
2036 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2037 if (sk->sk_family != st->family ||
2038 !net_eq(sock_net(sk), net)) {
2039 continue;
2041 rc = sk;
2042 goto out;
2044 st->state = TCP_SEQ_STATE_TIME_WAIT;
2045 inet_twsk_for_each(tw, node,
2046 &tcp_hashinfo.ehash[st->bucket].twchain) {
2047 if (tw->tw_family != st->family ||
2048 !net_eq(twsk_net(tw), net)) {
2049 continue;
2051 rc = tw;
2052 goto out;
2054 read_unlock_bh(lock);
2055 st->state = TCP_SEQ_STATE_ESTABLISHED;
2057 out:
2058 return rc;
2061 static void *established_get_next(struct seq_file *seq, void *cur)
2063 struct sock *sk = cur;
2064 struct inet_timewait_sock *tw;
2065 struct hlist_node *node;
2066 struct tcp_iter_state* st = seq->private;
2067 struct net *net = seq_file_net(seq);
2069 ++st->num;
2071 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2072 tw = cur;
2073 tw = tw_next(tw);
2074 get_tw:
2075 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2076 tw = tw_next(tw);
2078 if (tw) {
2079 cur = tw;
2080 goto out;
2082 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2083 st->state = TCP_SEQ_STATE_ESTABLISHED;
2085 if (++st->bucket < tcp_hashinfo.ehash_size) {
2086 read_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2087 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
2088 } else {
2089 cur = NULL;
2090 goto out;
2092 } else
2093 sk = sk_next(sk);
2095 sk_for_each_from(sk, node) {
2096 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2097 goto found;
2100 st->state = TCP_SEQ_STATE_TIME_WAIT;
2101 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2102 goto get_tw;
2103 found:
2104 cur = sk;
2105 out:
2106 return cur;
2109 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2111 void *rc = established_get_first(seq);
2113 while (rc && pos) {
2114 rc = established_get_next(seq, rc);
2115 --pos;
2117 return rc;
2120 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2122 void *rc;
2123 struct tcp_iter_state* st = seq->private;
2125 inet_listen_lock(&tcp_hashinfo);
2126 st->state = TCP_SEQ_STATE_LISTENING;
2127 rc = listening_get_idx(seq, &pos);
2129 if (!rc) {
2130 inet_listen_unlock(&tcp_hashinfo);
2131 st->state = TCP_SEQ_STATE_ESTABLISHED;
2132 rc = established_get_idx(seq, pos);
2135 return rc;
2138 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2140 struct tcp_iter_state* st = seq->private;
2141 st->state = TCP_SEQ_STATE_LISTENING;
2142 st->num = 0;
2143 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2146 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2148 void *rc = NULL;
2149 struct tcp_iter_state* st;
2151 if (v == SEQ_START_TOKEN) {
2152 rc = tcp_get_idx(seq, 0);
2153 goto out;
2155 st = seq->private;
2157 switch (st->state) {
2158 case TCP_SEQ_STATE_OPENREQ:
2159 case TCP_SEQ_STATE_LISTENING:
2160 rc = listening_get_next(seq, v);
2161 if (!rc) {
2162 inet_listen_unlock(&tcp_hashinfo);
2163 st->state = TCP_SEQ_STATE_ESTABLISHED;
2164 rc = established_get_first(seq);
2166 break;
2167 case TCP_SEQ_STATE_ESTABLISHED:
2168 case TCP_SEQ_STATE_TIME_WAIT:
2169 rc = established_get_next(seq, v);
2170 break;
2172 out:
2173 ++*pos;
2174 return rc;
2177 static void tcp_seq_stop(struct seq_file *seq, void *v)
2179 struct tcp_iter_state* st = seq->private;
2181 switch (st->state) {
2182 case TCP_SEQ_STATE_OPENREQ:
2183 if (v) {
2184 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2185 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2187 case TCP_SEQ_STATE_LISTENING:
2188 if (v != SEQ_START_TOKEN)
2189 inet_listen_unlock(&tcp_hashinfo);
2190 break;
2191 case TCP_SEQ_STATE_TIME_WAIT:
2192 case TCP_SEQ_STATE_ESTABLISHED:
2193 if (v)
2194 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2195 break;
2199 static int tcp_seq_open(struct inode *inode, struct file *file)
2201 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2202 struct tcp_iter_state *s;
2203 int err;
2205 err = seq_open_net(inode, file, &afinfo->seq_ops,
2206 sizeof(struct tcp_iter_state));
2207 if (err < 0)
2208 return err;
2210 s = ((struct seq_file *)file->private_data)->private;
2211 s->family = afinfo->family;
2212 return 0;
2215 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2217 int rc = 0;
2218 struct proc_dir_entry *p;
2220 afinfo->seq_fops.open = tcp_seq_open;
2221 afinfo->seq_fops.read = seq_read;
2222 afinfo->seq_fops.llseek = seq_lseek;
2223 afinfo->seq_fops.release = seq_release_net;
2225 afinfo->seq_ops.start = tcp_seq_start;
2226 afinfo->seq_ops.next = tcp_seq_next;
2227 afinfo->seq_ops.stop = tcp_seq_stop;
2229 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2230 &afinfo->seq_fops, afinfo);
2231 if (!p)
2232 rc = -ENOMEM;
2233 return rc;
2236 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2238 proc_net_remove(net, afinfo->name);
2241 static void get_openreq4(struct sock *sk, struct request_sock *req,
2242 struct seq_file *f, int i, int uid, int *len)
2244 const struct inet_request_sock *ireq = inet_rsk(req);
2245 int ttd = req->expires - jiffies;
2247 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2248 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2250 ireq->loc_addr,
2251 ntohs(inet_sk(sk)->sport),
2252 ireq->rmt_addr,
2253 ntohs(ireq->rmt_port),
2254 TCP_SYN_RECV,
2255 0, 0, /* could print option size, but that is af dependent. */
2256 1, /* timers active (only the expire timer) */
2257 jiffies_to_clock_t(ttd),
2258 req->retrans,
2259 uid,
2260 0, /* non standard timer */
2261 0, /* open_requests have no inode */
2262 atomic_read(&sk->sk_refcnt),
2263 req,
2264 len);
2267 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2269 int timer_active;
2270 unsigned long timer_expires;
2271 struct tcp_sock *tp = tcp_sk(sk);
2272 const struct inet_connection_sock *icsk = inet_csk(sk);
2273 struct inet_sock *inet = inet_sk(sk);
2274 __be32 dest = inet->daddr;
2275 __be32 src = inet->rcv_saddr;
2276 __u16 destp = ntohs(inet->dport);
2277 __u16 srcp = ntohs(inet->sport);
2279 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2280 timer_active = 1;
2281 timer_expires = icsk->icsk_timeout;
2282 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2283 timer_active = 4;
2284 timer_expires = icsk->icsk_timeout;
2285 } else if (timer_pending(&sk->sk_timer)) {
2286 timer_active = 2;
2287 timer_expires = sk->sk_timer.expires;
2288 } else {
2289 timer_active = 0;
2290 timer_expires = jiffies;
2293 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2294 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2295 i, src, srcp, dest, destp, sk->sk_state,
2296 tp->write_seq - tp->snd_una,
2297 sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2298 (tp->rcv_nxt - tp->copied_seq),
2299 timer_active,
2300 jiffies_to_clock_t(timer_expires - jiffies),
2301 icsk->icsk_retransmits,
2302 sock_i_uid(sk),
2303 icsk->icsk_probes_out,
2304 sock_i_ino(sk),
2305 atomic_read(&sk->sk_refcnt), sk,
2306 jiffies_to_clock_t(icsk->icsk_rto),
2307 jiffies_to_clock_t(icsk->icsk_ack.ato),
2308 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2309 tp->snd_cwnd,
2310 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh,
2311 len);
2314 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2315 struct seq_file *f, int i, int *len)
2317 __be32 dest, src;
2318 __u16 destp, srcp;
2319 int ttd = tw->tw_ttd - jiffies;
2321 if (ttd < 0)
2322 ttd = 0;
2324 dest = tw->tw_daddr;
2325 src = tw->tw_rcv_saddr;
2326 destp = ntohs(tw->tw_dport);
2327 srcp = ntohs(tw->tw_sport);
2329 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2330 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2331 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2332 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2333 atomic_read(&tw->tw_refcnt), tw, len);
2336 #define TMPSZ 150
2338 static int tcp4_seq_show(struct seq_file *seq, void *v)
2340 struct tcp_iter_state* st;
2341 int len;
2343 if (v == SEQ_START_TOKEN) {
2344 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2345 " sl local_address rem_address st tx_queue "
2346 "rx_queue tr tm->when retrnsmt uid timeout "
2347 "inode");
2348 goto out;
2350 st = seq->private;
2352 switch (st->state) {
2353 case TCP_SEQ_STATE_LISTENING:
2354 case TCP_SEQ_STATE_ESTABLISHED:
2355 get_tcp4_sock(v, seq, st->num, &len);
2356 break;
2357 case TCP_SEQ_STATE_OPENREQ:
2358 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2359 break;
2360 case TCP_SEQ_STATE_TIME_WAIT:
2361 get_timewait4_sock(v, seq, st->num, &len);
2362 break;
2364 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2365 out:
2366 return 0;
2369 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2370 .name = "tcp",
2371 .family = AF_INET,
2372 .seq_fops = {
2373 .owner = THIS_MODULE,
2375 .seq_ops = {
2376 .show = tcp4_seq_show,
2380 static int tcp4_proc_init_net(struct net *net)
2382 return tcp_proc_register(net, &tcp4_seq_afinfo);
2385 static void tcp4_proc_exit_net(struct net *net)
2387 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2390 static struct pernet_operations tcp4_net_ops = {
2391 .init = tcp4_proc_init_net,
2392 .exit = tcp4_proc_exit_net,
2395 int __init tcp4_proc_init(void)
2397 return register_pernet_subsys(&tcp4_net_ops);
2400 void tcp4_proc_exit(void)
2402 unregister_pernet_subsys(&tcp4_net_ops);
2404 #endif /* CONFIG_PROC_FS */
2406 struct proto tcp_prot = {
2407 .name = "TCP",
2408 .owner = THIS_MODULE,
2409 .close = tcp_close,
2410 .connect = tcp_v4_connect,
2411 .disconnect = tcp_disconnect,
2412 .accept = inet_csk_accept,
2413 .ioctl = tcp_ioctl,
2414 .init = tcp_v4_init_sock,
2415 .destroy = tcp_v4_destroy_sock,
2416 .shutdown = tcp_shutdown,
2417 .setsockopt = tcp_setsockopt,
2418 .getsockopt = tcp_getsockopt,
2419 .recvmsg = tcp_recvmsg,
2420 .backlog_rcv = tcp_v4_do_rcv,
2421 .hash = inet_hash,
2422 .unhash = inet_unhash,
2423 .get_port = inet_csk_get_port,
2424 .enter_memory_pressure = tcp_enter_memory_pressure,
2425 .sockets_allocated = &tcp_sockets_allocated,
2426 .orphan_count = &tcp_orphan_count,
2427 .memory_allocated = &tcp_memory_allocated,
2428 .memory_pressure = &tcp_memory_pressure,
2429 .sysctl_mem = sysctl_tcp_mem,
2430 .sysctl_wmem = sysctl_tcp_wmem,
2431 .sysctl_rmem = sysctl_tcp_rmem,
2432 .max_header = MAX_TCP_HEADER,
2433 .obj_size = sizeof(struct tcp_sock),
2434 .twsk_prot = &tcp_timewait_sock_ops,
2435 .rsk_prot = &tcp_request_sock_ops,
2436 .h.hashinfo = &tcp_hashinfo,
2437 #ifdef CONFIG_COMPAT
2438 .compat_setsockopt = compat_tcp_setsockopt,
2439 .compat_getsockopt = compat_tcp_getsockopt,
2440 #endif
2444 static int __net_init tcp_sk_init(struct net *net)
2446 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2447 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2450 static void __net_exit tcp_sk_exit(struct net *net)
2452 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2455 static struct pernet_operations __net_initdata tcp_sk_ops = {
2456 .init = tcp_sk_init,
2457 .exit = tcp_sk_exit,
2460 void __init tcp_v4_init(void)
2462 if (register_pernet_device(&tcp_sk_ops))
2463 panic("Failed to create the TCP control socket.\n");
2466 EXPORT_SYMBOL(ipv4_specific);
2467 EXPORT_SYMBOL(tcp_hashinfo);
2468 EXPORT_SYMBOL(tcp_prot);
2469 EXPORT_SYMBOL(tcp_v4_conn_request);
2470 EXPORT_SYMBOL(tcp_v4_connect);
2471 EXPORT_SYMBOL(tcp_v4_do_rcv);
2472 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2473 EXPORT_SYMBOL(tcp_v4_send_check);
2474 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2476 #ifdef CONFIG_PROC_FS
2477 EXPORT_SYMBOL(tcp_proc_register);
2478 EXPORT_SYMBOL(tcp_proc_unregister);
2479 #endif
2480 EXPORT_SYMBOL(sysctl_tcp_low_latency);