kmemtrace: SLOB hooks.
[linux-2.6/kmemtrace.git] / fs / jfs / jfs_logmgr.c
blob325a9679b95a7f8e1e30cb9bbb255cbfc222be0e
1 /*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 * Portions Copyright (C) Christoph Hellwig, 2001-2002
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * jfs_logmgr.c: log manager
23 * for related information, see transaction manager (jfs_txnmgr.c), and
24 * recovery manager (jfs_logredo.c).
26 * note: for detail, RTFS.
28 * log buffer manager:
29 * special purpose buffer manager supporting log i/o requirements.
30 * per log serial pageout of logpage
31 * queuing i/o requests and redrive i/o at iodone
32 * maintain current logpage buffer
33 * no caching since append only
34 * appropriate jfs buffer cache buffers as needed
36 * group commit:
37 * transactions which wrote COMMIT records in the same in-memory
38 * log page during the pageout of previous/current log page(s) are
39 * committed together by the pageout of the page.
41 * TBD lazy commit:
42 * transactions are committed asynchronously when the log page
43 * containing it COMMIT is paged out when it becomes full;
45 * serialization:
46 * . a per log lock serialize log write.
47 * . a per log lock serialize group commit.
48 * . a per log lock serialize log open/close;
50 * TBD log integrity:
51 * careful-write (ping-pong) of last logpage to recover from crash
52 * in overwrite.
53 * detection of split (out-of-order) write of physical sectors
54 * of last logpage via timestamp at end of each sector
55 * with its mirror data array at trailer).
57 * alternatives:
58 * lsn - 64-bit monotonically increasing integer vs
59 * 32-bit lspn and page eor.
62 #include <linux/fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/interrupt.h>
65 #include <linux/completion.h>
66 #include <linux/kthread.h>
67 #include <linux/buffer_head.h> /* for sync_blockdev() */
68 #include <linux/bio.h>
69 #include <linux/freezer.h>
70 #include <linux/delay.h>
71 #include <linux/mutex.h>
72 #include "jfs_incore.h"
73 #include "jfs_filsys.h"
74 #include "jfs_metapage.h"
75 #include "jfs_superblock.h"
76 #include "jfs_txnmgr.h"
77 #include "jfs_debug.h"
81 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
83 static struct lbuf *log_redrive_list;
84 static DEFINE_SPINLOCK(log_redrive_lock);
88 * log read/write serialization (per log)
90 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
91 #define LOG_LOCK(log) mutex_lock(&((log)->loglock))
92 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
96 * log group commit serialization (per log)
99 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
100 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
101 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
102 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
105 * log sync serialization (per log)
107 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
108 #define LOGSYNC_BARRIER(logsize) ((logsize)/4)
110 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
111 #define LOGSYNC_BARRIER(logsize) ((logsize)/2)
116 * log buffer cache synchronization
118 static DEFINE_SPINLOCK(jfsLCacheLock);
120 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
121 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
124 * See __SLEEP_COND in jfs_locks.h
126 #define LCACHE_SLEEP_COND(wq, cond, flags) \
127 do { \
128 if (cond) \
129 break; \
130 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
131 } while (0)
133 #define LCACHE_WAKEUP(event) wake_up(event)
137 * lbuf buffer cache (lCache) control
139 /* log buffer manager pageout control (cumulative, inclusive) */
140 #define lbmREAD 0x0001
141 #define lbmWRITE 0x0002 /* enqueue at tail of write queue;
142 * init pageout if at head of queue;
144 #define lbmRELEASE 0x0004 /* remove from write queue
145 * at completion of pageout;
146 * do not free/recycle it yet:
147 * caller will free it;
149 #define lbmSYNC 0x0008 /* do not return to freelist
150 * when removed from write queue;
152 #define lbmFREE 0x0010 /* return to freelist
153 * at completion of pageout;
154 * the buffer may be recycled;
156 #define lbmDONE 0x0020
157 #define lbmERROR 0x0040
158 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
159 * of log page
161 #define lbmDIRECT 0x0100
164 * Global list of active external journals
166 static LIST_HEAD(jfs_external_logs);
167 static struct jfs_log *dummy_log = NULL;
168 static DEFINE_MUTEX(jfs_log_mutex);
171 * forward references
173 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
174 struct lrd * lrd, struct tlock * tlck);
176 static int lmNextPage(struct jfs_log * log);
177 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
178 int activate);
180 static int open_inline_log(struct super_block *sb);
181 static int open_dummy_log(struct super_block *sb);
182 static int lbmLogInit(struct jfs_log * log);
183 static void lbmLogShutdown(struct jfs_log * log);
184 static struct lbuf *lbmAllocate(struct jfs_log * log, int);
185 static void lbmFree(struct lbuf * bp);
186 static void lbmfree(struct lbuf * bp);
187 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
188 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
189 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
190 static int lbmIOWait(struct lbuf * bp, int flag);
191 static bio_end_io_t lbmIODone;
192 static void lbmStartIO(struct lbuf * bp);
193 static void lmGCwrite(struct jfs_log * log, int cant_block);
194 static int lmLogSync(struct jfs_log * log, int hard_sync);
199 * statistics
201 #ifdef CONFIG_JFS_STATISTICS
202 static struct lmStat {
203 uint commit; /* # of commit */
204 uint pagedone; /* # of page written */
205 uint submitted; /* # of pages submitted */
206 uint full_page; /* # of full pages submitted */
207 uint partial_page; /* # of partial pages submitted */
208 } lmStat;
209 #endif
211 static void write_special_inodes(struct jfs_log *log,
212 int (*writer)(struct address_space *))
214 struct jfs_sb_info *sbi;
216 list_for_each_entry(sbi, &log->sb_list, log_list) {
217 writer(sbi->ipbmap->i_mapping);
218 writer(sbi->ipimap->i_mapping);
219 writer(sbi->direct_inode->i_mapping);
224 * NAME: lmLog()
226 * FUNCTION: write a log record;
228 * PARAMETER:
230 * RETURN: lsn - offset to the next log record to write (end-of-log);
231 * -1 - error;
233 * note: todo: log error handler
235 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
236 struct tlock * tlck)
238 int lsn;
239 int diffp, difft;
240 struct metapage *mp = NULL;
241 unsigned long flags;
243 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
244 log, tblk, lrd, tlck);
246 LOG_LOCK(log);
248 /* log by (out-of-transaction) JFS ? */
249 if (tblk == NULL)
250 goto writeRecord;
252 /* log from page ? */
253 if (tlck == NULL ||
254 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
255 goto writeRecord;
258 * initialize/update page/transaction recovery lsn
260 lsn = log->lsn;
262 LOGSYNC_LOCK(log, flags);
265 * initialize page lsn if first log write of the page
267 if (mp->lsn == 0) {
268 mp->log = log;
269 mp->lsn = lsn;
270 log->count++;
272 /* insert page at tail of logsynclist */
273 list_add_tail(&mp->synclist, &log->synclist);
277 * initialize/update lsn of tblock of the page
279 * transaction inherits oldest lsn of pages associated
280 * with allocation/deallocation of resources (their
281 * log records are used to reconstruct allocation map
282 * at recovery time: inode for inode allocation map,
283 * B+-tree index of extent descriptors for block
284 * allocation map);
285 * allocation map pages inherit transaction lsn at
286 * commit time to allow forwarding log syncpt past log
287 * records associated with allocation/deallocation of
288 * resources only after persistent map of these map pages
289 * have been updated and propagated to home.
292 * initialize transaction lsn:
294 if (tblk->lsn == 0) {
295 /* inherit lsn of its first page logged */
296 tblk->lsn = mp->lsn;
297 log->count++;
299 /* insert tblock after the page on logsynclist */
300 list_add(&tblk->synclist, &mp->synclist);
303 * update transaction lsn:
305 else {
306 /* inherit oldest/smallest lsn of page */
307 logdiff(diffp, mp->lsn, log);
308 logdiff(difft, tblk->lsn, log);
309 if (diffp < difft) {
310 /* update tblock lsn with page lsn */
311 tblk->lsn = mp->lsn;
313 /* move tblock after page on logsynclist */
314 list_move(&tblk->synclist, &mp->synclist);
318 LOGSYNC_UNLOCK(log, flags);
321 * write the log record
323 writeRecord:
324 lsn = lmWriteRecord(log, tblk, lrd, tlck);
327 * forward log syncpt if log reached next syncpt trigger
329 logdiff(diffp, lsn, log);
330 if (diffp >= log->nextsync)
331 lsn = lmLogSync(log, 0);
333 /* update end-of-log lsn */
334 log->lsn = lsn;
336 LOG_UNLOCK(log);
338 /* return end-of-log address */
339 return lsn;
343 * NAME: lmWriteRecord()
345 * FUNCTION: move the log record to current log page
347 * PARAMETER: cd - commit descriptor
349 * RETURN: end-of-log address
351 * serialization: LOG_LOCK() held on entry/exit
353 static int
354 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
355 struct tlock * tlck)
357 int lsn = 0; /* end-of-log address */
358 struct lbuf *bp; /* dst log page buffer */
359 struct logpage *lp; /* dst log page */
360 caddr_t dst; /* destination address in log page */
361 int dstoffset; /* end-of-log offset in log page */
362 int freespace; /* free space in log page */
363 caddr_t p; /* src meta-data page */
364 caddr_t src;
365 int srclen;
366 int nbytes; /* number of bytes to move */
367 int i;
368 int len;
369 struct linelock *linelock;
370 struct lv *lv;
371 struct lvd *lvd;
372 int l2linesize;
374 len = 0;
376 /* retrieve destination log page to write */
377 bp = (struct lbuf *) log->bp;
378 lp = (struct logpage *) bp->l_ldata;
379 dstoffset = log->eor;
381 /* any log data to write ? */
382 if (tlck == NULL)
383 goto moveLrd;
386 * move log record data
388 /* retrieve source meta-data page to log */
389 if (tlck->flag & tlckPAGELOCK) {
390 p = (caddr_t) (tlck->mp->data);
391 linelock = (struct linelock *) & tlck->lock;
393 /* retrieve source in-memory inode to log */
394 else if (tlck->flag & tlckINODELOCK) {
395 if (tlck->type & tlckDTREE)
396 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
397 else
398 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
399 linelock = (struct linelock *) & tlck->lock;
401 #ifdef _JFS_WIP
402 else if (tlck->flag & tlckINLINELOCK) {
404 inlinelock = (struct inlinelock *) & tlck;
405 p = (caddr_t) & inlinelock->pxd;
406 linelock = (struct linelock *) & tlck;
408 #endif /* _JFS_WIP */
409 else {
410 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
411 return 0; /* Probably should trap */
413 l2linesize = linelock->l2linesize;
415 moveData:
416 ASSERT(linelock->index <= linelock->maxcnt);
418 lv = linelock->lv;
419 for (i = 0; i < linelock->index; i++, lv++) {
420 if (lv->length == 0)
421 continue;
423 /* is page full ? */
424 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
425 /* page become full: move on to next page */
426 lmNextPage(log);
428 bp = log->bp;
429 lp = (struct logpage *) bp->l_ldata;
430 dstoffset = LOGPHDRSIZE;
434 * move log vector data
436 src = (u8 *) p + (lv->offset << l2linesize);
437 srclen = lv->length << l2linesize;
438 len += srclen;
439 while (srclen > 0) {
440 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
441 nbytes = min(freespace, srclen);
442 dst = (caddr_t) lp + dstoffset;
443 memcpy(dst, src, nbytes);
444 dstoffset += nbytes;
446 /* is page not full ? */
447 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
448 break;
450 /* page become full: move on to next page */
451 lmNextPage(log);
453 bp = (struct lbuf *) log->bp;
454 lp = (struct logpage *) bp->l_ldata;
455 dstoffset = LOGPHDRSIZE;
457 srclen -= nbytes;
458 src += nbytes;
462 * move log vector descriptor
464 len += 4;
465 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
466 lvd->offset = cpu_to_le16(lv->offset);
467 lvd->length = cpu_to_le16(lv->length);
468 dstoffset += 4;
469 jfs_info("lmWriteRecord: lv offset:%d length:%d",
470 lv->offset, lv->length);
473 if ((i = linelock->next)) {
474 linelock = (struct linelock *) lid_to_tlock(i);
475 goto moveData;
479 * move log record descriptor
481 moveLrd:
482 lrd->length = cpu_to_le16(len);
484 src = (caddr_t) lrd;
485 srclen = LOGRDSIZE;
487 while (srclen > 0) {
488 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
489 nbytes = min(freespace, srclen);
490 dst = (caddr_t) lp + dstoffset;
491 memcpy(dst, src, nbytes);
493 dstoffset += nbytes;
494 srclen -= nbytes;
496 /* are there more to move than freespace of page ? */
497 if (srclen)
498 goto pageFull;
501 * end of log record descriptor
504 /* update last log record eor */
505 log->eor = dstoffset;
506 bp->l_eor = dstoffset;
507 lsn = (log->page << L2LOGPSIZE) + dstoffset;
509 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
510 tblk->clsn = lsn;
511 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
512 bp->l_eor);
514 INCREMENT(lmStat.commit); /* # of commit */
517 * enqueue tblock for group commit:
519 * enqueue tblock of non-trivial/synchronous COMMIT
520 * at tail of group commit queue
521 * (trivial/asynchronous COMMITs are ignored by
522 * group commit.)
524 LOGGC_LOCK(log);
526 /* init tblock gc state */
527 tblk->flag = tblkGC_QUEUE;
528 tblk->bp = log->bp;
529 tblk->pn = log->page;
530 tblk->eor = log->eor;
532 /* enqueue transaction to commit queue */
533 list_add_tail(&tblk->cqueue, &log->cqueue);
535 LOGGC_UNLOCK(log);
538 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
539 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
541 /* page not full ? */
542 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
543 return lsn;
545 pageFull:
546 /* page become full: move on to next page */
547 lmNextPage(log);
549 bp = (struct lbuf *) log->bp;
550 lp = (struct logpage *) bp->l_ldata;
551 dstoffset = LOGPHDRSIZE;
552 src += nbytes;
555 return lsn;
560 * NAME: lmNextPage()
562 * FUNCTION: write current page and allocate next page.
564 * PARAMETER: log
566 * RETURN: 0
568 * serialization: LOG_LOCK() held on entry/exit
570 static int lmNextPage(struct jfs_log * log)
572 struct logpage *lp;
573 int lspn; /* log sequence page number */
574 int pn; /* current page number */
575 struct lbuf *bp;
576 struct lbuf *nextbp;
577 struct tblock *tblk;
579 /* get current log page number and log sequence page number */
580 pn = log->page;
581 bp = log->bp;
582 lp = (struct logpage *) bp->l_ldata;
583 lspn = le32_to_cpu(lp->h.page);
585 LOGGC_LOCK(log);
588 * write or queue the full page at the tail of write queue
590 /* get the tail tblk on commit queue */
591 if (list_empty(&log->cqueue))
592 tblk = NULL;
593 else
594 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
596 /* every tblk who has COMMIT record on the current page,
597 * and has not been committed, must be on commit queue
598 * since tblk is queued at commit queueu at the time
599 * of writing its COMMIT record on the page before
600 * page becomes full (even though the tblk thread
601 * who wrote COMMIT record may have been suspended
602 * currently);
605 /* is page bound with outstanding tail tblk ? */
606 if (tblk && tblk->pn == pn) {
607 /* mark tblk for end-of-page */
608 tblk->flag |= tblkGC_EOP;
610 if (log->cflag & logGC_PAGEOUT) {
611 /* if page is not already on write queue,
612 * just enqueue (no lbmWRITE to prevent redrive)
613 * buffer to wqueue to ensure correct serial order
614 * of the pages since log pages will be added
615 * continuously
617 if (bp->l_wqnext == NULL)
618 lbmWrite(log, bp, 0, 0);
619 } else {
621 * No current GC leader, initiate group commit
623 log->cflag |= logGC_PAGEOUT;
624 lmGCwrite(log, 0);
627 /* page is not bound with outstanding tblk:
628 * init write or mark it to be redriven (lbmWRITE)
630 else {
631 /* finalize the page */
632 bp->l_ceor = bp->l_eor;
633 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
634 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
636 LOGGC_UNLOCK(log);
639 * allocate/initialize next page
641 /* if log wraps, the first data page of log is 2
642 * (0 never used, 1 is superblock).
644 log->page = (pn == log->size - 1) ? 2 : pn + 1;
645 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
647 /* allocate/initialize next log page buffer */
648 nextbp = lbmAllocate(log, log->page);
649 nextbp->l_eor = log->eor;
650 log->bp = nextbp;
652 /* initialize next log page */
653 lp = (struct logpage *) nextbp->l_ldata;
654 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
655 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
657 return 0;
662 * NAME: lmGroupCommit()
664 * FUNCTION: group commit
665 * initiate pageout of the pages with COMMIT in the order of
666 * page number - redrive pageout of the page at the head of
667 * pageout queue until full page has been written.
669 * RETURN:
671 * NOTE:
672 * LOGGC_LOCK serializes log group commit queue, and
673 * transaction blocks on the commit queue.
674 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
676 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
678 int rc = 0;
680 LOGGC_LOCK(log);
682 /* group committed already ? */
683 if (tblk->flag & tblkGC_COMMITTED) {
684 if (tblk->flag & tblkGC_ERROR)
685 rc = -EIO;
687 LOGGC_UNLOCK(log);
688 return rc;
690 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
692 if (tblk->xflag & COMMIT_LAZY)
693 tblk->flag |= tblkGC_LAZY;
695 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
696 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
697 || jfs_tlocks_low)) {
699 * No pageout in progress
701 * start group commit as its group leader.
703 log->cflag |= logGC_PAGEOUT;
705 lmGCwrite(log, 0);
708 if (tblk->xflag & COMMIT_LAZY) {
710 * Lazy transactions can leave now
712 LOGGC_UNLOCK(log);
713 return 0;
716 /* lmGCwrite gives up LOGGC_LOCK, check again */
718 if (tblk->flag & tblkGC_COMMITTED) {
719 if (tblk->flag & tblkGC_ERROR)
720 rc = -EIO;
722 LOGGC_UNLOCK(log);
723 return rc;
726 /* upcount transaction waiting for completion
728 log->gcrtc++;
729 tblk->flag |= tblkGC_READY;
731 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
732 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
734 /* removed from commit queue */
735 if (tblk->flag & tblkGC_ERROR)
736 rc = -EIO;
738 LOGGC_UNLOCK(log);
739 return rc;
743 * NAME: lmGCwrite()
745 * FUNCTION: group commit write
746 * initiate write of log page, building a group of all transactions
747 * with commit records on that page.
749 * RETURN: None
751 * NOTE:
752 * LOGGC_LOCK must be held by caller.
753 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
755 static void lmGCwrite(struct jfs_log * log, int cant_write)
757 struct lbuf *bp;
758 struct logpage *lp;
759 int gcpn; /* group commit page number */
760 struct tblock *tblk;
761 struct tblock *xtblk = NULL;
764 * build the commit group of a log page
766 * scan commit queue and make a commit group of all
767 * transactions with COMMIT records on the same log page.
769 /* get the head tblk on the commit queue */
770 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
772 list_for_each_entry(tblk, &log->cqueue, cqueue) {
773 if (tblk->pn != gcpn)
774 break;
776 xtblk = tblk;
778 /* state transition: (QUEUE, READY) -> COMMIT */
779 tblk->flag |= tblkGC_COMMIT;
781 tblk = xtblk; /* last tblk of the page */
784 * pageout to commit transactions on the log page.
786 bp = (struct lbuf *) tblk->bp;
787 lp = (struct logpage *) bp->l_ldata;
788 /* is page already full ? */
789 if (tblk->flag & tblkGC_EOP) {
790 /* mark page to free at end of group commit of the page */
791 tblk->flag &= ~tblkGC_EOP;
792 tblk->flag |= tblkGC_FREE;
793 bp->l_ceor = bp->l_eor;
794 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
795 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
796 cant_write);
797 INCREMENT(lmStat.full_page);
799 /* page is not yet full */
800 else {
801 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
802 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
803 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
804 INCREMENT(lmStat.partial_page);
809 * NAME: lmPostGC()
811 * FUNCTION: group commit post-processing
812 * Processes transactions after their commit records have been written
813 * to disk, redriving log I/O if necessary.
815 * RETURN: None
817 * NOTE:
818 * This routine is called a interrupt time by lbmIODone
820 static void lmPostGC(struct lbuf * bp)
822 unsigned long flags;
823 struct jfs_log *log = bp->l_log;
824 struct logpage *lp;
825 struct tblock *tblk, *temp;
827 //LOGGC_LOCK(log);
828 spin_lock_irqsave(&log->gclock, flags);
830 * current pageout of group commit completed.
832 * remove/wakeup transactions from commit queue who were
833 * group committed with the current log page
835 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
836 if (!(tblk->flag & tblkGC_COMMIT))
837 break;
838 /* if transaction was marked GC_COMMIT then
839 * it has been shipped in the current pageout
840 * and made it to disk - it is committed.
843 if (bp->l_flag & lbmERROR)
844 tblk->flag |= tblkGC_ERROR;
846 /* remove it from the commit queue */
847 list_del(&tblk->cqueue);
848 tblk->flag &= ~tblkGC_QUEUE;
850 if (tblk == log->flush_tblk) {
851 /* we can stop flushing the log now */
852 clear_bit(log_FLUSH, &log->flag);
853 log->flush_tblk = NULL;
856 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
857 tblk->flag);
859 if (!(tblk->xflag & COMMIT_FORCE))
861 * Hand tblk over to lazy commit thread
863 txLazyUnlock(tblk);
864 else {
865 /* state transition: COMMIT -> COMMITTED */
866 tblk->flag |= tblkGC_COMMITTED;
868 if (tblk->flag & tblkGC_READY)
869 log->gcrtc--;
871 LOGGC_WAKEUP(tblk);
874 /* was page full before pageout ?
875 * (and this is the last tblk bound with the page)
877 if (tblk->flag & tblkGC_FREE)
878 lbmFree(bp);
879 /* did page become full after pageout ?
880 * (and this is the last tblk bound with the page)
882 else if (tblk->flag & tblkGC_EOP) {
883 /* finalize the page */
884 lp = (struct logpage *) bp->l_ldata;
885 bp->l_ceor = bp->l_eor;
886 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
887 jfs_info("lmPostGC: calling lbmWrite");
888 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
894 /* are there any transactions who have entered lnGroupCommit()
895 * (whose COMMITs are after that of the last log page written.
896 * They are waiting for new group commit (above at (SLEEP 1))
897 * or lazy transactions are on a full (queued) log page,
898 * select the latest ready transaction as new group leader and
899 * wake her up to lead her group.
901 if ((!list_empty(&log->cqueue)) &&
902 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
903 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
905 * Call lmGCwrite with new group leader
907 lmGCwrite(log, 1);
909 /* no transaction are ready yet (transactions are only just
910 * queued (GC_QUEUE) and not entered for group commit yet).
911 * the first transaction entering group commit
912 * will elect herself as new group leader.
914 else
915 log->cflag &= ~logGC_PAGEOUT;
917 //LOGGC_UNLOCK(log);
918 spin_unlock_irqrestore(&log->gclock, flags);
919 return;
923 * NAME: lmLogSync()
925 * FUNCTION: write log SYNCPT record for specified log
926 * if new sync address is available
927 * (normally the case if sync() is executed by back-ground
928 * process).
929 * calculate new value of i_nextsync which determines when
930 * this code is called again.
932 * PARAMETERS: log - log structure
933 * hard_sync - 1 to force all metadata to be written
935 * RETURN: 0
937 * serialization: LOG_LOCK() held on entry/exit
939 static int lmLogSync(struct jfs_log * log, int hard_sync)
941 int logsize;
942 int written; /* written since last syncpt */
943 int free; /* free space left available */
944 int delta; /* additional delta to write normally */
945 int more; /* additional write granted */
946 struct lrd lrd;
947 int lsn;
948 struct logsyncblk *lp;
949 unsigned long flags;
951 /* push dirty metapages out to disk */
952 if (hard_sync)
953 write_special_inodes(log, filemap_fdatawrite);
954 else
955 write_special_inodes(log, filemap_flush);
958 * forward syncpt
960 /* if last sync is same as last syncpt,
961 * invoke sync point forward processing to update sync.
964 if (log->sync == log->syncpt) {
965 LOGSYNC_LOCK(log, flags);
966 if (list_empty(&log->synclist))
967 log->sync = log->lsn;
968 else {
969 lp = list_entry(log->synclist.next,
970 struct logsyncblk, synclist);
971 log->sync = lp->lsn;
973 LOGSYNC_UNLOCK(log, flags);
977 /* if sync is different from last syncpt,
978 * write a SYNCPT record with syncpt = sync.
979 * reset syncpt = sync
981 if (log->sync != log->syncpt) {
982 lrd.logtid = 0;
983 lrd.backchain = 0;
984 lrd.type = cpu_to_le16(LOG_SYNCPT);
985 lrd.length = 0;
986 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
987 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
989 log->syncpt = log->sync;
990 } else
991 lsn = log->lsn;
994 * setup next syncpt trigger (SWAG)
996 logsize = log->logsize;
998 logdiff(written, lsn, log);
999 free = logsize - written;
1000 delta = LOGSYNC_DELTA(logsize);
1001 more = min(free / 2, delta);
1002 if (more < 2 * LOGPSIZE) {
1003 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1005 * log wrapping
1007 * option 1 - panic ? No.!
1008 * option 2 - shutdown file systems
1009 * associated with log ?
1010 * option 3 - extend log ?
1013 * option 4 - second chance
1015 * mark log wrapped, and continue.
1016 * when all active transactions are completed,
1017 * mark log vaild for recovery.
1018 * if crashed during invalid state, log state
1019 * implies invald log, forcing fsck().
1021 /* mark log state log wrap in log superblock */
1022 /* log->state = LOGWRAP; */
1024 /* reset sync point computation */
1025 log->syncpt = log->sync = lsn;
1026 log->nextsync = delta;
1027 } else
1028 /* next syncpt trigger = written + more */
1029 log->nextsync = written + more;
1031 /* if number of bytes written from last sync point is more
1032 * than 1/4 of the log size, stop new transactions from
1033 * starting until all current transactions are completed
1034 * by setting syncbarrier flag.
1036 if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1037 (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1038 set_bit(log_SYNCBARRIER, &log->flag);
1039 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1040 log->syncpt);
1042 * We may have to initiate group commit
1044 jfs_flush_journal(log, 0);
1047 return lsn;
1051 * NAME: jfs_syncpt
1053 * FUNCTION: write log SYNCPT record for specified log
1055 * PARAMETERS: log - log structure
1056 * hard_sync - set to 1 to force metadata to be written
1058 void jfs_syncpt(struct jfs_log *log, int hard_sync)
1059 { LOG_LOCK(log);
1060 lmLogSync(log, hard_sync);
1061 LOG_UNLOCK(log);
1065 * NAME: lmLogOpen()
1067 * FUNCTION: open the log on first open;
1068 * insert filesystem in the active list of the log.
1070 * PARAMETER: ipmnt - file system mount inode
1071 * iplog - log inode (out)
1073 * RETURN:
1075 * serialization:
1077 int lmLogOpen(struct super_block *sb)
1079 int rc;
1080 struct block_device *bdev;
1081 struct jfs_log *log;
1082 struct jfs_sb_info *sbi = JFS_SBI(sb);
1084 if (sbi->flag & JFS_NOINTEGRITY)
1085 return open_dummy_log(sb);
1087 if (sbi->mntflag & JFS_INLINELOG)
1088 return open_inline_log(sb);
1090 mutex_lock(&jfs_log_mutex);
1091 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1092 if (log->bdev->bd_dev == sbi->logdev) {
1093 if (memcmp(log->uuid, sbi->loguuid,
1094 sizeof(log->uuid))) {
1095 jfs_warn("wrong uuid on JFS journal\n");
1096 mutex_unlock(&jfs_log_mutex);
1097 return -EINVAL;
1100 * add file system to log active file system list
1102 if ((rc = lmLogFileSystem(log, sbi, 1))) {
1103 mutex_unlock(&jfs_log_mutex);
1104 return rc;
1106 goto journal_found;
1110 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1111 mutex_unlock(&jfs_log_mutex);
1112 return -ENOMEM;
1114 INIT_LIST_HEAD(&log->sb_list);
1115 init_waitqueue_head(&log->syncwait);
1118 * external log as separate logical volume
1120 * file systems to log may have n-to-1 relationship;
1123 bdev = open_by_devnum(sbi->logdev, FMODE_READ|FMODE_WRITE);
1124 if (IS_ERR(bdev)) {
1125 rc = -PTR_ERR(bdev);
1126 goto free;
1129 if ((rc = bd_claim(bdev, log))) {
1130 goto close;
1133 log->bdev = bdev;
1134 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
1137 * initialize log:
1139 if ((rc = lmLogInit(log)))
1140 goto unclaim;
1142 list_add(&log->journal_list, &jfs_external_logs);
1145 * add file system to log active file system list
1147 if ((rc = lmLogFileSystem(log, sbi, 1)))
1148 goto shutdown;
1150 journal_found:
1151 LOG_LOCK(log);
1152 list_add(&sbi->log_list, &log->sb_list);
1153 sbi->log = log;
1154 LOG_UNLOCK(log);
1156 mutex_unlock(&jfs_log_mutex);
1157 return 0;
1160 * unwind on error
1162 shutdown: /* unwind lbmLogInit() */
1163 list_del(&log->journal_list);
1164 lbmLogShutdown(log);
1166 unclaim:
1167 bd_release(bdev);
1169 close: /* close external log device */
1170 blkdev_put(bdev);
1172 free: /* free log descriptor */
1173 mutex_unlock(&jfs_log_mutex);
1174 kfree(log);
1176 jfs_warn("lmLogOpen: exit(%d)", rc);
1177 return rc;
1180 static int open_inline_log(struct super_block *sb)
1182 struct jfs_log *log;
1183 int rc;
1185 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1186 return -ENOMEM;
1187 INIT_LIST_HEAD(&log->sb_list);
1188 init_waitqueue_head(&log->syncwait);
1190 set_bit(log_INLINELOG, &log->flag);
1191 log->bdev = sb->s_bdev;
1192 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1193 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1194 (L2LOGPSIZE - sb->s_blocksize_bits);
1195 log->l2bsize = sb->s_blocksize_bits;
1196 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1199 * initialize log.
1201 if ((rc = lmLogInit(log))) {
1202 kfree(log);
1203 jfs_warn("lmLogOpen: exit(%d)", rc);
1204 return rc;
1207 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1208 JFS_SBI(sb)->log = log;
1210 return rc;
1213 static int open_dummy_log(struct super_block *sb)
1215 int rc;
1217 mutex_lock(&jfs_log_mutex);
1218 if (!dummy_log) {
1219 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1220 if (!dummy_log) {
1221 mutex_unlock(&jfs_log_mutex);
1222 return -ENOMEM;
1224 INIT_LIST_HEAD(&dummy_log->sb_list);
1225 init_waitqueue_head(&dummy_log->syncwait);
1226 dummy_log->no_integrity = 1;
1227 /* Make up some stuff */
1228 dummy_log->base = 0;
1229 dummy_log->size = 1024;
1230 rc = lmLogInit(dummy_log);
1231 if (rc) {
1232 kfree(dummy_log);
1233 dummy_log = NULL;
1234 mutex_unlock(&jfs_log_mutex);
1235 return rc;
1239 LOG_LOCK(dummy_log);
1240 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1241 JFS_SBI(sb)->log = dummy_log;
1242 LOG_UNLOCK(dummy_log);
1243 mutex_unlock(&jfs_log_mutex);
1245 return 0;
1249 * NAME: lmLogInit()
1251 * FUNCTION: log initialization at first log open.
1253 * logredo() (or logformat()) should have been run previously.
1254 * initialize the log from log superblock.
1255 * set the log state in the superblock to LOGMOUNT and
1256 * write SYNCPT log record.
1258 * PARAMETER: log - log structure
1260 * RETURN: 0 - if ok
1261 * -EINVAL - bad log magic number or superblock dirty
1262 * error returned from logwait()
1264 * serialization: single first open thread
1266 int lmLogInit(struct jfs_log * log)
1268 int rc = 0;
1269 struct lrd lrd;
1270 struct logsuper *logsuper;
1271 struct lbuf *bpsuper;
1272 struct lbuf *bp;
1273 struct logpage *lp;
1274 int lsn = 0;
1276 jfs_info("lmLogInit: log:0x%p", log);
1278 /* initialize the group commit serialization lock */
1279 LOGGC_LOCK_INIT(log);
1281 /* allocate/initialize the log write serialization lock */
1282 LOG_LOCK_INIT(log);
1284 LOGSYNC_LOCK_INIT(log);
1286 INIT_LIST_HEAD(&log->synclist);
1288 INIT_LIST_HEAD(&log->cqueue);
1289 log->flush_tblk = NULL;
1291 log->count = 0;
1294 * initialize log i/o
1296 if ((rc = lbmLogInit(log)))
1297 return rc;
1299 if (!test_bit(log_INLINELOG, &log->flag))
1300 log->l2bsize = L2LOGPSIZE;
1302 /* check for disabled journaling to disk */
1303 if (log->no_integrity) {
1305 * Journal pages will still be filled. When the time comes
1306 * to actually do the I/O, the write is not done, and the
1307 * endio routine is called directly.
1309 bp = lbmAllocate(log , 0);
1310 log->bp = bp;
1311 bp->l_pn = bp->l_eor = 0;
1312 } else {
1314 * validate log superblock
1316 if ((rc = lbmRead(log, 1, &bpsuper)))
1317 goto errout10;
1319 logsuper = (struct logsuper *) bpsuper->l_ldata;
1321 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1322 jfs_warn("*** Log Format Error ! ***");
1323 rc = -EINVAL;
1324 goto errout20;
1327 /* logredo() should have been run successfully. */
1328 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1329 jfs_warn("*** Log Is Dirty ! ***");
1330 rc = -EINVAL;
1331 goto errout20;
1334 /* initialize log from log superblock */
1335 if (test_bit(log_INLINELOG,&log->flag)) {
1336 if (log->size != le32_to_cpu(logsuper->size)) {
1337 rc = -EINVAL;
1338 goto errout20;
1340 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1341 "size:0x%x", log,
1342 (unsigned long long) log->base, log->size);
1343 } else {
1344 if (memcmp(logsuper->uuid, log->uuid, 16)) {
1345 jfs_warn("wrong uuid on JFS log device");
1346 goto errout20;
1348 log->size = le32_to_cpu(logsuper->size);
1349 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1350 jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1351 "size:0x%x", log,
1352 (unsigned long long) log->base, log->size);
1355 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1356 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1359 * initialize for log append write mode
1361 /* establish current/end-of-log page/buffer */
1362 if ((rc = lbmRead(log, log->page, &bp)))
1363 goto errout20;
1365 lp = (struct logpage *) bp->l_ldata;
1367 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1368 le32_to_cpu(logsuper->end), log->page, log->eor,
1369 le16_to_cpu(lp->h.eor));
1371 log->bp = bp;
1372 bp->l_pn = log->page;
1373 bp->l_eor = log->eor;
1375 /* if current page is full, move on to next page */
1376 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1377 lmNextPage(log);
1380 * initialize log syncpoint
1383 * write the first SYNCPT record with syncpoint = 0
1384 * (i.e., log redo up to HERE !);
1385 * remove current page from lbm write queue at end of pageout
1386 * (to write log superblock update), but do not release to
1387 * freelist;
1389 lrd.logtid = 0;
1390 lrd.backchain = 0;
1391 lrd.type = cpu_to_le16(LOG_SYNCPT);
1392 lrd.length = 0;
1393 lrd.log.syncpt.sync = 0;
1394 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1395 bp = log->bp;
1396 bp->l_ceor = bp->l_eor;
1397 lp = (struct logpage *) bp->l_ldata;
1398 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1399 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1400 if ((rc = lbmIOWait(bp, 0)))
1401 goto errout30;
1404 * update/write superblock
1406 logsuper->state = cpu_to_le32(LOGMOUNT);
1407 log->serial = le32_to_cpu(logsuper->serial) + 1;
1408 logsuper->serial = cpu_to_le32(log->serial);
1409 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1410 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1411 goto errout30;
1414 /* initialize logsync parameters */
1415 log->logsize = (log->size - 2) << L2LOGPSIZE;
1416 log->lsn = lsn;
1417 log->syncpt = lsn;
1418 log->sync = log->syncpt;
1419 log->nextsync = LOGSYNC_DELTA(log->logsize);
1421 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1422 log->lsn, log->syncpt, log->sync);
1425 * initialize for lazy/group commit
1427 log->clsn = lsn;
1429 return 0;
1432 * unwind on error
1434 errout30: /* release log page */
1435 log->wqueue = NULL;
1436 bp->l_wqnext = NULL;
1437 lbmFree(bp);
1439 errout20: /* release log superblock */
1440 lbmFree(bpsuper);
1442 errout10: /* unwind lbmLogInit() */
1443 lbmLogShutdown(log);
1445 jfs_warn("lmLogInit: exit(%d)", rc);
1446 return rc;
1451 * NAME: lmLogClose()
1453 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1454 * and close it on last close.
1456 * PARAMETER: sb - superblock
1458 * RETURN: errors from subroutines
1460 * serialization:
1462 int lmLogClose(struct super_block *sb)
1464 struct jfs_sb_info *sbi = JFS_SBI(sb);
1465 struct jfs_log *log = sbi->log;
1466 struct block_device *bdev;
1467 int rc = 0;
1469 jfs_info("lmLogClose: log:0x%p", log);
1471 mutex_lock(&jfs_log_mutex);
1472 LOG_LOCK(log);
1473 list_del(&sbi->log_list);
1474 LOG_UNLOCK(log);
1475 sbi->log = NULL;
1478 * We need to make sure all of the "written" metapages
1479 * actually make it to disk
1481 sync_blockdev(sb->s_bdev);
1483 if (test_bit(log_INLINELOG, &log->flag)) {
1485 * in-line log in host file system
1487 rc = lmLogShutdown(log);
1488 kfree(log);
1489 goto out;
1492 if (!log->no_integrity)
1493 lmLogFileSystem(log, sbi, 0);
1495 if (!list_empty(&log->sb_list))
1496 goto out;
1499 * TODO: ensure that the dummy_log is in a state to allow
1500 * lbmLogShutdown to deallocate all the buffers and call
1501 * kfree against dummy_log. For now, leave dummy_log & its
1502 * buffers in memory, and resuse if another no-integrity mount
1503 * is requested.
1505 if (log->no_integrity)
1506 goto out;
1509 * external log as separate logical volume
1511 list_del(&log->journal_list);
1512 bdev = log->bdev;
1513 rc = lmLogShutdown(log);
1515 bd_release(bdev);
1516 blkdev_put(bdev);
1518 kfree(log);
1520 out:
1521 mutex_unlock(&jfs_log_mutex);
1522 jfs_info("lmLogClose: exit(%d)", rc);
1523 return rc;
1528 * NAME: jfs_flush_journal()
1530 * FUNCTION: initiate write of any outstanding transactions to the journal
1531 * and optionally wait until they are all written to disk
1533 * wait == 0 flush until latest txn is committed, don't wait
1534 * wait == 1 flush until latest txn is committed, wait
1535 * wait > 1 flush until all txn's are complete, wait
1537 void jfs_flush_journal(struct jfs_log *log, int wait)
1539 int i;
1540 struct tblock *target = NULL;
1542 /* jfs_write_inode may call us during read-only mount */
1543 if (!log)
1544 return;
1546 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1548 LOGGC_LOCK(log);
1550 if (!list_empty(&log->cqueue)) {
1552 * This ensures that we will keep writing to the journal as long
1553 * as there are unwritten commit records
1555 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1557 if (test_bit(log_FLUSH, &log->flag)) {
1559 * We're already flushing.
1560 * if flush_tblk is NULL, we are flushing everything,
1561 * so leave it that way. Otherwise, update it to the
1562 * latest transaction
1564 if (log->flush_tblk)
1565 log->flush_tblk = target;
1566 } else {
1567 /* Only flush until latest transaction is committed */
1568 log->flush_tblk = target;
1569 set_bit(log_FLUSH, &log->flag);
1572 * Initiate I/O on outstanding transactions
1574 if (!(log->cflag & logGC_PAGEOUT)) {
1575 log->cflag |= logGC_PAGEOUT;
1576 lmGCwrite(log, 0);
1580 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1581 /* Flush until all activity complete */
1582 set_bit(log_FLUSH, &log->flag);
1583 log->flush_tblk = NULL;
1586 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1587 DECLARE_WAITQUEUE(__wait, current);
1589 add_wait_queue(&target->gcwait, &__wait);
1590 set_current_state(TASK_UNINTERRUPTIBLE);
1591 LOGGC_UNLOCK(log);
1592 schedule();
1593 __set_current_state(TASK_RUNNING);
1594 LOGGC_LOCK(log);
1595 remove_wait_queue(&target->gcwait, &__wait);
1597 LOGGC_UNLOCK(log);
1599 if (wait < 2)
1600 return;
1602 write_special_inodes(log, filemap_fdatawrite);
1605 * If there was recent activity, we may need to wait
1606 * for the lazycommit thread to catch up
1608 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1609 for (i = 0; i < 200; i++) { /* Too much? */
1610 msleep(250);
1611 write_special_inodes(log, filemap_fdatawrite);
1612 if (list_empty(&log->cqueue) &&
1613 list_empty(&log->synclist))
1614 break;
1617 assert(list_empty(&log->cqueue));
1619 #ifdef CONFIG_JFS_DEBUG
1620 if (!list_empty(&log->synclist)) {
1621 struct logsyncblk *lp;
1623 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
1624 list_for_each_entry(lp, &log->synclist, synclist) {
1625 if (lp->xflag & COMMIT_PAGE) {
1626 struct metapage *mp = (struct metapage *)lp;
1627 print_hex_dump(KERN_ERR, "metapage: ",
1628 DUMP_PREFIX_ADDRESS, 16, 4,
1629 mp, sizeof(struct metapage), 0);
1630 print_hex_dump(KERN_ERR, "page: ",
1631 DUMP_PREFIX_ADDRESS, 16,
1632 sizeof(long), mp->page,
1633 sizeof(struct page), 0);
1634 } else
1635 print_hex_dump(KERN_ERR, "tblock:",
1636 DUMP_PREFIX_ADDRESS, 16, 4,
1637 lp, sizeof(struct tblock), 0);
1640 #else
1641 WARN_ON(!list_empty(&log->synclist));
1642 #endif
1643 clear_bit(log_FLUSH, &log->flag);
1647 * NAME: lmLogShutdown()
1649 * FUNCTION: log shutdown at last LogClose().
1651 * write log syncpt record.
1652 * update super block to set redone flag to 0.
1654 * PARAMETER: log - log inode
1656 * RETURN: 0 - success
1658 * serialization: single last close thread
1660 int lmLogShutdown(struct jfs_log * log)
1662 int rc;
1663 struct lrd lrd;
1664 int lsn;
1665 struct logsuper *logsuper;
1666 struct lbuf *bpsuper;
1667 struct lbuf *bp;
1668 struct logpage *lp;
1670 jfs_info("lmLogShutdown: log:0x%p", log);
1672 jfs_flush_journal(log, 2);
1675 * write the last SYNCPT record with syncpoint = 0
1676 * (i.e., log redo up to HERE !)
1678 lrd.logtid = 0;
1679 lrd.backchain = 0;
1680 lrd.type = cpu_to_le16(LOG_SYNCPT);
1681 lrd.length = 0;
1682 lrd.log.syncpt.sync = 0;
1684 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1685 bp = log->bp;
1686 lp = (struct logpage *) bp->l_ldata;
1687 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1688 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1689 lbmIOWait(log->bp, lbmFREE);
1690 log->bp = NULL;
1693 * synchronous update log superblock
1694 * mark log state as shutdown cleanly
1695 * (i.e., Log does not need to be replayed).
1697 if ((rc = lbmRead(log, 1, &bpsuper)))
1698 goto out;
1700 logsuper = (struct logsuper *) bpsuper->l_ldata;
1701 logsuper->state = cpu_to_le32(LOGREDONE);
1702 logsuper->end = cpu_to_le32(lsn);
1703 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1704 rc = lbmIOWait(bpsuper, lbmFREE);
1706 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1707 lsn, log->page, log->eor);
1709 out:
1711 * shutdown per log i/o
1713 lbmLogShutdown(log);
1715 if (rc) {
1716 jfs_warn("lmLogShutdown: exit(%d)", rc);
1718 return rc;
1723 * NAME: lmLogFileSystem()
1725 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1726 * file system into/from log active file system list.
1728 * PARAMETE: log - pointer to logs inode.
1729 * fsdev - kdev_t of filesystem.
1730 * serial - pointer to returned log serial number
1731 * activate - insert/remove device from active list.
1733 * RETURN: 0 - success
1734 * errors returned by vms_iowait().
1736 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1737 int activate)
1739 int rc = 0;
1740 int i;
1741 struct logsuper *logsuper;
1742 struct lbuf *bpsuper;
1743 char *uuid = sbi->uuid;
1746 * insert/remove file system device to log active file system list.
1748 if ((rc = lbmRead(log, 1, &bpsuper)))
1749 return rc;
1751 logsuper = (struct logsuper *) bpsuper->l_ldata;
1752 if (activate) {
1753 for (i = 0; i < MAX_ACTIVE; i++)
1754 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1755 memcpy(logsuper->active[i].uuid, uuid, 16);
1756 sbi->aggregate = i;
1757 break;
1759 if (i == MAX_ACTIVE) {
1760 jfs_warn("Too many file systems sharing journal!");
1761 lbmFree(bpsuper);
1762 return -EMFILE; /* Is there a better rc? */
1764 } else {
1765 for (i = 0; i < MAX_ACTIVE; i++)
1766 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1767 memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1768 break;
1770 if (i == MAX_ACTIVE) {
1771 jfs_warn("Somebody stomped on the journal!");
1772 lbmFree(bpsuper);
1773 return -EIO;
1779 * synchronous write log superblock:
1781 * write sidestream bypassing write queue:
1782 * at file system mount, log super block is updated for
1783 * activation of the file system before any log record
1784 * (MOUNT record) of the file system, and at file system
1785 * unmount, all meta data for the file system has been
1786 * flushed before log super block is updated for deactivation
1787 * of the file system.
1789 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1790 rc = lbmIOWait(bpsuper, lbmFREE);
1792 return rc;
1796 * log buffer manager (lbm)
1797 * ------------------------
1799 * special purpose buffer manager supporting log i/o requirements.
1801 * per log write queue:
1802 * log pageout occurs in serial order by fifo write queue and
1803 * restricting to a single i/o in pregress at any one time.
1804 * a circular singly-linked list
1805 * (log->wrqueue points to the tail, and buffers are linked via
1806 * bp->wrqueue field), and
1807 * maintains log page in pageout ot waiting for pageout in serial pageout.
1811 * lbmLogInit()
1813 * initialize per log I/O setup at lmLogInit()
1815 static int lbmLogInit(struct jfs_log * log)
1816 { /* log inode */
1817 int i;
1818 struct lbuf *lbuf;
1820 jfs_info("lbmLogInit: log:0x%p", log);
1822 /* initialize current buffer cursor */
1823 log->bp = NULL;
1825 /* initialize log device write queue */
1826 log->wqueue = NULL;
1829 * Each log has its own buffer pages allocated to it. These are
1830 * not managed by the page cache. This ensures that a transaction
1831 * writing to the log does not block trying to allocate a page from
1832 * the page cache (for the log). This would be bad, since page
1833 * allocation waits on the kswapd thread that may be committing inodes
1834 * which would cause log activity. Was that clear? I'm trying to
1835 * avoid deadlock here.
1837 init_waitqueue_head(&log->free_wait);
1839 log->lbuf_free = NULL;
1841 for (i = 0; i < LOGPAGES;) {
1842 char *buffer;
1843 uint offset;
1844 struct page *page;
1846 buffer = (char *) get_zeroed_page(GFP_KERNEL);
1847 if (buffer == NULL)
1848 goto error;
1849 page = virt_to_page(buffer);
1850 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1851 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1852 if (lbuf == NULL) {
1853 if (offset == 0)
1854 free_page((unsigned long) buffer);
1855 goto error;
1857 if (offset) /* we already have one reference */
1858 get_page(page);
1859 lbuf->l_offset = offset;
1860 lbuf->l_ldata = buffer + offset;
1861 lbuf->l_page = page;
1862 lbuf->l_log = log;
1863 init_waitqueue_head(&lbuf->l_ioevent);
1865 lbuf->l_freelist = log->lbuf_free;
1866 log->lbuf_free = lbuf;
1867 i++;
1871 return (0);
1873 error:
1874 lbmLogShutdown(log);
1875 return -ENOMEM;
1880 * lbmLogShutdown()
1882 * finalize per log I/O setup at lmLogShutdown()
1884 static void lbmLogShutdown(struct jfs_log * log)
1886 struct lbuf *lbuf;
1888 jfs_info("lbmLogShutdown: log:0x%p", log);
1890 lbuf = log->lbuf_free;
1891 while (lbuf) {
1892 struct lbuf *next = lbuf->l_freelist;
1893 __free_page(lbuf->l_page);
1894 kfree(lbuf);
1895 lbuf = next;
1901 * lbmAllocate()
1903 * allocate an empty log buffer
1905 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1907 struct lbuf *bp;
1908 unsigned long flags;
1911 * recycle from log buffer freelist if any
1913 LCACHE_LOCK(flags);
1914 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1915 log->lbuf_free = bp->l_freelist;
1916 LCACHE_UNLOCK(flags);
1918 bp->l_flag = 0;
1920 bp->l_wqnext = NULL;
1921 bp->l_freelist = NULL;
1923 bp->l_pn = pn;
1924 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1925 bp->l_ceor = 0;
1927 return bp;
1932 * lbmFree()
1934 * release a log buffer to freelist
1936 static void lbmFree(struct lbuf * bp)
1938 unsigned long flags;
1940 LCACHE_LOCK(flags);
1942 lbmfree(bp);
1944 LCACHE_UNLOCK(flags);
1947 static void lbmfree(struct lbuf * bp)
1949 struct jfs_log *log = bp->l_log;
1951 assert(bp->l_wqnext == NULL);
1954 * return the buffer to head of freelist
1956 bp->l_freelist = log->lbuf_free;
1957 log->lbuf_free = bp;
1959 wake_up(&log->free_wait);
1960 return;
1965 * NAME: lbmRedrive
1967 * FUNCTION: add a log buffer to the log redrive list
1969 * PARAMETER:
1970 * bp - log buffer
1972 * NOTES:
1973 * Takes log_redrive_lock.
1975 static inline void lbmRedrive(struct lbuf *bp)
1977 unsigned long flags;
1979 spin_lock_irqsave(&log_redrive_lock, flags);
1980 bp->l_redrive_next = log_redrive_list;
1981 log_redrive_list = bp;
1982 spin_unlock_irqrestore(&log_redrive_lock, flags);
1984 wake_up_process(jfsIOthread);
1989 * lbmRead()
1991 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1993 struct bio *bio;
1994 struct lbuf *bp;
1997 * allocate a log buffer
1999 *bpp = bp = lbmAllocate(log, pn);
2000 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
2002 bp->l_flag |= lbmREAD;
2004 bio = bio_alloc(GFP_NOFS, 1);
2006 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2007 bio->bi_bdev = log->bdev;
2008 bio->bi_io_vec[0].bv_page = bp->l_page;
2009 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2010 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2012 bio->bi_vcnt = 1;
2013 bio->bi_idx = 0;
2014 bio->bi_size = LOGPSIZE;
2016 bio->bi_end_io = lbmIODone;
2017 bio->bi_private = bp;
2018 submit_bio(READ_SYNC, bio);
2020 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2022 return 0;
2027 * lbmWrite()
2029 * buffer at head of pageout queue stays after completion of
2030 * partial-page pageout and redriven by explicit initiation of
2031 * pageout by caller until full-page pageout is completed and
2032 * released.
2034 * device driver i/o done redrives pageout of new buffer at
2035 * head of pageout queue when current buffer at head of pageout
2036 * queue is released at the completion of its full-page pageout.
2038 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2039 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2041 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2042 int cant_block)
2044 struct lbuf *tail;
2045 unsigned long flags;
2047 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2049 /* map the logical block address to physical block address */
2050 bp->l_blkno =
2051 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2053 LCACHE_LOCK(flags); /* disable+lock */
2056 * initialize buffer for device driver
2058 bp->l_flag = flag;
2061 * insert bp at tail of write queue associated with log
2063 * (request is either for bp already/currently at head of queue
2064 * or new bp to be inserted at tail)
2066 tail = log->wqueue;
2068 /* is buffer not already on write queue ? */
2069 if (bp->l_wqnext == NULL) {
2070 /* insert at tail of wqueue */
2071 if (tail == NULL) {
2072 log->wqueue = bp;
2073 bp->l_wqnext = bp;
2074 } else {
2075 log->wqueue = bp;
2076 bp->l_wqnext = tail->l_wqnext;
2077 tail->l_wqnext = bp;
2080 tail = bp;
2083 /* is buffer at head of wqueue and for write ? */
2084 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2085 LCACHE_UNLOCK(flags); /* unlock+enable */
2086 return;
2089 LCACHE_UNLOCK(flags); /* unlock+enable */
2091 if (cant_block)
2092 lbmRedrive(bp);
2093 else if (flag & lbmSYNC)
2094 lbmStartIO(bp);
2095 else {
2096 LOGGC_UNLOCK(log);
2097 lbmStartIO(bp);
2098 LOGGC_LOCK(log);
2104 * lbmDirectWrite()
2106 * initiate pageout bypassing write queue for sidestream
2107 * (e.g., log superblock) write;
2109 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2111 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2112 bp, flag, bp->l_pn);
2115 * initialize buffer for device driver
2117 bp->l_flag = flag | lbmDIRECT;
2119 /* map the logical block address to physical block address */
2120 bp->l_blkno =
2121 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2124 * initiate pageout of the page
2126 lbmStartIO(bp);
2131 * NAME: lbmStartIO()
2133 * FUNCTION: Interface to DD strategy routine
2135 * RETURN: none
2137 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2139 static void lbmStartIO(struct lbuf * bp)
2141 struct bio *bio;
2142 struct jfs_log *log = bp->l_log;
2144 jfs_info("lbmStartIO\n");
2146 bio = bio_alloc(GFP_NOFS, 1);
2147 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2148 bio->bi_bdev = log->bdev;
2149 bio->bi_io_vec[0].bv_page = bp->l_page;
2150 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2151 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2153 bio->bi_vcnt = 1;
2154 bio->bi_idx = 0;
2155 bio->bi_size = LOGPSIZE;
2157 bio->bi_end_io = lbmIODone;
2158 bio->bi_private = bp;
2160 /* check if journaling to disk has been disabled */
2161 if (log->no_integrity) {
2162 bio->bi_size = 0;
2163 lbmIODone(bio, 0);
2164 } else {
2165 submit_bio(WRITE_SYNC, bio);
2166 INCREMENT(lmStat.submitted);
2172 * lbmIOWait()
2174 static int lbmIOWait(struct lbuf * bp, int flag)
2176 unsigned long flags;
2177 int rc = 0;
2179 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2181 LCACHE_LOCK(flags); /* disable+lock */
2183 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2185 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2187 if (flag & lbmFREE)
2188 lbmfree(bp);
2190 LCACHE_UNLOCK(flags); /* unlock+enable */
2192 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2193 return rc;
2197 * lbmIODone()
2199 * executed at INTIODONE level
2201 static void lbmIODone(struct bio *bio, int error)
2203 struct lbuf *bp = bio->bi_private;
2204 struct lbuf *nextbp, *tail;
2205 struct jfs_log *log;
2206 unsigned long flags;
2209 * get back jfs buffer bound to the i/o buffer
2211 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2213 LCACHE_LOCK(flags); /* disable+lock */
2215 bp->l_flag |= lbmDONE;
2217 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2218 bp->l_flag |= lbmERROR;
2220 jfs_err("lbmIODone: I/O error in JFS log");
2223 bio_put(bio);
2226 * pagein completion
2228 if (bp->l_flag & lbmREAD) {
2229 bp->l_flag &= ~lbmREAD;
2231 LCACHE_UNLOCK(flags); /* unlock+enable */
2233 /* wakeup I/O initiator */
2234 LCACHE_WAKEUP(&bp->l_ioevent);
2236 return;
2240 * pageout completion
2242 * the bp at the head of write queue has completed pageout.
2244 * if single-commit/full-page pageout, remove the current buffer
2245 * from head of pageout queue, and redrive pageout with
2246 * the new buffer at head of pageout queue;
2247 * otherwise, the partial-page pageout buffer stays at
2248 * the head of pageout queue to be redriven for pageout
2249 * by lmGroupCommit() until full-page pageout is completed.
2251 bp->l_flag &= ~lbmWRITE;
2252 INCREMENT(lmStat.pagedone);
2254 /* update committed lsn */
2255 log = bp->l_log;
2256 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2258 if (bp->l_flag & lbmDIRECT) {
2259 LCACHE_WAKEUP(&bp->l_ioevent);
2260 LCACHE_UNLOCK(flags);
2261 return;
2264 tail = log->wqueue;
2266 /* single element queue */
2267 if (bp == tail) {
2268 /* remove head buffer of full-page pageout
2269 * from log device write queue
2271 if (bp->l_flag & lbmRELEASE) {
2272 log->wqueue = NULL;
2273 bp->l_wqnext = NULL;
2276 /* multi element queue */
2277 else {
2278 /* remove head buffer of full-page pageout
2279 * from log device write queue
2281 if (bp->l_flag & lbmRELEASE) {
2282 nextbp = tail->l_wqnext = bp->l_wqnext;
2283 bp->l_wqnext = NULL;
2286 * redrive pageout of next page at head of write queue:
2287 * redrive next page without any bound tblk
2288 * (i.e., page w/o any COMMIT records), or
2289 * first page of new group commit which has been
2290 * queued after current page (subsequent pageout
2291 * is performed synchronously, except page without
2292 * any COMMITs) by lmGroupCommit() as indicated
2293 * by lbmWRITE flag;
2295 if (nextbp->l_flag & lbmWRITE) {
2297 * We can't do the I/O at interrupt time.
2298 * The jfsIO thread can do it
2300 lbmRedrive(nextbp);
2306 * synchronous pageout:
2308 * buffer has not necessarily been removed from write queue
2309 * (e.g., synchronous write of partial-page with COMMIT):
2310 * leave buffer for i/o initiator to dispose
2312 if (bp->l_flag & lbmSYNC) {
2313 LCACHE_UNLOCK(flags); /* unlock+enable */
2315 /* wakeup I/O initiator */
2316 LCACHE_WAKEUP(&bp->l_ioevent);
2320 * Group Commit pageout:
2322 else if (bp->l_flag & lbmGC) {
2323 LCACHE_UNLOCK(flags);
2324 lmPostGC(bp);
2328 * asynchronous pageout:
2330 * buffer must have been removed from write queue:
2331 * insert buffer at head of freelist where it can be recycled
2333 else {
2334 assert(bp->l_flag & lbmRELEASE);
2335 assert(bp->l_flag & lbmFREE);
2336 lbmfree(bp);
2338 LCACHE_UNLOCK(flags); /* unlock+enable */
2342 int jfsIOWait(void *arg)
2344 struct lbuf *bp;
2346 do {
2347 spin_lock_irq(&log_redrive_lock);
2348 while ((bp = log_redrive_list)) {
2349 log_redrive_list = bp->l_redrive_next;
2350 bp->l_redrive_next = NULL;
2351 spin_unlock_irq(&log_redrive_lock);
2352 lbmStartIO(bp);
2353 spin_lock_irq(&log_redrive_lock);
2356 if (freezing(current)) {
2357 spin_unlock_irq(&log_redrive_lock);
2358 refrigerator();
2359 } else {
2360 set_current_state(TASK_INTERRUPTIBLE);
2361 spin_unlock_irq(&log_redrive_lock);
2362 schedule();
2363 __set_current_state(TASK_RUNNING);
2365 } while (!kthread_should_stop());
2367 jfs_info("jfsIOWait being killed!");
2368 return 0;
2372 * NAME: lmLogFormat()/jfs_logform()
2374 * FUNCTION: format file system log
2376 * PARAMETERS:
2377 * log - volume log
2378 * logAddress - start address of log space in FS block
2379 * logSize - length of log space in FS block;
2381 * RETURN: 0 - success
2382 * -EIO - i/o error
2384 * XXX: We're synchronously writing one page at a time. This needs to
2385 * be improved by writing multiple pages at once.
2387 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2389 int rc = -EIO;
2390 struct jfs_sb_info *sbi;
2391 struct logsuper *logsuper;
2392 struct logpage *lp;
2393 int lspn; /* log sequence page number */
2394 struct lrd *lrd_ptr;
2395 int npages = 0;
2396 struct lbuf *bp;
2398 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2399 (long long)logAddress, logSize);
2401 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2403 /* allocate a log buffer */
2404 bp = lbmAllocate(log, 1);
2406 npages = logSize >> sbi->l2nbperpage;
2409 * log space:
2411 * page 0 - reserved;
2412 * page 1 - log superblock;
2413 * page 2 - log data page: A SYNC log record is written
2414 * into this page at logform time;
2415 * pages 3-N - log data page: set to empty log data pages;
2418 * init log superblock: log page 1
2420 logsuper = (struct logsuper *) bp->l_ldata;
2422 logsuper->magic = cpu_to_le32(LOGMAGIC);
2423 logsuper->version = cpu_to_le32(LOGVERSION);
2424 logsuper->state = cpu_to_le32(LOGREDONE);
2425 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2426 logsuper->size = cpu_to_le32(npages);
2427 logsuper->bsize = cpu_to_le32(sbi->bsize);
2428 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2429 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2431 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2432 bp->l_blkno = logAddress + sbi->nbperpage;
2433 lbmStartIO(bp);
2434 if ((rc = lbmIOWait(bp, 0)))
2435 goto exit;
2438 * init pages 2 to npages-1 as log data pages:
2440 * log page sequence number (lpsn) initialization:
2442 * pn: 0 1 2 3 n-1
2443 * +-----+-----+=====+=====+===.....===+=====+
2444 * lspn: N-1 0 1 N-2
2445 * <--- N page circular file ---->
2447 * the N (= npages-2) data pages of the log is maintained as
2448 * a circular file for the log records;
2449 * lpsn grows by 1 monotonically as each log page is written
2450 * to the circular file of the log;
2451 * and setLogpage() will not reset the page number even if
2452 * the eor is equal to LOGPHDRSIZE. In order for binary search
2453 * still work in find log end process, we have to simulate the
2454 * log wrap situation at the log format time.
2455 * The 1st log page written will have the highest lpsn. Then
2456 * the succeeding log pages will have ascending order of
2457 * the lspn starting from 0, ... (N-2)
2459 lp = (struct logpage *) bp->l_ldata;
2461 * initialize 1st log page to be written: lpsn = N - 1,
2462 * write a SYNCPT log record is written to this page
2464 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2465 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2467 lrd_ptr = (struct lrd *) &lp->data;
2468 lrd_ptr->logtid = 0;
2469 lrd_ptr->backchain = 0;
2470 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2471 lrd_ptr->length = 0;
2472 lrd_ptr->log.syncpt.sync = 0;
2474 bp->l_blkno += sbi->nbperpage;
2475 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2476 lbmStartIO(bp);
2477 if ((rc = lbmIOWait(bp, 0)))
2478 goto exit;
2481 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2483 for (lspn = 0; lspn < npages - 3; lspn++) {
2484 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2485 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2487 bp->l_blkno += sbi->nbperpage;
2488 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2489 lbmStartIO(bp);
2490 if ((rc = lbmIOWait(bp, 0)))
2491 goto exit;
2494 rc = 0;
2495 exit:
2497 * finalize log
2499 /* release the buffer */
2500 lbmFree(bp);
2502 return rc;
2505 #ifdef CONFIG_JFS_STATISTICS
2506 int jfs_lmstats_read(char *buffer, char **start, off_t offset, int length,
2507 int *eof, void *data)
2509 int len = 0;
2510 off_t begin;
2512 len += sprintf(buffer,
2513 "JFS Logmgr stats\n"
2514 "================\n"
2515 "commits = %d\n"
2516 "writes submitted = %d\n"
2517 "writes completed = %d\n"
2518 "full pages submitted = %d\n"
2519 "partial pages submitted = %d\n",
2520 lmStat.commit,
2521 lmStat.submitted,
2522 lmStat.pagedone,
2523 lmStat.full_page,
2524 lmStat.partial_page);
2526 begin = offset;
2527 *start = buffer + begin;
2528 len -= begin;
2530 if (len > length)
2531 len = length;
2532 else
2533 *eof = 1;
2535 if (len < 0)
2536 len = 0;
2538 return len;
2540 #endif /* CONFIG_JFS_STATISTICS */