1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
76 #include <linux/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
82 #include <asm/div64.h>
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.24"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name
[] = "Neterion";
93 static char s2io_driver_version
[] = DRV_VERSION
;
95 static int rxd_size
[2] = {32,48};
96 static int rxd_count
[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
102 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
103 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121 static inline int is_s2io_card_up(const struct s2io_nic
* sp
)
123 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
137 {"tmac_data_octets"},
141 {"tmac_pause_ctrl_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
214 {"new_rd_req_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
219 {"new_wr_req_rtry_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
232 static char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
251 static char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
319 {"prc_pcix_err_cnt"},
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
348 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
349 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
350 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
351 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
352 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
353 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
356 static void s2io_vlan_rx_register(struct net_device
*dev
,
357 struct vlan_group
*grp
)
360 struct s2io_nic
*nic
= dev
->priv
;
361 unsigned long flags
[MAX_TX_FIFOS
];
362 struct mac_info
*mac_control
= &nic
->mac_control
;
363 struct config_param
*config
= &nic
->config
;
365 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
366 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
369 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
370 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
374 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
375 static int vlan_strip_flag
;
377 /* Unregister the vlan */
378 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned long vid
)
381 struct s2io_nic
*nic
= dev
->priv
;
382 unsigned long flags
[MAX_TX_FIFOS
];
383 struct mac_info
*mac_control
= &nic
->mac_control
;
384 struct config_param
*config
= &nic
->config
;
386 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
387 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
390 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
392 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
393 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
398 * Constants to be programmed into the Xena's registers, to configure
403 static const u64 herc_act_dtx_cfg
[] = {
405 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
407 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
409 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
411 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
413 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
415 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
417 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
419 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
424 static const u64 xena_dtx_cfg
[] = {
426 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
428 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
430 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
432 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
434 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
436 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
441 * Constants for Fixing the MacAddress problem seen mostly on
444 static const u64 fix_mac
[] = {
445 0x0060000000000000ULL
, 0x0060600000000000ULL
,
446 0x0040600000000000ULL
, 0x0000600000000000ULL
,
447 0x0020600000000000ULL
, 0x0060600000000000ULL
,
448 0x0020600000000000ULL
, 0x0060600000000000ULL
,
449 0x0020600000000000ULL
, 0x0060600000000000ULL
,
450 0x0020600000000000ULL
, 0x0060600000000000ULL
,
451 0x0020600000000000ULL
, 0x0060600000000000ULL
,
452 0x0020600000000000ULL
, 0x0060600000000000ULL
,
453 0x0020600000000000ULL
, 0x0060600000000000ULL
,
454 0x0020600000000000ULL
, 0x0060600000000000ULL
,
455 0x0020600000000000ULL
, 0x0060600000000000ULL
,
456 0x0020600000000000ULL
, 0x0060600000000000ULL
,
457 0x0020600000000000ULL
, 0x0000600000000000ULL
,
458 0x0040600000000000ULL
, 0x0060600000000000ULL
,
462 MODULE_LICENSE("GPL");
463 MODULE_VERSION(DRV_VERSION
);
466 /* Module Loadable parameters. */
467 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
468 S2IO_PARM_INT(rx_ring_num
, 1);
469 S2IO_PARM_INT(multiq
, 0);
470 S2IO_PARM_INT(rx_ring_mode
, 1);
471 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
472 S2IO_PARM_INT(rmac_pause_time
, 0x100);
473 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
474 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
475 S2IO_PARM_INT(shared_splits
, 0);
476 S2IO_PARM_INT(tmac_util_period
, 5);
477 S2IO_PARM_INT(rmac_util_period
, 5);
478 S2IO_PARM_INT(l3l4hdr_size
, 128);
479 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
481 /* Frequency of Rx desc syncs expressed as power of 2 */
482 S2IO_PARM_INT(rxsync_frequency
, 3);
483 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
484 S2IO_PARM_INT(intr_type
, 2);
485 /* Large receive offload feature */
486 static unsigned int lro_enable
;
487 module_param_named(lro
, lro_enable
, uint
, 0);
489 /* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
492 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
493 S2IO_PARM_INT(indicate_max_pkts
, 0);
495 S2IO_PARM_INT(napi
, 1);
496 S2IO_PARM_INT(ufo
, 0);
497 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
499 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
500 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
501 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
502 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
503 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
504 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
506 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
507 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
508 module_param_array(rts_frm_len
, uint
, NULL
, 0);
512 * This table lists all the devices that this driver supports.
514 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
515 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
516 PCI_ANY_ID
, PCI_ANY_ID
},
517 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
518 PCI_ANY_ID
, PCI_ANY_ID
},
519 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
520 PCI_ANY_ID
, PCI_ANY_ID
},
521 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
522 PCI_ANY_ID
, PCI_ANY_ID
},
526 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
528 static struct pci_error_handlers s2io_err_handler
= {
529 .error_detected
= s2io_io_error_detected
,
530 .slot_reset
= s2io_io_slot_reset
,
531 .resume
= s2io_io_resume
,
534 static struct pci_driver s2io_driver
= {
536 .id_table
= s2io_tbl
,
537 .probe
= s2io_init_nic
,
538 .remove
= __devexit_p(s2io_rem_nic
),
539 .err_handler
= &s2io_err_handler
,
542 /* A simplifier macro used both by init and free shared_mem Fns(). */
543 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
545 /* netqueue manipulation helper functions */
546 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
549 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
550 if (sp
->config
.multiq
) {
551 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
552 netif_stop_subqueue(sp
->dev
, i
);
556 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
557 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
558 netif_stop_queue(sp
->dev
);
562 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
564 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
565 if (sp
->config
.multiq
)
566 netif_stop_subqueue(sp
->dev
, fifo_no
);
570 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
572 netif_stop_queue(sp
->dev
);
576 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
579 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
580 if (sp
->config
.multiq
) {
581 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
582 netif_start_subqueue(sp
->dev
, i
);
586 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
587 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
588 netif_start_queue(sp
->dev
);
592 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
594 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
595 if (sp
->config
.multiq
)
596 netif_start_subqueue(sp
->dev
, fifo_no
);
600 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
602 netif_start_queue(sp
->dev
);
606 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
609 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
610 if (sp
->config
.multiq
) {
611 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
612 netif_wake_subqueue(sp
->dev
, i
);
616 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
617 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
618 netif_wake_queue(sp
->dev
);
622 static inline void s2io_wake_tx_queue(
623 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
626 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
628 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
629 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
632 if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
633 if (netif_queue_stopped(fifo
->dev
)) {
634 fifo
->queue_state
= FIFO_QUEUE_START
;
635 netif_wake_queue(fifo
->dev
);
641 * init_shared_mem - Allocation and Initialization of Memory
642 * @nic: Device private variable.
643 * Description: The function allocates all the memory areas shared
644 * between the NIC and the driver. This includes Tx descriptors,
645 * Rx descriptors and the statistics block.
648 static int init_shared_mem(struct s2io_nic
*nic
)
651 void *tmp_v_addr
, *tmp_v_addr_next
;
652 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
653 struct RxD_block
*pre_rxd_blk
= NULL
;
655 int lst_size
, lst_per_page
;
656 struct net_device
*dev
= nic
->dev
;
660 struct mac_info
*mac_control
;
661 struct config_param
*config
;
662 unsigned long long mem_allocated
= 0;
664 mac_control
= &nic
->mac_control
;
665 config
= &nic
->config
;
668 /* Allocation and initialization of TXDLs in FIOFs */
670 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
671 size
+= config
->tx_cfg
[i
].fifo_len
;
673 if (size
> MAX_AVAILABLE_TXDS
) {
674 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
675 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
680 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
681 size
= config
->tx_cfg
[i
].fifo_len
;
683 * Legal values are from 2 to 8192
686 DBG_PRINT(ERR_DBG
, "s2io: Invalid fifo len (%d)", size
);
687 DBG_PRINT(ERR_DBG
, "for fifo %d\n", i
);
688 DBG_PRINT(ERR_DBG
, "s2io: Legal values for fifo len"
694 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
695 lst_per_page
= PAGE_SIZE
/ lst_size
;
697 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
698 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
699 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
700 mac_control
->fifos
[i
].list_info
= kzalloc(list_holder_size
,
702 if (!mac_control
->fifos
[i
].list_info
) {
704 "Malloc failed for list_info\n");
707 mem_allocated
+= list_holder_size
;
709 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
710 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
712 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
713 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
714 config
->tx_cfg
[i
].fifo_len
- 1;
715 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
716 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
717 config
->tx_cfg
[i
].fifo_len
- 1;
718 mac_control
->fifos
[i
].fifo_no
= i
;
719 mac_control
->fifos
[i
].nic
= nic
;
720 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
721 mac_control
->fifos
[i
].dev
= dev
;
723 for (j
= 0; j
< page_num
; j
++) {
727 tmp_v
= pci_alloc_consistent(nic
->pdev
,
731 "pci_alloc_consistent ");
732 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
735 /* If we got a zero DMA address(can happen on
736 * certain platforms like PPC), reallocate.
737 * Store virtual address of page we don't want,
741 mac_control
->zerodma_virt_addr
= tmp_v
;
743 "%s: Zero DMA address for TxDL. ", dev
->name
);
745 "Virtual address %p\n", tmp_v
);
746 tmp_v
= pci_alloc_consistent(nic
->pdev
,
750 "pci_alloc_consistent ");
751 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
754 mem_allocated
+= PAGE_SIZE
;
756 while (k
< lst_per_page
) {
757 int l
= (j
* lst_per_page
) + k
;
758 if (l
== config
->tx_cfg
[i
].fifo_len
)
760 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
761 tmp_v
+ (k
* lst_size
);
762 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
763 tmp_p
+ (k
* lst_size
);
769 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
770 size
= config
->tx_cfg
[i
].fifo_len
;
771 mac_control
->fifos
[i
].ufo_in_band_v
772 = kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
773 if (!mac_control
->fifos
[i
].ufo_in_band_v
)
775 mem_allocated
+= (size
* sizeof(u64
));
778 /* Allocation and initialization of RXDs in Rings */
780 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
781 if (config
->rx_cfg
[i
].num_rxd
%
782 (rxd_count
[nic
->rxd_mode
] + 1)) {
783 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
784 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
786 DBG_PRINT(ERR_DBG
, "RxDs per Block");
789 size
+= config
->rx_cfg
[i
].num_rxd
;
790 mac_control
->rings
[i
].block_count
=
791 config
->rx_cfg
[i
].num_rxd
/
792 (rxd_count
[nic
->rxd_mode
] + 1 );
793 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
794 mac_control
->rings
[i
].block_count
;
796 if (nic
->rxd_mode
== RXD_MODE_1
)
797 size
= (size
* (sizeof(struct RxD1
)));
799 size
= (size
* (sizeof(struct RxD3
)));
801 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
802 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
803 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
804 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
805 config
->rx_cfg
[i
].num_rxd
- 1;
806 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
807 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
808 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
809 config
->rx_cfg
[i
].num_rxd
- 1;
810 mac_control
->rings
[i
].nic
= nic
;
811 mac_control
->rings
[i
].ring_no
= i
;
812 mac_control
->rings
[i
].lro
= lro_enable
;
814 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
815 (rxd_count
[nic
->rxd_mode
] + 1);
816 /* Allocating all the Rx blocks */
817 for (j
= 0; j
< blk_cnt
; j
++) {
818 struct rx_block_info
*rx_blocks
;
821 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
822 size
= SIZE_OF_BLOCK
; //size is always page size
823 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
825 if (tmp_v_addr
== NULL
) {
827 * In case of failure, free_shared_mem()
828 * is called, which should free any
829 * memory that was alloced till the
832 rx_blocks
->block_virt_addr
= tmp_v_addr
;
835 mem_allocated
+= size
;
836 memset(tmp_v_addr
, 0, size
);
837 rx_blocks
->block_virt_addr
= tmp_v_addr
;
838 rx_blocks
->block_dma_addr
= tmp_p_addr
;
839 rx_blocks
->rxds
= kmalloc(sizeof(struct rxd_info
)*
840 rxd_count
[nic
->rxd_mode
],
842 if (!rx_blocks
->rxds
)
845 (sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
846 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
847 rx_blocks
->rxds
[l
].virt_addr
=
848 rx_blocks
->block_virt_addr
+
849 (rxd_size
[nic
->rxd_mode
] * l
);
850 rx_blocks
->rxds
[l
].dma_addr
=
851 rx_blocks
->block_dma_addr
+
852 (rxd_size
[nic
->rxd_mode
] * l
);
855 /* Interlinking all Rx Blocks */
856 for (j
= 0; j
< blk_cnt
; j
++) {
858 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
860 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
861 blk_cnt
].block_virt_addr
;
863 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
865 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
866 blk_cnt
].block_dma_addr
;
868 pre_rxd_blk
= (struct RxD_block
*) tmp_v_addr
;
869 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
870 (unsigned long) tmp_v_addr_next
;
871 pre_rxd_blk
->pNext_RxD_Blk_physical
=
872 (u64
) tmp_p_addr_next
;
875 if (nic
->rxd_mode
== RXD_MODE_3B
) {
877 * Allocation of Storages for buffer addresses in 2BUFF mode
878 * and the buffers as well.
880 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
881 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
882 (rxd_count
[nic
->rxd_mode
]+ 1);
883 mac_control
->rings
[i
].ba
=
884 kmalloc((sizeof(struct buffAdd
*) * blk_cnt
),
886 if (!mac_control
->rings
[i
].ba
)
888 mem_allocated
+=(sizeof(struct buffAdd
*) * blk_cnt
);
889 for (j
= 0; j
< blk_cnt
; j
++) {
891 mac_control
->rings
[i
].ba
[j
] =
892 kmalloc((sizeof(struct buffAdd
) *
893 (rxd_count
[nic
->rxd_mode
] + 1)),
895 if (!mac_control
->rings
[i
].ba
[j
])
897 mem_allocated
+= (sizeof(struct buffAdd
) * \
898 (rxd_count
[nic
->rxd_mode
] + 1));
899 while (k
!= rxd_count
[nic
->rxd_mode
]) {
900 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
902 ba
->ba_0_org
= (void *) kmalloc
903 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
907 (BUF0_LEN
+ ALIGN_SIZE
);
908 tmp
= (unsigned long)ba
->ba_0_org
;
910 tmp
&= ~((unsigned long) ALIGN_SIZE
);
911 ba
->ba_0
= (void *) tmp
;
913 ba
->ba_1_org
= (void *) kmalloc
914 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
918 += (BUF1_LEN
+ ALIGN_SIZE
);
919 tmp
= (unsigned long) ba
->ba_1_org
;
921 tmp
&= ~((unsigned long) ALIGN_SIZE
);
922 ba
->ba_1
= (void *) tmp
;
929 /* Allocation and initialization of Statistics block */
930 size
= sizeof(struct stat_block
);
931 mac_control
->stats_mem
= pci_alloc_consistent
932 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
934 if (!mac_control
->stats_mem
) {
936 * In case of failure, free_shared_mem() is called, which
937 * should free any memory that was alloced till the
942 mem_allocated
+= size
;
943 mac_control
->stats_mem_sz
= size
;
945 tmp_v_addr
= mac_control
->stats_mem
;
946 mac_control
->stats_info
= (struct stat_block
*) tmp_v_addr
;
947 memset(tmp_v_addr
, 0, size
);
948 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
949 (unsigned long long) tmp_p_addr
);
950 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
955 * free_shared_mem - Free the allocated Memory
956 * @nic: Device private variable.
957 * Description: This function is to free all memory locations allocated by
958 * the init_shared_mem() function and return it to the kernel.
961 static void free_shared_mem(struct s2io_nic
*nic
)
963 int i
, j
, blk_cnt
, size
;
965 dma_addr_t tmp_p_addr
;
966 struct mac_info
*mac_control
;
967 struct config_param
*config
;
968 int lst_size
, lst_per_page
;
969 struct net_device
*dev
;
977 mac_control
= &nic
->mac_control
;
978 config
= &nic
->config
;
980 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
981 lst_per_page
= PAGE_SIZE
/ lst_size
;
983 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
984 page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
986 for (j
= 0; j
< page_num
; j
++) {
987 int mem_blks
= (j
* lst_per_page
);
988 if (!mac_control
->fifos
[i
].list_info
)
990 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
993 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
994 mac_control
->fifos
[i
].
997 mac_control
->fifos
[i
].
1000 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1003 /* If we got a zero DMA address during allocation,
1006 if (mac_control
->zerodma_virt_addr
) {
1007 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
1008 mac_control
->zerodma_virt_addr
,
1011 "%s: Freeing TxDL with zero DMA addr. ",
1013 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
1014 mac_control
->zerodma_virt_addr
);
1015 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1018 kfree(mac_control
->fifos
[i
].list_info
);
1019 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1020 (nic
->config
.tx_cfg
[i
].fifo_len
*sizeof(struct list_info_hold
));
1023 size
= SIZE_OF_BLOCK
;
1024 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1025 blk_cnt
= mac_control
->rings
[i
].block_count
;
1026 for (j
= 0; j
< blk_cnt
; j
++) {
1027 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
1029 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
1031 if (tmp_v_addr
== NULL
)
1033 pci_free_consistent(nic
->pdev
, size
,
1034 tmp_v_addr
, tmp_p_addr
);
1035 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= size
;
1036 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
1037 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1038 ( sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
1042 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1043 /* Freeing buffer storage addresses in 2BUFF mode. */
1044 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1045 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
1046 (rxd_count
[nic
->rxd_mode
] + 1);
1047 for (j
= 0; j
< blk_cnt
; j
++) {
1049 if (!mac_control
->rings
[i
].ba
[j
])
1051 while (k
!= rxd_count
[nic
->rxd_mode
]) {
1052 struct buffAdd
*ba
=
1053 &mac_control
->rings
[i
].ba
[j
][k
];
1054 kfree(ba
->ba_0_org
);
1055 nic
->mac_control
.stats_info
->sw_stat
.\
1056 mem_freed
+= (BUF0_LEN
+ ALIGN_SIZE
);
1057 kfree(ba
->ba_1_org
);
1058 nic
->mac_control
.stats_info
->sw_stat
.\
1059 mem_freed
+= (BUF1_LEN
+ ALIGN_SIZE
);
1062 kfree(mac_control
->rings
[i
].ba
[j
]);
1063 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1064 (sizeof(struct buffAdd
) *
1065 (rxd_count
[nic
->rxd_mode
] + 1));
1067 kfree(mac_control
->rings
[i
].ba
);
1068 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1069 (sizeof(struct buffAdd
*) * blk_cnt
);
1073 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1074 if (mac_control
->fifos
[i
].ufo_in_band_v
) {
1075 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1076 += (config
->tx_cfg
[i
].fifo_len
* sizeof(u64
));
1077 kfree(mac_control
->fifos
[i
].ufo_in_band_v
);
1081 if (mac_control
->stats_mem
) {
1082 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1083 mac_control
->stats_mem_sz
;
1084 pci_free_consistent(nic
->pdev
,
1085 mac_control
->stats_mem_sz
,
1086 mac_control
->stats_mem
,
1087 mac_control
->stats_mem_phy
);
1092 * s2io_verify_pci_mode -
1095 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1097 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1098 register u64 val64
= 0;
1101 val64
= readq(&bar0
->pci_mode
);
1102 mode
= (u8
)GET_PCI_MODE(val64
);
1104 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1105 return -1; /* Unknown PCI mode */
1109 #define NEC_VENID 0x1033
1110 #define NEC_DEVID 0x0125
1111 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1113 struct pci_dev
*tdev
= NULL
;
1114 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1115 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1116 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1125 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1127 * s2io_print_pci_mode -
1129 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1131 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1132 register u64 val64
= 0;
1134 struct config_param
*config
= &nic
->config
;
1136 val64
= readq(&bar0
->pci_mode
);
1137 mode
= (u8
)GET_PCI_MODE(val64
);
1139 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1140 return -1; /* Unknown PCI mode */
1142 config
->bus_speed
= bus_speed
[mode
];
1144 if (s2io_on_nec_bridge(nic
->pdev
)) {
1145 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1150 if (val64
& PCI_MODE_32_BITS
) {
1151 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
1153 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
1157 case PCI_MODE_PCI_33
:
1158 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
1160 case PCI_MODE_PCI_66
:
1161 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
1163 case PCI_MODE_PCIX_M1_66
:
1164 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
1166 case PCI_MODE_PCIX_M1_100
:
1167 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
1169 case PCI_MODE_PCIX_M1_133
:
1170 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
1172 case PCI_MODE_PCIX_M2_66
:
1173 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
1175 case PCI_MODE_PCIX_M2_100
:
1176 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
1178 case PCI_MODE_PCIX_M2_133
:
1179 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
1182 return -1; /* Unsupported bus speed */
1189 * init_tti - Initialization transmit traffic interrupt scheme
1190 * @nic: device private variable
1191 * @link: link status (UP/DOWN) used to enable/disable continuous
1192 * transmit interrupts
1193 * Description: The function configures transmit traffic interrupts
1194 * Return Value: SUCCESS on success and
1198 static int init_tti(struct s2io_nic
*nic
, int link
)
1200 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1201 register u64 val64
= 0;
1203 struct config_param
*config
;
1205 config
= &nic
->config
;
1207 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1209 * TTI Initialization. Default Tx timer gets us about
1210 * 250 interrupts per sec. Continuous interrupts are enabled
1213 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1214 int count
= (nic
->config
.bus_speed
* 125)/2;
1215 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1217 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1219 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1220 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1221 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1222 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1224 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1225 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1226 writeq(val64
, &bar0
->tti_data1_mem
);
1228 if (nic
->config
.intr_type
== MSI_X
) {
1229 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1230 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1231 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1232 TTI_DATA2_MEM_TX_UFC_D(0x300);
1234 if ((nic
->config
.tx_steering_type
==
1235 TX_DEFAULT_STEERING
) &&
1236 (config
->tx_fifo_num
> 1) &&
1237 (i
>= nic
->udp_fifo_idx
) &&
1238 (i
< (nic
->udp_fifo_idx
+
1239 nic
->total_udp_fifos
)))
1240 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1241 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1242 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1243 TTI_DATA2_MEM_TX_UFC_D(0x120);
1245 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1246 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1247 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1248 TTI_DATA2_MEM_TX_UFC_D(0x80);
1251 writeq(val64
, &bar0
->tti_data2_mem
);
1253 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
|
1254 TTI_CMD_MEM_OFFSET(i
);
1255 writeq(val64
, &bar0
->tti_command_mem
);
1257 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1258 TTI_CMD_MEM_STROBE_NEW_CMD
, S2IO_BIT_RESET
) != SUCCESS
)
1266 * init_nic - Initialization of hardware
1267 * @nic: device private variable
1268 * Description: The function sequentially configures every block
1269 * of the H/W from their reset values.
1270 * Return Value: SUCCESS on success and
1271 * '-1' on failure (endian settings incorrect).
1274 static int init_nic(struct s2io_nic
*nic
)
1276 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1277 struct net_device
*dev
= nic
->dev
;
1278 register u64 val64
= 0;
1282 struct mac_info
*mac_control
;
1283 struct config_param
*config
;
1285 unsigned long long mem_share
;
1288 mac_control
= &nic
->mac_control
;
1289 config
= &nic
->config
;
1291 /* to set the swapper controle on the card */
1292 if(s2io_set_swapper(nic
)) {
1293 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
1298 * Herc requires EOI to be removed from reset before XGXS, so..
1300 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1301 val64
= 0xA500000000ULL
;
1302 writeq(val64
, &bar0
->sw_reset
);
1304 val64
= readq(&bar0
->sw_reset
);
1307 /* Remove XGXS from reset state */
1309 writeq(val64
, &bar0
->sw_reset
);
1311 val64
= readq(&bar0
->sw_reset
);
1313 /* Ensure that it's safe to access registers by checking
1314 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1316 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1317 for (i
= 0; i
< 50; i
++) {
1318 val64
= readq(&bar0
->adapter_status
);
1319 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1327 /* Enable Receiving broadcasts */
1328 add
= &bar0
->mac_cfg
;
1329 val64
= readq(&bar0
->mac_cfg
);
1330 val64
|= MAC_RMAC_BCAST_ENABLE
;
1331 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1332 writel((u32
) val64
, add
);
1333 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1334 writel((u32
) (val64
>> 32), (add
+ 4));
1336 /* Read registers in all blocks */
1337 val64
= readq(&bar0
->mac_int_mask
);
1338 val64
= readq(&bar0
->mc_int_mask
);
1339 val64
= readq(&bar0
->xgxs_int_mask
);
1343 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1345 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1346 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1347 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1348 &bar0
->dtx_control
, UF
);
1350 msleep(1); /* Necessary!! */
1354 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1355 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1356 &bar0
->dtx_control
, UF
);
1357 val64
= readq(&bar0
->dtx_control
);
1362 /* Tx DMA Initialization */
1364 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1365 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1366 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1367 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1370 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1372 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((j
* 32) + 19),
1373 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1376 if (i
== (config
->tx_fifo_num
- 1)) {
1383 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1388 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1393 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1398 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1409 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1410 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1412 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1413 (nic
->pdev
->revision
< 4))
1414 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1416 val64
= readq(&bar0
->tx_fifo_partition_0
);
1417 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1418 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1421 * Initialization of Tx_PA_CONFIG register to ignore packet
1422 * integrity checking.
1424 val64
= readq(&bar0
->tx_pa_cfg
);
1425 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1426 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1427 writeq(val64
, &bar0
->tx_pa_cfg
);
1429 /* Rx DMA intialization. */
1431 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1433 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1436 writeq(val64
, &bar0
->rx_queue_priority
);
1439 * Allocating equal share of memory to all the
1443 if (nic
->device_type
& XFRAME_II_DEVICE
)
1448 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1451 mem_share
= (mem_size
/ config
->rx_ring_num
+
1452 mem_size
% config
->rx_ring_num
);
1453 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1456 mem_share
= (mem_size
/ config
->rx_ring_num
);
1457 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1460 mem_share
= (mem_size
/ config
->rx_ring_num
);
1461 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1464 mem_share
= (mem_size
/ config
->rx_ring_num
);
1465 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1468 mem_share
= (mem_size
/ config
->rx_ring_num
);
1469 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1472 mem_share
= (mem_size
/ config
->rx_ring_num
);
1473 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1476 mem_share
= (mem_size
/ config
->rx_ring_num
);
1477 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1480 mem_share
= (mem_size
/ config
->rx_ring_num
);
1481 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1485 writeq(val64
, &bar0
->rx_queue_cfg
);
1488 * Filling Tx round robin registers
1489 * as per the number of FIFOs for equal scheduling priority
1491 switch (config
->tx_fifo_num
) {
1494 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1495 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1496 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1497 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1498 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1501 val64
= 0x0001000100010001ULL
;
1502 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1503 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1504 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1505 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1506 val64
= 0x0001000100000000ULL
;
1507 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1510 val64
= 0x0001020001020001ULL
;
1511 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1512 val64
= 0x0200010200010200ULL
;
1513 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1514 val64
= 0x0102000102000102ULL
;
1515 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1516 val64
= 0x0001020001020001ULL
;
1517 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1518 val64
= 0x0200010200000000ULL
;
1519 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1522 val64
= 0x0001020300010203ULL
;
1523 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1524 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1525 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1526 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1527 val64
= 0x0001020300000000ULL
;
1528 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1531 val64
= 0x0001020304000102ULL
;
1532 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1533 val64
= 0x0304000102030400ULL
;
1534 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1535 val64
= 0x0102030400010203ULL
;
1536 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1537 val64
= 0x0400010203040001ULL
;
1538 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1539 val64
= 0x0203040000000000ULL
;
1540 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1543 val64
= 0x0001020304050001ULL
;
1544 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1545 val64
= 0x0203040500010203ULL
;
1546 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1547 val64
= 0x0405000102030405ULL
;
1548 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1549 val64
= 0x0001020304050001ULL
;
1550 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1551 val64
= 0x0203040500000000ULL
;
1552 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1555 val64
= 0x0001020304050600ULL
;
1556 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1557 val64
= 0x0102030405060001ULL
;
1558 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1559 val64
= 0x0203040506000102ULL
;
1560 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1561 val64
= 0x0304050600010203ULL
;
1562 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1563 val64
= 0x0405060000000000ULL
;
1564 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1567 val64
= 0x0001020304050607ULL
;
1568 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1569 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1570 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1571 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1572 val64
= 0x0001020300000000ULL
;
1573 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1577 /* Enable all configured Tx FIFO partitions */
1578 val64
= readq(&bar0
->tx_fifo_partition_0
);
1579 val64
|= (TX_FIFO_PARTITION_EN
);
1580 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1582 /* Filling the Rx round robin registers as per the
1583 * number of Rings and steering based on QoS with
1586 switch (config
->rx_ring_num
) {
1589 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1590 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1591 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1592 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1593 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1595 val64
= 0x8080808080808080ULL
;
1596 writeq(val64
, &bar0
->rts_qos_steering
);
1599 val64
= 0x0001000100010001ULL
;
1600 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1601 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1602 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1603 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1604 val64
= 0x0001000100000000ULL
;
1605 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1607 val64
= 0x8080808040404040ULL
;
1608 writeq(val64
, &bar0
->rts_qos_steering
);
1611 val64
= 0x0001020001020001ULL
;
1612 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1613 val64
= 0x0200010200010200ULL
;
1614 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1615 val64
= 0x0102000102000102ULL
;
1616 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1617 val64
= 0x0001020001020001ULL
;
1618 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1619 val64
= 0x0200010200000000ULL
;
1620 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1622 val64
= 0x8080804040402020ULL
;
1623 writeq(val64
, &bar0
->rts_qos_steering
);
1626 val64
= 0x0001020300010203ULL
;
1627 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1628 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1629 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1630 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1631 val64
= 0x0001020300000000ULL
;
1632 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1634 val64
= 0x8080404020201010ULL
;
1635 writeq(val64
, &bar0
->rts_qos_steering
);
1638 val64
= 0x0001020304000102ULL
;
1639 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1640 val64
= 0x0304000102030400ULL
;
1641 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1642 val64
= 0x0102030400010203ULL
;
1643 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1644 val64
= 0x0400010203040001ULL
;
1645 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1646 val64
= 0x0203040000000000ULL
;
1647 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1649 val64
= 0x8080404020201008ULL
;
1650 writeq(val64
, &bar0
->rts_qos_steering
);
1653 val64
= 0x0001020304050001ULL
;
1654 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1655 val64
= 0x0203040500010203ULL
;
1656 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1657 val64
= 0x0405000102030405ULL
;
1658 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1659 val64
= 0x0001020304050001ULL
;
1660 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1661 val64
= 0x0203040500000000ULL
;
1662 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1664 val64
= 0x8080404020100804ULL
;
1665 writeq(val64
, &bar0
->rts_qos_steering
);
1668 val64
= 0x0001020304050600ULL
;
1669 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1670 val64
= 0x0102030405060001ULL
;
1671 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1672 val64
= 0x0203040506000102ULL
;
1673 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1674 val64
= 0x0304050600010203ULL
;
1675 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1676 val64
= 0x0405060000000000ULL
;
1677 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1679 val64
= 0x8080402010080402ULL
;
1680 writeq(val64
, &bar0
->rts_qos_steering
);
1683 val64
= 0x0001020304050607ULL
;
1684 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1685 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1686 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1687 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1688 val64
= 0x0001020300000000ULL
;
1689 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1691 val64
= 0x8040201008040201ULL
;
1692 writeq(val64
, &bar0
->rts_qos_steering
);
1698 for (i
= 0; i
< 8; i
++)
1699 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1701 /* Set the default rts frame length for the rings configured */
1702 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1703 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1704 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1706 /* Set the frame length for the configured rings
1707 * desired by the user
1709 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1710 /* If rts_frm_len[i] == 0 then it is assumed that user not
1711 * specified frame length steering.
1712 * If the user provides the frame length then program
1713 * the rts_frm_len register for those values or else
1714 * leave it as it is.
1716 if (rts_frm_len
[i
] != 0) {
1717 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1718 &bar0
->rts_frm_len_n
[i
]);
1722 /* Disable differentiated services steering logic */
1723 for (i
= 0; i
< 64; i
++) {
1724 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1725 DBG_PRINT(ERR_DBG
, "%s: failed rts ds steering",
1727 DBG_PRINT(ERR_DBG
, "set on codepoint %d\n", i
);
1732 /* Program statistics memory */
1733 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1735 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1736 val64
= STAT_BC(0x320);
1737 writeq(val64
, &bar0
->stat_byte_cnt
);
1741 * Initializing the sampling rate for the device to calculate the
1742 * bandwidth utilization.
1744 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1745 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1746 writeq(val64
, &bar0
->mac_link_util
);
1749 * Initializing the Transmit and Receive Traffic Interrupt
1753 /* Initialize TTI */
1754 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1757 /* RTI Initialization */
1758 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1760 * Programmed to generate Apprx 500 Intrs per
1763 int count
= (nic
->config
.bus_speed
* 125)/4;
1764 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1766 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1767 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1768 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1769 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1771 writeq(val64
, &bar0
->rti_data1_mem
);
1773 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1774 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1775 if (nic
->config
.intr_type
== MSI_X
)
1776 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1777 RTI_DATA2_MEM_RX_UFC_D(0x40));
1779 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1780 RTI_DATA2_MEM_RX_UFC_D(0x80));
1781 writeq(val64
, &bar0
->rti_data2_mem
);
1783 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1784 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1785 | RTI_CMD_MEM_OFFSET(i
);
1786 writeq(val64
, &bar0
->rti_command_mem
);
1789 * Once the operation completes, the Strobe bit of the
1790 * command register will be reset. We poll for this
1791 * particular condition. We wait for a maximum of 500ms
1792 * for the operation to complete, if it's not complete
1793 * by then we return error.
1797 val64
= readq(&bar0
->rti_command_mem
);
1798 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1802 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1812 * Initializing proper values as Pause threshold into all
1813 * the 8 Queues on Rx side.
1815 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1816 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1818 /* Disable RMAC PAD STRIPPING */
1819 add
= &bar0
->mac_cfg
;
1820 val64
= readq(&bar0
->mac_cfg
);
1821 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1822 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1823 writel((u32
) (val64
), add
);
1824 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1825 writel((u32
) (val64
>> 32), (add
+ 4));
1826 val64
= readq(&bar0
->mac_cfg
);
1828 /* Enable FCS stripping by adapter */
1829 add
= &bar0
->mac_cfg
;
1830 val64
= readq(&bar0
->mac_cfg
);
1831 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1832 if (nic
->device_type
== XFRAME_II_DEVICE
)
1833 writeq(val64
, &bar0
->mac_cfg
);
1835 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1836 writel((u32
) (val64
), add
);
1837 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1838 writel((u32
) (val64
>> 32), (add
+ 4));
1842 * Set the time value to be inserted in the pause frame
1843 * generated by xena.
1845 val64
= readq(&bar0
->rmac_pause_cfg
);
1846 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1847 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1848 writeq(val64
, &bar0
->rmac_pause_cfg
);
1851 * Set the Threshold Limit for Generating the pause frame
1852 * If the amount of data in any Queue exceeds ratio of
1853 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1854 * pause frame is generated
1857 for (i
= 0; i
< 4; i
++) {
1859 (((u64
) 0xFF00 | nic
->mac_control
.
1860 mc_pause_threshold_q0q3
)
1863 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1866 for (i
= 0; i
< 4; i
++) {
1868 (((u64
) 0xFF00 | nic
->mac_control
.
1869 mc_pause_threshold_q4q7
)
1872 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1875 * TxDMA will stop Read request if the number of read split has
1876 * exceeded the limit pointed by shared_splits
1878 val64
= readq(&bar0
->pic_control
);
1879 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1880 writeq(val64
, &bar0
->pic_control
);
1882 if (nic
->config
.bus_speed
== 266) {
1883 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1884 writeq(0x0, &bar0
->read_retry_delay
);
1885 writeq(0x0, &bar0
->write_retry_delay
);
1889 * Programming the Herc to split every write transaction
1890 * that does not start on an ADB to reduce disconnects.
1892 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1893 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1894 MISC_LINK_STABILITY_PRD(3);
1895 writeq(val64
, &bar0
->misc_control
);
1896 val64
= readq(&bar0
->pic_control2
);
1897 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1898 writeq(val64
, &bar0
->pic_control2
);
1900 if (strstr(nic
->product_name
, "CX4")) {
1901 val64
= TMAC_AVG_IPG(0x17);
1902 writeq(val64
, &bar0
->tmac_avg_ipg
);
1907 #define LINK_UP_DOWN_INTERRUPT 1
1908 #define MAC_RMAC_ERR_TIMER 2
1910 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1912 if (nic
->config
.intr_type
!= INTA
)
1913 return MAC_RMAC_ERR_TIMER
;
1914 if (nic
->device_type
== XFRAME_II_DEVICE
)
1915 return LINK_UP_DOWN_INTERRUPT
;
1917 return MAC_RMAC_ERR_TIMER
;
1921 * do_s2io_write_bits - update alarm bits in alarm register
1922 * @value: alarm bits
1923 * @flag: interrupt status
1924 * @addr: address value
1925 * Description: update alarm bits in alarm register
1929 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1933 temp64
= readq(addr
);
1935 if(flag
== ENABLE_INTRS
)
1936 temp64
&= ~((u64
) value
);
1938 temp64
|= ((u64
) value
);
1939 writeq(temp64
, addr
);
1942 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1944 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1945 register u64 gen_int_mask
= 0;
1947 if (mask
& TX_DMA_INTR
) {
1949 gen_int_mask
|= TXDMA_INT_M
;
1951 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1952 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1953 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1954 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1956 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1957 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1958 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1959 &bar0
->pfc_err_mask
);
1961 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1962 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1963 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1965 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1966 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1967 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1968 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1969 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1970 PCC_TXB_ECC_SG_ERR
, flag
, &bar0
->pcc_err_mask
);
1972 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1973 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1975 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1976 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1977 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1978 flag
, &bar0
->lso_err_mask
);
1980 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1981 flag
, &bar0
->tpa_err_mask
);
1983 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1987 if (mask
& TX_MAC_INTR
) {
1988 gen_int_mask
|= TXMAC_INT_M
;
1989 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1990 &bar0
->mac_int_mask
);
1991 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1992 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1993 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1994 flag
, &bar0
->mac_tmac_err_mask
);
1997 if (mask
& TX_XGXS_INTR
) {
1998 gen_int_mask
|= TXXGXS_INT_M
;
1999 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
2000 &bar0
->xgxs_int_mask
);
2001 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
2002 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
2003 flag
, &bar0
->xgxs_txgxs_err_mask
);
2006 if (mask
& RX_DMA_INTR
) {
2007 gen_int_mask
|= RXDMA_INT_M
;
2008 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
2009 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
2010 flag
, &bar0
->rxdma_int_mask
);
2011 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
2012 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
2013 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
2014 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
2015 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
2016 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
2017 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
2018 &bar0
->prc_pcix_err_mask
);
2019 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
2020 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
2021 &bar0
->rpa_err_mask
);
2022 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
2023 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
2024 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
2025 RDA_FRM_ECC_SG_ERR
| RDA_MISC_ERR
|RDA_PCIX_ERR
,
2026 flag
, &bar0
->rda_err_mask
);
2027 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
2028 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
2029 flag
, &bar0
->rti_err_mask
);
2032 if (mask
& RX_MAC_INTR
) {
2033 gen_int_mask
|= RXMAC_INT_M
;
2034 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
2035 &bar0
->mac_int_mask
);
2036 do_s2io_write_bits(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
2037 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
2038 RMAC_DOUBLE_ECC_ERR
|
2039 RMAC_LINK_STATE_CHANGE_INT
,
2040 flag
, &bar0
->mac_rmac_err_mask
);
2043 if (mask
& RX_XGXS_INTR
)
2045 gen_int_mask
|= RXXGXS_INT_M
;
2046 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
2047 &bar0
->xgxs_int_mask
);
2048 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
2049 &bar0
->xgxs_rxgxs_err_mask
);
2052 if (mask
& MC_INTR
) {
2053 gen_int_mask
|= MC_INT_M
;
2054 do_s2io_write_bits(MC_INT_MASK_MC_INT
, flag
, &bar0
->mc_int_mask
);
2055 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
2056 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
2057 &bar0
->mc_err_mask
);
2059 nic
->general_int_mask
= gen_int_mask
;
2061 /* Remove this line when alarm interrupts are enabled */
2062 nic
->general_int_mask
= 0;
2065 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2066 * @nic: device private variable,
2067 * @mask: A mask indicating which Intr block must be modified and,
2068 * @flag: A flag indicating whether to enable or disable the Intrs.
2069 * Description: This function will either disable or enable the interrupts
2070 * depending on the flag argument. The mask argument can be used to
2071 * enable/disable any Intr block.
2072 * Return Value: NONE.
2075 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2077 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2078 register u64 temp64
= 0, intr_mask
= 0;
2080 intr_mask
= nic
->general_int_mask
;
2082 /* Top level interrupt classification */
2083 /* PIC Interrupts */
2084 if (mask
& TX_PIC_INTR
) {
2085 /* Enable PIC Intrs in the general intr mask register */
2086 intr_mask
|= TXPIC_INT_M
;
2087 if (flag
== ENABLE_INTRS
) {
2089 * If Hercules adapter enable GPIO otherwise
2090 * disable all PCIX, Flash, MDIO, IIC and GPIO
2091 * interrupts for now.
2094 if (s2io_link_fault_indication(nic
) ==
2095 LINK_UP_DOWN_INTERRUPT
) {
2096 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2097 &bar0
->pic_int_mask
);
2098 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2099 &bar0
->gpio_int_mask
);
2101 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2102 } else if (flag
== DISABLE_INTRS
) {
2104 * Disable PIC Intrs in the general
2105 * intr mask register
2107 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2111 /* Tx traffic interrupts */
2112 if (mask
& TX_TRAFFIC_INTR
) {
2113 intr_mask
|= TXTRAFFIC_INT_M
;
2114 if (flag
== ENABLE_INTRS
) {
2116 * Enable all the Tx side interrupts
2117 * writing 0 Enables all 64 TX interrupt levels
2119 writeq(0x0, &bar0
->tx_traffic_mask
);
2120 } else if (flag
== DISABLE_INTRS
) {
2122 * Disable Tx Traffic Intrs in the general intr mask
2125 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2129 /* Rx traffic interrupts */
2130 if (mask
& RX_TRAFFIC_INTR
) {
2131 intr_mask
|= RXTRAFFIC_INT_M
;
2132 if (flag
== ENABLE_INTRS
) {
2133 /* writing 0 Enables all 8 RX interrupt levels */
2134 writeq(0x0, &bar0
->rx_traffic_mask
);
2135 } else if (flag
== DISABLE_INTRS
) {
2137 * Disable Rx Traffic Intrs in the general intr mask
2140 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2144 temp64
= readq(&bar0
->general_int_mask
);
2145 if (flag
== ENABLE_INTRS
)
2146 temp64
&= ~((u64
) intr_mask
);
2148 temp64
= DISABLE_ALL_INTRS
;
2149 writeq(temp64
, &bar0
->general_int_mask
);
2151 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2155 * verify_pcc_quiescent- Checks for PCC quiescent state
2156 * Return: 1 If PCC is quiescence
2157 * 0 If PCC is not quiescence
2159 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2162 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2163 u64 val64
= readq(&bar0
->adapter_status
);
2165 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2167 if (flag
== FALSE
) {
2168 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2169 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2172 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2176 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2177 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2178 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2181 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2182 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2190 * verify_xena_quiescence - Checks whether the H/W is ready
2191 * Description: Returns whether the H/W is ready to go or not. Depending
2192 * on whether adapter enable bit was written or not the comparison
2193 * differs and the calling function passes the input argument flag to
2195 * Return: 1 If xena is quiescence
2196 * 0 If Xena is not quiescence
2199 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2202 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2203 u64 val64
= readq(&bar0
->adapter_status
);
2204 mode
= s2io_verify_pci_mode(sp
);
2206 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2207 DBG_PRINT(ERR_DBG
, "%s", "TDMA is not ready!");
2210 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2211 DBG_PRINT(ERR_DBG
, "%s", "RDMA is not ready!");
2214 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2215 DBG_PRINT(ERR_DBG
, "%s", "PFC is not ready!");
2218 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2219 DBG_PRINT(ERR_DBG
, "%s", "TMAC BUF is not empty!");
2222 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2223 DBG_PRINT(ERR_DBG
, "%s", "PIC is not QUIESCENT!");
2226 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2227 DBG_PRINT(ERR_DBG
, "%s", "MC_DRAM is not ready!");
2230 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2231 DBG_PRINT(ERR_DBG
, "%s", "MC_QUEUES is not ready!");
2234 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2235 DBG_PRINT(ERR_DBG
, "%s", "M_PLL is not locked!");
2240 * In PCI 33 mode, the P_PLL is not used, and therefore,
2241 * the the P_PLL_LOCK bit in the adapter_status register will
2244 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2245 sp
->device_type
== XFRAME_II_DEVICE
&& mode
!=
2247 DBG_PRINT(ERR_DBG
, "%s", "P_PLL is not locked!");
2250 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2251 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2252 DBG_PRINT(ERR_DBG
, "%s", "RC_PRC is not QUIESCENT!");
2259 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2260 * @sp: Pointer to device specifc structure
2262 * New procedure to clear mac address reading problems on Alpha platforms
2266 static void fix_mac_address(struct s2io_nic
* sp
)
2268 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2272 while (fix_mac
[i
] != END_SIGN
) {
2273 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2275 val64
= readq(&bar0
->gpio_control
);
2280 * start_nic - Turns the device on
2281 * @nic : device private variable.
2283 * This function actually turns the device on. Before this function is
2284 * called,all Registers are configured from their reset states
2285 * and shared memory is allocated but the NIC is still quiescent. On
2286 * calling this function, the device interrupts are cleared and the NIC is
2287 * literally switched on by writing into the adapter control register.
2289 * SUCCESS on success and -1 on failure.
2292 static int start_nic(struct s2io_nic
*nic
)
2294 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2295 struct net_device
*dev
= nic
->dev
;
2296 register u64 val64
= 0;
2298 struct mac_info
*mac_control
;
2299 struct config_param
*config
;
2301 mac_control
= &nic
->mac_control
;
2302 config
= &nic
->config
;
2304 /* PRC Initialization and configuration */
2305 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2306 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
2307 &bar0
->prc_rxd0_n
[i
]);
2309 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2310 if (nic
->rxd_mode
== RXD_MODE_1
)
2311 val64
|= PRC_CTRL_RC_ENABLED
;
2313 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2314 if (nic
->device_type
== XFRAME_II_DEVICE
)
2315 val64
|= PRC_CTRL_GROUP_READS
;
2316 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2317 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2318 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2321 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2322 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2323 val64
= readq(&bar0
->rx_pa_cfg
);
2324 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2325 writeq(val64
, &bar0
->rx_pa_cfg
);
2328 if (vlan_tag_strip
== 0) {
2329 val64
= readq(&bar0
->rx_pa_cfg
);
2330 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2331 writeq(val64
, &bar0
->rx_pa_cfg
);
2332 vlan_strip_flag
= 0;
2336 * Enabling MC-RLDRAM. After enabling the device, we timeout
2337 * for around 100ms, which is approximately the time required
2338 * for the device to be ready for operation.
2340 val64
= readq(&bar0
->mc_rldram_mrs
);
2341 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2342 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2343 val64
= readq(&bar0
->mc_rldram_mrs
);
2345 msleep(100); /* Delay by around 100 ms. */
2347 /* Enabling ECC Protection. */
2348 val64
= readq(&bar0
->adapter_control
);
2349 val64
&= ~ADAPTER_ECC_EN
;
2350 writeq(val64
, &bar0
->adapter_control
);
2353 * Verify if the device is ready to be enabled, if so enable
2356 val64
= readq(&bar0
->adapter_status
);
2357 if (!verify_xena_quiescence(nic
)) {
2358 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2359 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2360 (unsigned long long) val64
);
2365 * With some switches, link might be already up at this point.
2366 * Because of this weird behavior, when we enable laser,
2367 * we may not get link. We need to handle this. We cannot
2368 * figure out which switch is misbehaving. So we are forced to
2369 * make a global change.
2372 /* Enabling Laser. */
2373 val64
= readq(&bar0
->adapter_control
);
2374 val64
|= ADAPTER_EOI_TX_ON
;
2375 writeq(val64
, &bar0
->adapter_control
);
2377 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2379 * Dont see link state interrupts initally on some switches,
2380 * so directly scheduling the link state task here.
2382 schedule_work(&nic
->set_link_task
);
2384 /* SXE-002: Initialize link and activity LED */
2385 subid
= nic
->pdev
->subsystem_device
;
2386 if (((subid
& 0xFF) >= 0x07) &&
2387 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2388 val64
= readq(&bar0
->gpio_control
);
2389 val64
|= 0x0000800000000000ULL
;
2390 writeq(val64
, &bar0
->gpio_control
);
2391 val64
= 0x0411040400000000ULL
;
2392 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2398 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2400 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
, struct \
2401 TxD
*txdlp
, int get_off
)
2403 struct s2io_nic
*nic
= fifo_data
->nic
;
2404 struct sk_buff
*skb
;
2409 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2410 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2411 txds
->Buffer_Pointer
, sizeof(u64
),
2416 skb
= (struct sk_buff
*) ((unsigned long)
2417 txds
->Host_Control
);
2419 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2422 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2423 txds
->Buffer_Pointer
,
2424 skb
->len
- skb
->data_len
,
2426 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2429 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2430 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2431 if (!txds
->Buffer_Pointer
)
2433 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2434 txds
->Buffer_Pointer
,
2435 frag
->size
, PCI_DMA_TODEVICE
);
2438 memset(txdlp
,0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2443 * free_tx_buffers - Free all queued Tx buffers
2444 * @nic : device private variable.
2446 * Free all queued Tx buffers.
2447 * Return Value: void
2450 static void free_tx_buffers(struct s2io_nic
*nic
)
2452 struct net_device
*dev
= nic
->dev
;
2453 struct sk_buff
*skb
;
2456 struct mac_info
*mac_control
;
2457 struct config_param
*config
;
2460 mac_control
= &nic
->mac_control
;
2461 config
= &nic
->config
;
2463 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2464 unsigned long flags
;
2465 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
);
2466 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
; j
++) {
2467 txdp
= (struct TxD
*) \
2468 mac_control
->fifos
[i
].list_info
[j
].list_virt_addr
;
2469 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2471 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
2478 "%s:forcibly freeing %d skbs on FIFO%d\n",
2480 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2481 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2482 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
, flags
);
2487 * stop_nic - To stop the nic
2488 * @nic ; device private variable.
2490 * This function does exactly the opposite of what the start_nic()
2491 * function does. This function is called to stop the device.
2496 static void stop_nic(struct s2io_nic
*nic
)
2498 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2499 register u64 val64
= 0;
2501 struct mac_info
*mac_control
;
2502 struct config_param
*config
;
2504 mac_control
= &nic
->mac_control
;
2505 config
= &nic
->config
;
2507 /* Disable all interrupts */
2508 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2509 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2510 interruptible
|= TX_PIC_INTR
;
2511 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2513 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2514 val64
= readq(&bar0
->adapter_control
);
2515 val64
&= ~(ADAPTER_CNTL_EN
);
2516 writeq(val64
, &bar0
->adapter_control
);
2520 * fill_rx_buffers - Allocates the Rx side skbs
2521 * @ring_info: per ring structure
2523 * The function allocates Rx side skbs and puts the physical
2524 * address of these buffers into the RxD buffer pointers, so that the NIC
2525 * can DMA the received frame into these locations.
2526 * The NIC supports 3 receive modes, viz
2528 * 2. three buffer and
2529 * 3. Five buffer modes.
2530 * Each mode defines how many fragments the received frame will be split
2531 * up into by the NIC. The frame is split into L3 header, L4 Header,
2532 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2533 * is split into 3 fragments. As of now only single buffer mode is
2536 * SUCCESS on success or an appropriate -ve value on failure.
2539 static int fill_rx_buffers(struct ring_info
*ring
)
2541 struct sk_buff
*skb
;
2543 int off
, size
, block_no
, block_no1
;
2548 struct RxD_t
*first_rxdp
= NULL
;
2549 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2553 struct swStat
*stats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2555 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2557 block_no1
= ring
->rx_curr_get_info
.block_index
;
2558 while (alloc_tab
< alloc_cnt
) {
2559 block_no
= ring
->rx_curr_put_info
.block_index
;
2561 off
= ring
->rx_curr_put_info
.offset
;
2563 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2565 rxd_index
= off
+ 1;
2567 rxd_index
+= (block_no
* ring
->rxd_count
);
2569 if ((block_no
== block_no1
) &&
2570 (off
== ring
->rx_curr_get_info
.offset
) &&
2571 (rxdp
->Host_Control
)) {
2572 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2574 DBG_PRINT(INTR_DBG
, " info equated\n");
2577 if (off
&& (off
== ring
->rxd_count
)) {
2578 ring
->rx_curr_put_info
.block_index
++;
2579 if (ring
->rx_curr_put_info
.block_index
==
2581 ring
->rx_curr_put_info
.block_index
= 0;
2582 block_no
= ring
->rx_curr_put_info
.block_index
;
2584 ring
->rx_curr_put_info
.offset
= off
;
2585 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2586 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2587 ring
->dev
->name
, rxdp
);
2591 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2592 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2593 (rxdp
->Control_2
& s2BIT(0)))) {
2594 ring
->rx_curr_put_info
.offset
= off
;
2597 /* calculate size of skb based on ring mode */
2598 size
= ring
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2599 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2600 if (ring
->rxd_mode
== RXD_MODE_1
)
2601 size
+= NET_IP_ALIGN
;
2603 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2606 skb
= dev_alloc_skb(size
);
2608 DBG_PRINT(INFO_DBG
, "%s: Out of ", ring
->dev
->name
);
2609 DBG_PRINT(INFO_DBG
, "memory to allocate SKBs\n");
2612 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2614 stats
->mem_alloc_fail_cnt
++;
2618 stats
->mem_allocated
+= skb
->truesize
;
2620 if (ring
->rxd_mode
== RXD_MODE_1
) {
2621 /* 1 buffer mode - normal operation mode */
2622 rxdp1
= (struct RxD1
*)rxdp
;
2623 memset(rxdp
, 0, sizeof(struct RxD1
));
2624 skb_reserve(skb
, NET_IP_ALIGN
);
2625 rxdp1
->Buffer0_ptr
= pci_map_single
2626 (ring
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2627 PCI_DMA_FROMDEVICE
);
2628 if(pci_dma_mapping_error(rxdp1
->Buffer0_ptr
))
2629 goto pci_map_failed
;
2632 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2633 rxdp
->Host_Control
= (unsigned long) (skb
);
2634 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2637 * 2 buffer mode provides 128
2638 * byte aligned receive buffers.
2641 rxdp3
= (struct RxD3
*)rxdp
;
2642 /* save buffer pointers to avoid frequent dma mapping */
2643 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2644 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2645 memset(rxdp
, 0, sizeof(struct RxD3
));
2646 /* restore the buffer pointers for dma sync*/
2647 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2648 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2650 ba
= &ring
->ba
[block_no
][off
];
2651 skb_reserve(skb
, BUF0_LEN
);
2652 tmp
= (u64
)(unsigned long) skb
->data
;
2655 skb
->data
= (void *) (unsigned long)tmp
;
2656 skb_reset_tail_pointer(skb
);
2658 /* AK: check is wrong. 0 can be valid dma address */
2659 if (!(rxdp3
->Buffer0_ptr
))
2660 rxdp3
->Buffer0_ptr
=
2661 pci_map_single(ring
->pdev
, ba
->ba_0
,
2662 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2664 pci_dma_sync_single_for_device(ring
->pdev
,
2665 (dma_addr_t
) rxdp3
->Buffer0_ptr
,
2666 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2667 if (pci_dma_mapping_error(rxdp3
->Buffer0_ptr
))
2668 goto pci_map_failed
;
2670 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2671 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2672 /* Two buffer mode */
2675 * Buffer2 will have L3/L4 header plus
2678 rxdp3
->Buffer2_ptr
= pci_map_single
2679 (ring
->pdev
, skb
->data
, ring
->mtu
+ 4,
2680 PCI_DMA_FROMDEVICE
);
2682 if (pci_dma_mapping_error(rxdp3
->Buffer2_ptr
))
2683 goto pci_map_failed
;
2685 /* AK: check is wrong */
2686 if (!rxdp3
->Buffer1_ptr
)
2687 rxdp3
->Buffer1_ptr
=
2688 pci_map_single(ring
->pdev
,
2690 PCI_DMA_FROMDEVICE
);
2692 if (pci_dma_mapping_error(rxdp3
->Buffer1_ptr
)) {
2695 (dma_addr_t
)(unsigned long)
2698 PCI_DMA_FROMDEVICE
);
2699 goto pci_map_failed
;
2701 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2702 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2705 rxdp
->Control_2
|= s2BIT(0);
2706 rxdp
->Host_Control
= (unsigned long) (skb
);
2708 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2709 rxdp
->Control_1
|= RXD_OWN_XENA
;
2711 if (off
== (ring
->rxd_count
+ 1))
2713 ring
->rx_curr_put_info
.offset
= off
;
2715 rxdp
->Control_2
|= SET_RXD_MARKER
;
2716 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2719 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2723 ring
->rx_bufs_left
+= 1;
2728 /* Transfer ownership of first descriptor to adapter just before
2729 * exiting. Before that, use memory barrier so that ownership
2730 * and other fields are seen by adapter correctly.
2734 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2739 stats
->pci_map_fail_cnt
++;
2740 stats
->mem_freed
+= skb
->truesize
;
2741 dev_kfree_skb_irq(skb
);
2745 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2747 struct net_device
*dev
= sp
->dev
;
2749 struct sk_buff
*skb
;
2751 struct mac_info
*mac_control
;
2756 mac_control
= &sp
->mac_control
;
2757 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2758 rxdp
= mac_control
->rings
[ring_no
].
2759 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2760 skb
= (struct sk_buff
*)
2761 ((unsigned long) rxdp
->Host_Control
);
2765 if (sp
->rxd_mode
== RXD_MODE_1
) {
2766 rxdp1
= (struct RxD1
*)rxdp
;
2767 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2770 HEADER_ETHERNET_II_802_3_SIZE
2771 + HEADER_802_2_SIZE
+
2773 PCI_DMA_FROMDEVICE
);
2774 memset(rxdp
, 0, sizeof(struct RxD1
));
2775 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2776 rxdp3
= (struct RxD3
*)rxdp
;
2777 ba
= &mac_control
->rings
[ring_no
].
2779 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2782 PCI_DMA_FROMDEVICE
);
2783 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2786 PCI_DMA_FROMDEVICE
);
2787 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2790 PCI_DMA_FROMDEVICE
);
2791 memset(rxdp
, 0, sizeof(struct RxD3
));
2793 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2795 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2800 * free_rx_buffers - Frees all Rx buffers
2801 * @sp: device private variable.
2803 * This function will free all Rx buffers allocated by host.
2808 static void free_rx_buffers(struct s2io_nic
*sp
)
2810 struct net_device
*dev
= sp
->dev
;
2811 int i
, blk
= 0, buf_cnt
= 0;
2812 struct mac_info
*mac_control
;
2813 struct config_param
*config
;
2815 mac_control
= &sp
->mac_control
;
2816 config
= &sp
->config
;
2818 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2819 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2820 free_rxd_blk(sp
,i
,blk
);
2822 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2823 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2824 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2825 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2826 mac_control
->rings
[i
].rx_bufs_left
= 0;
2827 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2828 dev
->name
, buf_cnt
, i
);
2832 static int s2io_chk_rx_buffers(struct ring_info
*ring
)
2834 if (fill_rx_buffers(ring
) == -ENOMEM
) {
2835 DBG_PRINT(INFO_DBG
, "%s:Out of memory", ring
->dev
->name
);
2836 DBG_PRINT(INFO_DBG
, " in Rx Intr!!\n");
2842 * s2io_poll - Rx interrupt handler for NAPI support
2843 * @napi : pointer to the napi structure.
2844 * @budget : The number of packets that were budgeted to be processed
2845 * during one pass through the 'Poll" function.
2847 * Comes into picture only if NAPI support has been incorporated. It does
2848 * the same thing that rx_intr_handler does, but not in a interrupt context
2849 * also It will process only a given number of packets.
2851 * 0 on success and 1 if there are No Rx packets to be processed.
2854 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2856 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2857 struct net_device
*dev
= ring
->dev
;
2858 struct config_param
*config
;
2859 struct mac_info
*mac_control
;
2860 int pkts_processed
= 0;
2861 u8 __iomem
*addr
= NULL
;
2863 struct s2io_nic
*nic
= dev
->priv
;
2864 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2865 int budget_org
= budget
;
2867 config
= &nic
->config
;
2868 mac_control
= &nic
->mac_control
;
2870 if (unlikely(!is_s2io_card_up(nic
)))
2873 pkts_processed
= rx_intr_handler(ring
, budget
);
2874 s2io_chk_rx_buffers(ring
);
2876 if (pkts_processed
< budget_org
) {
2877 netif_rx_complete(dev
, napi
);
2878 /*Re Enable MSI-Rx Vector*/
2879 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2880 addr
+= 7 - ring
->ring_no
;
2881 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2885 return pkts_processed
;
2887 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2889 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2890 struct ring_info
*ring
;
2891 struct net_device
*dev
= nic
->dev
;
2892 struct config_param
*config
;
2893 struct mac_info
*mac_control
;
2894 int pkts_processed
= 0;
2895 int ring_pkts_processed
, i
;
2896 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2897 int budget_org
= budget
;
2899 config
= &nic
->config
;
2900 mac_control
= &nic
->mac_control
;
2902 if (unlikely(!is_s2io_card_up(nic
)))
2905 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2906 ring
= &mac_control
->rings
[i
];
2907 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2908 s2io_chk_rx_buffers(ring
);
2909 pkts_processed
+= ring_pkts_processed
;
2910 budget
-= ring_pkts_processed
;
2914 if (pkts_processed
< budget_org
) {
2915 netif_rx_complete(dev
, napi
);
2916 /* Re enable the Rx interrupts for the ring */
2917 writeq(0, &bar0
->rx_traffic_mask
);
2918 readl(&bar0
->rx_traffic_mask
);
2920 return pkts_processed
;
2923 #ifdef CONFIG_NET_POLL_CONTROLLER
2925 * s2io_netpoll - netpoll event handler entry point
2926 * @dev : pointer to the device structure.
2928 * This function will be called by upper layer to check for events on the
2929 * interface in situations where interrupts are disabled. It is used for
2930 * specific in-kernel networking tasks, such as remote consoles and kernel
2931 * debugging over the network (example netdump in RedHat).
2933 static void s2io_netpoll(struct net_device
*dev
)
2935 struct s2io_nic
*nic
= dev
->priv
;
2936 struct mac_info
*mac_control
;
2937 struct config_param
*config
;
2938 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2939 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2942 if (pci_channel_offline(nic
->pdev
))
2945 disable_irq(dev
->irq
);
2947 mac_control
= &nic
->mac_control
;
2948 config
= &nic
->config
;
2950 writeq(val64
, &bar0
->rx_traffic_int
);
2951 writeq(val64
, &bar0
->tx_traffic_int
);
2953 /* we need to free up the transmitted skbufs or else netpoll will
2954 * run out of skbs and will fail and eventually netpoll application such
2955 * as netdump will fail.
2957 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2958 tx_intr_handler(&mac_control
->fifos
[i
]);
2960 /* check for received packet and indicate up to network */
2961 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2962 rx_intr_handler(&mac_control
->rings
[i
], 0);
2964 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2965 if (fill_rx_buffers(&mac_control
->rings
[i
]) == -ENOMEM
) {
2966 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2967 DBG_PRINT(INFO_DBG
, " in Rx Netpoll!!\n");
2971 enable_irq(dev
->irq
);
2977 * rx_intr_handler - Rx interrupt handler
2978 * @ring_info: per ring structure.
2979 * @budget: budget for napi processing.
2981 * If the interrupt is because of a received frame or if the
2982 * receive ring contains fresh as yet un-processed frames,this function is
2983 * called. It picks out the RxD at which place the last Rx processing had
2984 * stopped and sends the skb to the OSM's Rx handler and then increments
2987 * No. of napi packets processed.
2989 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2991 int get_block
, put_block
;
2992 struct rx_curr_get_info get_info
, put_info
;
2994 struct sk_buff
*skb
;
2995 int pkt_cnt
= 0, napi_pkts
= 0;
3000 get_info
= ring_data
->rx_curr_get_info
;
3001 get_block
= get_info
.block_index
;
3002 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
3003 put_block
= put_info
.block_index
;
3004 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
3006 while (RXD_IS_UP2DT(rxdp
)) {
3008 * If your are next to put index then it's
3009 * FIFO full condition
3011 if ((get_block
== put_block
) &&
3012 (get_info
.offset
+ 1) == put_info
.offset
) {
3013 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
3014 ring_data
->dev
->name
);
3017 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
3019 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
3020 ring_data
->dev
->name
);
3021 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
3024 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
3025 rxdp1
= (struct RxD1
*)rxdp
;
3026 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
3029 HEADER_ETHERNET_II_802_3_SIZE
+
3032 PCI_DMA_FROMDEVICE
);
3033 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
3034 rxdp3
= (struct RxD3
*)rxdp
;
3035 pci_dma_sync_single_for_cpu(ring_data
->pdev
, (dma_addr_t
)
3037 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
3038 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
3041 PCI_DMA_FROMDEVICE
);
3043 prefetch(skb
->data
);
3044 rx_osm_handler(ring_data
, rxdp
);
3046 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3047 rxdp
= ring_data
->rx_blocks
[get_block
].
3048 rxds
[get_info
.offset
].virt_addr
;
3049 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
3050 get_info
.offset
= 0;
3051 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3053 if (get_block
== ring_data
->block_count
)
3055 ring_data
->rx_curr_get_info
.block_index
= get_block
;
3056 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
3059 if (ring_data
->nic
->config
.napi
) {
3066 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
3069 if (ring_data
->lro
) {
3070 /* Clear all LRO sessions before exiting */
3071 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
3072 struct lro
*lro
= &ring_data
->lro0_n
[i
];
3074 update_L3L4_header(ring_data
->nic
, lro
);
3075 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
3076 clear_lro_session(lro
);
3084 * tx_intr_handler - Transmit interrupt handler
3085 * @nic : device private variable
3087 * If an interrupt was raised to indicate DMA complete of the
3088 * Tx packet, this function is called. It identifies the last TxD
3089 * whose buffer was freed and frees all skbs whose data have already
3090 * DMA'ed into the NICs internal memory.
3095 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3097 struct s2io_nic
*nic
= fifo_data
->nic
;
3098 struct tx_curr_get_info get_info
, put_info
;
3099 struct sk_buff
*skb
= NULL
;
3102 unsigned long flags
= 0;
3105 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3108 get_info
= fifo_data
->tx_curr_get_info
;
3109 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3110 txdlp
= (struct TxD
*) fifo_data
->list_info
[get_info
.offset
].
3112 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3113 (get_info
.offset
!= put_info
.offset
) &&
3114 (txdlp
->Host_Control
)) {
3115 /* Check for TxD errors */
3116 if (txdlp
->Control_1
& TXD_T_CODE
) {
3117 unsigned long long err
;
3118 err
= txdlp
->Control_1
& TXD_T_CODE
;
3120 nic
->mac_control
.stats_info
->sw_stat
.
3124 /* update t_code statistics */
3125 err_mask
= err
>> 48;
3128 nic
->mac_control
.stats_info
->sw_stat
.
3133 nic
->mac_control
.stats_info
->sw_stat
.
3134 tx_desc_abort_cnt
++;
3138 nic
->mac_control
.stats_info
->sw_stat
.
3139 tx_parity_err_cnt
++;
3143 nic
->mac_control
.stats_info
->sw_stat
.
3148 nic
->mac_control
.stats_info
->sw_stat
.
3149 tx_list_proc_err_cnt
++;
3154 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3156 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3157 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
3159 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
3164 /* Updating the statistics block */
3165 nic
->stats
.tx_bytes
+= skb
->len
;
3166 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
3167 dev_kfree_skb_irq(skb
);
3170 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3171 get_info
.offset
= 0;
3172 txdlp
= (struct TxD
*) fifo_data
->list_info
3173 [get_info
.offset
].list_virt_addr
;
3174 fifo_data
->tx_curr_get_info
.offset
=
3178 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3180 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3184 * s2io_mdio_write - Function to write in to MDIO registers
3185 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3186 * @addr : address value
3187 * @value : data value
3188 * @dev : pointer to net_device structure
3190 * This function is used to write values to the MDIO registers
3193 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
3196 struct s2io_nic
*sp
= dev
->priv
;
3197 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3199 //address transaction
3200 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3201 | MDIO_MMD_DEV_ADDR(mmd_type
)
3202 | MDIO_MMS_PRT_ADDR(0x0);
3203 writeq(val64
, &bar0
->mdio_control
);
3204 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3205 writeq(val64
, &bar0
->mdio_control
);
3210 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3211 | MDIO_MMD_DEV_ADDR(mmd_type
)
3212 | MDIO_MMS_PRT_ADDR(0x0)
3213 | MDIO_MDIO_DATA(value
)
3214 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
3215 writeq(val64
, &bar0
->mdio_control
);
3216 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3217 writeq(val64
, &bar0
->mdio_control
);
3221 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3222 | MDIO_MMD_DEV_ADDR(mmd_type
)
3223 | MDIO_MMS_PRT_ADDR(0x0)
3224 | MDIO_OP(MDIO_OP_READ_TRANS
);
3225 writeq(val64
, &bar0
->mdio_control
);
3226 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3227 writeq(val64
, &bar0
->mdio_control
);
3233 * s2io_mdio_read - Function to write in to MDIO registers
3234 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3235 * @addr : address value
3236 * @dev : pointer to net_device structure
3238 * This function is used to read values to the MDIO registers
3241 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3245 struct s2io_nic
*sp
= dev
->priv
;
3246 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3248 /* address transaction */
3249 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3250 | MDIO_MMD_DEV_ADDR(mmd_type
)
3251 | MDIO_MMS_PRT_ADDR(0x0);
3252 writeq(val64
, &bar0
->mdio_control
);
3253 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3254 writeq(val64
, &bar0
->mdio_control
);
3257 /* Data transaction */
3259 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3260 | MDIO_MMD_DEV_ADDR(mmd_type
)
3261 | MDIO_MMS_PRT_ADDR(0x0)
3262 | MDIO_OP(MDIO_OP_READ_TRANS
);
3263 writeq(val64
, &bar0
->mdio_control
);
3264 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3265 writeq(val64
, &bar0
->mdio_control
);
3268 /* Read the value from regs */
3269 rval64
= readq(&bar0
->mdio_control
);
3270 rval64
= rval64
& 0xFFFF0000;
3271 rval64
= rval64
>> 16;
3275 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3276 * @counter : couter value to be updated
3277 * @flag : flag to indicate the status
3278 * @type : counter type
3280 * This function is to check the status of the xpak counters value
3284 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
3289 for(i
= 0; i
<index
; i
++)
3294 *counter
= *counter
+ 1;
3295 val64
= *regs_stat
& mask
;
3296 val64
= val64
>> (index
* 0x2);
3303 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3304 "service. Excessive temperatures may "
3305 "result in premature transceiver "
3309 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3310 "service Excessive bias currents may "
3311 "indicate imminent laser diode "
3315 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3316 "service Excessive laser output "
3317 "power may saturate far-end "
3321 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
3326 val64
= val64
<< (index
* 0x2);
3327 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3330 *regs_stat
= *regs_stat
& (~mask
);
3335 * s2io_updt_xpak_counter - Function to update the xpak counters
3336 * @dev : pointer to net_device struct
3338 * This function is to upate the status of the xpak counters value
3341 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3349 struct s2io_nic
*sp
= dev
->priv
;
3350 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
3352 /* Check the communication with the MDIO slave */
3355 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3356 if((val64
== 0xFFFF) || (val64
== 0x0000))
3358 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3359 "Returned %llx\n", (unsigned long long)val64
);
3363 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3366 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3367 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3368 (unsigned long long)val64
);
3372 /* Loading the DOM register to MDIO register */
3374 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3375 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3377 /* Reading the Alarm flags */
3380 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3382 flag
= CHECKBIT(val64
, 0x7);
3384 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3385 &stat_info
->xpak_stat
.xpak_regs_stat
,
3388 if(CHECKBIT(val64
, 0x6))
3389 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3391 flag
= CHECKBIT(val64
, 0x3);
3393 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3394 &stat_info
->xpak_stat
.xpak_regs_stat
,
3397 if(CHECKBIT(val64
, 0x2))
3398 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3400 flag
= CHECKBIT(val64
, 0x1);
3402 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3403 &stat_info
->xpak_stat
.xpak_regs_stat
,
3406 if(CHECKBIT(val64
, 0x0))
3407 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3409 /* Reading the Warning flags */
3412 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3414 if(CHECKBIT(val64
, 0x7))
3415 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3417 if(CHECKBIT(val64
, 0x6))
3418 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3420 if(CHECKBIT(val64
, 0x3))
3421 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3423 if(CHECKBIT(val64
, 0x2))
3424 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3426 if(CHECKBIT(val64
, 0x1))
3427 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3429 if(CHECKBIT(val64
, 0x0))
3430 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3434 * wait_for_cmd_complete - waits for a command to complete.
3435 * @sp : private member of the device structure, which is a pointer to the
3436 * s2io_nic structure.
3437 * Description: Function that waits for a command to Write into RMAC
3438 * ADDR DATA registers to be completed and returns either success or
3439 * error depending on whether the command was complete or not.
3441 * SUCCESS on success and FAILURE on failure.
3444 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3447 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3450 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3454 val64
= readq(addr
);
3455 if (bit_state
== S2IO_BIT_RESET
) {
3456 if (!(val64
& busy_bit
)) {
3461 if (!(val64
& busy_bit
)) {
3478 * check_pci_device_id - Checks if the device id is supported
3480 * Description: Function to check if the pci device id is supported by driver.
3481 * Return value: Actual device id if supported else PCI_ANY_ID
3483 static u16
check_pci_device_id(u16 id
)
3486 case PCI_DEVICE_ID_HERC_WIN
:
3487 case PCI_DEVICE_ID_HERC_UNI
:
3488 return XFRAME_II_DEVICE
;
3489 case PCI_DEVICE_ID_S2IO_UNI
:
3490 case PCI_DEVICE_ID_S2IO_WIN
:
3491 return XFRAME_I_DEVICE
;
3498 * s2io_reset - Resets the card.
3499 * @sp : private member of the device structure.
3500 * Description: Function to Reset the card. This function then also
3501 * restores the previously saved PCI configuration space registers as
3502 * the card reset also resets the configuration space.
3507 static void s2io_reset(struct s2io_nic
* sp
)
3509 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3514 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3515 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3517 DBG_PRINT(INIT_DBG
,"%s - Resetting XFrame card %s\n",
3518 __FUNCTION__
, sp
->dev
->name
);
3520 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3521 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3523 val64
= SW_RESET_ALL
;
3524 writeq(val64
, &bar0
->sw_reset
);
3525 if (strstr(sp
->product_name
, "CX4")) {
3529 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3531 /* Restore the PCI state saved during initialization. */
3532 pci_restore_state(sp
->pdev
);
3533 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3534 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3539 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
) {
3540 DBG_PRINT(ERR_DBG
,"%s SW_Reset failed!\n", __FUNCTION__
);
3543 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3547 /* Set swapper to enable I/O register access */
3548 s2io_set_swapper(sp
);
3550 /* restore mac_addr entries */
3551 do_s2io_restore_unicast_mc(sp
);
3553 /* Restore the MSIX table entries from local variables */
3554 restore_xmsi_data(sp
);
3556 /* Clear certain PCI/PCI-X fields after reset */
3557 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3558 /* Clear "detected parity error" bit */
3559 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3561 /* Clearing PCIX Ecc status register */
3562 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3564 /* Clearing PCI_STATUS error reflected here */
3565 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3568 /* Reset device statistics maintained by OS */
3569 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3571 up_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
;
3572 down_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
;
3573 up_time
= sp
->mac_control
.stats_info
->sw_stat
.link_up_time
;
3574 down_time
= sp
->mac_control
.stats_info
->sw_stat
.link_down_time
;
3575 reset_cnt
= sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
;
3576 mem_alloc_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
;
3577 mem_free_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_freed
;
3578 watchdog_cnt
= sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
;
3579 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3580 memset(sp
->mac_control
.stats_info
, 0, sizeof(struct stat_block
));
3581 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3582 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
= up_cnt
;
3583 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
= down_cnt
;
3584 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
= up_time
;
3585 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
= down_time
;
3586 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
= reset_cnt
;
3587 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
= mem_alloc_cnt
;
3588 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
= mem_free_cnt
;
3589 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
= watchdog_cnt
;
3591 /* SXE-002: Configure link and activity LED to turn it off */
3592 subid
= sp
->pdev
->subsystem_device
;
3593 if (((subid
& 0xFF) >= 0x07) &&
3594 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3595 val64
= readq(&bar0
->gpio_control
);
3596 val64
|= 0x0000800000000000ULL
;
3597 writeq(val64
, &bar0
->gpio_control
);
3598 val64
= 0x0411040400000000ULL
;
3599 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3603 * Clear spurious ECC interrupts that would have occured on
3604 * XFRAME II cards after reset.
3606 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3607 val64
= readq(&bar0
->pcc_err_reg
);
3608 writeq(val64
, &bar0
->pcc_err_reg
);
3611 sp
->device_enabled_once
= FALSE
;
3615 * s2io_set_swapper - to set the swapper controle on the card
3616 * @sp : private member of the device structure,
3617 * pointer to the s2io_nic structure.
3618 * Description: Function to set the swapper control on the card
3619 * correctly depending on the 'endianness' of the system.
3621 * SUCCESS on success and FAILURE on failure.
3624 static int s2io_set_swapper(struct s2io_nic
* sp
)
3626 struct net_device
*dev
= sp
->dev
;
3627 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3628 u64 val64
, valt
, valr
;
3631 * Set proper endian settings and verify the same by reading
3632 * the PIF Feed-back register.
3635 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3636 if (val64
!= 0x0123456789ABCDEFULL
) {
3638 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3639 0x8100008181000081ULL
, /* FE=1, SE=0 */
3640 0x4200004242000042ULL
, /* FE=0, SE=1 */
3641 0}; /* FE=0, SE=0 */
3644 writeq(value
[i
], &bar0
->swapper_ctrl
);
3645 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3646 if (val64
== 0x0123456789ABCDEFULL
)
3651 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3653 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3654 (unsigned long long) val64
);
3659 valr
= readq(&bar0
->swapper_ctrl
);
3662 valt
= 0x0123456789ABCDEFULL
;
3663 writeq(valt
, &bar0
->xmsi_address
);
3664 val64
= readq(&bar0
->xmsi_address
);
3668 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3669 0x0081810000818100ULL
, /* FE=1, SE=0 */
3670 0x0042420000424200ULL
, /* FE=0, SE=1 */
3671 0}; /* FE=0, SE=0 */
3674 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3675 writeq(valt
, &bar0
->xmsi_address
);
3676 val64
= readq(&bar0
->xmsi_address
);
3682 unsigned long long x
= val64
;
3683 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3684 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3688 val64
= readq(&bar0
->swapper_ctrl
);
3689 val64
&= 0xFFFF000000000000ULL
;
3693 * The device by default set to a big endian format, so a
3694 * big endian driver need not set anything.
3696 val64
|= (SWAPPER_CTRL_TXP_FE
|
3697 SWAPPER_CTRL_TXP_SE
|
3698 SWAPPER_CTRL_TXD_R_FE
|
3699 SWAPPER_CTRL_TXD_W_FE
|
3700 SWAPPER_CTRL_TXF_R_FE
|
3701 SWAPPER_CTRL_RXD_R_FE
|
3702 SWAPPER_CTRL_RXD_W_FE
|
3703 SWAPPER_CTRL_RXF_W_FE
|
3704 SWAPPER_CTRL_XMSI_FE
|
3705 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3706 if (sp
->config
.intr_type
== INTA
)
3707 val64
|= SWAPPER_CTRL_XMSI_SE
;
3708 writeq(val64
, &bar0
->swapper_ctrl
);
3711 * Initially we enable all bits to make it accessible by the
3712 * driver, then we selectively enable only those bits that
3715 val64
|= (SWAPPER_CTRL_TXP_FE
|
3716 SWAPPER_CTRL_TXP_SE
|
3717 SWAPPER_CTRL_TXD_R_FE
|
3718 SWAPPER_CTRL_TXD_R_SE
|
3719 SWAPPER_CTRL_TXD_W_FE
|
3720 SWAPPER_CTRL_TXD_W_SE
|
3721 SWAPPER_CTRL_TXF_R_FE
|
3722 SWAPPER_CTRL_RXD_R_FE
|
3723 SWAPPER_CTRL_RXD_R_SE
|
3724 SWAPPER_CTRL_RXD_W_FE
|
3725 SWAPPER_CTRL_RXD_W_SE
|
3726 SWAPPER_CTRL_RXF_W_FE
|
3727 SWAPPER_CTRL_XMSI_FE
|
3728 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3729 if (sp
->config
.intr_type
== INTA
)
3730 val64
|= SWAPPER_CTRL_XMSI_SE
;
3731 writeq(val64
, &bar0
->swapper_ctrl
);
3733 val64
= readq(&bar0
->swapper_ctrl
);
3736 * Verifying if endian settings are accurate by reading a
3737 * feedback register.
3739 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3740 if (val64
!= 0x0123456789ABCDEFULL
) {
3741 /* Endian settings are incorrect, calls for another dekko. */
3742 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3744 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3745 (unsigned long long) val64
);
3752 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3754 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3756 int ret
= 0, cnt
= 0;
3759 val64
= readq(&bar0
->xmsi_access
);
3760 if (!(val64
& s2BIT(15)))
3766 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3773 static void restore_xmsi_data(struct s2io_nic
*nic
)
3775 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3780 if (nic
->device_type
== XFRAME_I_DEVICE
)
3783 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3784 msix_index
= (i
) ? ((i
-1) * 8 + 1): 0;
3785 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3786 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3787 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3788 writeq(val64
, &bar0
->xmsi_access
);
3789 if (wait_for_msix_trans(nic
, msix_index
)) {
3790 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3796 static void store_xmsi_data(struct s2io_nic
*nic
)
3798 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3799 u64 val64
, addr
, data
;
3802 if (nic
->device_type
== XFRAME_I_DEVICE
)
3805 /* Store and display */
3806 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3807 msix_index
= (i
) ? ((i
-1) * 8 + 1): 0;
3808 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3809 writeq(val64
, &bar0
->xmsi_access
);
3810 if (wait_for_msix_trans(nic
, msix_index
)) {
3811 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3814 addr
= readq(&bar0
->xmsi_address
);
3815 data
= readq(&bar0
->xmsi_data
);
3817 nic
->msix_info
[i
].addr
= addr
;
3818 nic
->msix_info
[i
].data
= data
;
3823 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3825 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3827 u16 msi_control
; /* Temp variable */
3828 int ret
, i
, j
, msix_indx
= 1;
3830 nic
->entries
= kmalloc(nic
->num_entries
* sizeof(struct msix_entry
),
3832 if (!nic
->entries
) {
3833 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n", \
3835 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3838 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3839 += (nic
->num_entries
* sizeof(struct msix_entry
));
3841 memset(nic
->entries
, 0, nic
->num_entries
* sizeof(struct msix_entry
));
3844 kmalloc(nic
->num_entries
* sizeof(struct s2io_msix_entry
),
3846 if (!nic
->s2io_entries
) {
3847 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3849 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3850 kfree(nic
->entries
);
3851 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3852 += (nic
->num_entries
* sizeof(struct msix_entry
));
3855 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3856 += (nic
->num_entries
* sizeof(struct s2io_msix_entry
));
3857 memset(nic
->s2io_entries
, 0,
3858 nic
->num_entries
* sizeof(struct s2io_msix_entry
));
3860 nic
->entries
[0].entry
= 0;
3861 nic
->s2io_entries
[0].entry
= 0;
3862 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3863 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3864 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3866 for (i
= 1; i
< nic
->num_entries
; i
++) {
3867 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3868 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3869 nic
->s2io_entries
[i
].arg
= NULL
;
3870 nic
->s2io_entries
[i
].in_use
= 0;
3873 rx_mat
= readq(&bar0
->rx_mat
);
3874 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3875 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3876 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3877 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3878 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3881 writeq(rx_mat
, &bar0
->rx_mat
);
3882 readq(&bar0
->rx_mat
);
3884 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, nic
->num_entries
);
3885 /* We fail init if error or we get less vectors than min required */
3887 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3888 kfree(nic
->entries
);
3889 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3890 += (nic
->num_entries
* sizeof(struct msix_entry
));
3891 kfree(nic
->s2io_entries
);
3892 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3893 += (nic
->num_entries
* sizeof(struct s2io_msix_entry
));
3894 nic
->entries
= NULL
;
3895 nic
->s2io_entries
= NULL
;
3900 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3901 * in the herc NIC. (Temp change, needs to be removed later)
3903 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3904 msi_control
|= 0x1; /* Enable MSI */
3905 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3910 /* Handle software interrupt used during MSI(X) test */
3911 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3913 struct s2io_nic
*sp
= dev_id
;
3915 sp
->msi_detected
= 1;
3916 wake_up(&sp
->msi_wait
);
3921 /* Test interrupt path by forcing a a software IRQ */
3922 static int s2io_test_msi(struct s2io_nic
*sp
)
3924 struct pci_dev
*pdev
= sp
->pdev
;
3925 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3929 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3932 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3933 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3937 init_waitqueue_head (&sp
->msi_wait
);
3938 sp
->msi_detected
= 0;
3940 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3941 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3942 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3943 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3944 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3946 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3948 if (!sp
->msi_detected
) {
3949 /* MSI(X) test failed, go back to INTx mode */
3950 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3951 "using MSI(X) during test\n", sp
->dev
->name
,
3957 free_irq(sp
->entries
[1].vector
, sp
);
3959 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3964 static void remove_msix_isr(struct s2io_nic
*sp
)
3969 for (i
= 0; i
< sp
->num_entries
; i
++) {
3970 if (sp
->s2io_entries
[i
].in_use
==
3971 MSIX_REGISTERED_SUCCESS
) {
3972 int vector
= sp
->entries
[i
].vector
;
3973 void *arg
= sp
->s2io_entries
[i
].arg
;
3974 free_irq(vector
, arg
);
3979 kfree(sp
->s2io_entries
);
3981 sp
->s2io_entries
= NULL
;
3983 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3984 msi_control
&= 0xFFFE; /* Disable MSI */
3985 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3987 pci_disable_msix(sp
->pdev
);
3990 static void remove_inta_isr(struct s2io_nic
*sp
)
3992 struct net_device
*dev
= sp
->dev
;
3994 free_irq(sp
->pdev
->irq
, dev
);
3997 /* ********************************************************* *
3998 * Functions defined below concern the OS part of the driver *
3999 * ********************************************************* */
4002 * s2io_open - open entry point of the driver
4003 * @dev : pointer to the device structure.
4005 * This function is the open entry point of the driver. It mainly calls a
4006 * function to allocate Rx buffers and inserts them into the buffer
4007 * descriptors and then enables the Rx part of the NIC.
4009 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4013 static int s2io_open(struct net_device
*dev
)
4015 struct s2io_nic
*sp
= dev
->priv
;
4019 * Make sure you have link off by default every time
4020 * Nic is initialized
4022 netif_carrier_off(dev
);
4023 sp
->last_link_state
= 0;
4025 /* Initialize H/W and enable interrupts */
4026 err
= s2io_card_up(sp
);
4028 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
4030 goto hw_init_failed
;
4033 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
4034 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
4037 goto hw_init_failed
;
4039 s2io_start_all_tx_queue(sp
);
4043 if (sp
->config
.intr_type
== MSI_X
) {
4046 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
4047 += (sp
->num_entries
* sizeof(struct msix_entry
));
4049 if (sp
->s2io_entries
) {
4050 kfree(sp
->s2io_entries
);
4051 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
4052 += (sp
->num_entries
* sizeof(struct s2io_msix_entry
));
4059 * s2io_close -close entry point of the driver
4060 * @dev : device pointer.
4062 * This is the stop entry point of the driver. It needs to undo exactly
4063 * whatever was done by the open entry point,thus it's usually referred to
4064 * as the close function.Among other things this function mainly stops the
4065 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4067 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4071 static int s2io_close(struct net_device
*dev
)
4073 struct s2io_nic
*sp
= dev
->priv
;
4074 struct config_param
*config
= &sp
->config
;
4078 /* Return if the device is already closed *
4079 * Can happen when s2io_card_up failed in change_mtu *
4081 if (!is_s2io_card_up(sp
))
4084 s2io_stop_all_tx_queue(sp
);
4085 /* delete all populated mac entries */
4086 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
4087 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
4088 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
4089 do_s2io_delete_unicast_mc(sp
, tmp64
);
4098 * s2io_xmit - Tx entry point of te driver
4099 * @skb : the socket buffer containing the Tx data.
4100 * @dev : device pointer.
4102 * This function is the Tx entry point of the driver. S2IO NIC supports
4103 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4104 * NOTE: when device cant queue the pkt,just the trans_start variable will
4107 * 0 on success & 1 on failure.
4110 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4112 struct s2io_nic
*sp
= dev
->priv
;
4113 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4116 struct TxFIFO_element __iomem
*tx_fifo
;
4117 unsigned long flags
= 0;
4119 struct fifo_info
*fifo
= NULL
;
4120 struct mac_info
*mac_control
;
4121 struct config_param
*config
;
4122 int do_spin_lock
= 1;
4124 int enable_per_list_interrupt
= 0;
4125 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
4127 mac_control
= &sp
->mac_control
;
4128 config
= &sp
->config
;
4130 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4132 if (unlikely(skb
->len
<= 0)) {
4133 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
4134 dev_kfree_skb_any(skb
);
4138 if (!is_s2io_card_up(sp
)) {
4139 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4146 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
))
4147 vlan_tag
= vlan_tx_tag_get(skb
);
4148 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4149 if (skb
->protocol
== htons(ETH_P_IP
)) {
4154 if ((ip
->frag_off
& htons(IP_OFFSET
|IP_MF
)) == 0) {
4155 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4158 if (ip
->protocol
== IPPROTO_TCP
) {
4159 queue_len
= sp
->total_tcp_fifos
;
4160 queue
= (ntohs(th
->source
) +
4162 sp
->fifo_selector
[queue_len
- 1];
4163 if (queue
>= queue_len
)
4164 queue
= queue_len
- 1;
4165 } else if (ip
->protocol
== IPPROTO_UDP
) {
4166 queue_len
= sp
->total_udp_fifos
;
4167 queue
= (ntohs(th
->source
) +
4169 sp
->fifo_selector
[queue_len
- 1];
4170 if (queue
>= queue_len
)
4171 queue
= queue_len
- 1;
4172 queue
+= sp
->udp_fifo_idx
;
4173 if (skb
->len
> 1024)
4174 enable_per_list_interrupt
= 1;
4179 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4180 /* get fifo number based on skb->priority value */
4181 queue
= config
->fifo_mapping
4182 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4183 fifo
= &mac_control
->fifos
[queue
];
4186 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4188 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4189 return NETDEV_TX_LOCKED
;
4192 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
4193 if (sp
->config
.multiq
) {
4194 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4195 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4196 return NETDEV_TX_BUSY
;
4200 if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4201 if (netif_queue_stopped(dev
)) {
4202 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4203 return NETDEV_TX_BUSY
;
4207 put_off
= (u16
) fifo
->tx_curr_put_info
.offset
;
4208 get_off
= (u16
) fifo
->tx_curr_get_info
.offset
;
4209 txdp
= (struct TxD
*) fifo
->list_info
[put_off
].list_virt_addr
;
4211 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4212 /* Avoid "put" pointer going beyond "get" pointer */
4213 if (txdp
->Host_Control
||
4214 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4215 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4216 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4218 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4222 offload_type
= s2io_offload_type(skb
);
4223 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4224 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4225 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4227 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4229 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
4232 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4233 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4234 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4235 if (enable_per_list_interrupt
)
4236 if (put_off
& (queue_len
>> 5))
4237 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4239 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4240 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4243 frg_len
= skb
->len
- skb
->data_len
;
4244 if (offload_type
== SKB_GSO_UDP
) {
4247 ufo_size
= s2io_udp_mss(skb
);
4249 txdp
->Control_1
|= TXD_UFO_EN
;
4250 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4251 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4253 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4254 fifo
->ufo_in_band_v
[put_off
] =
4255 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4257 fifo
->ufo_in_band_v
[put_off
] =
4258 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4260 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4261 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4262 fifo
->ufo_in_band_v
,
4263 sizeof(u64
), PCI_DMA_TODEVICE
);
4264 if (pci_dma_mapping_error(txdp
->Buffer_Pointer
))
4265 goto pci_map_failed
;
4269 txdp
->Buffer_Pointer
= pci_map_single
4270 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
4271 if (pci_dma_mapping_error(txdp
->Buffer_Pointer
))
4272 goto pci_map_failed
;
4274 txdp
->Host_Control
= (unsigned long) skb
;
4275 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4276 if (offload_type
== SKB_GSO_UDP
)
4277 txdp
->Control_1
|= TXD_UFO_EN
;
4279 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4280 /* For fragmented SKB. */
4281 for (i
= 0; i
< frg_cnt
; i
++) {
4282 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4283 /* A '0' length fragment will be ignored */
4287 txdp
->Buffer_Pointer
= (u64
) pci_map_page
4288 (sp
->pdev
, frag
->page
, frag
->page_offset
,
4289 frag
->size
, PCI_DMA_TODEVICE
);
4290 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4291 if (offload_type
== SKB_GSO_UDP
)
4292 txdp
->Control_1
|= TXD_UFO_EN
;
4294 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4296 if (offload_type
== SKB_GSO_UDP
)
4297 frg_cnt
++; /* as Txd0 was used for inband header */
4299 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4300 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4301 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4303 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4306 val64
|= TX_FIFO_SPECIAL_FUNC
;
4308 writeq(val64
, &tx_fifo
->List_Control
);
4313 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4315 fifo
->tx_curr_put_info
.offset
= put_off
;
4317 /* Avoid "put" pointer going beyond "get" pointer */
4318 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4319 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
4321 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4323 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4325 mac_control
->stats_info
->sw_stat
.mem_allocated
+= skb
->truesize
;
4326 dev
->trans_start
= jiffies
;
4327 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4329 if (sp
->config
.intr_type
== MSI_X
)
4330 tx_intr_handler(fifo
);
4334 stats
->pci_map_fail_cnt
++;
4335 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4336 stats
->mem_freed
+= skb
->truesize
;
4338 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4343 s2io_alarm_handle(unsigned long data
)
4345 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4346 struct net_device
*dev
= sp
->dev
;
4348 s2io_handle_errors(dev
);
4349 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4352 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4354 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4355 struct s2io_nic
*sp
= ring
->nic
;
4356 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4357 struct net_device
*dev
= sp
->dev
;
4359 if (unlikely(!is_s2io_card_up(sp
)))
4362 if (sp
->config
.napi
) {
4363 u8 __iomem
*addr
= NULL
;
4366 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4367 addr
+= (7 - ring
->ring_no
);
4368 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4371 netif_rx_schedule(dev
, &ring
->napi
);
4373 rx_intr_handler(ring
, 0);
4374 s2io_chk_rx_buffers(ring
);
4380 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4383 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4384 struct s2io_nic
*sp
= fifos
->nic
;
4385 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4386 struct config_param
*config
= &sp
->config
;
4389 if (unlikely(!is_s2io_card_up(sp
)))
4392 reason
= readq(&bar0
->general_int_status
);
4393 if (unlikely(reason
== S2IO_MINUS_ONE
))
4394 /* Nothing much can be done. Get out */
4397 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4399 if (reason
& GEN_INTR_TXTRAFFIC
)
4400 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4402 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4403 tx_intr_handler(&fifos
[i
]);
4405 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4406 readl(&bar0
->general_int_status
);
4411 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4413 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4416 val64
= readq(&bar0
->pic_int_status
);
4417 if (val64
& PIC_INT_GPIO
) {
4418 val64
= readq(&bar0
->gpio_int_reg
);
4419 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4420 (val64
& GPIO_INT_REG_LINK_UP
)) {
4422 * This is unstable state so clear both up/down
4423 * interrupt and adapter to re-evaluate the link state.
4425 val64
|= GPIO_INT_REG_LINK_DOWN
;
4426 val64
|= GPIO_INT_REG_LINK_UP
;
4427 writeq(val64
, &bar0
->gpio_int_reg
);
4428 val64
= readq(&bar0
->gpio_int_mask
);
4429 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4430 GPIO_INT_MASK_LINK_DOWN
);
4431 writeq(val64
, &bar0
->gpio_int_mask
);
4433 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4434 val64
= readq(&bar0
->adapter_status
);
4435 /* Enable Adapter */
4436 val64
= readq(&bar0
->adapter_control
);
4437 val64
|= ADAPTER_CNTL_EN
;
4438 writeq(val64
, &bar0
->adapter_control
);
4439 val64
|= ADAPTER_LED_ON
;
4440 writeq(val64
, &bar0
->adapter_control
);
4441 if (!sp
->device_enabled_once
)
4442 sp
->device_enabled_once
= 1;
4444 s2io_link(sp
, LINK_UP
);
4446 * unmask link down interrupt and mask link-up
4449 val64
= readq(&bar0
->gpio_int_mask
);
4450 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4451 val64
|= GPIO_INT_MASK_LINK_UP
;
4452 writeq(val64
, &bar0
->gpio_int_mask
);
4454 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4455 val64
= readq(&bar0
->adapter_status
);
4456 s2io_link(sp
, LINK_DOWN
);
4457 /* Link is down so unmaks link up interrupt */
4458 val64
= readq(&bar0
->gpio_int_mask
);
4459 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4460 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4461 writeq(val64
, &bar0
->gpio_int_mask
);
4464 val64
= readq(&bar0
->adapter_control
);
4465 val64
= val64
&(~ADAPTER_LED_ON
);
4466 writeq(val64
, &bar0
->adapter_control
);
4469 val64
= readq(&bar0
->gpio_int_mask
);
4473 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4474 * @value: alarm bits
4475 * @addr: address value
4476 * @cnt: counter variable
4477 * Description: Check for alarm and increment the counter
4479 * 1 - if alarm bit set
4480 * 0 - if alarm bit is not set
4482 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
* addr
,
4483 unsigned long long *cnt
)
4486 val64
= readq(addr
);
4487 if ( val64
& value
) {
4488 writeq(val64
, addr
);
4497 * s2io_handle_errors - Xframe error indication handler
4498 * @nic: device private variable
4499 * Description: Handle alarms such as loss of link, single or
4500 * double ECC errors, critical and serious errors.
4504 static void s2io_handle_errors(void * dev_id
)
4506 struct net_device
*dev
= (struct net_device
*) dev_id
;
4507 struct s2io_nic
*sp
= dev
->priv
;
4508 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4509 u64 temp64
= 0,val64
=0;
4512 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4513 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4515 if (!is_s2io_card_up(sp
))
4518 if (pci_channel_offline(sp
->pdev
))
4521 memset(&sw_stat
->ring_full_cnt
, 0,
4522 sizeof(sw_stat
->ring_full_cnt
));
4524 /* Handling the XPAK counters update */
4525 if(stats
->xpak_timer_count
< 72000) {
4526 /* waiting for an hour */
4527 stats
->xpak_timer_count
++;
4529 s2io_updt_xpak_counter(dev
);
4530 /* reset the count to zero */
4531 stats
->xpak_timer_count
= 0;
4534 /* Handling link status change error Intr */
4535 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4536 val64
= readq(&bar0
->mac_rmac_err_reg
);
4537 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4538 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4539 schedule_work(&sp
->set_link_task
);
4542 /* In case of a serious error, the device will be Reset. */
4543 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4544 &sw_stat
->serious_err_cnt
))
4547 /* Check for data parity error */
4548 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4549 &sw_stat
->parity_err_cnt
))
4552 /* Check for ring full counter */
4553 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4554 val64
= readq(&bar0
->ring_bump_counter1
);
4555 for (i
=0; i
<4; i
++) {
4556 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4557 temp64
>>= 64 - ((i
+1)*16);
4558 sw_stat
->ring_full_cnt
[i
] += temp64
;
4561 val64
= readq(&bar0
->ring_bump_counter2
);
4562 for (i
=0; i
<4; i
++) {
4563 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4564 temp64
>>= 64 - ((i
+1)*16);
4565 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4569 val64
= readq(&bar0
->txdma_int_status
);
4570 /*check for pfc_err*/
4571 if (val64
& TXDMA_PFC_INT
) {
4572 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4573 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4574 PFC_PCIX_ERR
, &bar0
->pfc_err_reg
,
4575 &sw_stat
->pfc_err_cnt
))
4577 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
, &bar0
->pfc_err_reg
,
4578 &sw_stat
->pfc_err_cnt
);
4581 /*check for tda_err*/
4582 if (val64
& TXDMA_TDA_INT
) {
4583 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
4584 TDA_SM1_ERR_ALARM
, &bar0
->tda_err_reg
,
4585 &sw_stat
->tda_err_cnt
))
4587 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4588 &bar0
->tda_err_reg
, &sw_stat
->tda_err_cnt
);
4590 /*check for pcc_err*/
4591 if (val64
& TXDMA_PCC_INT
) {
4592 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
4593 | PCC_N_SERR
| PCC_6_COF_OV_ERR
4594 | PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
4595 | PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
4596 | PCC_TXB_ECC_DB_ERR
, &bar0
->pcc_err_reg
,
4597 &sw_stat
->pcc_err_cnt
))
4599 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4600 &bar0
->pcc_err_reg
, &sw_stat
->pcc_err_cnt
);
4603 /*check for tti_err*/
4604 if (val64
& TXDMA_TTI_INT
) {
4605 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
, &bar0
->tti_err_reg
,
4606 &sw_stat
->tti_err_cnt
))
4608 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4609 &bar0
->tti_err_reg
, &sw_stat
->tti_err_cnt
);
4612 /*check for lso_err*/
4613 if (val64
& TXDMA_LSO_INT
) {
4614 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
4615 | LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4616 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
))
4618 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4619 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
);
4622 /*check for tpa_err*/
4623 if (val64
& TXDMA_TPA_INT
) {
4624 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
, &bar0
->tpa_err_reg
,
4625 &sw_stat
->tpa_err_cnt
))
4627 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
, &bar0
->tpa_err_reg
,
4628 &sw_stat
->tpa_err_cnt
);
4631 /*check for sm_err*/
4632 if (val64
& TXDMA_SM_INT
) {
4633 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
, &bar0
->sm_err_reg
,
4634 &sw_stat
->sm_err_cnt
))
4638 val64
= readq(&bar0
->mac_int_status
);
4639 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4640 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4641 &bar0
->mac_tmac_err_reg
,
4642 &sw_stat
->mac_tmac_err_cnt
))
4644 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
4645 | TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
4646 &bar0
->mac_tmac_err_reg
,
4647 &sw_stat
->mac_tmac_err_cnt
);
4650 val64
= readq(&bar0
->xgxs_int_status
);
4651 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4652 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4653 &bar0
->xgxs_txgxs_err_reg
,
4654 &sw_stat
->xgxs_txgxs_err_cnt
))
4656 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4657 &bar0
->xgxs_txgxs_err_reg
,
4658 &sw_stat
->xgxs_txgxs_err_cnt
);
4661 val64
= readq(&bar0
->rxdma_int_status
);
4662 if (val64
& RXDMA_INT_RC_INT_M
) {
4663 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
4664 | RC_PRCn_SM_ERR_ALARM
|RC_FTC_SM_ERR_ALARM
,
4665 &bar0
->rc_err_reg
, &sw_stat
->rc_err_cnt
))
4667 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
4668 | RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4669 &sw_stat
->rc_err_cnt
);
4670 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
4671 | PRC_PCI_AB_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4672 &sw_stat
->prc_pcix_err_cnt
))
4674 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
| PRC_PCI_DP_WR_Rn
4675 | PRC_PCI_DP_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4676 &sw_stat
->prc_pcix_err_cnt
);
4679 if (val64
& RXDMA_INT_RPA_INT_M
) {
4680 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4681 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
))
4683 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4684 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
);
4687 if (val64
& RXDMA_INT_RDA_INT_M
) {
4688 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4689 | RDA_FRM_ECC_DB_N_AERR
| RDA_SM1_ERR_ALARM
4690 | RDA_SM0_ERR_ALARM
| RDA_RXD_ECC_DB_SERR
,
4691 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
))
4693 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
| RDA_FRM_ECC_SG_ERR
4694 | RDA_MISC_ERR
| RDA_PCIX_ERR
,
4695 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
);
4698 if (val64
& RXDMA_INT_RTI_INT_M
) {
4699 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
, &bar0
->rti_err_reg
,
4700 &sw_stat
->rti_err_cnt
))
4702 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4703 &bar0
->rti_err_reg
, &sw_stat
->rti_err_cnt
);
4706 val64
= readq(&bar0
->mac_int_status
);
4707 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4708 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4709 &bar0
->mac_rmac_err_reg
,
4710 &sw_stat
->mac_rmac_err_cnt
))
4712 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|RMAC_SINGLE_ECC_ERR
|
4713 RMAC_DOUBLE_ECC_ERR
, &bar0
->mac_rmac_err_reg
,
4714 &sw_stat
->mac_rmac_err_cnt
);
4717 val64
= readq(&bar0
->xgxs_int_status
);
4718 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4719 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4720 &bar0
->xgxs_rxgxs_err_reg
,
4721 &sw_stat
->xgxs_rxgxs_err_cnt
))
4725 val64
= readq(&bar0
->mc_int_status
);
4726 if(val64
& MC_INT_STATUS_MC_INT
) {
4727 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
, &bar0
->mc_err_reg
,
4728 &sw_stat
->mc_err_cnt
))
4731 /* Handling Ecc errors */
4732 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4733 writeq(val64
, &bar0
->mc_err_reg
);
4734 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4735 sw_stat
->double_ecc_errs
++;
4736 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4738 * Reset XframeI only if critical error
4741 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4742 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4746 sw_stat
->single_ecc_errs
++;
4752 s2io_stop_all_tx_queue(sp
);
4753 schedule_work(&sp
->rst_timer_task
);
4754 sw_stat
->soft_reset_cnt
++;
4759 * s2io_isr - ISR handler of the device .
4760 * @irq: the irq of the device.
4761 * @dev_id: a void pointer to the dev structure of the NIC.
4762 * Description: This function is the ISR handler of the device. It
4763 * identifies the reason for the interrupt and calls the relevant
4764 * service routines. As a contongency measure, this ISR allocates the
4765 * recv buffers, if their numbers are below the panic value which is
4766 * presently set to 25% of the original number of rcv buffers allocated.
4768 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4769 * IRQ_NONE: will be returned if interrupt is not from our device
4771 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4773 struct net_device
*dev
= (struct net_device
*) dev_id
;
4774 struct s2io_nic
*sp
= dev
->priv
;
4775 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4778 struct mac_info
*mac_control
;
4779 struct config_param
*config
;
4781 /* Pretend we handled any irq's from a disconnected card */
4782 if (pci_channel_offline(sp
->pdev
))
4785 if (!is_s2io_card_up(sp
))
4788 mac_control
= &sp
->mac_control
;
4789 config
= &sp
->config
;
4792 * Identify the cause for interrupt and call the appropriate
4793 * interrupt handler. Causes for the interrupt could be;
4798 reason
= readq(&bar0
->general_int_status
);
4800 if (unlikely(reason
== S2IO_MINUS_ONE
) ) {
4801 /* Nothing much can be done. Get out */
4805 if (reason
& (GEN_INTR_RXTRAFFIC
|
4806 GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
))
4808 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4811 if (reason
& GEN_INTR_RXTRAFFIC
) {
4812 netif_rx_schedule(dev
, &sp
->napi
);
4813 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4814 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4815 readl(&bar0
->rx_traffic_int
);
4819 * rx_traffic_int reg is an R1 register, writing all 1's
4820 * will ensure that the actual interrupt causing bit
4821 * get's cleared and hence a read can be avoided.
4823 if (reason
& GEN_INTR_RXTRAFFIC
)
4824 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4826 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4827 rx_intr_handler(&mac_control
->rings
[i
], 0);
4831 * tx_traffic_int reg is an R1 register, writing all 1's
4832 * will ensure that the actual interrupt causing bit get's
4833 * cleared and hence a read can be avoided.
4835 if (reason
& GEN_INTR_TXTRAFFIC
)
4836 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4838 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4839 tx_intr_handler(&mac_control
->fifos
[i
]);
4841 if (reason
& GEN_INTR_TXPIC
)
4842 s2io_txpic_intr_handle(sp
);
4845 * Reallocate the buffers from the interrupt handler itself.
4847 if (!config
->napi
) {
4848 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4849 s2io_chk_rx_buffers(&mac_control
->rings
[i
]);
4851 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4852 readl(&bar0
->general_int_status
);
4858 /* The interrupt was not raised by us */
4868 static void s2io_updt_stats(struct s2io_nic
*sp
)
4870 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4874 if (is_s2io_card_up(sp
)) {
4875 /* Apprx 30us on a 133 MHz bus */
4876 val64
= SET_UPDT_CLICKS(10) |
4877 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4878 writeq(val64
, &bar0
->stat_cfg
);
4881 val64
= readq(&bar0
->stat_cfg
);
4882 if (!(val64
& s2BIT(0)))
4886 break; /* Updt failed */
4892 * s2io_get_stats - Updates the device statistics structure.
4893 * @dev : pointer to the device structure.
4895 * This function updates the device statistics structure in the s2io_nic
4896 * structure and returns a pointer to the same.
4898 * pointer to the updated net_device_stats structure.
4901 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4903 struct s2io_nic
*sp
= dev
->priv
;
4904 struct mac_info
*mac_control
;
4905 struct config_param
*config
;
4909 mac_control
= &sp
->mac_control
;
4910 config
= &sp
->config
;
4912 /* Configure Stats for immediate updt */
4913 s2io_updt_stats(sp
);
4915 sp
->stats
.tx_packets
=
4916 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4917 sp
->stats
.tx_errors
=
4918 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4919 sp
->stats
.rx_errors
=
4920 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4921 sp
->stats
.multicast
=
4922 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4923 sp
->stats
.rx_length_errors
=
4924 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4926 /* collect per-ring rx_packets and rx_bytes */
4927 sp
->stats
.rx_packets
= sp
->stats
.rx_bytes
= 0;
4928 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4929 sp
->stats
.rx_packets
+= mac_control
->rings
[i
].rx_packets
;
4930 sp
->stats
.rx_bytes
+= mac_control
->rings
[i
].rx_bytes
;
4933 return (&sp
->stats
);
4937 * s2io_set_multicast - entry point for multicast address enable/disable.
4938 * @dev : pointer to the device structure
4940 * This function is a driver entry point which gets called by the kernel
4941 * whenever multicast addresses must be enabled/disabled. This also gets
4942 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4943 * determine, if multicast address must be enabled or if promiscuous mode
4944 * is to be disabled etc.
4949 static void s2io_set_multicast(struct net_device
*dev
)
4952 struct dev_mc_list
*mclist
;
4953 struct s2io_nic
*sp
= dev
->priv
;
4954 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4955 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4957 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4959 struct config_param
*config
= &sp
->config
;
4961 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4962 /* Enable all Multicast addresses */
4963 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4964 &bar0
->rmac_addr_data0_mem
);
4965 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4966 &bar0
->rmac_addr_data1_mem
);
4967 val64
= RMAC_ADDR_CMD_MEM_WE
|
4968 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4969 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4970 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4971 /* Wait till command completes */
4972 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4973 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4977 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4978 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4979 /* Disable all Multicast addresses */
4980 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4981 &bar0
->rmac_addr_data0_mem
);
4982 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4983 &bar0
->rmac_addr_data1_mem
);
4984 val64
= RMAC_ADDR_CMD_MEM_WE
|
4985 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4986 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4987 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4988 /* Wait till command completes */
4989 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4990 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4994 sp
->all_multi_pos
= 0;
4997 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4998 /* Put the NIC into promiscuous mode */
4999 add
= &bar0
->mac_cfg
;
5000 val64
= readq(&bar0
->mac_cfg
);
5001 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
5003 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5004 writel((u32
) val64
, add
);
5005 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5006 writel((u32
) (val64
>> 32), (add
+ 4));
5008 if (vlan_tag_strip
!= 1) {
5009 val64
= readq(&bar0
->rx_pa_cfg
);
5010 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
5011 writeq(val64
, &bar0
->rx_pa_cfg
);
5012 vlan_strip_flag
= 0;
5015 val64
= readq(&bar0
->mac_cfg
);
5016 sp
->promisc_flg
= 1;
5017 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
5019 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5020 /* Remove the NIC from promiscuous mode */
5021 add
= &bar0
->mac_cfg
;
5022 val64
= readq(&bar0
->mac_cfg
);
5023 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5025 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5026 writel((u32
) val64
, add
);
5027 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5028 writel((u32
) (val64
>> 32), (add
+ 4));
5030 if (vlan_tag_strip
!= 0) {
5031 val64
= readq(&bar0
->rx_pa_cfg
);
5032 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5033 writeq(val64
, &bar0
->rx_pa_cfg
);
5034 vlan_strip_flag
= 1;
5037 val64
= readq(&bar0
->mac_cfg
);
5038 sp
->promisc_flg
= 0;
5039 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
5043 /* Update individual M_CAST address list */
5044 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
5046 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5047 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
5049 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
5050 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
5054 prev_cnt
= sp
->mc_addr_count
;
5055 sp
->mc_addr_count
= dev
->mc_count
;
5057 /* Clear out the previous list of Mc in the H/W. */
5058 for (i
= 0; i
< prev_cnt
; i
++) {
5059 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5060 &bar0
->rmac_addr_data0_mem
);
5061 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5062 &bar0
->rmac_addr_data1_mem
);
5063 val64
= RMAC_ADDR_CMD_MEM_WE
|
5064 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5065 RMAC_ADDR_CMD_MEM_OFFSET
5066 (config
->mc_start_offset
+ i
);
5067 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5069 /* Wait for command completes */
5070 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5071 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5073 DBG_PRINT(ERR_DBG
, "%s: Adding ",
5075 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
5080 /* Create the new Rx filter list and update the same in H/W. */
5081 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
5082 i
++, mclist
= mclist
->next
) {
5083 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
5086 for (j
= 0; j
< ETH_ALEN
; j
++) {
5087 mac_addr
|= mclist
->dmi_addr
[j
];
5091 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5092 &bar0
->rmac_addr_data0_mem
);
5093 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5094 &bar0
->rmac_addr_data1_mem
);
5095 val64
= RMAC_ADDR_CMD_MEM_WE
|
5096 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5097 RMAC_ADDR_CMD_MEM_OFFSET
5098 (i
+ config
->mc_start_offset
);
5099 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5101 /* Wait for command completes */
5102 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5103 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5105 DBG_PRINT(ERR_DBG
, "%s: Adding ",
5107 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
5114 /* read from CAM unicast & multicast addresses and store it in
5115 * def_mac_addr structure
5117 void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5121 struct config_param
*config
= &sp
->config
;
5123 /* store unicast & multicast mac addresses */
5124 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5125 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5126 /* if read fails disable the entry */
5127 if (mac_addr
== FAILURE
)
5128 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5129 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5133 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5134 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5137 struct config_param
*config
= &sp
->config
;
5138 /* restore unicast mac address */
5139 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5140 do_s2io_prog_unicast(sp
->dev
,
5141 sp
->def_mac_addr
[offset
].mac_addr
);
5143 /* restore multicast mac address */
5144 for (offset
= config
->mc_start_offset
;
5145 offset
< config
->max_mc_addr
; offset
++)
5146 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5149 /* add a multicast MAC address to CAM */
5150 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5154 struct config_param
*config
= &sp
->config
;
5156 for (i
= 0; i
< ETH_ALEN
; i
++) {
5158 mac_addr
|= addr
[i
];
5160 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5163 /* check if the multicast mac already preset in CAM */
5164 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5166 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5167 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5170 if (tmp64
== mac_addr
)
5173 if (i
== config
->max_mc_addr
) {
5175 "CAM full no space left for multicast MAC\n");
5178 /* Update the internal structure with this new mac address */
5179 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5181 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5184 /* add MAC address to CAM */
5185 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5188 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5190 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5191 &bar0
->rmac_addr_data0_mem
);
5194 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5195 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5196 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5198 /* Wait till command completes */
5199 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5200 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5202 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5207 /* deletes a specified unicast/multicast mac entry from CAM */
5208 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5211 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5212 struct config_param
*config
= &sp
->config
;
5215 offset
< config
->max_mc_addr
; offset
++) {
5216 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5217 if (tmp64
== addr
) {
5218 /* disable the entry by writing 0xffffffffffffULL */
5219 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5221 /* store the new mac list from CAM */
5222 do_s2io_store_unicast_mc(sp
);
5226 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5227 (unsigned long long)addr
);
5231 /* read mac entries from CAM */
5232 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5234 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5235 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5239 RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5240 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5241 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5243 /* Wait till command completes */
5244 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5245 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5247 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5250 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5251 return (tmp64
>> 16);
5255 * s2io_set_mac_addr driver entry point
5258 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5260 struct sockaddr
*addr
= p
;
5262 if (!is_valid_ether_addr(addr
->sa_data
))
5265 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5267 /* store the MAC address in CAM */
5268 return (do_s2io_prog_unicast(dev
, dev
->dev_addr
));
5271 * do_s2io_prog_unicast - Programs the Xframe mac address
5272 * @dev : pointer to the device structure.
5273 * @addr: a uchar pointer to the new mac address which is to be set.
5274 * Description : This procedure will program the Xframe to receive
5275 * frames with new Mac Address
5276 * Return value: SUCCESS on success and an appropriate (-)ve integer
5277 * as defined in errno.h file on failure.
5280 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5282 struct s2io_nic
*sp
= dev
->priv
;
5283 register u64 mac_addr
= 0, perm_addr
= 0;
5286 struct config_param
*config
= &sp
->config
;
5289 * Set the new MAC address as the new unicast filter and reflect this
5290 * change on the device address registered with the OS. It will be
5293 for (i
= 0; i
< ETH_ALEN
; i
++) {
5295 mac_addr
|= addr
[i
];
5297 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5300 /* check if the dev_addr is different than perm_addr */
5301 if (mac_addr
== perm_addr
)
5304 /* check if the mac already preset in CAM */
5305 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5306 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5307 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5310 if (tmp64
== mac_addr
) {
5312 "MAC addr:0x%llx already present in CAM\n",
5313 (unsigned long long)mac_addr
);
5317 if (i
== config
->max_mac_addr
) {
5318 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5321 /* Update the internal structure with this new mac address */
5322 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5323 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5327 * s2io_ethtool_sset - Sets different link parameters.
5328 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5329 * @info: pointer to the structure with parameters given by ethtool to set
5332 * The function sets different link parameters provided by the user onto
5338 static int s2io_ethtool_sset(struct net_device
*dev
,
5339 struct ethtool_cmd
*info
)
5341 struct s2io_nic
*sp
= dev
->priv
;
5342 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5343 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
5346 s2io_close(sp
->dev
);
5354 * s2io_ethtol_gset - Return link specific information.
5355 * @sp : private member of the device structure, pointer to the
5356 * s2io_nic structure.
5357 * @info : pointer to the structure with parameters given by ethtool
5358 * to return link information.
5360 * Returns link specific information like speed, duplex etc.. to ethtool.
5362 * return 0 on success.
5365 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5367 struct s2io_nic
*sp
= dev
->priv
;
5368 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5369 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5370 info
->port
= PORT_FIBRE
;
5372 /* info->transceiver */
5373 info
->transceiver
= XCVR_EXTERNAL
;
5375 if (netif_carrier_ok(sp
->dev
)) {
5376 info
->speed
= 10000;
5377 info
->duplex
= DUPLEX_FULL
;
5383 info
->autoneg
= AUTONEG_DISABLE
;
5388 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5389 * @sp : private member of the device structure, which is a pointer to the
5390 * s2io_nic structure.
5391 * @info : pointer to the structure with parameters given by ethtool to
5392 * return driver information.
5394 * Returns driver specefic information like name, version etc.. to ethtool.
5399 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5400 struct ethtool_drvinfo
*info
)
5402 struct s2io_nic
*sp
= dev
->priv
;
5404 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5405 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5406 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5407 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5408 info
->regdump_len
= XENA_REG_SPACE
;
5409 info
->eedump_len
= XENA_EEPROM_SPACE
;
5413 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5414 * @sp: private member of the device structure, which is a pointer to the
5415 * s2io_nic structure.
5416 * @regs : pointer to the structure with parameters given by ethtool for
5417 * dumping the registers.
5418 * @reg_space: The input argumnet into which all the registers are dumped.
5420 * Dumps the entire register space of xFrame NIC into the user given
5426 static void s2io_ethtool_gregs(struct net_device
*dev
,
5427 struct ethtool_regs
*regs
, void *space
)
5431 u8
*reg_space
= (u8
*) space
;
5432 struct s2io_nic
*sp
= dev
->priv
;
5434 regs
->len
= XENA_REG_SPACE
;
5435 regs
->version
= sp
->pdev
->subsystem_device
;
5437 for (i
= 0; i
< regs
->len
; i
+= 8) {
5438 reg
= readq(sp
->bar0
+ i
);
5439 memcpy((reg_space
+ i
), ®
, 8);
5444 * s2io_phy_id - timer function that alternates adapter LED.
5445 * @data : address of the private member of the device structure, which
5446 * is a pointer to the s2io_nic structure, provided as an u32.
5447 * Description: This is actually the timer function that alternates the
5448 * adapter LED bit of the adapter control bit to set/reset every time on
5449 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5450 * once every second.
5452 static void s2io_phy_id(unsigned long data
)
5454 struct s2io_nic
*sp
= (struct s2io_nic
*) data
;
5455 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5459 subid
= sp
->pdev
->subsystem_device
;
5460 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5461 ((subid
& 0xFF) >= 0x07)) {
5462 val64
= readq(&bar0
->gpio_control
);
5463 val64
^= GPIO_CTRL_GPIO_0
;
5464 writeq(val64
, &bar0
->gpio_control
);
5466 val64
= readq(&bar0
->adapter_control
);
5467 val64
^= ADAPTER_LED_ON
;
5468 writeq(val64
, &bar0
->adapter_control
);
5471 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5475 * s2io_ethtool_idnic - To physically identify the nic on the system.
5476 * @sp : private member of the device structure, which is a pointer to the
5477 * s2io_nic structure.
5478 * @id : pointer to the structure with identification parameters given by
5480 * Description: Used to physically identify the NIC on the system.
5481 * The Link LED will blink for a time specified by the user for
5483 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5484 * identification is possible only if it's link is up.
5486 * int , returns 0 on success
5489 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5491 u64 val64
= 0, last_gpio_ctrl_val
;
5492 struct s2io_nic
*sp
= dev
->priv
;
5493 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5496 subid
= sp
->pdev
->subsystem_device
;
5497 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5498 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
5499 ((subid
& 0xFF) < 0x07)) {
5500 val64
= readq(&bar0
->adapter_control
);
5501 if (!(val64
& ADAPTER_CNTL_EN
)) {
5503 "Adapter Link down, cannot blink LED\n");
5507 if (sp
->id_timer
.function
== NULL
) {
5508 init_timer(&sp
->id_timer
);
5509 sp
->id_timer
.function
= s2io_phy_id
;
5510 sp
->id_timer
.data
= (unsigned long) sp
;
5512 mod_timer(&sp
->id_timer
, jiffies
);
5514 msleep_interruptible(data
* HZ
);
5516 msleep_interruptible(MAX_FLICKER_TIME
);
5517 del_timer_sync(&sp
->id_timer
);
5519 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5520 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5521 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5527 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5528 struct ethtool_ringparam
*ering
)
5530 struct s2io_nic
*sp
= dev
->priv
;
5531 int i
,tx_desc_count
=0,rx_desc_count
=0;
5533 if (sp
->rxd_mode
== RXD_MODE_1
)
5534 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5535 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5536 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5538 ering
->tx_max_pending
= MAX_TX_DESC
;
5539 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5540 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5542 DBG_PRINT(INFO_DBG
,"\nmax txds : %d\n",sp
->config
.max_txds
);
5543 ering
->tx_pending
= tx_desc_count
;
5545 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5546 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5548 ering
->rx_pending
= rx_desc_count
;
5550 ering
->rx_mini_max_pending
= 0;
5551 ering
->rx_mini_pending
= 0;
5552 if(sp
->rxd_mode
== RXD_MODE_1
)
5553 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5554 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5555 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5556 ering
->rx_jumbo_pending
= rx_desc_count
;
5560 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5561 * @sp : private member of the device structure, which is a pointer to the
5562 * s2io_nic structure.
5563 * @ep : pointer to the structure with pause parameters given by ethtool.
5565 * Returns the Pause frame generation and reception capability of the NIC.
5569 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5570 struct ethtool_pauseparam
*ep
)
5573 struct s2io_nic
*sp
= dev
->priv
;
5574 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5576 val64
= readq(&bar0
->rmac_pause_cfg
);
5577 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5578 ep
->tx_pause
= TRUE
;
5579 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5580 ep
->rx_pause
= TRUE
;
5581 ep
->autoneg
= FALSE
;
5585 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5586 * @sp : private member of the device structure, which is a pointer to the
5587 * s2io_nic structure.
5588 * @ep : pointer to the structure with pause parameters given by ethtool.
5590 * It can be used to set or reset Pause frame generation or reception
5591 * support of the NIC.
5593 * int, returns 0 on Success
5596 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5597 struct ethtool_pauseparam
*ep
)
5600 struct s2io_nic
*sp
= dev
->priv
;
5601 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5603 val64
= readq(&bar0
->rmac_pause_cfg
);
5605 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5607 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5609 val64
|= RMAC_PAUSE_RX_ENABLE
;
5611 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5612 writeq(val64
, &bar0
->rmac_pause_cfg
);
5617 * read_eeprom - reads 4 bytes of data from user given offset.
5618 * @sp : private member of the device structure, which is a pointer to the
5619 * s2io_nic structure.
5620 * @off : offset at which the data must be written
5621 * @data : Its an output parameter where the data read at the given
5624 * Will read 4 bytes of data from the user given offset and return the
5626 * NOTE: Will allow to read only part of the EEPROM visible through the
5629 * -1 on failure and 0 on success.
5632 #define S2IO_DEV_ID 5
5633 static int read_eeprom(struct s2io_nic
* sp
, int off
, u64
* data
)
5638 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5640 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5641 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5642 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
5643 I2C_CONTROL_CNTL_START
;
5644 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5646 while (exit_cnt
< 5) {
5647 val64
= readq(&bar0
->i2c_control
);
5648 if (I2C_CONTROL_CNTL_END(val64
)) {
5649 *data
= I2C_CONTROL_GET_DATA(val64
);
5658 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5659 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5660 SPI_CONTROL_BYTECNT(0x3) |
5661 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5662 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5663 val64
|= SPI_CONTROL_REQ
;
5664 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5665 while (exit_cnt
< 5) {
5666 val64
= readq(&bar0
->spi_control
);
5667 if (val64
& SPI_CONTROL_NACK
) {
5670 } else if (val64
& SPI_CONTROL_DONE
) {
5671 *data
= readq(&bar0
->spi_data
);
5684 * write_eeprom - actually writes the relevant part of the data value.
5685 * @sp : private member of the device structure, which is a pointer to the
5686 * s2io_nic structure.
5687 * @off : offset at which the data must be written
5688 * @data : The data that is to be written
5689 * @cnt : Number of bytes of the data that are actually to be written into
5690 * the Eeprom. (max of 3)
5692 * Actually writes the relevant part of the data value into the Eeprom
5693 * through the I2C bus.
5695 * 0 on success, -1 on failure.
5698 static int write_eeprom(struct s2io_nic
* sp
, int off
, u64 data
, int cnt
)
5700 int exit_cnt
= 0, ret
= -1;
5702 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5704 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5705 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5706 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
5707 I2C_CONTROL_CNTL_START
;
5708 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5710 while (exit_cnt
< 5) {
5711 val64
= readq(&bar0
->i2c_control
);
5712 if (I2C_CONTROL_CNTL_END(val64
)) {
5713 if (!(val64
& I2C_CONTROL_NACK
))
5722 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5723 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5724 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
5726 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5727 SPI_CONTROL_BYTECNT(write_cnt
) |
5728 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5729 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5730 val64
|= SPI_CONTROL_REQ
;
5731 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5732 while (exit_cnt
< 5) {
5733 val64
= readq(&bar0
->spi_control
);
5734 if (val64
& SPI_CONTROL_NACK
) {
5737 } else if (val64
& SPI_CONTROL_DONE
) {
5747 static void s2io_vpd_read(struct s2io_nic
*nic
)
5751 int i
=0, cnt
, fail
= 0;
5752 int vpd_addr
= 0x80;
5754 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5755 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5759 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5762 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5764 vpd_data
= kmalloc(256, GFP_KERNEL
);
5766 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
5769 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
+= 256;
5771 for (i
= 0; i
< 256; i
+=4 ) {
5772 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5773 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5774 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5775 for (cnt
= 0; cnt
<5; cnt
++) {
5777 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5782 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5786 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5787 (u32
*)&vpd_data
[i
]);
5791 /* read serial number of adapter */
5792 for (cnt
= 0; cnt
< 256; cnt
++) {
5793 if ((vpd_data
[cnt
] == 'S') &&
5794 (vpd_data
[cnt
+1] == 'N') &&
5795 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5796 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5797 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5804 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5805 memset(nic
->product_name
, 0, vpd_data
[1]);
5806 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5809 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= 256;
5813 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5814 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5815 * @eeprom : pointer to the user level structure provided by ethtool,
5816 * containing all relevant information.
5817 * @data_buf : user defined value to be written into Eeprom.
5818 * Description: Reads the values stored in the Eeprom at given offset
5819 * for a given length. Stores these values int the input argument data
5820 * buffer 'data_buf' and returns these to the caller (ethtool.)
5825 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5826 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5830 struct s2io_nic
*sp
= dev
->priv
;
5832 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5834 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5835 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5837 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5838 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5839 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5843 memcpy((data_buf
+ i
), &valid
, 4);
5849 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5850 * @sp : private member of the device structure, which is a pointer to the
5851 * s2io_nic structure.
5852 * @eeprom : pointer to the user level structure provided by ethtool,
5853 * containing all relevant information.
5854 * @data_buf ; user defined value to be written into Eeprom.
5856 * Tries to write the user provided value in the Eeprom, at the offset
5857 * given by the user.
5859 * 0 on success, -EFAULT on failure.
5862 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5863 struct ethtool_eeprom
*eeprom
,
5866 int len
= eeprom
->len
, cnt
= 0;
5867 u64 valid
= 0, data
;
5868 struct s2io_nic
*sp
= dev
->priv
;
5870 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5872 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5873 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5879 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5881 valid
= (u32
) (data
<< 24);
5885 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5887 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5889 "write into the specified offset\n");
5900 * s2io_register_test - reads and writes into all clock domains.
5901 * @sp : private member of the device structure, which is a pointer to the
5902 * s2io_nic structure.
5903 * @data : variable that returns the result of each of the test conducted b
5906 * Read and write into all clock domains. The NIC has 3 clock domains,
5907 * see that registers in all the three regions are accessible.
5912 static int s2io_register_test(struct s2io_nic
* sp
, uint64_t * data
)
5914 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5915 u64 val64
= 0, exp_val
;
5918 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5919 if (val64
!= 0x123456789abcdefULL
) {
5921 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5924 val64
= readq(&bar0
->rmac_pause_cfg
);
5925 if (val64
!= 0xc000ffff00000000ULL
) {
5927 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5930 val64
= readq(&bar0
->rx_queue_cfg
);
5931 if (sp
->device_type
== XFRAME_II_DEVICE
)
5932 exp_val
= 0x0404040404040404ULL
;
5934 exp_val
= 0x0808080808080808ULL
;
5935 if (val64
!= exp_val
) {
5937 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5940 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5941 if (val64
!= 0x000000001923141EULL
) {
5943 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5946 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5947 writeq(val64
, &bar0
->xmsi_data
);
5948 val64
= readq(&bar0
->xmsi_data
);
5949 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5951 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5954 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5955 writeq(val64
, &bar0
->xmsi_data
);
5956 val64
= readq(&bar0
->xmsi_data
);
5957 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5959 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5967 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5968 * @sp : private member of the device structure, which is a pointer to the
5969 * s2io_nic structure.
5970 * @data:variable that returns the result of each of the test conducted by
5973 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5979 static int s2io_eeprom_test(struct s2io_nic
* sp
, uint64_t * data
)
5982 u64 ret_data
, org_4F0
, org_7F0
;
5983 u8 saved_4F0
= 0, saved_7F0
= 0;
5984 struct net_device
*dev
= sp
->dev
;
5986 /* Test Write Error at offset 0 */
5987 /* Note that SPI interface allows write access to all areas
5988 * of EEPROM. Hence doing all negative testing only for Xframe I.
5990 if (sp
->device_type
== XFRAME_I_DEVICE
)
5991 if (!write_eeprom(sp
, 0, 0, 3))
5994 /* Save current values at offsets 0x4F0 and 0x7F0 */
5995 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5997 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
6000 /* Test Write at offset 4f0 */
6001 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
6003 if (read_eeprom(sp
, 0x4F0, &ret_data
))
6006 if (ret_data
!= 0x012345) {
6007 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
6008 "Data written %llx Data read %llx\n",
6009 dev
->name
, (unsigned long long)0x12345,
6010 (unsigned long long)ret_data
);
6014 /* Reset the EEPROM data go FFFF */
6015 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
6017 /* Test Write Request Error at offset 0x7c */
6018 if (sp
->device_type
== XFRAME_I_DEVICE
)
6019 if (!write_eeprom(sp
, 0x07C, 0, 3))
6022 /* Test Write Request at offset 0x7f0 */
6023 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6025 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6028 if (ret_data
!= 0x012345) {
6029 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6030 "Data written %llx Data read %llx\n",
6031 dev
->name
, (unsigned long long)0x12345,
6032 (unsigned long long)ret_data
);
6036 /* Reset the EEPROM data go FFFF */
6037 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6039 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6040 /* Test Write Error at offset 0x80 */
6041 if (!write_eeprom(sp
, 0x080, 0, 3))
6044 /* Test Write Error at offset 0xfc */
6045 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6048 /* Test Write Error at offset 0x100 */
6049 if (!write_eeprom(sp
, 0x100, 0, 3))
6052 /* Test Write Error at offset 4ec */
6053 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6057 /* Restore values at offsets 0x4F0 and 0x7F0 */
6059 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6061 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6068 * s2io_bist_test - invokes the MemBist test of the card .
6069 * @sp : private member of the device structure, which is a pointer to the
6070 * s2io_nic structure.
6071 * @data:variable that returns the result of each of the test conducted by
6074 * This invokes the MemBist test of the card. We give around
6075 * 2 secs time for the Test to complete. If it's still not complete
6076 * within this peiod, we consider that the test failed.
6078 * 0 on success and -1 on failure.
6081 static int s2io_bist_test(struct s2io_nic
* sp
, uint64_t * data
)
6084 int cnt
= 0, ret
= -1;
6086 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6087 bist
|= PCI_BIST_START
;
6088 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6091 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6092 if (!(bist
& PCI_BIST_START
)) {
6093 *data
= (bist
& PCI_BIST_CODE_MASK
);
6105 * s2io-link_test - verifies the link state of the nic
6106 * @sp ; private member of the device structure, which is a pointer to the
6107 * s2io_nic structure.
6108 * @data: variable that returns the result of each of the test conducted by
6111 * The function verifies the link state of the NIC and updates the input
6112 * argument 'data' appropriately.
6117 static int s2io_link_test(struct s2io_nic
* sp
, uint64_t * data
)
6119 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6122 val64
= readq(&bar0
->adapter_status
);
6123 if(!(LINK_IS_UP(val64
)))
6132 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6133 * @sp - private member of the device structure, which is a pointer to the
6134 * s2io_nic structure.
6135 * @data - variable that returns the result of each of the test
6136 * conducted by the driver.
6138 * This is one of the offline test that tests the read and write
6139 * access to the RldRam chip on the NIC.
6144 static int s2io_rldram_test(struct s2io_nic
* sp
, uint64_t * data
)
6146 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6148 int cnt
, iteration
= 0, test_fail
= 0;
6150 val64
= readq(&bar0
->adapter_control
);
6151 val64
&= ~ADAPTER_ECC_EN
;
6152 writeq(val64
, &bar0
->adapter_control
);
6154 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6155 val64
|= MC_RLDRAM_TEST_MODE
;
6156 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6158 val64
= readq(&bar0
->mc_rldram_mrs
);
6159 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6160 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6162 val64
|= MC_RLDRAM_MRS_ENABLE
;
6163 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6165 while (iteration
< 2) {
6166 val64
= 0x55555555aaaa0000ULL
;
6167 if (iteration
== 1) {
6168 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6170 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6172 val64
= 0xaaaa5a5555550000ULL
;
6173 if (iteration
== 1) {
6174 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6176 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6178 val64
= 0x55aaaaaaaa5a0000ULL
;
6179 if (iteration
== 1) {
6180 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6182 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6184 val64
= (u64
) (0x0000003ffffe0100ULL
);
6185 writeq(val64
, &bar0
->mc_rldram_test_add
);
6187 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
6189 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6191 for (cnt
= 0; cnt
< 5; cnt
++) {
6192 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6193 if (val64
& MC_RLDRAM_TEST_DONE
)
6201 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6202 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6204 for (cnt
= 0; cnt
< 5; cnt
++) {
6205 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6206 if (val64
& MC_RLDRAM_TEST_DONE
)
6214 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6215 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6223 /* Bring the adapter out of test mode */
6224 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6230 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6231 * @sp : private member of the device structure, which is a pointer to the
6232 * s2io_nic structure.
6233 * @ethtest : pointer to a ethtool command specific structure that will be
6234 * returned to the user.
6235 * @data : variable that returns the result of each of the test
6236 * conducted by the driver.
6238 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6239 * the health of the card.
6244 static void s2io_ethtool_test(struct net_device
*dev
,
6245 struct ethtool_test
*ethtest
,
6248 struct s2io_nic
*sp
= dev
->priv
;
6249 int orig_state
= netif_running(sp
->dev
);
6251 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6252 /* Offline Tests. */
6254 s2io_close(sp
->dev
);
6256 if (s2io_register_test(sp
, &data
[0]))
6257 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6261 if (s2io_rldram_test(sp
, &data
[3]))
6262 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6266 if (s2io_eeprom_test(sp
, &data
[1]))
6267 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6269 if (s2io_bist_test(sp
, &data
[4]))
6270 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6280 "%s: is not up, cannot run test\n",
6289 if (s2io_link_test(sp
, &data
[2]))
6290 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6299 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6300 struct ethtool_stats
*estats
,
6304 struct s2io_nic
*sp
= dev
->priv
;
6305 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
6307 s2io_updt_stats(sp
);
6309 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
6310 le32_to_cpu(stat_info
->tmac_frms
);
6312 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
6313 le32_to_cpu(stat_info
->tmac_data_octets
);
6314 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
6316 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
6317 le32_to_cpu(stat_info
->tmac_mcst_frms
);
6319 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
6320 le32_to_cpu(stat_info
->tmac_bcst_frms
);
6321 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
6323 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
6324 le32_to_cpu(stat_info
->tmac_ttl_octets
);
6326 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
6327 le32_to_cpu(stat_info
->tmac_ucst_frms
);
6329 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
6330 le32_to_cpu(stat_info
->tmac_nucst_frms
);
6332 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
6333 le32_to_cpu(stat_info
->tmac_any_err_frms
);
6334 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
6335 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
6337 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
6338 le32_to_cpu(stat_info
->tmac_vld_ip
);
6340 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
6341 le32_to_cpu(stat_info
->tmac_drop_ip
);
6343 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
6344 le32_to_cpu(stat_info
->tmac_icmp
);
6346 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
6347 le32_to_cpu(stat_info
->tmac_rst_tcp
);
6348 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
6349 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
6350 le32_to_cpu(stat_info
->tmac_udp
);
6352 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
6353 le32_to_cpu(stat_info
->rmac_vld_frms
);
6355 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
6356 le32_to_cpu(stat_info
->rmac_data_octets
);
6357 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
6358 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
6360 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
6361 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
6363 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
6364 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
6365 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
6366 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
6367 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
6368 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
6369 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
6371 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
6372 le32_to_cpu(stat_info
->rmac_ttl_octets
);
6374 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
6375 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
6377 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
6378 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
6380 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
6381 le32_to_cpu(stat_info
->rmac_discarded_frms
);
6383 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
6384 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
6385 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
6386 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
6388 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
6389 le32_to_cpu(stat_info
->rmac_usized_frms
);
6391 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
6392 le32_to_cpu(stat_info
->rmac_osized_frms
);
6394 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
6395 le32_to_cpu(stat_info
->rmac_frag_frms
);
6397 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
6398 le32_to_cpu(stat_info
->rmac_jabber_frms
);
6399 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
6400 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
6401 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
6402 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
6403 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
6404 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
6406 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
6407 le32_to_cpu(stat_info
->rmac_ip
);
6408 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
6409 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
6411 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
6412 le32_to_cpu(stat_info
->rmac_drop_ip
);
6414 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
6415 le32_to_cpu(stat_info
->rmac_icmp
);
6416 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
6418 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
6419 le32_to_cpu(stat_info
->rmac_udp
);
6421 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
6422 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
6423 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
6424 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
6425 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
6426 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
6427 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
6428 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
6429 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
6430 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
6431 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
6432 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
6433 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
6434 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
6435 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
6436 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
6437 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
6438 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
6439 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
6441 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
6442 le32_to_cpu(stat_info
->rmac_pause_cnt
);
6443 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
6444 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
6446 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
6447 le32_to_cpu(stat_info
->rmac_accepted_ip
);
6448 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
6449 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
6450 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
6451 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
6452 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
6453 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
6454 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
6455 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
6456 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
6457 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
6458 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
6459 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
6460 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
6461 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
6462 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
6463 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
6464 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
6465 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
6466 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
6468 /* Enhanced statistics exist only for Hercules */
6469 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6471 le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
6473 le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
6475 le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
6476 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
6477 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
6478 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
6479 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
6480 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
6481 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
6482 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
6483 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
6484 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
6485 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
6486 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
6487 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
6488 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
6492 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
6493 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
6494 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
6495 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
6496 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
6497 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
6498 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6499 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
[k
];
6500 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
6501 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
6502 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
6503 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
6504 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
6505 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
6506 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
6507 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
6508 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
6509 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
6510 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
6511 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
6512 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
6513 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
6514 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
6515 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
6516 if (stat_info
->sw_stat
.num_aggregations
) {
6517 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
6520 * Since 64-bit divide does not work on all platforms,
6521 * do repeated subtraction.
6523 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
6524 tmp
-= stat_info
->sw_stat
.num_aggregations
;
6527 tmp_stats
[i
++] = count
;
6531 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_alloc_fail_cnt
;
6532 tmp_stats
[i
++] = stat_info
->sw_stat
.pci_map_fail_cnt
;
6533 tmp_stats
[i
++] = stat_info
->sw_stat
.watchdog_timer_cnt
;
6534 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_allocated
;
6535 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_freed
;
6536 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_cnt
;
6537 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_cnt
;
6538 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_time
;
6539 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_time
;
6541 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_buf_abort_cnt
;
6542 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_desc_abort_cnt
;
6543 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_parity_err_cnt
;
6544 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_link_loss_cnt
;
6545 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_list_proc_err_cnt
;
6547 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_err_cnt
;
6548 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_abort_cnt
;
6549 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_abort_cnt
;
6550 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rda_fail_cnt
;
6551 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_prot_cnt
;
6552 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_fcs_err_cnt
;
6553 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_buf_size_err_cnt
;
6554 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rxd_corrupt_cnt
;
6555 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_err_cnt
;
6556 tmp_stats
[i
++] = stat_info
->sw_stat
.tda_err_cnt
;
6557 tmp_stats
[i
++] = stat_info
->sw_stat
.pfc_err_cnt
;
6558 tmp_stats
[i
++] = stat_info
->sw_stat
.pcc_err_cnt
;
6559 tmp_stats
[i
++] = stat_info
->sw_stat
.tti_err_cnt
;
6560 tmp_stats
[i
++] = stat_info
->sw_stat
.tpa_err_cnt
;
6561 tmp_stats
[i
++] = stat_info
->sw_stat
.sm_err_cnt
;
6562 tmp_stats
[i
++] = stat_info
->sw_stat
.lso_err_cnt
;
6563 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_tmac_err_cnt
;
6564 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_rmac_err_cnt
;
6565 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_txgxs_err_cnt
;
6566 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_rxgxs_err_cnt
;
6567 tmp_stats
[i
++] = stat_info
->sw_stat
.rc_err_cnt
;
6568 tmp_stats
[i
++] = stat_info
->sw_stat
.prc_pcix_err_cnt
;
6569 tmp_stats
[i
++] = stat_info
->sw_stat
.rpa_err_cnt
;
6570 tmp_stats
[i
++] = stat_info
->sw_stat
.rda_err_cnt
;
6571 tmp_stats
[i
++] = stat_info
->sw_stat
.rti_err_cnt
;
6572 tmp_stats
[i
++] = stat_info
->sw_stat
.mc_err_cnt
;
6575 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6577 return (XENA_REG_SPACE
);
6581 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
6583 struct s2io_nic
*sp
= dev
->priv
;
6585 return (sp
->rx_csum
);
6588 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6590 struct s2io_nic
*sp
= dev
->priv
;
6600 static int s2io_get_eeprom_len(struct net_device
*dev
)
6602 return (XENA_EEPROM_SPACE
);
6605 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6607 struct s2io_nic
*sp
= dev
->priv
;
6611 return S2IO_TEST_LEN
;
6613 switch(sp
->device_type
) {
6614 case XFRAME_I_DEVICE
:
6615 return XFRAME_I_STAT_LEN
;
6616 case XFRAME_II_DEVICE
:
6617 return XFRAME_II_STAT_LEN
;
6626 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6627 u32 stringset
, u8
* data
)
6630 struct s2io_nic
*sp
= dev
->priv
;
6632 switch (stringset
) {
6634 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6637 stat_size
= sizeof(ethtool_xena_stats_keys
);
6638 memcpy(data
, ðtool_xena_stats_keys
,stat_size
);
6639 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6640 memcpy(data
+ stat_size
,
6641 ðtool_enhanced_stats_keys
,
6642 sizeof(ethtool_enhanced_stats_keys
));
6643 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6646 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6647 sizeof(ethtool_driver_stats_keys
));
6651 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6654 dev
->features
|= NETIF_F_IP_CSUM
;
6656 dev
->features
&= ~NETIF_F_IP_CSUM
;
6661 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6663 return (dev
->features
& NETIF_F_TSO
) != 0;
6665 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6668 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6670 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6675 static const struct ethtool_ops netdev_ethtool_ops
= {
6676 .get_settings
= s2io_ethtool_gset
,
6677 .set_settings
= s2io_ethtool_sset
,
6678 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6679 .get_regs_len
= s2io_ethtool_get_regs_len
,
6680 .get_regs
= s2io_ethtool_gregs
,
6681 .get_link
= ethtool_op_get_link
,
6682 .get_eeprom_len
= s2io_get_eeprom_len
,
6683 .get_eeprom
= s2io_ethtool_geeprom
,
6684 .set_eeprom
= s2io_ethtool_seeprom
,
6685 .get_ringparam
= s2io_ethtool_gringparam
,
6686 .get_pauseparam
= s2io_ethtool_getpause_data
,
6687 .set_pauseparam
= s2io_ethtool_setpause_data
,
6688 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6689 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6690 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6691 .set_sg
= ethtool_op_set_sg
,
6692 .get_tso
= s2io_ethtool_op_get_tso
,
6693 .set_tso
= s2io_ethtool_op_set_tso
,
6694 .set_ufo
= ethtool_op_set_ufo
,
6695 .self_test
= s2io_ethtool_test
,
6696 .get_strings
= s2io_ethtool_get_strings
,
6697 .phys_id
= s2io_ethtool_idnic
,
6698 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6699 .get_sset_count
= s2io_get_sset_count
,
6703 * s2io_ioctl - Entry point for the Ioctl
6704 * @dev : Device pointer.
6705 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6706 * a proprietary structure used to pass information to the driver.
6707 * @cmd : This is used to distinguish between the different commands that
6708 * can be passed to the IOCTL functions.
6710 * Currently there are no special functionality supported in IOCTL, hence
6711 * function always return EOPNOTSUPPORTED
6714 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6720 * s2io_change_mtu - entry point to change MTU size for the device.
6721 * @dev : device pointer.
6722 * @new_mtu : the new MTU size for the device.
6723 * Description: A driver entry point to change MTU size for the device.
6724 * Before changing the MTU the device must be stopped.
6726 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6730 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6732 struct s2io_nic
*sp
= dev
->priv
;
6735 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6736 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
6742 if (netif_running(dev
)) {
6743 s2io_stop_all_tx_queue(sp
);
6745 ret
= s2io_card_up(sp
);
6747 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6751 s2io_wake_all_tx_queue(sp
);
6752 } else { /* Device is down */
6753 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6754 u64 val64
= new_mtu
;
6756 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6763 * s2io_set_link - Set the LInk status
6764 * @data: long pointer to device private structue
6765 * Description: Sets the link status for the adapter
6768 static void s2io_set_link(struct work_struct
*work
)
6770 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
, set_link_task
);
6771 struct net_device
*dev
= nic
->dev
;
6772 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6778 if (!netif_running(dev
))
6781 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6782 /* The card is being reset, no point doing anything */
6786 subid
= nic
->pdev
->subsystem_device
;
6787 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6789 * Allow a small delay for the NICs self initiated
6790 * cleanup to complete.
6795 val64
= readq(&bar0
->adapter_status
);
6796 if (LINK_IS_UP(val64
)) {
6797 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6798 if (verify_xena_quiescence(nic
)) {
6799 val64
= readq(&bar0
->adapter_control
);
6800 val64
|= ADAPTER_CNTL_EN
;
6801 writeq(val64
, &bar0
->adapter_control
);
6802 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6803 nic
->device_type
, subid
)) {
6804 val64
= readq(&bar0
->gpio_control
);
6805 val64
|= GPIO_CTRL_GPIO_0
;
6806 writeq(val64
, &bar0
->gpio_control
);
6807 val64
= readq(&bar0
->gpio_control
);
6809 val64
|= ADAPTER_LED_ON
;
6810 writeq(val64
, &bar0
->adapter_control
);
6812 nic
->device_enabled_once
= TRUE
;
6814 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
6815 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
6816 s2io_stop_all_tx_queue(nic
);
6819 val64
= readq(&bar0
->adapter_control
);
6820 val64
|= ADAPTER_LED_ON
;
6821 writeq(val64
, &bar0
->adapter_control
);
6822 s2io_link(nic
, LINK_UP
);
6824 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6826 val64
= readq(&bar0
->gpio_control
);
6827 val64
&= ~GPIO_CTRL_GPIO_0
;
6828 writeq(val64
, &bar0
->gpio_control
);
6829 val64
= readq(&bar0
->gpio_control
);
6832 val64
= readq(&bar0
->adapter_control
);
6833 val64
= val64
&(~ADAPTER_LED_ON
);
6834 writeq(val64
, &bar0
->adapter_control
);
6835 s2io_link(nic
, LINK_DOWN
);
6837 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6843 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6845 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6846 u64
*temp2
, int size
)
6848 struct net_device
*dev
= sp
->dev
;
6849 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6851 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6852 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6855 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6857 * As Rx frame are not going to be processed,
6858 * using same mapped address for the Rxd
6861 rxdp1
->Buffer0_ptr
= *temp0
;
6863 *skb
= dev_alloc_skb(size
);
6865 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6866 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6867 DBG_PRINT(INFO_DBG
, "1 buf mode SKBs\n");
6868 sp
->mac_control
.stats_info
->sw_stat
. \
6869 mem_alloc_fail_cnt
++;
6872 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6873 += (*skb
)->truesize
;
6874 /* storing the mapped addr in a temp variable
6875 * such it will be used for next rxd whose
6876 * Host Control is NULL
6878 rxdp1
->Buffer0_ptr
= *temp0
=
6879 pci_map_single( sp
->pdev
, (*skb
)->data
,
6880 size
- NET_IP_ALIGN
,
6881 PCI_DMA_FROMDEVICE
);
6882 if (pci_dma_mapping_error(rxdp1
->Buffer0_ptr
))
6883 goto memalloc_failed
;
6884 rxdp
->Host_Control
= (unsigned long) (*skb
);
6886 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6887 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6888 /* Two buffer Mode */
6890 rxdp3
->Buffer2_ptr
= *temp2
;
6891 rxdp3
->Buffer0_ptr
= *temp0
;
6892 rxdp3
->Buffer1_ptr
= *temp1
;
6894 *skb
= dev_alloc_skb(size
);
6896 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6897 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6898 DBG_PRINT(INFO_DBG
, "2 buf mode SKBs\n");
6899 sp
->mac_control
.stats_info
->sw_stat
. \
6900 mem_alloc_fail_cnt
++;
6903 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6904 += (*skb
)->truesize
;
6905 rxdp3
->Buffer2_ptr
= *temp2
=
6906 pci_map_single(sp
->pdev
, (*skb
)->data
,
6908 PCI_DMA_FROMDEVICE
);
6909 if (pci_dma_mapping_error(rxdp3
->Buffer2_ptr
))
6910 goto memalloc_failed
;
6911 rxdp3
->Buffer0_ptr
= *temp0
=
6912 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6913 PCI_DMA_FROMDEVICE
);
6914 if (pci_dma_mapping_error(rxdp3
->Buffer0_ptr
)) {
6915 pci_unmap_single (sp
->pdev
,
6916 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6917 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6918 goto memalloc_failed
;
6920 rxdp
->Host_Control
= (unsigned long) (*skb
);
6922 /* Buffer-1 will be dummy buffer not used */
6923 rxdp3
->Buffer1_ptr
= *temp1
=
6924 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6925 PCI_DMA_FROMDEVICE
);
6926 if (pci_dma_mapping_error(rxdp3
->Buffer1_ptr
)) {
6927 pci_unmap_single (sp
->pdev
,
6928 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6929 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6930 pci_unmap_single (sp
->pdev
,
6931 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6932 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6933 goto memalloc_failed
;
6939 stats
->pci_map_fail_cnt
++;
6940 stats
->mem_freed
+= (*skb
)->truesize
;
6941 dev_kfree_skb(*skb
);
6945 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6948 struct net_device
*dev
= sp
->dev
;
6949 if (sp
->rxd_mode
== RXD_MODE_1
) {
6950 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
6951 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6952 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6953 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6954 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
6958 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6960 int i
, j
, k
, blk_cnt
= 0, size
;
6961 struct mac_info
* mac_control
= &sp
->mac_control
;
6962 struct config_param
*config
= &sp
->config
;
6963 struct net_device
*dev
= sp
->dev
;
6964 struct RxD_t
*rxdp
= NULL
;
6965 struct sk_buff
*skb
= NULL
;
6966 struct buffAdd
*ba
= NULL
;
6967 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6969 /* Calculate the size based on ring mode */
6970 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6971 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6972 if (sp
->rxd_mode
== RXD_MODE_1
)
6973 size
+= NET_IP_ALIGN
;
6974 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6975 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6977 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6978 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
6979 (rxd_count
[sp
->rxd_mode
] +1);
6981 for (j
= 0; j
< blk_cnt
; j
++) {
6982 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6983 rxdp
= mac_control
->rings
[i
].
6984 rx_blocks
[j
].rxds
[k
].virt_addr
;
6985 if(sp
->rxd_mode
== RXD_MODE_3B
)
6986 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
6987 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
,
6988 &skb
,(u64
*)&temp0_64
,
6995 set_rxd_buffer_size(sp
, rxdp
, size
);
6997 /* flip the Ownership bit to Hardware */
6998 rxdp
->Control_1
|= RXD_OWN_XENA
;
7006 static int s2io_add_isr(struct s2io_nic
* sp
)
7009 struct net_device
*dev
= sp
->dev
;
7012 if (sp
->config
.intr_type
== MSI_X
)
7013 ret
= s2io_enable_msi_x(sp
);
7015 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
7016 sp
->config
.intr_type
= INTA
;
7019 /* Store the values of the MSIX table in the struct s2io_nic structure */
7020 store_xmsi_data(sp
);
7022 /* After proper initialization of H/W, register ISR */
7023 if (sp
->config
.intr_type
== MSI_X
) {
7024 int i
, msix_rx_cnt
= 0;
7026 for (i
= 0; i
< sp
->num_entries
; i
++) {
7027 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
7028 if (sp
->s2io_entries
[i
].type
==
7030 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
7032 err
= request_irq(sp
->entries
[i
].vector
,
7033 s2io_msix_ring_handle
, 0,
7035 sp
->s2io_entries
[i
].arg
);
7036 } else if (sp
->s2io_entries
[i
].type
==
7038 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7040 err
= request_irq(sp
->entries
[i
].vector
,
7041 s2io_msix_fifo_handle
, 0,
7043 sp
->s2io_entries
[i
].arg
);
7046 /* if either data or addr is zero print it. */
7047 if (!(sp
->msix_info
[i
].addr
&&
7048 sp
->msix_info
[i
].data
)) {
7050 "%s @Addr:0x%llx Data:0x%llx\n",
7052 (unsigned long long)
7053 sp
->msix_info
[i
].addr
,
7054 (unsigned long long)
7055 ntohl(sp
->msix_info
[i
].data
));
7059 remove_msix_isr(sp
);
7062 "%s:MSI-X-%d registration "
7063 "failed\n", dev
->name
, i
);
7066 "%s: Defaulting to INTA\n",
7068 sp
->config
.intr_type
= INTA
;
7071 sp
->s2io_entries
[i
].in_use
=
7072 MSIX_REGISTERED_SUCCESS
;
7076 printk(KERN_INFO
"MSI-X-RX %d entries enabled\n",
7078 DBG_PRINT(INFO_DBG
, "MSI-X-TX entries enabled"
7079 " through alarm vector\n");
7082 if (sp
->config
.intr_type
== INTA
) {
7083 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7086 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7093 static void s2io_rem_isr(struct s2io_nic
* sp
)
7095 if (sp
->config
.intr_type
== MSI_X
)
7096 remove_msix_isr(sp
);
7098 remove_inta_isr(sp
);
7101 static void do_s2io_card_down(struct s2io_nic
* sp
, int do_io
)
7104 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7105 register u64 val64
= 0;
7106 struct config_param
*config
;
7107 config
= &sp
->config
;
7109 if (!is_s2io_card_up(sp
))
7112 del_timer_sync(&sp
->alarm_timer
);
7113 /* If s2io_set_link task is executing, wait till it completes. */
7114 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
))) {
7117 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7120 if (sp
->config
.napi
) {
7122 if (config
->intr_type
== MSI_X
) {
7123 for (; off
< sp
->config
.rx_ring_num
; off
++)
7124 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7127 napi_disable(&sp
->napi
);
7130 /* disable Tx and Rx traffic on the NIC */
7136 /* Check if the device is Quiescent and then Reset the NIC */
7138 /* As per the HW requirement we need to replenish the
7139 * receive buffer to avoid the ring bump. Since there is
7140 * no intention of processing the Rx frame at this pointwe are
7141 * just settting the ownership bit of rxd in Each Rx
7142 * ring to HW and set the appropriate buffer size
7143 * based on the ring mode
7145 rxd_owner_bit_reset(sp
);
7147 val64
= readq(&bar0
->adapter_status
);
7148 if (verify_xena_quiescence(sp
)) {
7149 if(verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7157 "s2io_close:Device not Quiescent ");
7158 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
7159 (unsigned long long) val64
);
7166 /* Free all Tx buffers */
7167 free_tx_buffers(sp
);
7169 /* Free all Rx buffers */
7170 free_rx_buffers(sp
);
7172 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7175 static void s2io_card_down(struct s2io_nic
* sp
)
7177 do_s2io_card_down(sp
, 1);
7180 static int s2io_card_up(struct s2io_nic
* sp
)
7183 struct mac_info
*mac_control
;
7184 struct config_param
*config
;
7185 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7188 /* Initialize the H/W I/O registers */
7191 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7199 * Initializing the Rx buffers. For now we are considering only 1
7200 * Rx ring and initializing buffers into 30 Rx blocks
7202 mac_control
= &sp
->mac_control
;
7203 config
= &sp
->config
;
7205 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7206 mac_control
->rings
[i
].mtu
= dev
->mtu
;
7207 ret
= fill_rx_buffers(&mac_control
->rings
[i
]);
7209 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7212 free_rx_buffers(sp
);
7215 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7216 mac_control
->rings
[i
].rx_bufs_left
);
7219 /* Initialise napi */
7222 if (config
->intr_type
== MSI_X
) {
7223 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7224 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7226 napi_enable(&sp
->napi
);
7230 /* Maintain the state prior to the open */
7231 if (sp
->promisc_flg
)
7232 sp
->promisc_flg
= 0;
7233 if (sp
->m_cast_flg
) {
7235 sp
->all_multi_pos
= 0;
7238 /* Setting its receive mode */
7239 s2io_set_multicast(dev
);
7242 /* Initialize max aggregatable pkts per session based on MTU */
7243 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7244 /* Check if we can use(if specified) user provided value */
7245 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7246 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7249 /* Enable Rx Traffic and interrupts on the NIC */
7250 if (start_nic(sp
)) {
7251 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7253 free_rx_buffers(sp
);
7257 /* Add interrupt service routine */
7258 if (s2io_add_isr(sp
) != 0) {
7259 if (sp
->config
.intr_type
== MSI_X
)
7262 free_rx_buffers(sp
);
7266 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7268 /* Enable select interrupts */
7269 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7270 if (sp
->config
.intr_type
!= INTA
)
7271 en_dis_able_nic_intrs(sp
, TX_TRAFFIC_INTR
, ENABLE_INTRS
);
7273 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7274 interruptible
|= TX_PIC_INTR
;
7275 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7278 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7283 * s2io_restart_nic - Resets the NIC.
7284 * @data : long pointer to the device private structure
7286 * This function is scheduled to be run by the s2io_tx_watchdog
7287 * function after 0.5 secs to reset the NIC. The idea is to reduce
7288 * the run time of the watch dog routine which is run holding a
7292 static void s2io_restart_nic(struct work_struct
*work
)
7294 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7295 struct net_device
*dev
= sp
->dev
;
7299 if (!netif_running(dev
))
7303 if (s2io_card_up(sp
)) {
7304 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
7307 s2io_wake_all_tx_queue(sp
);
7308 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
7315 * s2io_tx_watchdog - Watchdog for transmit side.
7316 * @dev : Pointer to net device structure
7318 * This function is triggered if the Tx Queue is stopped
7319 * for a pre-defined amount of time when the Interface is still up.
7320 * If the Interface is jammed in such a situation, the hardware is
7321 * reset (by s2io_close) and restarted again (by s2io_open) to
7322 * overcome any problem that might have been caused in the hardware.
7327 static void s2io_tx_watchdog(struct net_device
*dev
)
7329 struct s2io_nic
*sp
= dev
->priv
;
7331 if (netif_carrier_ok(dev
)) {
7332 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
++;
7333 schedule_work(&sp
->rst_timer_task
);
7334 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
7339 * rx_osm_handler - To perform some OS related operations on SKB.
7340 * @sp: private member of the device structure,pointer to s2io_nic structure.
7341 * @skb : the socket buffer pointer.
7342 * @len : length of the packet
7343 * @cksum : FCS checksum of the frame.
7344 * @ring_no : the ring from which this RxD was extracted.
7346 * This function is called by the Rx interrupt serivce routine to perform
7347 * some OS related operations on the SKB before passing it to the upper
7348 * layers. It mainly checks if the checksum is OK, if so adds it to the
7349 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7350 * to the upper layer. If the checksum is wrong, it increments the Rx
7351 * packet error count, frees the SKB and returns error.
7353 * SUCCESS on success and -1 on failure.
7355 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7357 struct s2io_nic
*sp
= ring_data
->nic
;
7358 struct net_device
*dev
= (struct net_device
*) ring_data
->dev
;
7359 struct sk_buff
*skb
= (struct sk_buff
*)
7360 ((unsigned long) rxdp
->Host_Control
);
7361 int ring_no
= ring_data
->ring_no
;
7362 u16 l3_csum
, l4_csum
;
7363 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7370 /* Check for parity error */
7372 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
7374 err_mask
= err
>> 48;
7377 sp
->mac_control
.stats_info
->sw_stat
.
7378 rx_parity_err_cnt
++;
7382 sp
->mac_control
.stats_info
->sw_stat
.
7387 sp
->mac_control
.stats_info
->sw_stat
.
7388 rx_parity_abort_cnt
++;
7392 sp
->mac_control
.stats_info
->sw_stat
.
7397 sp
->mac_control
.stats_info
->sw_stat
.
7402 sp
->mac_control
.stats_info
->sw_stat
.
7407 sp
->mac_control
.stats_info
->sw_stat
.
7408 rx_buf_size_err_cnt
++;
7412 sp
->mac_control
.stats_info
->sw_stat
.
7413 rx_rxd_corrupt_cnt
++;
7417 sp
->mac_control
.stats_info
->sw_stat
.
7422 * Drop the packet if bad transfer code. Exception being
7423 * 0x5, which could be due to unsupported IPv6 extension header.
7424 * In this case, we let stack handle the packet.
7425 * Note that in this case, since checksum will be incorrect,
7426 * stack will validate the same.
7428 if (err_mask
!= 0x5) {
7429 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7430 dev
->name
, err_mask
);
7431 sp
->stats
.rx_crc_errors
++;
7432 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
7435 ring_data
->rx_bufs_left
-= 1;
7436 rxdp
->Host_Control
= 0;
7441 /* Updating statistics */
7442 ring_data
->rx_packets
++;
7443 rxdp
->Host_Control
= 0;
7444 if (sp
->rxd_mode
== RXD_MODE_1
) {
7445 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7447 ring_data
->rx_bytes
+= len
;
7450 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7451 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7452 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7453 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7454 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7455 unsigned char *buff
= skb_push(skb
, buf0_len
);
7457 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7458 ring_data
->rx_bytes
+= buf0_len
+ buf2_len
;
7459 memcpy(buff
, ba
->ba_0
, buf0_len
);
7460 skb_put(skb
, buf2_len
);
7463 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!ring_data
->lro
) ||
7464 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7466 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7467 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7468 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7470 * NIC verifies if the Checksum of the received
7471 * frame is Ok or not and accordingly returns
7472 * a flag in the RxD.
7474 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7475 if (ring_data
->lro
) {
7480 ret
= s2io_club_tcp_session(ring_data
,
7481 skb
->data
, &tcp
, &tcp_len
, &lro
,
7484 case 3: /* Begin anew */
7487 case 1: /* Aggregate */
7489 lro_append_pkt(sp
, lro
,
7493 case 4: /* Flush session */
7495 lro_append_pkt(sp
, lro
,
7497 queue_rx_frame(lro
->parent
,
7499 clear_lro_session(lro
);
7500 sp
->mac_control
.stats_info
->
7501 sw_stat
.flush_max_pkts
++;
7504 case 2: /* Flush both */
7505 lro
->parent
->data_len
=
7507 sp
->mac_control
.stats_info
->
7508 sw_stat
.sending_both
++;
7509 queue_rx_frame(lro
->parent
,
7511 clear_lro_session(lro
);
7513 case 0: /* sessions exceeded */
7514 case -1: /* non-TCP or not
7518 * First pkt in session not
7519 * L3/L4 aggregatable
7524 "%s: Samadhana!!\n",
7531 * Packet with erroneous checksum, let the
7532 * upper layers deal with it.
7534 skb
->ip_summed
= CHECKSUM_NONE
;
7537 skb
->ip_summed
= CHECKSUM_NONE
;
7539 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
7541 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7542 dev
->last_rx
= jiffies
;
7544 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7549 * s2io_link - stops/starts the Tx queue.
7550 * @sp : private member of the device structure, which is a pointer to the
7551 * s2io_nic structure.
7552 * @link : inidicates whether link is UP/DOWN.
7554 * This function stops/starts the Tx queue depending on whether the link
7555 * status of the NIC is is down or up. This is called by the Alarm
7556 * interrupt handler whenever a link change interrupt comes up.
7561 static void s2io_link(struct s2io_nic
* sp
, int link
)
7563 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7565 if (link
!= sp
->last_link_state
) {
7567 if (link
== LINK_DOWN
) {
7568 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7569 s2io_stop_all_tx_queue(sp
);
7570 netif_carrier_off(dev
);
7571 if(sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
)
7572 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
=
7573 jiffies
- sp
->start_time
;
7574 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
++;
7576 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7577 if (sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
)
7578 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
=
7579 jiffies
- sp
->start_time
;
7580 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
++;
7581 netif_carrier_on(dev
);
7582 s2io_wake_all_tx_queue(sp
);
7585 sp
->last_link_state
= link
;
7586 sp
->start_time
= jiffies
;
7590 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7591 * @sp : private member of the device structure, which is a pointer to the
7592 * s2io_nic structure.
7594 * This function initializes a few of the PCI and PCI-X configuration registers
7595 * with recommended values.
7600 static void s2io_init_pci(struct s2io_nic
* sp
)
7602 u16 pci_cmd
= 0, pcix_cmd
= 0;
7604 /* Enable Data Parity Error Recovery in PCI-X command register. */
7605 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7607 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7609 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7612 /* Set the PErr Response bit in PCI command register. */
7613 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7614 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7615 (pci_cmd
| PCI_COMMAND_PARITY
));
7616 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7619 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7622 if ((tx_fifo_num
> MAX_TX_FIFOS
) ||
7623 (tx_fifo_num
< 1)) {
7624 DBG_PRINT(ERR_DBG
, "s2io: Requested number of tx fifos "
7625 "(%d) not supported\n", tx_fifo_num
);
7627 if (tx_fifo_num
< 1)
7630 tx_fifo_num
= MAX_TX_FIFOS
;
7632 DBG_PRINT(ERR_DBG
, "s2io: Default to %d ", tx_fifo_num
);
7633 DBG_PRINT(ERR_DBG
, "tx fifos\n");
7636 #ifndef CONFIG_NETDEVICES_MULTIQUEUE
7638 DBG_PRINT(ERR_DBG
, "s2io: Multiqueue support not enabled\n");
7643 *dev_multiq
= multiq
;
7645 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7646 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7648 "s2io: Tx steering is not supported with "
7649 "one fifo. Disabling Tx steering.\n");
7650 tx_steering_type
= NO_STEERING
;
7653 if ((tx_steering_type
< NO_STEERING
) ||
7654 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7655 DBG_PRINT(ERR_DBG
, "s2io: Requested transmit steering not "
7657 DBG_PRINT(ERR_DBG
, "s2io: Disabling transmit steering\n");
7658 tx_steering_type
= NO_STEERING
;
7661 if (rx_ring_num
> MAX_RX_RINGS
) {
7662 DBG_PRINT(ERR_DBG
, "s2io: Requested number of rx rings not "
7664 DBG_PRINT(ERR_DBG
, "s2io: Default to %d rx rings\n",
7666 rx_ring_num
= MAX_RX_RINGS
;
7669 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7670 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
7671 "Defaulting to INTA\n");
7672 *dev_intr_type
= INTA
;
7675 if ((*dev_intr_type
== MSI_X
) &&
7676 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7677 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7678 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
7679 "Defaulting to INTA\n");
7680 *dev_intr_type
= INTA
;
7683 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7684 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
7685 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 1-buffer mode\n");
7692 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7693 * or Traffic class respectively.
7694 * @nic: device private variable
7695 * Description: The function configures the receive steering to
7696 * desired receive ring.
7697 * Return Value: SUCCESS on success and
7698 * '-1' on failure (endian settings incorrect).
7700 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7702 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7703 register u64 val64
= 0;
7705 if (ds_codepoint
> 63)
7708 val64
= RTS_DS_MEM_DATA(ring
);
7709 writeq(val64
, &bar0
->rts_ds_mem_data
);
7711 val64
= RTS_DS_MEM_CTRL_WE
|
7712 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7713 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7715 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7717 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7718 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7723 * s2io_init_nic - Initialization of the adapter .
7724 * @pdev : structure containing the PCI related information of the device.
7725 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7727 * The function initializes an adapter identified by the pci_dec structure.
7728 * All OS related initialization including memory and device structure and
7729 * initlaization of the device private variable is done. Also the swapper
7730 * control register is initialized to enable read and write into the I/O
7731 * registers of the device.
7733 * returns 0 on success and negative on failure.
7736 static int __devinit
7737 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7739 struct s2io_nic
*sp
;
7740 struct net_device
*dev
;
7742 int dma_flag
= FALSE
;
7743 u32 mac_up
, mac_down
;
7744 u64 val64
= 0, tmp64
= 0;
7745 struct XENA_dev_config __iomem
*bar0
= NULL
;
7747 struct mac_info
*mac_control
;
7748 struct config_param
*config
;
7750 u8 dev_intr_type
= intr_type
;
7752 DECLARE_MAC_BUF(mac
);
7754 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7758 if ((ret
= pci_enable_device(pdev
))) {
7760 "s2io_init_nic: pci_enable_device failed\n");
7764 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
7765 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
7767 if (pci_set_consistent_dma_mask
7768 (pdev
, DMA_64BIT_MASK
)) {
7770 "Unable to obtain 64bit DMA for \
7771 consistent allocations\n");
7772 pci_disable_device(pdev
);
7775 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
7776 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
7778 pci_disable_device(pdev
);
7781 if ((ret
= pci_request_regions(pdev
, s2io_driver_name
))) {
7782 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x \n", __FUNCTION__
, ret
);
7783 pci_disable_device(pdev
);
7786 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7788 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7791 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7793 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7794 pci_disable_device(pdev
);
7795 pci_release_regions(pdev
);
7799 pci_set_master(pdev
);
7800 pci_set_drvdata(pdev
, dev
);
7801 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7803 /* Private member variable initialized to s2io NIC structure */
7805 memset(sp
, 0, sizeof(struct s2io_nic
));
7808 sp
->high_dma_flag
= dma_flag
;
7809 sp
->device_enabled_once
= FALSE
;
7810 if (rx_ring_mode
== 1)
7811 sp
->rxd_mode
= RXD_MODE_1
;
7812 if (rx_ring_mode
== 2)
7813 sp
->rxd_mode
= RXD_MODE_3B
;
7815 sp
->config
.intr_type
= dev_intr_type
;
7817 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7818 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7819 sp
->device_type
= XFRAME_II_DEVICE
;
7821 sp
->device_type
= XFRAME_I_DEVICE
;
7823 sp
->lro
= lro_enable
;
7825 /* Initialize some PCI/PCI-X fields of the NIC. */
7829 * Setting the device configuration parameters.
7830 * Most of these parameters can be specified by the user during
7831 * module insertion as they are module loadable parameters. If
7832 * these parameters are not not specified during load time, they
7833 * are initialized with default values.
7835 mac_control
= &sp
->mac_control
;
7836 config
= &sp
->config
;
7838 config
->napi
= napi
;
7839 config
->tx_steering_type
= tx_steering_type
;
7841 /* Tx side parameters. */
7842 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7843 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7845 config
->tx_fifo_num
= tx_fifo_num
;
7847 /* Initialize the fifos used for tx steering */
7848 if (config
->tx_fifo_num
< 5) {
7849 if (config
->tx_fifo_num
== 1)
7850 sp
->total_tcp_fifos
= 1;
7852 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7853 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7854 sp
->total_udp_fifos
= 1;
7855 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7857 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7858 FIFO_OTHER_MAX_NUM
);
7859 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7860 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7861 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7864 config
->multiq
= dev_multiq
;
7865 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7866 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
7867 config
->tx_cfg
[i
].fifo_priority
= i
;
7870 /* mapping the QoS priority to the configured fifos */
7871 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7872 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7874 /* map the hashing selector table to the configured fifos */
7875 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7876 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7879 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7880 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7881 config
->tx_cfg
[i
].f_no_snoop
=
7882 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7883 if (config
->tx_cfg
[i
].fifo_len
< 65) {
7884 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7888 /* + 2 because one Txd for skb->data and one Txd for UFO */
7889 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7891 /* Rx side parameters. */
7892 config
->rx_ring_num
= rx_ring_num
;
7893 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7894 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
7895 (rxd_count
[sp
->rxd_mode
] + 1);
7896 config
->rx_cfg
[i
].ring_priority
= i
;
7897 mac_control
->rings
[i
].rx_bufs_left
= 0;
7898 mac_control
->rings
[i
].rxd_mode
= sp
->rxd_mode
;
7899 mac_control
->rings
[i
].rxd_count
= rxd_count
[sp
->rxd_mode
];
7900 mac_control
->rings
[i
].pdev
= sp
->pdev
;
7901 mac_control
->rings
[i
].dev
= sp
->dev
;
7904 for (i
= 0; i
< rx_ring_num
; i
++) {
7905 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
7906 config
->rx_cfg
[i
].f_no_snoop
=
7907 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7910 /* Setting Mac Control parameters */
7911 mac_control
->rmac_pause_time
= rmac_pause_time
;
7912 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7913 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7916 /* initialize the shared memory used by the NIC and the host */
7917 if (init_shared_mem(sp
)) {
7918 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
7921 goto mem_alloc_failed
;
7924 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
7925 pci_resource_len(pdev
, 0));
7927 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7930 goto bar0_remap_failed
;
7933 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
7934 pci_resource_len(pdev
, 2));
7936 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7939 goto bar1_remap_failed
;
7942 dev
->irq
= pdev
->irq
;
7943 dev
->base_addr
= (unsigned long) sp
->bar0
;
7945 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7946 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7947 mac_control
->tx_FIFO_start
[j
] = (struct TxFIFO_element __iomem
*)
7948 (sp
->bar1
+ (j
* 0x00020000));
7951 /* Driver entry points */
7952 dev
->open
= &s2io_open
;
7953 dev
->stop
= &s2io_close
;
7954 dev
->hard_start_xmit
= &s2io_xmit
;
7955 dev
->get_stats
= &s2io_get_stats
;
7956 dev
->set_multicast_list
= &s2io_set_multicast
;
7957 dev
->do_ioctl
= &s2io_ioctl
;
7958 dev
->set_mac_address
= &s2io_set_mac_addr
;
7959 dev
->change_mtu
= &s2io_change_mtu
;
7960 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7961 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7962 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
7963 dev
->vlan_rx_kill_vid
= (void *)s2io_vlan_rx_kill_vid
;
7966 * will use eth_mac_addr() for dev->set_mac_address
7967 * mac address will be set every time dev->open() is called
7969 #ifdef CONFIG_NET_POLL_CONTROLLER
7970 dev
->poll_controller
= s2io_netpoll
;
7973 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7974 if (sp
->high_dma_flag
== TRUE
)
7975 dev
->features
|= NETIF_F_HIGHDMA
;
7976 dev
->features
|= NETIF_F_TSO
;
7977 dev
->features
|= NETIF_F_TSO6
;
7978 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7979 dev
->features
|= NETIF_F_UFO
;
7980 dev
->features
|= NETIF_F_HW_CSUM
;
7982 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7984 dev
->features
|= NETIF_F_MULTI_QUEUE
;
7986 dev
->tx_timeout
= &s2io_tx_watchdog
;
7987 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7988 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7989 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7991 pci_save_state(sp
->pdev
);
7993 /* Setting swapper control on the NIC, for proper reset operation */
7994 if (s2io_set_swapper(sp
)) {
7995 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
7998 goto set_swap_failed
;
8001 /* Verify if the Herc works on the slot its placed into */
8002 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8003 mode
= s2io_verify_pci_mode(sp
);
8005 DBG_PRINT(ERR_DBG
, "%s: ", __FUNCTION__
);
8006 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
8008 goto set_swap_failed
;
8012 if (sp
->config
.intr_type
== MSI_X
) {
8013 sp
->num_entries
= config
->rx_ring_num
+ 1;
8014 ret
= s2io_enable_msi_x(sp
);
8017 ret
= s2io_test_msi(sp
);
8018 /* rollback MSI-X, will re-enable during add_isr() */
8019 remove_msix_isr(sp
);
8024 "%s: MSI-X requested but failed to enable\n",
8026 sp
->config
.intr_type
= INTA
;
8030 if (config
->intr_type
== MSI_X
) {
8031 for (i
= 0; i
< config
->rx_ring_num
; i
++)
8032 netif_napi_add(dev
, &mac_control
->rings
[i
].napi
,
8033 s2io_poll_msix
, 64);
8035 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
8038 /* Not needed for Herc */
8039 if (sp
->device_type
& XFRAME_I_DEVICE
) {
8041 * Fix for all "FFs" MAC address problems observed on
8044 fix_mac_address(sp
);
8049 * MAC address initialization.
8050 * For now only one mac address will be read and used.
8053 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8054 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8055 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8056 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8057 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
);
8058 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8059 mac_down
= (u32
) tmp64
;
8060 mac_up
= (u32
) (tmp64
>> 32);
8062 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8063 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8064 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8065 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8066 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8067 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8069 /* Set the factory defined MAC address initially */
8070 dev
->addr_len
= ETH_ALEN
;
8071 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8072 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8074 /* initialize number of multicast & unicast MAC entries variables */
8075 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8076 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8077 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8078 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8079 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8080 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8081 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8082 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8085 /* store mac addresses from CAM to s2io_nic structure */
8086 do_s2io_store_unicast_mc(sp
);
8088 /* Configure MSIX vector for number of rings configured plus one */
8089 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8090 (config
->intr_type
== MSI_X
))
8091 sp
->num_entries
= config
->rx_ring_num
+ 1;
8093 /* Store the values of the MSIX table in the s2io_nic structure */
8094 store_xmsi_data(sp
);
8095 /* reset Nic and bring it to known state */
8099 * Initialize link state flags
8100 * and the card state parameter
8104 /* Initialize spinlocks */
8105 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
8106 spin_lock_init(&mac_control
->fifos
[i
].tx_lock
);
8109 * SXE-002: Configure link and activity LED to init state
8112 subid
= sp
->pdev
->subsystem_device
;
8113 if ((subid
& 0xFF) >= 0x07) {
8114 val64
= readq(&bar0
->gpio_control
);
8115 val64
|= 0x0000800000000000ULL
;
8116 writeq(val64
, &bar0
->gpio_control
);
8117 val64
= 0x0411040400000000ULL
;
8118 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
8119 val64
= readq(&bar0
->gpio_control
);
8122 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8124 if (register_netdev(dev
)) {
8125 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8127 goto register_failed
;
8130 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
8131 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
8132 sp
->product_name
, pdev
->revision
);
8133 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8134 s2io_driver_version
);
8135 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: %s\n",
8136 dev
->name
, print_mac(mac
, dev
->dev_addr
));
8137 DBG_PRINT(ERR_DBG
, "SERIAL NUMBER: %s\n", sp
->serial_num
);
8138 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8139 mode
= s2io_print_pci_mode(sp
);
8141 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
8143 unregister_netdev(dev
);
8144 goto set_swap_failed
;
8147 switch(sp
->rxd_mode
) {
8149 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8153 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8158 switch (sp
->config
.napi
) {
8160 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8163 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8167 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8168 sp
->config
.tx_fifo_num
);
8170 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8171 sp
->config
.rx_ring_num
);
8173 switch(sp
->config
.intr_type
) {
8175 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8178 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8181 if (sp
->config
.multiq
) {
8182 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
8183 mac_control
->fifos
[i
].multiq
= config
->multiq
;
8184 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8187 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8190 switch (sp
->config
.tx_steering_type
) {
8192 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for"
8193 " transmit\n", dev
->name
);
8195 case TX_PRIORITY_STEERING
:
8196 DBG_PRINT(ERR_DBG
, "%s: Priority steering enabled for"
8197 " transmit\n", dev
->name
);
8199 case TX_DEFAULT_STEERING
:
8200 DBG_PRINT(ERR_DBG
, "%s: Default steering enabled for"
8201 " transmit\n", dev
->name
);
8205 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8208 DBG_PRINT(ERR_DBG
, "%s: UDP Fragmentation Offload(UFO)"
8209 " enabled\n", dev
->name
);
8210 /* Initialize device name */
8211 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8214 * Make Link state as off at this point, when the Link change
8215 * interrupt comes the state will be automatically changed to
8218 netif_carrier_off(dev
);
8229 free_shared_mem(sp
);
8230 pci_disable_device(pdev
);
8231 pci_release_regions(pdev
);
8232 pci_set_drvdata(pdev
, NULL
);
8239 * s2io_rem_nic - Free the PCI device
8240 * @pdev: structure containing the PCI related information of the device.
8241 * Description: This function is called by the Pci subsystem to release a
8242 * PCI device and free up all resource held up by the device. This could
8243 * be in response to a Hot plug event or when the driver is to be removed
8247 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8249 struct net_device
*dev
=
8250 (struct net_device
*) pci_get_drvdata(pdev
);
8251 struct s2io_nic
*sp
;
8254 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8258 flush_scheduled_work();
8261 unregister_netdev(dev
);
8263 free_shared_mem(sp
);
8266 pci_release_regions(pdev
);
8267 pci_set_drvdata(pdev
, NULL
);
8269 pci_disable_device(pdev
);
8273 * s2io_starter - Entry point for the driver
8274 * Description: This function is the entry point for the driver. It verifies
8275 * the module loadable parameters and initializes PCI configuration space.
8278 static int __init
s2io_starter(void)
8280 return pci_register_driver(&s2io_driver
);
8284 * s2io_closer - Cleanup routine for the driver
8285 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8288 static __exit
void s2io_closer(void)
8290 pci_unregister_driver(&s2io_driver
);
8291 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8294 module_init(s2io_starter
);
8295 module_exit(s2io_closer
);
8297 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8298 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8299 struct s2io_nic
*sp
)
8302 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8304 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8305 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
8310 /* Checking for DIX type or DIX type with VLAN */
8312 || (l2_type
== 4)) {
8313 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8315 * If vlan stripping is disabled and the frame is VLAN tagged,
8316 * shift the offset by the VLAN header size bytes.
8318 if ((!vlan_strip_flag
) &&
8319 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8320 ip_off
+= HEADER_VLAN_SIZE
;
8322 /* LLC, SNAP etc are considered non-mergeable */
8326 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8327 ip_len
= (u8
)((*ip
)->ihl
);
8329 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8334 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8337 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8338 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
8339 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
8344 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8346 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
8349 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8350 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
, u16 vlan_tag
)
8352 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8356 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8357 lro
->tcp_ack
= tcp
->ack_seq
;
8359 lro
->total_len
= ntohs(ip
->tot_len
);
8361 lro
->vlan_tag
= vlan_tag
;
8363 * check if we saw TCP timestamp. Other consistency checks have
8364 * already been done.
8366 if (tcp
->doff
== 8) {
8368 ptr
= (__be32
*)(tcp
+1);
8370 lro
->cur_tsval
= ntohl(*(ptr
+1));
8371 lro
->cur_tsecr
= *(ptr
+2);
8376 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8378 struct iphdr
*ip
= lro
->iph
;
8379 struct tcphdr
*tcp
= lro
->tcph
;
8381 struct stat_block
*statinfo
= sp
->mac_control
.stats_info
;
8382 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8384 /* Update L3 header */
8385 ip
->tot_len
= htons(lro
->total_len
);
8387 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8390 /* Update L4 header */
8391 tcp
->ack_seq
= lro
->tcp_ack
;
8392 tcp
->window
= lro
->window
;
8394 /* Update tsecr field if this session has timestamps enabled */
8396 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8397 *(ptr
+2) = lro
->cur_tsecr
;
8400 /* Update counters required for calculation of
8401 * average no. of packets aggregated.
8403 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
8404 statinfo
->sw_stat
.num_aggregations
++;
8407 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8408 struct tcphdr
*tcp
, u32 l4_pyld
)
8410 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8411 lro
->total_len
+= l4_pyld
;
8412 lro
->frags_len
+= l4_pyld
;
8413 lro
->tcp_next_seq
+= l4_pyld
;
8416 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8417 lro
->tcp_ack
= tcp
->ack_seq
;
8418 lro
->window
= tcp
->window
;
8422 /* Update tsecr and tsval from this packet */
8423 ptr
= (__be32
*)(tcp
+1);
8424 lro
->cur_tsval
= ntohl(*(ptr
+1));
8425 lro
->cur_tsecr
= *(ptr
+ 2);
8429 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8430 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8434 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8436 if (!tcp_pyld_len
) {
8437 /* Runt frame or a pure ack */
8441 if (ip
->ihl
!= 5) /* IP has options */
8444 /* If we see CE codepoint in IP header, packet is not mergeable */
8445 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8448 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8449 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
8450 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8452 * Currently recognize only the ack control word and
8453 * any other control field being set would result in
8454 * flushing the LRO session
8460 * Allow only one TCP timestamp option. Don't aggregate if
8461 * any other options are detected.
8463 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8466 if (tcp
->doff
== 8) {
8467 ptr
= (u8
*)(tcp
+ 1);
8468 while (*ptr
== TCPOPT_NOP
)
8470 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8473 /* Ensure timestamp value increases monotonically */
8475 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8478 /* timestamp echo reply should be non-zero */
8479 if (*((__be32
*)(ptr
+6)) == 0)
8487 s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
, u8
**tcp
,
8488 u32
*tcp_len
, struct lro
**lro
, struct RxD_t
*rxdp
,
8489 struct s2io_nic
*sp
)
8492 struct tcphdr
*tcph
;
8496 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8498 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
8499 ip
->saddr
, ip
->daddr
);
8503 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8504 tcph
= (struct tcphdr
*)*tcp
;
8505 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8506 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8507 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8508 if (l_lro
->in_use
) {
8509 if (check_for_socket_match(l_lro
, ip
, tcph
))
8511 /* Sock pair matched */
8514 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8515 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
8516 "0x%x, actual 0x%x\n", __FUNCTION__
,
8517 (*lro
)->tcp_next_seq
,
8520 sp
->mac_control
.stats_info
->
8521 sw_stat
.outof_sequence_pkts
++;
8526 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
8527 ret
= 1; /* Aggregate */
8529 ret
= 2; /* Flush both */
8535 /* Before searching for available LRO objects,
8536 * check if the pkt is L3/L4 aggregatable. If not
8537 * don't create new LRO session. Just send this
8540 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
8544 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8545 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8546 if (!(l_lro
->in_use
)) {
8548 ret
= 3; /* Begin anew */
8554 if (ret
== 0) { /* sessions exceeded */
8555 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
8563 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8567 update_L3L4_header(sp
, *lro
);
8570 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8571 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8572 update_L3L4_header(sp
, *lro
);
8573 ret
= 4; /* Flush the LRO */
8577 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
8585 static void clear_lro_session(struct lro
*lro
)
8587 static u16 lro_struct_size
= sizeof(struct lro
);
8589 memset(lro
, 0, lro_struct_size
);
8592 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8594 struct net_device
*dev
= skb
->dev
;
8595 struct s2io_nic
*sp
= dev
->priv
;
8597 skb
->protocol
= eth_type_trans(skb
, dev
);
8598 if (sp
->vlgrp
&& vlan_tag
8599 && (vlan_strip_flag
)) {
8600 /* Queueing the vlan frame to the upper layer */
8601 if (sp
->config
.napi
)
8602 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
, vlan_tag
);
8604 vlan_hwaccel_rx(skb
, sp
->vlgrp
, vlan_tag
);
8606 if (sp
->config
.napi
)
8607 netif_receive_skb(skb
);
8613 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8614 struct sk_buff
*skb
,
8617 struct sk_buff
*first
= lro
->parent
;
8619 first
->len
+= tcp_len
;
8620 first
->data_len
= lro
->frags_len
;
8621 skb_pull(skb
, (skb
->len
- tcp_len
));
8622 if (skb_shinfo(first
)->frag_list
)
8623 lro
->last_frag
->next
= skb
;
8625 skb_shinfo(first
)->frag_list
= skb
;
8626 first
->truesize
+= skb
->truesize
;
8627 lro
->last_frag
= skb
;
8628 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;
8633 * s2io_io_error_detected - called when PCI error is detected
8634 * @pdev: Pointer to PCI device
8635 * @state: The current pci connection state
8637 * This function is called after a PCI bus error affecting
8638 * this device has been detected.
8640 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8641 pci_channel_state_t state
)
8643 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8644 struct s2io_nic
*sp
= netdev
->priv
;
8646 netif_device_detach(netdev
);
8648 if (netif_running(netdev
)) {
8649 /* Bring down the card, while avoiding PCI I/O */
8650 do_s2io_card_down(sp
, 0);
8652 pci_disable_device(pdev
);
8654 return PCI_ERS_RESULT_NEED_RESET
;
8658 * s2io_io_slot_reset - called after the pci bus has been reset.
8659 * @pdev: Pointer to PCI device
8661 * Restart the card from scratch, as if from a cold-boot.
8662 * At this point, the card has exprienced a hard reset,
8663 * followed by fixups by BIOS, and has its config space
8664 * set up identically to what it was at cold boot.
8666 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8668 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8669 struct s2io_nic
*sp
= netdev
->priv
;
8671 if (pci_enable_device(pdev
)) {
8672 printk(KERN_ERR
"s2io: "
8673 "Cannot re-enable PCI device after reset.\n");
8674 return PCI_ERS_RESULT_DISCONNECT
;
8677 pci_set_master(pdev
);
8680 return PCI_ERS_RESULT_RECOVERED
;
8684 * s2io_io_resume - called when traffic can start flowing again.
8685 * @pdev: Pointer to PCI device
8687 * This callback is called when the error recovery driver tells
8688 * us that its OK to resume normal operation.
8690 static void s2io_io_resume(struct pci_dev
*pdev
)
8692 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8693 struct s2io_nic
*sp
= netdev
->priv
;
8695 if (netif_running(netdev
)) {
8696 if (s2io_card_up(sp
)) {
8697 printk(KERN_ERR
"s2io: "
8698 "Can't bring device back up after reset.\n");
8702 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8704 printk(KERN_ERR
"s2io: "
8705 "Can't resetore mac addr after reset.\n");
8710 netif_device_attach(netdev
);
8711 netif_wake_queue(netdev
);