2 * PowerMac G5 SMU driver
4 * Copyright 2004 J. Mayer <l_indien@magic.fr>
5 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
7 * Released under the term of the GNU GPL v2.
12 * - maybe add timeout to commands ?
13 * - blocking version of time functions
14 * - polling version of i2c commands (including timer that works with
16 * - maybe avoid some data copies with i2c by directly using the smu cmd
17 * buffer and a lower level internal interface
18 * - understand SMU -> CPU events and implement reception of them via
19 * the userland interface
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/device.h>
25 #include <linux/dmapool.h>
26 #include <linux/bootmem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/jiffies.h>
30 #include <linux/interrupt.h>
31 #include <linux/rtc.h>
32 #include <linux/completion.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/sysdev.h>
36 #include <linux/poll.h>
37 #include <linux/mutex.h>
39 #include <asm/byteorder.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
45 #include <asm/sections.h>
46 #include <asm/abs_addr.h>
47 #include <asm/uaccess.h>
48 #include <asm/of_device.h>
49 #include <asm/of_platform.h>
52 #define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
57 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
59 #define DPRINTK(fmt, args...) do { } while (0)
63 * This is the command buffer passed to the SMU hardware
65 #define SMU_MAX_DATA 254
70 u8 data
[SMU_MAX_DATA
];
75 struct device_node
*of_node
;
76 struct of_device
*of_dev
;
77 int doorbell
; /* doorbell gpio */
78 u32 __iomem
*db_buf
; /* doorbell buffer */
79 struct device_node
*db_node
;
82 struct device_node
*msg_node
;
84 struct smu_cmd_buf
*cmd_buf
; /* command buffer virtual */
85 u32 cmd_buf_abs
; /* command buffer absolute */
86 struct list_head cmd_list
;
87 struct smu_cmd
*cmd_cur
; /* pending command */
89 struct list_head cmd_i2c_list
;
90 struct smu_i2c_cmd
*cmd_i2c_cur
; /* pending i2c command */
91 struct timer_list i2c_timer
;
95 * I don't think there will ever be more than one SMU, so
96 * for now, just hard code that
98 static struct smu_device
*smu
;
99 static DEFINE_MUTEX(smu_part_access
);
100 static int smu_irq_inited
;
102 static void smu_i2c_retry(unsigned long data
);
105 * SMU driver low level stuff
108 static void smu_start_cmd(void)
110 unsigned long faddr
, fend
;
113 if (list_empty(&smu
->cmd_list
))
116 /* Fetch first command in queue */
117 cmd
= list_entry(smu
->cmd_list
.next
, struct smu_cmd
, link
);
119 list_del(&cmd
->link
);
121 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd
->cmd
,
123 DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
124 ((u8
*)cmd
->data_buf
)[0], ((u8
*)cmd
->data_buf
)[1],
125 ((u8
*)cmd
->data_buf
)[2], ((u8
*)cmd
->data_buf
)[3],
126 ((u8
*)cmd
->data_buf
)[4], ((u8
*)cmd
->data_buf
)[5],
127 ((u8
*)cmd
->data_buf
)[6], ((u8
*)cmd
->data_buf
)[7]);
129 /* Fill the SMU command buffer */
130 smu
->cmd_buf
->cmd
= cmd
->cmd
;
131 smu
->cmd_buf
->length
= cmd
->data_len
;
132 memcpy(smu
->cmd_buf
->data
, cmd
->data_buf
, cmd
->data_len
);
134 /* Flush command and data to RAM */
135 faddr
= (unsigned long)smu
->cmd_buf
;
136 fend
= faddr
+ smu
->cmd_buf
->length
+ 2;
137 flush_inval_dcache_range(faddr
, fend
);
140 /* We also disable NAP mode for the duration of the command
141 * on U3 based machines.
142 * This is slightly racy as it can be written back to 1 by a sysctl
143 * but that never happens in practice. There seem to be an issue with
144 * U3 based machines such as the iMac G5 where napping for the
145 * whole duration of the command prevents the SMU from fetching it
146 * from memory. This might be related to the strange i2c based
147 * mechanism the SMU uses to access memory.
152 /* This isn't exactly a DMA mapping here, I suspect
153 * the SMU is actually communicating with us via i2c to the
154 * northbridge or the CPU to access RAM.
156 writel(smu
->cmd_buf_abs
, smu
->db_buf
);
158 /* Ring the SMU doorbell */
159 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO
, NULL
, smu
->doorbell
, 4);
163 static irqreturn_t
smu_db_intr(int irq
, void *arg
)
167 void (*done
)(struct smu_cmd
*cmd
, void *misc
) = NULL
;
172 /* SMU completed the command, well, we hope, let's make sure
175 spin_lock_irqsave(&smu
->lock
, flags
);
177 gpio
= pmac_do_feature_call(PMAC_FTR_READ_GPIO
, NULL
, smu
->doorbell
);
178 if ((gpio
& 7) != 7) {
179 spin_unlock_irqrestore(&smu
->lock
, flags
);
193 /* CPU might have brought back the cache line, so we need
194 * to flush again before peeking at the SMU response. We
195 * flush the entire buffer for now as we haven't read the
196 * reply length (it's only 2 cache lines anyway)
198 faddr
= (unsigned long)smu
->cmd_buf
;
199 flush_inval_dcache_range(faddr
, faddr
+ 256);
202 ack
= (~cmd
->cmd
) & 0xff;
203 if (ack
!= smu
->cmd_buf
->cmd
) {
204 DPRINTK("SMU: incorrect ack, want %x got %x\n",
205 ack
, smu
->cmd_buf
->cmd
);
208 reply_len
= rc
== 0 ? smu
->cmd_buf
->length
: 0;
209 DPRINTK("SMU: reply len: %d\n", reply_len
);
210 if (reply_len
> cmd
->reply_len
) {
211 printk(KERN_WARNING
"SMU: reply buffer too small,"
212 "got %d bytes for a %d bytes buffer\n",
213 reply_len
, cmd
->reply_len
);
214 reply_len
= cmd
->reply_len
;
216 cmd
->reply_len
= reply_len
;
217 if (cmd
->reply_buf
&& reply_len
)
218 memcpy(cmd
->reply_buf
, smu
->cmd_buf
->data
, reply_len
);
221 /* Now complete the command. Write status last in order as we lost
222 * ownership of the command structure as soon as it's no longer -1
229 /* Re-enable NAP mode */
233 /* Start next command if any */
235 spin_unlock_irqrestore(&smu
->lock
, flags
);
237 /* Call command completion handler if any */
241 /* It's an edge interrupt, nothing to do */
246 static irqreturn_t
smu_msg_intr(int irq
, void *arg
)
248 /* I don't quite know what to do with this one, we seem to never
249 * receive it, so I suspect we have to arm it someway in the SMU
250 * to start getting events that way.
253 printk(KERN_INFO
"SMU: message interrupt !\n");
255 /* It's an edge interrupt, nothing to do */
261 * Queued command management.
265 int smu_queue_cmd(struct smu_cmd
*cmd
)
271 if (cmd
->data_len
> SMU_MAX_DATA
||
272 cmd
->reply_len
> SMU_MAX_DATA
)
276 spin_lock_irqsave(&smu
->lock
, flags
);
277 list_add_tail(&cmd
->link
, &smu
->cmd_list
);
278 if (smu
->cmd_cur
== NULL
)
280 spin_unlock_irqrestore(&smu
->lock
, flags
);
282 /* Workaround for early calls when irq isn't available */
283 if (!smu_irq_inited
|| smu
->db_irq
== NO_IRQ
)
284 smu_spinwait_cmd(cmd
);
288 EXPORT_SYMBOL(smu_queue_cmd
);
291 int smu_queue_simple(struct smu_simple_cmd
*scmd
, u8 command
,
292 unsigned int data_len
,
293 void (*done
)(struct smu_cmd
*cmd
, void *misc
),
296 struct smu_cmd
*cmd
= &scmd
->cmd
;
300 if (data_len
> sizeof(scmd
->buffer
))
303 memset(scmd
, 0, sizeof(*scmd
));
305 cmd
->data_len
= data_len
;
306 cmd
->data_buf
= scmd
->buffer
;
307 cmd
->reply_len
= sizeof(scmd
->buffer
);
308 cmd
->reply_buf
= scmd
->buffer
;
312 va_start(list
, misc
);
313 for (i
= 0; i
< data_len
; ++i
)
314 scmd
->buffer
[i
] = (u8
)va_arg(list
, int);
317 return smu_queue_cmd(cmd
);
319 EXPORT_SYMBOL(smu_queue_simple
);
329 gpio
= pmac_do_feature_call(PMAC_FTR_READ_GPIO
, NULL
, smu
->doorbell
);
331 smu_db_intr(smu
->db_irq
, smu
);
333 EXPORT_SYMBOL(smu_poll
);
336 void smu_done_complete(struct smu_cmd
*cmd
, void *misc
)
338 struct completion
*comp
= misc
;
342 EXPORT_SYMBOL(smu_done_complete
);
345 void smu_spinwait_cmd(struct smu_cmd
*cmd
)
347 while(cmd
->status
== 1)
350 EXPORT_SYMBOL(smu_spinwait_cmd
);
353 /* RTC low level commands */
354 static inline int bcd2hex (int n
)
356 return (((n
& 0xf0) >> 4) * 10) + (n
& 0xf);
360 static inline int hex2bcd (int n
)
362 return ((n
/ 10) << 4) + (n
% 10);
366 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf
*cmd_buf
,
367 struct rtc_time
*time
)
371 cmd_buf
->data
[0] = 0x80;
372 cmd_buf
->data
[1] = hex2bcd(time
->tm_sec
);
373 cmd_buf
->data
[2] = hex2bcd(time
->tm_min
);
374 cmd_buf
->data
[3] = hex2bcd(time
->tm_hour
);
375 cmd_buf
->data
[4] = time
->tm_wday
;
376 cmd_buf
->data
[5] = hex2bcd(time
->tm_mday
);
377 cmd_buf
->data
[6] = hex2bcd(time
->tm_mon
) + 1;
378 cmd_buf
->data
[7] = hex2bcd(time
->tm_year
- 100);
382 int smu_get_rtc_time(struct rtc_time
*time
, int spinwait
)
384 struct smu_simple_cmd cmd
;
390 memset(time
, 0, sizeof(struct rtc_time
));
391 rc
= smu_queue_simple(&cmd
, SMU_CMD_RTC_COMMAND
, 1, NULL
, NULL
,
392 SMU_CMD_RTC_GET_DATETIME
);
395 smu_spinwait_simple(&cmd
);
397 time
->tm_sec
= bcd2hex(cmd
.buffer
[0]);
398 time
->tm_min
= bcd2hex(cmd
.buffer
[1]);
399 time
->tm_hour
= bcd2hex(cmd
.buffer
[2]);
400 time
->tm_wday
= bcd2hex(cmd
.buffer
[3]);
401 time
->tm_mday
= bcd2hex(cmd
.buffer
[4]);
402 time
->tm_mon
= bcd2hex(cmd
.buffer
[5]) - 1;
403 time
->tm_year
= bcd2hex(cmd
.buffer
[6]) + 100;
409 int smu_set_rtc_time(struct rtc_time
*time
, int spinwait
)
411 struct smu_simple_cmd cmd
;
417 rc
= smu_queue_simple(&cmd
, SMU_CMD_RTC_COMMAND
, 8, NULL
, NULL
,
418 SMU_CMD_RTC_SET_DATETIME
,
419 hex2bcd(time
->tm_sec
),
420 hex2bcd(time
->tm_min
),
421 hex2bcd(time
->tm_hour
),
423 hex2bcd(time
->tm_mday
),
424 hex2bcd(time
->tm_mon
) + 1,
425 hex2bcd(time
->tm_year
- 100));
428 smu_spinwait_simple(&cmd
);
434 void smu_shutdown(void)
436 struct smu_simple_cmd cmd
;
441 if (smu_queue_simple(&cmd
, SMU_CMD_POWER_COMMAND
, 9, NULL
, NULL
,
442 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
444 smu_spinwait_simple(&cmd
);
450 void smu_restart(void)
452 struct smu_simple_cmd cmd
;
457 if (smu_queue_simple(&cmd
, SMU_CMD_POWER_COMMAND
, 8, NULL
, NULL
,
458 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
460 smu_spinwait_simple(&cmd
);
466 int smu_present(void)
470 EXPORT_SYMBOL(smu_present
);
473 int __init
smu_init (void)
475 struct device_node
*np
;
478 np
= of_find_node_by_type(NULL
, "smu");
482 printk(KERN_INFO
"SMU: Driver %s %s\n", VERSION
, AUTHOR
);
484 if (smu_cmdbuf_abs
== 0) {
485 printk(KERN_ERR
"SMU: Command buffer not allocated !\n");
490 smu
= alloc_bootmem(sizeof(struct smu_device
));
495 memset(smu
, 0, sizeof(*smu
));
497 spin_lock_init(&smu
->lock
);
498 INIT_LIST_HEAD(&smu
->cmd_list
);
499 INIT_LIST_HEAD(&smu
->cmd_i2c_list
);
501 smu
->db_irq
= NO_IRQ
;
502 smu
->msg_irq
= NO_IRQ
;
504 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
505 * 32 bits value safely
507 smu
->cmd_buf_abs
= (u32
)smu_cmdbuf_abs
;
508 smu
->cmd_buf
= (struct smu_cmd_buf
*)abs_to_virt(smu_cmdbuf_abs
);
510 smu
->db_node
= of_find_node_by_name(NULL
, "smu-doorbell");
511 if (smu
->db_node
== NULL
) {
512 printk(KERN_ERR
"SMU: Can't find doorbell GPIO !\n");
515 data
= of_get_property(smu
->db_node
, "reg", NULL
);
517 of_node_put(smu
->db_node
);
519 printk(KERN_ERR
"SMU: Can't find doorbell GPIO address !\n");
523 /* Current setup has one doorbell GPIO that does both doorbell
524 * and ack. GPIOs are at 0x50, best would be to find that out
525 * in the device-tree though.
527 smu
->doorbell
= *data
;
528 if (smu
->doorbell
< 0x50)
529 smu
->doorbell
+= 0x50;
531 /* Now look for the smu-interrupt GPIO */
533 smu
->msg_node
= of_find_node_by_name(NULL
, "smu-interrupt");
534 if (smu
->msg_node
== NULL
)
536 data
= of_get_property(smu
->msg_node
, "reg", NULL
);
538 of_node_put(smu
->msg_node
);
539 smu
->msg_node
= NULL
;
547 /* Doorbell buffer is currently hard-coded, I didn't find a proper
548 * device-tree entry giving the address. Best would probably to use
549 * an offset for K2 base though, but let's do it that way for now.
551 smu
->db_buf
= ioremap(0x8000860c, 0x1000);
552 if (smu
->db_buf
== NULL
) {
553 printk(KERN_ERR
"SMU: Can't map doorbell buffer pointer !\n");
557 /* U3 has an issue with NAP mode when issuing SMU commands */
558 smu
->broken_nap
= pmac_get_uninorth_variant() < 4;
560 printk(KERN_INFO
"SMU: using NAP mode workaround\n");
562 sys_ctrler
= SYS_CTRLER_SMU
;
572 static int smu_late_init(void)
577 init_timer(&smu
->i2c_timer
);
578 smu
->i2c_timer
.function
= smu_i2c_retry
;
579 smu
->i2c_timer
.data
= (unsigned long)smu
;
582 smu
->db_irq
= irq_of_parse_and_map(smu
->db_node
, 0);
583 if (smu
->db_irq
== NO_IRQ
)
584 printk(KERN_ERR
"smu: failed to map irq for node %s\n",
585 smu
->db_node
->full_name
);
588 smu
->msg_irq
= irq_of_parse_and_map(smu
->msg_node
, 0);
589 if (smu
->msg_irq
== NO_IRQ
)
590 printk(KERN_ERR
"smu: failed to map irq for node %s\n",
591 smu
->msg_node
->full_name
);
595 * Try to request the interrupts
598 if (smu
->db_irq
!= NO_IRQ
) {
599 if (request_irq(smu
->db_irq
, smu_db_intr
,
600 IRQF_SHARED
, "SMU doorbell", smu
) < 0) {
601 printk(KERN_WARNING
"SMU: can't "
602 "request interrupt %d\n",
604 smu
->db_irq
= NO_IRQ
;
608 if (smu
->msg_irq
!= NO_IRQ
) {
609 if (request_irq(smu
->msg_irq
, smu_msg_intr
,
610 IRQF_SHARED
, "SMU message", smu
) < 0) {
611 printk(KERN_WARNING
"SMU: can't "
612 "request interrupt %d\n",
614 smu
->msg_irq
= NO_IRQ
;
621 /* This has to be before arch_initcall as the low i2c stuff relies on the
622 * above having been done before we reach arch_initcalls
624 core_initcall(smu_late_init
);
630 static void smu_expose_childs(struct work_struct
*unused
)
632 struct device_node
*np
;
634 for (np
= NULL
; (np
= of_get_next_child(smu
->of_node
, np
)) != NULL
;)
635 if (of_device_is_compatible(np
, "smu-sensors"))
636 of_platform_device_create(np
, "smu-sensors",
640 static DECLARE_WORK(smu_expose_childs_work
, smu_expose_childs
);
642 static int smu_platform_probe(struct of_device
* dev
,
643 const struct of_device_id
*match
)
650 * Ok, we are matched, now expose all i2c busses. We have to defer
651 * that unfortunately or it would deadlock inside the device model
653 schedule_work(&smu_expose_childs_work
);
658 static struct of_device_id smu_platform_match
[] =
666 static struct of_platform_driver smu_of_platform_driver
=
669 .match_table
= smu_platform_match
,
670 .probe
= smu_platform_probe
,
673 static int __init
smu_init_sysfs(void)
676 * Due to sysfs bogosity, a sysdev is not a real device, so
677 * we should in fact create both if we want sysdev semantics
678 * for power management.
679 * For now, we don't power manage machines with an SMU chip,
680 * I'm a bit too far from figuring out how that works with those
681 * new chipsets, but that will come back and bite us
683 of_register_platform_driver(&smu_of_platform_driver
);
687 device_initcall(smu_init_sysfs
);
689 struct of_device
*smu_get_ofdev(void)
696 EXPORT_SYMBOL_GPL(smu_get_ofdev
);
702 static void smu_i2c_complete_command(struct smu_i2c_cmd
*cmd
, int fail
)
704 void (*done
)(struct smu_i2c_cmd
*cmd
, void *misc
) = cmd
->done
;
705 void *misc
= cmd
->misc
;
708 /* Check for read case */
709 if (!fail
&& cmd
->read
) {
710 if (cmd
->pdata
[0] < 1)
713 memcpy(cmd
->info
.data
, &cmd
->pdata
[1],
717 DPRINTK("SMU: completing, success: %d\n", !fail
);
719 /* Update status and mark no pending i2c command with lock
720 * held so nobody comes in while we dequeue an eventual
721 * pending next i2c command
723 spin_lock_irqsave(&smu
->lock
, flags
);
724 smu
->cmd_i2c_cur
= NULL
;
726 cmd
->status
= fail
? -EIO
: 0;
728 /* Is there another i2c command waiting ? */
729 if (!list_empty(&smu
->cmd_i2c_list
)) {
730 struct smu_i2c_cmd
*newcmd
;
732 /* Fetch it, new current, remove from list */
733 newcmd
= list_entry(smu
->cmd_i2c_list
.next
,
734 struct smu_i2c_cmd
, link
);
735 smu
->cmd_i2c_cur
= newcmd
;
736 list_del(&cmd
->link
);
738 /* Queue with low level smu */
739 list_add_tail(&cmd
->scmd
.link
, &smu
->cmd_list
);
740 if (smu
->cmd_cur
== NULL
)
743 spin_unlock_irqrestore(&smu
->lock
, flags
);
745 /* Call command completion handler if any */
752 static void smu_i2c_retry(unsigned long data
)
754 struct smu_i2c_cmd
*cmd
= smu
->cmd_i2c_cur
;
756 DPRINTK("SMU: i2c failure, requeuing...\n");
758 /* requeue command simply by resetting reply_len */
759 cmd
->pdata
[0] = 0xff;
760 cmd
->scmd
.reply_len
= sizeof(cmd
->pdata
);
761 smu_queue_cmd(&cmd
->scmd
);
765 static void smu_i2c_low_completion(struct smu_cmd
*scmd
, void *misc
)
767 struct smu_i2c_cmd
*cmd
= misc
;
770 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
771 cmd
->stage
, scmd
->status
, cmd
->pdata
[0], scmd
->reply_len
);
773 /* Check for possible status */
774 if (scmd
->status
< 0)
776 else if (cmd
->read
) {
778 fail
= cmd
->pdata
[0] != 0;
780 fail
= cmd
->pdata
[0] >= 0x80;
782 fail
= cmd
->pdata
[0] != 0;
785 /* Handle failures by requeuing command, after 5ms interval
787 if (fail
&& --cmd
->retries
> 0) {
788 DPRINTK("SMU: i2c failure, starting timer...\n");
789 BUG_ON(cmd
!= smu
->cmd_i2c_cur
);
790 if (!smu_irq_inited
) {
795 mod_timer(&smu
->i2c_timer
, jiffies
+ msecs_to_jiffies(5));
799 /* If failure or stage 1, command is complete */
800 if (fail
|| cmd
->stage
!= 0) {
801 smu_i2c_complete_command(cmd
, fail
);
805 DPRINTK("SMU: going to stage 1\n");
807 /* Ok, initial command complete, now poll status */
808 scmd
->reply_buf
= cmd
->pdata
;
809 scmd
->reply_len
= sizeof(cmd
->pdata
);
810 scmd
->data_buf
= cmd
->pdata
;
819 int smu_queue_i2c(struct smu_i2c_cmd
*cmd
)
826 /* Fill most fields of scmd */
827 cmd
->scmd
.cmd
= SMU_CMD_I2C_COMMAND
;
828 cmd
->scmd
.done
= smu_i2c_low_completion
;
829 cmd
->scmd
.misc
= cmd
;
830 cmd
->scmd
.reply_buf
= cmd
->pdata
;
831 cmd
->scmd
.reply_len
= sizeof(cmd
->pdata
);
832 cmd
->scmd
.data_buf
= (u8
*)(char *)&cmd
->info
;
833 cmd
->scmd
.status
= 1;
835 cmd
->pdata
[0] = 0xff;
839 /* Check transfer type, sanitize some "info" fields
840 * based on transfer type and do more checking
842 cmd
->info
.caddr
= cmd
->info
.devaddr
;
843 cmd
->read
= cmd
->info
.devaddr
& 0x01;
844 switch(cmd
->info
.type
) {
845 case SMU_I2C_TRANSFER_SIMPLE
:
846 memset(&cmd
->info
.sublen
, 0, 4);
848 case SMU_I2C_TRANSFER_COMBINED
:
849 cmd
->info
.devaddr
&= 0xfe;
850 case SMU_I2C_TRANSFER_STDSUB
:
851 if (cmd
->info
.sublen
> 3)
858 /* Finish setting up command based on transfer direction
861 if (cmd
->info
.datalen
> SMU_I2C_READ_MAX
)
863 memset(cmd
->info
.data
, 0xff, cmd
->info
.datalen
);
864 cmd
->scmd
.data_len
= 9;
866 if (cmd
->info
.datalen
> SMU_I2C_WRITE_MAX
)
868 cmd
->scmd
.data_len
= 9 + cmd
->info
.datalen
;
871 DPRINTK("SMU: i2c enqueuing command\n");
872 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
873 cmd
->read
? "read" : "write", cmd
->info
.datalen
,
874 cmd
->info
.bus
, cmd
->info
.caddr
,
875 cmd
->info
.subaddr
[0], cmd
->info
.type
);
878 /* Enqueue command in i2c list, and if empty, enqueue also in
881 spin_lock_irqsave(&smu
->lock
, flags
);
882 if (smu
->cmd_i2c_cur
== NULL
) {
883 smu
->cmd_i2c_cur
= cmd
;
884 list_add_tail(&cmd
->scmd
.link
, &smu
->cmd_list
);
885 if (smu
->cmd_cur
== NULL
)
888 list_add_tail(&cmd
->link
, &smu
->cmd_i2c_list
);
889 spin_unlock_irqrestore(&smu
->lock
, flags
);
895 * Handling of "partitions"
898 static int smu_read_datablock(u8
*dest
, unsigned int addr
, unsigned int len
)
900 DECLARE_COMPLETION_ONSTACK(comp
);
906 /* We currently use a chunk size of 0xe. We could check the
907 * SMU firmware version and use bigger sizes though
912 unsigned int clen
= min(len
, chunk
);
914 cmd
.cmd
= SMU_CMD_MISC_ee_COMMAND
;
916 cmd
.data_buf
= params
;
917 cmd
.reply_len
= chunk
;
918 cmd
.reply_buf
= dest
;
919 cmd
.done
= smu_done_complete
;
921 params
[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC
;
923 *((u32
*)¶ms
[2]) = addr
;
926 rc
= smu_queue_cmd(&cmd
);
929 wait_for_completion(&comp
);
932 if (cmd
.reply_len
!= clen
) {
933 printk(KERN_DEBUG
"SMU: short read in "
934 "smu_read_datablock, got: %d, want: %d\n",
935 cmd
.reply_len
, clen
);
945 static struct smu_sdbp_header
*smu_create_sdb_partition(int id
)
947 DECLARE_COMPLETION_ONSTACK(comp
);
948 struct smu_simple_cmd cmd
;
949 unsigned int addr
, len
, tlen
;
950 struct smu_sdbp_header
*hdr
;
951 struct property
*prop
;
953 /* First query the partition info */
954 DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu
->db_irq
);
955 smu_queue_simple(&cmd
, SMU_CMD_PARTITION_COMMAND
, 2,
956 smu_done_complete
, &comp
,
957 SMU_CMD_PARTITION_LATEST
, id
);
958 wait_for_completion(&comp
);
959 DPRINTK("SMU: done, status: %d, reply_len: %d\n",
960 cmd
.cmd
.status
, cmd
.cmd
.reply_len
);
962 /* Partition doesn't exist (or other error) */
963 if (cmd
.cmd
.status
!= 0 || cmd
.cmd
.reply_len
!= 6)
966 /* Fetch address and length from reply */
967 addr
= *((u16
*)cmd
.buffer
);
968 len
= cmd
.buffer
[3] << 2;
969 /* Calucluate total length to allocate, including the 17 bytes
970 * for "sdb-partition-XX" that we append at the end of the buffer
972 tlen
= sizeof(struct property
) + len
+ 18;
974 prop
= kzalloc(tlen
, GFP_KERNEL
);
977 hdr
= (struct smu_sdbp_header
*)(prop
+ 1);
978 prop
->name
= ((char *)prop
) + tlen
- 18;
979 sprintf(prop
->name
, "sdb-partition-%02x", id
);
984 /* Read the datablock */
985 if (smu_read_datablock((u8
*)hdr
, addr
, len
)) {
986 printk(KERN_DEBUG
"SMU: datablock read failed while reading "
987 "partition %02x !\n", id
);
991 /* Got it, check a few things and create the property */
993 printk(KERN_DEBUG
"SMU: Reading partition %02x and got "
994 "%02x !\n", id
, hdr
->id
);
997 if (prom_add_property(smu
->of_node
, prop
)) {
998 printk(KERN_DEBUG
"SMU: Failed creating sdb-partition-%02x "
1009 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1010 * when interruptible is 1
1012 const struct smu_sdbp_header
*__smu_get_sdb_partition(int id
,
1013 unsigned int *size
, int interruptible
)
1016 const struct smu_sdbp_header
*part
;
1021 sprintf(pname
, "sdb-partition-%02x", id
);
1023 DPRINTK("smu_get_sdb_partition(%02x)\n", id
);
1025 if (interruptible
) {
1027 rc
= mutex_lock_interruptible(&smu_part_access
);
1031 mutex_lock(&smu_part_access
);
1033 part
= of_get_property(smu
->of_node
, pname
, size
);
1035 DPRINTK("trying to extract from SMU ...\n");
1036 part
= smu_create_sdb_partition(id
);
1037 if (part
!= NULL
&& size
)
1038 *size
= part
->len
<< 2;
1040 mutex_unlock(&smu_part_access
);
1044 const struct smu_sdbp_header
*smu_get_sdb_partition(int id
, unsigned int *size
)
1046 return __smu_get_sdb_partition(id
, size
, 0);
1048 EXPORT_SYMBOL(smu_get_sdb_partition
);
1052 * Userland driver interface
1056 static LIST_HEAD(smu_clist
);
1057 static DEFINE_SPINLOCK(smu_clist_lock
);
1059 enum smu_file_mode
{
1067 struct list_head list
;
1068 enum smu_file_mode mode
;
1072 wait_queue_head_t wait
;
1073 u8 buffer
[SMU_MAX_DATA
];
1077 static int smu_open(struct inode
*inode
, struct file
*file
)
1079 struct smu_private
*pp
;
1080 unsigned long flags
;
1082 pp
= kzalloc(sizeof(struct smu_private
), GFP_KERNEL
);
1085 spin_lock_init(&pp
->lock
);
1086 pp
->mode
= smu_file_commands
;
1087 init_waitqueue_head(&pp
->wait
);
1089 spin_lock_irqsave(&smu_clist_lock
, flags
);
1090 list_add(&pp
->list
, &smu_clist
);
1091 spin_unlock_irqrestore(&smu_clist_lock
, flags
);
1092 file
->private_data
= pp
;
1098 static void smu_user_cmd_done(struct smu_cmd
*cmd
, void *misc
)
1100 struct smu_private
*pp
= misc
;
1102 wake_up_all(&pp
->wait
);
1106 static ssize_t
smu_write(struct file
*file
, const char __user
*buf
,
1107 size_t count
, loff_t
*ppos
)
1109 struct smu_private
*pp
= file
->private_data
;
1110 unsigned long flags
;
1111 struct smu_user_cmd_hdr hdr
;
1116 else if (copy_from_user(&hdr
, buf
, sizeof(hdr
)))
1118 else if (hdr
.cmdtype
== SMU_CMDTYPE_WANTS_EVENTS
) {
1119 pp
->mode
= smu_file_events
;
1121 } else if (hdr
.cmdtype
== SMU_CMDTYPE_GET_PARTITION
) {
1122 const struct smu_sdbp_header
*part
;
1123 part
= __smu_get_sdb_partition(hdr
.cmd
, NULL
, 1);
1126 else if (IS_ERR(part
))
1127 return PTR_ERR(part
);
1129 } else if (hdr
.cmdtype
!= SMU_CMDTYPE_SMU
)
1131 else if (pp
->mode
!= smu_file_commands
)
1133 else if (hdr
.data_len
> SMU_MAX_DATA
)
1136 spin_lock_irqsave(&pp
->lock
, flags
);
1138 spin_unlock_irqrestore(&pp
->lock
, flags
);
1143 spin_unlock_irqrestore(&pp
->lock
, flags
);
1145 if (copy_from_user(pp
->buffer
, buf
+ sizeof(hdr
), hdr
.data_len
)) {
1150 pp
->cmd
.cmd
= hdr
.cmd
;
1151 pp
->cmd
.data_len
= hdr
.data_len
;
1152 pp
->cmd
.reply_len
= SMU_MAX_DATA
;
1153 pp
->cmd
.data_buf
= pp
->buffer
;
1154 pp
->cmd
.reply_buf
= pp
->buffer
;
1155 pp
->cmd
.done
= smu_user_cmd_done
;
1157 rc
= smu_queue_cmd(&pp
->cmd
);
1164 static ssize_t
smu_read_command(struct file
*file
, struct smu_private
*pp
,
1165 char __user
*buf
, size_t count
)
1167 DECLARE_WAITQUEUE(wait
, current
);
1168 struct smu_user_reply_hdr hdr
;
1169 unsigned long flags
;
1174 if (count
< sizeof(struct smu_user_reply_hdr
))
1176 spin_lock_irqsave(&pp
->lock
, flags
);
1177 if (pp
->cmd
.status
== 1) {
1178 if (file
->f_flags
& O_NONBLOCK
)
1180 add_wait_queue(&pp
->wait
, &wait
);
1182 set_current_state(TASK_INTERRUPTIBLE
);
1184 if (pp
->cmd
.status
!= 1)
1187 if (signal_pending(current
))
1189 spin_unlock_irqrestore(&pp
->lock
, flags
);
1191 spin_lock_irqsave(&pp
->lock
, flags
);
1193 set_current_state(TASK_RUNNING
);
1194 remove_wait_queue(&pp
->wait
, &wait
);
1196 spin_unlock_irqrestore(&pp
->lock
, flags
);
1199 if (pp
->cmd
.status
!= 0)
1200 pp
->cmd
.reply_len
= 0;
1201 size
= sizeof(hdr
) + pp
->cmd
.reply_len
;
1205 hdr
.status
= pp
->cmd
.status
;
1206 hdr
.reply_len
= pp
->cmd
.reply_len
;
1207 if (copy_to_user(buf
, &hdr
, sizeof(hdr
)))
1209 size
-= sizeof(hdr
);
1210 if (size
&& copy_to_user(buf
+ sizeof(hdr
), pp
->buffer
, size
))
1218 static ssize_t
smu_read_events(struct file
*file
, struct smu_private
*pp
,
1219 char __user
*buf
, size_t count
)
1221 /* Not implemented */
1222 msleep_interruptible(1000);
1227 static ssize_t
smu_read(struct file
*file
, char __user
*buf
,
1228 size_t count
, loff_t
*ppos
)
1230 struct smu_private
*pp
= file
->private_data
;
1232 if (pp
->mode
== smu_file_commands
)
1233 return smu_read_command(file
, pp
, buf
, count
);
1234 if (pp
->mode
== smu_file_events
)
1235 return smu_read_events(file
, pp
, buf
, count
);
1240 static unsigned int smu_fpoll(struct file
*file
, poll_table
*wait
)
1242 struct smu_private
*pp
= file
->private_data
;
1243 unsigned int mask
= 0;
1244 unsigned long flags
;
1249 if (pp
->mode
== smu_file_commands
) {
1250 poll_wait(file
, &pp
->wait
, wait
);
1252 spin_lock_irqsave(&pp
->lock
, flags
);
1253 if (pp
->busy
&& pp
->cmd
.status
!= 1)
1255 spin_unlock_irqrestore(&pp
->lock
, flags
);
1256 } if (pp
->mode
== smu_file_events
) {
1257 /* Not yet implemented */
1262 static int smu_release(struct inode
*inode
, struct file
*file
)
1264 struct smu_private
*pp
= file
->private_data
;
1265 unsigned long flags
;
1271 file
->private_data
= NULL
;
1273 /* Mark file as closing to avoid races with new request */
1274 spin_lock_irqsave(&pp
->lock
, flags
);
1275 pp
->mode
= smu_file_closing
;
1278 /* Wait for any pending request to complete */
1279 if (busy
&& pp
->cmd
.status
== 1) {
1280 DECLARE_WAITQUEUE(wait
, current
);
1282 add_wait_queue(&pp
->wait
, &wait
);
1284 set_current_state(TASK_UNINTERRUPTIBLE
);
1285 if (pp
->cmd
.status
!= 1)
1287 spin_unlock_irqrestore(&pp
->lock
, flags
);
1289 spin_lock_irqsave(&pp
->lock
, flags
);
1291 set_current_state(TASK_RUNNING
);
1292 remove_wait_queue(&pp
->wait
, &wait
);
1294 spin_unlock_irqrestore(&pp
->lock
, flags
);
1296 spin_lock_irqsave(&smu_clist_lock
, flags
);
1297 list_del(&pp
->list
);
1298 spin_unlock_irqrestore(&smu_clist_lock
, flags
);
1305 static const struct file_operations smu_device_fops
= {
1306 .llseek
= no_llseek
,
1311 .release
= smu_release
,
1314 static struct miscdevice pmu_device
= {
1315 MISC_DYNAMIC_MINOR
, "smu", &smu_device_fops
1318 static int smu_device_init(void)
1322 if (misc_register(&pmu_device
) < 0)
1323 printk(KERN_ERR
"via-pmu: cannot register misc device.\n");
1326 device_initcall(smu_device_init
);