1 /* time.c: UltraSparc timer and TOD clock support.
3 * Copyright (C) 1997, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Based largely on code which is:
8 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/param.h>
16 #include <linux/string.h>
18 #include <linux/interrupt.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/init.h>
22 #include <linux/ioport.h>
23 #include <linux/mc146818rtc.h>
24 #include <linux/delay.h>
25 #include <linux/profile.h>
26 #include <linux/bcd.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpufreq.h>
29 #include <linux/percpu.h>
30 #include <linux/miscdevice.h>
31 #include <linux/rtc.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/clockchips.h>
34 #include <linux/clocksource.h>
36 #include <asm/oplib.h>
37 #include <asm/mostek.h>
38 #include <asm/timer.h>
42 #include <asm/of_device.h>
43 #include <asm/starfire.h>
45 #include <asm/sections.h>
46 #include <asm/cpudata.h>
47 #include <asm/uaccess.h>
48 #include <asm/irq_regs.h>
52 DEFINE_SPINLOCK(mostek_lock
);
53 DEFINE_SPINLOCK(rtc_lock
);
54 void __iomem
*mstk48t02_regs
= NULL
;
56 unsigned long ds1287_regs
= 0UL;
57 static void __iomem
*bq4802_regs
;
60 static void __iomem
*mstk48t08_regs
;
61 static void __iomem
*mstk48t59_regs
;
63 static int set_rtc_mmss(unsigned long);
65 #define TICK_PRIV_BIT (1UL << 63)
66 #define TICKCMP_IRQ_BIT (1UL << 63)
69 unsigned long profile_pc(struct pt_regs
*regs
)
71 unsigned long pc
= instruction_pointer(regs
);
73 if (in_lock_functions(pc
))
74 return regs
->u_regs
[UREG_RETPC
];
77 EXPORT_SYMBOL(profile_pc
);
80 static void tick_disable_protection(void)
82 /* Set things up so user can access tick register for profiling
83 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
84 * read back of %tick after writing it.
90 "1: rd %%tick, %%g2\n"
91 " add %%g2, 6, %%g2\n"
92 " andn %%g2, %0, %%g2\n"
93 " wrpr %%g2, 0, %%tick\n"
100 static void tick_disable_irq(void)
102 __asm__
__volatile__(
106 "1: wr %0, 0x0, %%tick_cmpr\n"
107 " rd %%tick_cmpr, %%g0"
109 : "r" (TICKCMP_IRQ_BIT
));
112 static void tick_init_tick(void)
114 tick_disable_protection();
118 static unsigned long tick_get_tick(void)
122 __asm__
__volatile__("rd %%tick, %0\n\t"
126 return ret
& ~TICK_PRIV_BIT
;
129 static int tick_add_compare(unsigned long adj
)
131 unsigned long orig_tick
, new_tick
, new_compare
;
133 __asm__
__volatile__("rd %%tick, %0"
136 orig_tick
&= ~TICKCMP_IRQ_BIT
;
138 /* Workaround for Spitfire Errata (#54 I think??), I discovered
139 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
142 * On Blackbird writes to %tick_cmpr can fail, the
143 * workaround seems to be to execute the wr instruction
144 * at the start of an I-cache line, and perform a dummy
145 * read back from %tick_cmpr right after writing to it. -DaveM
147 __asm__
__volatile__("ba,pt %%xcc, 1f\n\t"
148 " add %1, %2, %0\n\t"
151 "wr %0, 0, %%tick_cmpr\n\t"
152 "rd %%tick_cmpr, %%g0\n\t"
154 : "r" (orig_tick
), "r" (adj
));
156 __asm__
__volatile__("rd %%tick, %0"
158 new_tick
&= ~TICKCMP_IRQ_BIT
;
160 return ((long)(new_tick
- (orig_tick
+adj
))) > 0L;
163 static unsigned long tick_add_tick(unsigned long adj
)
165 unsigned long new_tick
;
167 /* Also need to handle Blackbird bug here too. */
168 __asm__
__volatile__("rd %%tick, %0\n\t"
170 "wrpr %0, 0, %%tick\n\t"
177 static struct sparc64_tick_ops tick_operations __read_mostly
= {
179 .init_tick
= tick_init_tick
,
180 .disable_irq
= tick_disable_irq
,
181 .get_tick
= tick_get_tick
,
182 .add_tick
= tick_add_tick
,
183 .add_compare
= tick_add_compare
,
184 .softint_mask
= 1UL << 0,
187 struct sparc64_tick_ops
*tick_ops __read_mostly
= &tick_operations
;
189 static void stick_disable_irq(void)
191 __asm__
__volatile__(
192 "wr %0, 0x0, %%asr25"
194 : "r" (TICKCMP_IRQ_BIT
));
197 static void stick_init_tick(void)
199 /* Writes to the %tick and %stick register are not
200 * allowed on sun4v. The Hypervisor controls that
203 if (tlb_type
!= hypervisor
) {
204 tick_disable_protection();
207 /* Let the user get at STICK too. */
208 __asm__
__volatile__(
209 " rd %%asr24, %%g2\n"
210 " andn %%g2, %0, %%g2\n"
211 " wr %%g2, 0, %%asr24"
213 : "r" (TICK_PRIV_BIT
)
220 static unsigned long stick_get_tick(void)
224 __asm__
__volatile__("rd %%asr24, %0"
227 return ret
& ~TICK_PRIV_BIT
;
230 static unsigned long stick_add_tick(unsigned long adj
)
232 unsigned long new_tick
;
234 __asm__
__volatile__("rd %%asr24, %0\n\t"
236 "wr %0, 0, %%asr24\n\t"
243 static int stick_add_compare(unsigned long adj
)
245 unsigned long orig_tick
, new_tick
;
247 __asm__
__volatile__("rd %%asr24, %0"
249 orig_tick
&= ~TICKCMP_IRQ_BIT
;
251 __asm__
__volatile__("wr %0, 0, %%asr25"
253 : "r" (orig_tick
+ adj
));
255 __asm__
__volatile__("rd %%asr24, %0"
257 new_tick
&= ~TICKCMP_IRQ_BIT
;
259 return ((long)(new_tick
- (orig_tick
+adj
))) > 0L;
262 static struct sparc64_tick_ops stick_operations __read_mostly
= {
264 .init_tick
= stick_init_tick
,
265 .disable_irq
= stick_disable_irq
,
266 .get_tick
= stick_get_tick
,
267 .add_tick
= stick_add_tick
,
268 .add_compare
= stick_add_compare
,
269 .softint_mask
= 1UL << 16,
272 /* On Hummingbird the STICK/STICK_CMPR register is implemented
273 * in I/O space. There are two 64-bit registers each, the
274 * first holds the low 32-bits of the value and the second holds
277 * Since STICK is constantly updating, we have to access it carefully.
279 * The sequence we use to read is:
282 * 3) read high again, if it rolled re-read both low and high again.
284 * Writing STICK safely is also tricky:
285 * 1) write low to zero
289 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
290 #define HBIRD_STICK_ADDR 0x1fe0000f070UL
292 static unsigned long __hbird_read_stick(void)
294 unsigned long ret
, tmp1
, tmp2
, tmp3
;
295 unsigned long addr
= HBIRD_STICK_ADDR
+8;
297 __asm__
__volatile__("ldxa [%1] %5, %2\n"
299 "sub %1, 0x8, %1\n\t"
300 "ldxa [%1] %5, %3\n\t"
301 "add %1, 0x8, %1\n\t"
302 "ldxa [%1] %5, %4\n\t"
304 "bne,a,pn %%xcc, 1b\n\t"
306 "sllx %4, 32, %4\n\t"
308 : "=&r" (ret
), "=&r" (addr
),
309 "=&r" (tmp1
), "=&r" (tmp2
), "=&r" (tmp3
)
310 : "i" (ASI_PHYS_BYPASS_EC_E
), "1" (addr
));
315 static void __hbird_write_stick(unsigned long val
)
317 unsigned long low
= (val
& 0xffffffffUL
);
318 unsigned long high
= (val
>> 32UL);
319 unsigned long addr
= HBIRD_STICK_ADDR
;
321 __asm__
__volatile__("stxa %%g0, [%0] %4\n\t"
322 "add %0, 0x8, %0\n\t"
323 "stxa %3, [%0] %4\n\t"
324 "sub %0, 0x8, %0\n\t"
327 : "0" (addr
), "r" (low
), "r" (high
),
328 "i" (ASI_PHYS_BYPASS_EC_E
));
331 static void __hbird_write_compare(unsigned long val
)
333 unsigned long low
= (val
& 0xffffffffUL
);
334 unsigned long high
= (val
>> 32UL);
335 unsigned long addr
= HBIRD_STICKCMP_ADDR
+ 0x8UL
;
337 __asm__
__volatile__("stxa %3, [%0] %4\n\t"
338 "sub %0, 0x8, %0\n\t"
341 : "0" (addr
), "r" (low
), "r" (high
),
342 "i" (ASI_PHYS_BYPASS_EC_E
));
345 static void hbtick_disable_irq(void)
347 __hbird_write_compare(TICKCMP_IRQ_BIT
);
350 static void hbtick_init_tick(void)
352 tick_disable_protection();
354 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
355 * XXX into actually sending STICK interrupts. I think because
356 * XXX of how we store %tick_cmpr in head.S this somehow resets the
357 * XXX {TICK + STICK} interrupt mux. -DaveM
359 __hbird_write_stick(__hbird_read_stick());
361 hbtick_disable_irq();
364 static unsigned long hbtick_get_tick(void)
366 return __hbird_read_stick() & ~TICK_PRIV_BIT
;
369 static unsigned long hbtick_add_tick(unsigned long adj
)
373 val
= __hbird_read_stick() + adj
;
374 __hbird_write_stick(val
);
379 static int hbtick_add_compare(unsigned long adj
)
381 unsigned long val
= __hbird_read_stick();
384 val
&= ~TICKCMP_IRQ_BIT
;
386 __hbird_write_compare(val
);
388 val2
= __hbird_read_stick() & ~TICKCMP_IRQ_BIT
;
390 return ((long)(val2
- val
)) > 0L;
393 static struct sparc64_tick_ops hbtick_operations __read_mostly
= {
395 .init_tick
= hbtick_init_tick
,
396 .disable_irq
= hbtick_disable_irq
,
397 .get_tick
= hbtick_get_tick
,
398 .add_tick
= hbtick_add_tick
,
399 .add_compare
= hbtick_add_compare
,
400 .softint_mask
= 1UL << 0,
403 static unsigned long timer_ticks_per_nsec_quotient __read_mostly
;
405 int update_persistent_clock(struct timespec now
)
407 return set_rtc_mmss(now
.tv_sec
);
410 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
411 static void __init
kick_start_clock(void)
413 void __iomem
*regs
= mstk48t02_regs
;
417 prom_printf("CLOCK: Clock was stopped. Kick start ");
419 spin_lock_irq(&mostek_lock
);
421 /* Turn on the kick start bit to start the oscillator. */
422 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
423 tmp
|= MSTK_CREG_WRITE
;
424 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
425 tmp
= mostek_read(regs
+ MOSTEK_SEC
);
427 mostek_write(regs
+ MOSTEK_SEC
, tmp
);
428 tmp
= mostek_read(regs
+ MOSTEK_HOUR
);
429 tmp
|= MSTK_KICK_START
;
430 mostek_write(regs
+ MOSTEK_HOUR
, tmp
);
431 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
432 tmp
&= ~MSTK_CREG_WRITE
;
433 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
435 spin_unlock_irq(&mostek_lock
);
437 /* Delay to allow the clock oscillator to start. */
438 sec
= MSTK_REG_SEC(regs
);
439 for (i
= 0; i
< 3; i
++) {
440 while (sec
== MSTK_REG_SEC(regs
))
441 for (count
= 0; count
< 100000; count
++)
444 sec
= MSTK_REG_SEC(regs
);
448 spin_lock_irq(&mostek_lock
);
450 /* Turn off kick start and set a "valid" time and date. */
451 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
452 tmp
|= MSTK_CREG_WRITE
;
453 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
454 tmp
= mostek_read(regs
+ MOSTEK_HOUR
);
455 tmp
&= ~MSTK_KICK_START
;
456 mostek_write(regs
+ MOSTEK_HOUR
, tmp
);
457 MSTK_SET_REG_SEC(regs
,0);
458 MSTK_SET_REG_MIN(regs
,0);
459 MSTK_SET_REG_HOUR(regs
,0);
460 MSTK_SET_REG_DOW(regs
,5);
461 MSTK_SET_REG_DOM(regs
,1);
462 MSTK_SET_REG_MONTH(regs
,8);
463 MSTK_SET_REG_YEAR(regs
,1996 - MSTK_YEAR_ZERO
);
464 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
465 tmp
&= ~MSTK_CREG_WRITE
;
466 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
468 spin_unlock_irq(&mostek_lock
);
470 /* Ensure the kick start bit is off. If it isn't, turn it off. */
471 while (mostek_read(regs
+ MOSTEK_HOUR
) & MSTK_KICK_START
) {
472 prom_printf("CLOCK: Kick start still on!\n");
474 spin_lock_irq(&mostek_lock
);
476 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
477 tmp
|= MSTK_CREG_WRITE
;
478 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
480 tmp
= mostek_read(regs
+ MOSTEK_HOUR
);
481 tmp
&= ~MSTK_KICK_START
;
482 mostek_write(regs
+ MOSTEK_HOUR
, tmp
);
484 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
485 tmp
&= ~MSTK_CREG_WRITE
;
486 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
488 spin_unlock_irq(&mostek_lock
);
491 prom_printf("CLOCK: Kick start procedure successful.\n");
494 /* Return nonzero if the clock chip battery is low. */
495 static int __init
has_low_battery(void)
497 void __iomem
*regs
= mstk48t02_regs
;
500 spin_lock_irq(&mostek_lock
);
502 data1
= mostek_read(regs
+ MOSTEK_EEPROM
); /* Read some data. */
503 mostek_write(regs
+ MOSTEK_EEPROM
, ~data1
); /* Write back the complement. */
504 data2
= mostek_read(regs
+ MOSTEK_EEPROM
); /* Read back the complement. */
505 mostek_write(regs
+ MOSTEK_EEPROM
, data1
); /* Restore original value. */
507 spin_unlock_irq(&mostek_lock
);
509 return (data1
== data2
); /* Was the write blocked? */
512 static void __init
mostek_set_system_time(void __iomem
*mregs
)
514 unsigned int year
, mon
, day
, hour
, min
, sec
;
517 spin_lock_irq(&mostek_lock
);
519 /* Traditional Mostek chip. */
520 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
521 tmp
|= MSTK_CREG_READ
;
522 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
524 sec
= MSTK_REG_SEC(mregs
);
525 min
= MSTK_REG_MIN(mregs
);
526 hour
= MSTK_REG_HOUR(mregs
);
527 day
= MSTK_REG_DOM(mregs
);
528 mon
= MSTK_REG_MONTH(mregs
);
529 year
= MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs
) );
531 xtime
.tv_sec
= mktime(year
, mon
, day
, hour
, min
, sec
);
532 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
533 set_normalized_timespec(&wall_to_monotonic
,
534 -xtime
.tv_sec
, -xtime
.tv_nsec
);
536 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
537 tmp
&= ~MSTK_CREG_READ
;
538 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
540 spin_unlock_irq(&mostek_lock
);
543 /* Probe for the real time clock chip. */
544 static void __init
set_system_time(void)
546 unsigned int year
, mon
, day
, hour
, min
, sec
;
547 void __iomem
*mregs
= mstk48t02_regs
;
549 unsigned long dregs
= ds1287_regs
;
550 void __iomem
*bregs
= bq4802_regs
;
552 unsigned long dregs
= 0UL;
553 void __iomem
*bregs
= 0UL;
556 if (!mregs
&& !dregs
&& !bregs
) {
557 prom_printf("Something wrong, clock regs not mapped yet.\n");
562 mostek_set_system_time(mregs
);
567 unsigned char val
= readb(bregs
+ 0x0e);
568 unsigned int century
;
570 /* BQ4802 RTC chip. */
572 writeb(val
| 0x08, bregs
+ 0x0e);
574 sec
= readb(bregs
+ 0x00);
575 min
= readb(bregs
+ 0x02);
576 hour
= readb(bregs
+ 0x04);
577 day
= readb(bregs
+ 0x06);
578 mon
= readb(bregs
+ 0x09);
579 year
= readb(bregs
+ 0x0a);
580 century
= readb(bregs
+ 0x0f);
582 writeb(val
, bregs
+ 0x0e);
592 year
+= (century
* 100);
594 /* Dallas 12887 RTC chip. */
597 sec
= CMOS_READ(RTC_SECONDS
);
598 min
= CMOS_READ(RTC_MINUTES
);
599 hour
= CMOS_READ(RTC_HOURS
);
600 day
= CMOS_READ(RTC_DAY_OF_MONTH
);
601 mon
= CMOS_READ(RTC_MONTH
);
602 year
= CMOS_READ(RTC_YEAR
);
603 } while (sec
!= CMOS_READ(RTC_SECONDS
));
605 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
613 if ((year
+= 1900) < 1970)
617 xtime
.tv_sec
= mktime(year
, mon
, day
, hour
, min
, sec
);
618 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
619 set_normalized_timespec(&wall_to_monotonic
,
620 -xtime
.tv_sec
, -xtime
.tv_nsec
);
623 /* davem suggests we keep this within the 4M locked kernel image */
624 static u32
starfire_get_time(void)
626 static char obp_gettod
[32];
629 sprintf(obp_gettod
, "h# %08x unix-gettod",
630 (unsigned int) (long) &unix_tod
);
631 prom_feval(obp_gettod
);
636 static int starfire_set_time(u32 val
)
638 /* Do nothing, time is set using the service processor
639 * console on this platform.
644 static u32
hypervisor_get_time(void)
646 unsigned long ret
, time
;
650 ret
= sun4v_tod_get(&time
);
653 if (ret
== HV_EWOULDBLOCK
) {
658 printk(KERN_WARNING
"SUN4V: tod_get() timed out.\n");
661 printk(KERN_WARNING
"SUN4V: tod_get() not supported.\n");
665 static int hypervisor_set_time(u32 secs
)
671 ret
= sun4v_tod_set(secs
);
674 if (ret
== HV_EWOULDBLOCK
) {
679 printk(KERN_WARNING
"SUN4V: tod_set() timed out.\n");
682 printk(KERN_WARNING
"SUN4V: tod_set() not supported.\n");
686 static int __init
clock_model_matches(const char *model
)
688 if (strcmp(model
, "mk48t02") &&
689 strcmp(model
, "mk48t08") &&
690 strcmp(model
, "mk48t59") &&
691 strcmp(model
, "m5819") &&
692 strcmp(model
, "m5819p") &&
693 strcmp(model
, "m5823") &&
694 strcmp(model
, "ds1287") &&
695 strcmp(model
, "bq4802"))
701 static int __devinit
clock_probe(struct of_device
*op
, const struct of_device_id
*match
)
703 struct device_node
*dp
= op
->node
;
704 const char *model
= of_get_property(dp
, "model", NULL
);
705 const char *compat
= of_get_property(dp
, "compatible", NULL
);
706 unsigned long size
, flags
;
712 if (!model
|| !clock_model_matches(model
))
715 /* On an Enterprise system there can be multiple mostek clocks.
716 * We should only match the one that is on the central FHC bus.
718 if (!strcmp(dp
->parent
->name
, "fhc") &&
719 strcmp(dp
->parent
->parent
->name
, "central") != 0)
722 size
= (op
->resource
[0].end
- op
->resource
[0].start
) + 1;
723 regs
= of_ioremap(&op
->resource
[0], 0, size
, "clock");
728 if (!strcmp(model
, "ds1287") ||
729 !strcmp(model
, "m5819") ||
730 !strcmp(model
, "m5819p") ||
731 !strcmp(model
, "m5823")) {
732 ds1287_regs
= (unsigned long) regs
;
733 } else if (!strcmp(model
, "bq4802")) {
737 if (model
[5] == '0' && model
[6] == '2') {
738 mstk48t02_regs
= regs
;
739 } else if(model
[5] == '0' && model
[6] == '8') {
740 mstk48t08_regs
= regs
;
741 mstk48t02_regs
= mstk48t08_regs
+ MOSTEK_48T08_48T02
;
743 mstk48t59_regs
= regs
;
744 mstk48t02_regs
= mstk48t59_regs
+ MOSTEK_48T59_48T02
;
747 printk(KERN_INFO
"%s: Clock regs at %p\n", dp
->full_name
, regs
);
749 local_irq_save(flags
);
751 if (mstk48t02_regs
!= NULL
) {
752 /* Report a low battery voltage condition. */
753 if (has_low_battery())
754 prom_printf("NVRAM: Low battery voltage!\n");
756 /* Kick start the clock if it is completely stopped. */
757 if (mostek_read(mstk48t02_regs
+ MOSTEK_SEC
) & MSTK_STOP
)
763 local_irq_restore(flags
);
768 static struct of_device_id clock_match
[] = {
778 static struct of_platform_driver clock_driver
= {
779 .match_table
= clock_match
,
780 .probe
= clock_probe
,
786 static int __init
clock_init(void)
788 if (this_is_starfire
) {
789 xtime
.tv_sec
= starfire_get_time();
790 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
791 set_normalized_timespec(&wall_to_monotonic
,
792 -xtime
.tv_sec
, -xtime
.tv_nsec
);
795 if (tlb_type
== hypervisor
) {
796 xtime
.tv_sec
= hypervisor_get_time();
797 xtime
.tv_nsec
= (INITIAL_JIFFIES
% HZ
) * (NSEC_PER_SEC
/ HZ
);
798 set_normalized_timespec(&wall_to_monotonic
,
799 -xtime
.tv_sec
, -xtime
.tv_nsec
);
803 return of_register_driver(&clock_driver
, &of_platform_bus_type
);
806 /* Must be after subsys_initcall() so that busses are probed. Must
807 * be before device_initcall() because things like the RTC driver
808 * need to see the clock registers.
810 fs_initcall(clock_init
);
812 /* This is gets the master TICK_INT timer going. */
813 static unsigned long sparc64_init_timers(void)
815 struct device_node
*dp
;
818 dp
= of_find_node_by_path("/");
819 if (tlb_type
== spitfire
) {
820 unsigned long ver
, manuf
, impl
;
822 __asm__
__volatile__ ("rdpr %%ver, %0"
824 manuf
= ((ver
>> 48) & 0xffff);
825 impl
= ((ver
>> 32) & 0xffff);
826 if (manuf
== 0x17 && impl
== 0x13) {
827 /* Hummingbird, aka Ultra-IIe */
828 tick_ops
= &hbtick_operations
;
829 clock
= of_getintprop_default(dp
, "stick-frequency", 0);
831 tick_ops
= &tick_operations
;
832 clock
= local_cpu_data().clock_tick
;
835 tick_ops
= &stick_operations
;
836 clock
= of_getintprop_default(dp
, "stick-frequency", 0);
843 unsigned long clock_tick_ref
;
844 unsigned int ref_freq
;
846 static DEFINE_PER_CPU(struct freq_table
, sparc64_freq_table
) = { 0, 0 };
848 unsigned long sparc64_get_clock_tick(unsigned int cpu
)
850 struct freq_table
*ft
= &per_cpu(sparc64_freq_table
, cpu
);
852 if (ft
->clock_tick_ref
)
853 return ft
->clock_tick_ref
;
854 return cpu_data(cpu
).clock_tick
;
857 #ifdef CONFIG_CPU_FREQ
859 static int sparc64_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
862 struct cpufreq_freqs
*freq
= data
;
863 unsigned int cpu
= freq
->cpu
;
864 struct freq_table
*ft
= &per_cpu(sparc64_freq_table
, cpu
);
867 ft
->ref_freq
= freq
->old
;
868 ft
->clock_tick_ref
= cpu_data(cpu
).clock_tick
;
870 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
871 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new) ||
872 (val
== CPUFREQ_RESUMECHANGE
)) {
873 cpu_data(cpu
).clock_tick
=
874 cpufreq_scale(ft
->clock_tick_ref
,
882 static struct notifier_block sparc64_cpufreq_notifier_block
= {
883 .notifier_call
= sparc64_cpufreq_notifier
886 #endif /* CONFIG_CPU_FREQ */
888 static int sparc64_next_event(unsigned long delta
,
889 struct clock_event_device
*evt
)
891 return tick_ops
->add_compare(delta
) ? -ETIME
: 0;
894 static void sparc64_timer_setup(enum clock_event_mode mode
,
895 struct clock_event_device
*evt
)
898 case CLOCK_EVT_MODE_ONESHOT
:
899 case CLOCK_EVT_MODE_RESUME
:
902 case CLOCK_EVT_MODE_SHUTDOWN
:
903 tick_ops
->disable_irq();
906 case CLOCK_EVT_MODE_PERIODIC
:
907 case CLOCK_EVT_MODE_UNUSED
:
913 static struct clock_event_device sparc64_clockevent
= {
914 .features
= CLOCK_EVT_FEAT_ONESHOT
,
915 .set_mode
= sparc64_timer_setup
,
916 .set_next_event
= sparc64_next_event
,
921 static DEFINE_PER_CPU(struct clock_event_device
, sparc64_events
);
923 void timer_interrupt(int irq
, struct pt_regs
*regs
)
925 struct pt_regs
*old_regs
= set_irq_regs(regs
);
926 unsigned long tick_mask
= tick_ops
->softint_mask
;
927 int cpu
= smp_processor_id();
928 struct clock_event_device
*evt
= &per_cpu(sparc64_events
, cpu
);
930 clear_softint(tick_mask
);
934 kstat_this_cpu
.irqs
[0]++;
936 if (unlikely(!evt
->event_handler
)) {
938 "Spurious SPARC64 timer interrupt on cpu %d\n", cpu
);
940 evt
->event_handler(evt
);
944 set_irq_regs(old_regs
);
947 void __devinit
setup_sparc64_timer(void)
949 struct clock_event_device
*sevt
;
950 unsigned long pstate
;
952 /* Guarantee that the following sequences execute
955 __asm__
__volatile__("rdpr %%pstate, %0\n\t"
956 "wrpr %0, %1, %%pstate"
960 tick_ops
->init_tick();
962 /* Restore PSTATE_IE. */
963 __asm__
__volatile__("wrpr %0, 0x0, %%pstate"
967 sevt
= &__get_cpu_var(sparc64_events
);
969 memcpy(sevt
, &sparc64_clockevent
, sizeof(*sevt
));
970 sevt
->cpumask
= cpumask_of_cpu(smp_processor_id());
972 clockevents_register_device(sevt
);
975 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL
977 static struct clocksource clocksource_tick
= {
979 .mask
= CLOCKSOURCE_MASK(64),
981 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
984 static void __init
setup_clockevent_multiplier(unsigned long hz
)
986 unsigned long mult
, shift
= 32;
989 mult
= div_sc(hz
, NSEC_PER_SEC
, shift
);
990 if (mult
&& (mult
>> 32UL) == 0UL)
996 sparc64_clockevent
.shift
= shift
;
997 sparc64_clockevent
.mult
= mult
;
1000 static unsigned long tb_ticks_per_usec __read_mostly
;
1002 void __delay(unsigned long loops
)
1004 unsigned long bclock
, now
;
1006 bclock
= tick_ops
->get_tick();
1008 now
= tick_ops
->get_tick();
1009 } while ((now
-bclock
) < loops
);
1011 EXPORT_SYMBOL(__delay
);
1013 void udelay(unsigned long usecs
)
1015 __delay(tb_ticks_per_usec
* usecs
);
1017 EXPORT_SYMBOL(udelay
);
1019 void __init
time_init(void)
1021 unsigned long clock
= sparc64_init_timers();
1023 tb_ticks_per_usec
= clock
/ USEC_PER_SEC
;
1025 timer_ticks_per_nsec_quotient
=
1026 clocksource_hz2mult(clock
, SPARC64_NSEC_PER_CYC_SHIFT
);
1028 clocksource_tick
.name
= tick_ops
->name
;
1029 clocksource_tick
.mult
=
1030 clocksource_hz2mult(clock
,
1031 clocksource_tick
.shift
);
1032 clocksource_tick
.read
= tick_ops
->get_tick
;
1034 printk("clocksource: mult[%x] shift[%d]\n",
1035 clocksource_tick
.mult
, clocksource_tick
.shift
);
1037 clocksource_register(&clocksource_tick
);
1039 sparc64_clockevent
.name
= tick_ops
->name
;
1041 setup_clockevent_multiplier(clock
);
1043 sparc64_clockevent
.max_delta_ns
=
1044 clockevent_delta2ns(0x7fffffffffffffffUL
, &sparc64_clockevent
);
1045 sparc64_clockevent
.min_delta_ns
=
1046 clockevent_delta2ns(0xF, &sparc64_clockevent
);
1048 printk("clockevent: mult[%lx] shift[%d]\n",
1049 sparc64_clockevent
.mult
, sparc64_clockevent
.shift
);
1051 setup_sparc64_timer();
1053 #ifdef CONFIG_CPU_FREQ
1054 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block
,
1055 CPUFREQ_TRANSITION_NOTIFIER
);
1059 unsigned long long sched_clock(void)
1061 unsigned long ticks
= tick_ops
->get_tick();
1063 return (ticks
* timer_ticks_per_nsec_quotient
)
1064 >> SPARC64_NSEC_PER_CYC_SHIFT
;
1067 static int set_rtc_mmss(unsigned long nowtime
)
1069 int real_seconds
, real_minutes
, chip_minutes
;
1070 void __iomem
*mregs
= mstk48t02_regs
;
1072 unsigned long dregs
= ds1287_regs
;
1073 void __iomem
*bregs
= bq4802_regs
;
1075 unsigned long dregs
= 0UL;
1076 void __iomem
*bregs
= 0UL;
1078 unsigned long flags
;
1082 * Not having a register set can lead to trouble.
1083 * Also starfire doesn't have a tod clock.
1085 if (!mregs
&& !dregs
&& !bregs
)
1089 spin_lock_irqsave(&mostek_lock
, flags
);
1091 /* Read the current RTC minutes. */
1092 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1093 tmp
|= MSTK_CREG_READ
;
1094 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1096 chip_minutes
= MSTK_REG_MIN(mregs
);
1098 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1099 tmp
&= ~MSTK_CREG_READ
;
1100 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1103 * since we're only adjusting minutes and seconds,
1104 * don't interfere with hour overflow. This avoids
1105 * messing with unknown time zones but requires your
1106 * RTC not to be off by more than 15 minutes
1108 real_seconds
= nowtime
% 60;
1109 real_minutes
= nowtime
/ 60;
1110 if (((abs(real_minutes
- chip_minutes
) + 15)/30) & 1)
1111 real_minutes
+= 30; /* correct for half hour time zone */
1114 if (abs(real_minutes
- chip_minutes
) < 30) {
1115 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1116 tmp
|= MSTK_CREG_WRITE
;
1117 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1119 MSTK_SET_REG_SEC(mregs
,real_seconds
);
1120 MSTK_SET_REG_MIN(mregs
,real_minutes
);
1122 tmp
= mostek_read(mregs
+ MOSTEK_CREG
);
1123 tmp
&= ~MSTK_CREG_WRITE
;
1124 mostek_write(mregs
+ MOSTEK_CREG
, tmp
);
1126 spin_unlock_irqrestore(&mostek_lock
, flags
);
1130 spin_unlock_irqrestore(&mostek_lock
, flags
);
1136 unsigned char val
= readb(bregs
+ 0x0e);
1138 /* BQ4802 RTC chip. */
1140 writeb(val
| 0x08, bregs
+ 0x0e);
1142 chip_minutes
= readb(bregs
+ 0x02);
1143 BCD_TO_BIN(chip_minutes
);
1144 real_seconds
= nowtime
% 60;
1145 real_minutes
= nowtime
/ 60;
1146 if (((abs(real_minutes
- chip_minutes
) + 15)/30) & 1)
1150 if (abs(real_minutes
- chip_minutes
) < 30) {
1151 BIN_TO_BCD(real_seconds
);
1152 BIN_TO_BCD(real_minutes
);
1153 writeb(real_seconds
, bregs
+ 0x00);
1154 writeb(real_minutes
, bregs
+ 0x02);
1157 "set_rtc_mmss: can't update from %d to %d\n",
1158 chip_minutes
, real_minutes
);
1162 writeb(val
, bregs
+ 0x0e);
1167 unsigned char save_control
, save_freq_select
;
1169 /* Stolen from arch/i386/kernel/time.c, see there for
1170 * credits and descriptive comments.
1172 spin_lock_irqsave(&rtc_lock
, flags
);
1173 save_control
= CMOS_READ(RTC_CONTROL
); /* tell the clock it's being set */
1174 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
1176 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
); /* stop and reset prescaler */
1177 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
1179 chip_minutes
= CMOS_READ(RTC_MINUTES
);
1180 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
)
1181 BCD_TO_BIN(chip_minutes
);
1182 real_seconds
= nowtime
% 60;
1183 real_minutes
= nowtime
/ 60;
1184 if (((abs(real_minutes
- chip_minutes
) + 15)/30) & 1)
1188 if (abs(real_minutes
- chip_minutes
) < 30) {
1189 if (!(save_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1190 BIN_TO_BCD(real_seconds
);
1191 BIN_TO_BCD(real_minutes
);
1193 CMOS_WRITE(real_seconds
,RTC_SECONDS
);
1194 CMOS_WRITE(real_minutes
,RTC_MINUTES
);
1197 "set_rtc_mmss: can't update from %d to %d\n",
1198 chip_minutes
, real_minutes
);
1202 CMOS_WRITE(save_control
, RTC_CONTROL
);
1203 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
1204 spin_unlock_irqrestore(&rtc_lock
, flags
);
1210 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
1211 static unsigned char mini_rtc_status
; /* bitmapped status byte. */
1214 #define STARTOFTIME 1970
1215 #define SECDAY 86400L
1216 #define SECYR (SECDAY * 365)
1217 #define leapyear(year) ((year) % 4 == 0 && \
1218 ((year) % 100 != 0 || (year) % 400 == 0))
1219 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1220 #define days_in_month(a) (month_days[(a) - 1])
1222 static int month_days
[12] = {
1223 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1227 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1229 static void GregorianDay(struct rtc_time
* tm
)
1234 int MonthOffset
[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1236 lastYear
= tm
->tm_year
- 1;
1239 * Number of leap corrections to apply up to end of last year
1241 leapsToDate
= lastYear
/ 4 - lastYear
/ 100 + lastYear
/ 400;
1244 * This year is a leap year if it is divisible by 4 except when it is
1245 * divisible by 100 unless it is divisible by 400
1247 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1249 day
= tm
->tm_mon
> 2 && leapyear(tm
->tm_year
);
1251 day
+= lastYear
*365 + leapsToDate
+ MonthOffset
[tm
->tm_mon
-1] +
1254 tm
->tm_wday
= day
% 7;
1257 static void to_tm(int tim
, struct rtc_time
*tm
)
1260 register long hms
, day
;
1265 /* Hours, minutes, seconds are easy */
1266 tm
->tm_hour
= hms
/ 3600;
1267 tm
->tm_min
= (hms
% 3600) / 60;
1268 tm
->tm_sec
= (hms
% 3600) % 60;
1270 /* Number of years in days */
1271 for (i
= STARTOFTIME
; day
>= days_in_year(i
); i
++)
1272 day
-= days_in_year(i
);
1275 /* Number of months in days left */
1276 if (leapyear(tm
->tm_year
))
1277 days_in_month(FEBRUARY
) = 29;
1278 for (i
= 1; day
>= days_in_month(i
); i
++)
1279 day
-= days_in_month(i
);
1280 days_in_month(FEBRUARY
) = 28;
1283 /* Days are what is left over (+1) from all that. */
1284 tm
->tm_mday
= day
+ 1;
1287 * Determine the day of week
1292 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1293 * aka Unix time. So we have to convert to/from rtc_time.
1295 static void starfire_get_rtc_time(struct rtc_time
*time
)
1297 u32 seconds
= starfire_get_time();
1299 to_tm(seconds
, time
);
1300 time
->tm_year
-= 1900;
1304 static int starfire_set_rtc_time(struct rtc_time
*time
)
1306 u32 seconds
= mktime(time
->tm_year
+ 1900, time
->tm_mon
+ 1,
1307 time
->tm_mday
, time
->tm_hour
,
1308 time
->tm_min
, time
->tm_sec
);
1310 return starfire_set_time(seconds
);
1313 static void hypervisor_get_rtc_time(struct rtc_time
*time
)
1315 u32 seconds
= hypervisor_get_time();
1317 to_tm(seconds
, time
);
1318 time
->tm_year
-= 1900;
1322 static int hypervisor_set_rtc_time(struct rtc_time
*time
)
1324 u32 seconds
= mktime(time
->tm_year
+ 1900, time
->tm_mon
+ 1,
1325 time
->tm_mday
, time
->tm_hour
,
1326 time
->tm_min
, time
->tm_sec
);
1328 return hypervisor_set_time(seconds
);
1332 static void bq4802_get_rtc_time(struct rtc_time
*time
)
1334 unsigned char val
= readb(bq4802_regs
+ 0x0e);
1335 unsigned int century
;
1337 writeb(val
| 0x08, bq4802_regs
+ 0x0e);
1339 time
->tm_sec
= readb(bq4802_regs
+ 0x00);
1340 time
->tm_min
= readb(bq4802_regs
+ 0x02);
1341 time
->tm_hour
= readb(bq4802_regs
+ 0x04);
1342 time
->tm_mday
= readb(bq4802_regs
+ 0x06);
1343 time
->tm_mon
= readb(bq4802_regs
+ 0x09);
1344 time
->tm_year
= readb(bq4802_regs
+ 0x0a);
1345 time
->tm_wday
= readb(bq4802_regs
+ 0x08);
1346 century
= readb(bq4802_regs
+ 0x0f);
1348 writeb(val
, bq4802_regs
+ 0x0e);
1350 BCD_TO_BIN(time
->tm_sec
);
1351 BCD_TO_BIN(time
->tm_min
);
1352 BCD_TO_BIN(time
->tm_hour
);
1353 BCD_TO_BIN(time
->tm_mday
);
1354 BCD_TO_BIN(time
->tm_mon
);
1355 BCD_TO_BIN(time
->tm_year
);
1356 BCD_TO_BIN(time
->tm_wday
);
1357 BCD_TO_BIN(century
);
1359 time
->tm_year
+= (century
* 100);
1360 time
->tm_year
-= 1900;
1365 static int bq4802_set_rtc_time(struct rtc_time
*time
)
1367 unsigned char val
= readb(bq4802_regs
+ 0x0e);
1368 unsigned char sec
, min
, hrs
, day
, mon
, yrs
, century
;
1371 year
= time
->tm_year
+ 1900;
1372 century
= year
/ 100;
1375 mon
= time
->tm_mon
+ 1; /* tm_mon starts at zero */
1376 day
= time
->tm_mday
;
1377 hrs
= time
->tm_hour
;
1387 BIN_TO_BCD(century
);
1389 writeb(val
| 0x08, bq4802_regs
+ 0x0e);
1391 writeb(sec
, bq4802_regs
+ 0x00);
1392 writeb(min
, bq4802_regs
+ 0x02);
1393 writeb(hrs
, bq4802_regs
+ 0x04);
1394 writeb(day
, bq4802_regs
+ 0x06);
1395 writeb(mon
, bq4802_regs
+ 0x09);
1396 writeb(yrs
, bq4802_regs
+ 0x0a);
1397 writeb(century
, bq4802_regs
+ 0x0f);
1399 writeb(val
, bq4802_regs
+ 0x0e);
1404 static void cmos_get_rtc_time(struct rtc_time
*rtc_tm
)
1408 rtc_tm
->tm_sec
= CMOS_READ(RTC_SECONDS
);
1409 rtc_tm
->tm_min
= CMOS_READ(RTC_MINUTES
);
1410 rtc_tm
->tm_hour
= CMOS_READ(RTC_HOURS
);
1411 rtc_tm
->tm_mday
= CMOS_READ(RTC_DAY_OF_MONTH
);
1412 rtc_tm
->tm_mon
= CMOS_READ(RTC_MONTH
);
1413 rtc_tm
->tm_year
= CMOS_READ(RTC_YEAR
);
1414 rtc_tm
->tm_wday
= CMOS_READ(RTC_DAY_OF_WEEK
);
1416 ctrl
= CMOS_READ(RTC_CONTROL
);
1417 if (!(ctrl
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1418 BCD_TO_BIN(rtc_tm
->tm_sec
);
1419 BCD_TO_BIN(rtc_tm
->tm_min
);
1420 BCD_TO_BIN(rtc_tm
->tm_hour
);
1421 BCD_TO_BIN(rtc_tm
->tm_mday
);
1422 BCD_TO_BIN(rtc_tm
->tm_mon
);
1423 BCD_TO_BIN(rtc_tm
->tm_year
);
1424 BCD_TO_BIN(rtc_tm
->tm_wday
);
1427 if (rtc_tm
->tm_year
<= 69)
1428 rtc_tm
->tm_year
+= 100;
1433 static int cmos_set_rtc_time(struct rtc_time
*rtc_tm
)
1435 unsigned char mon
, day
, hrs
, min
, sec
;
1436 unsigned char save_control
, save_freq_select
;
1439 yrs
= rtc_tm
->tm_year
;
1440 mon
= rtc_tm
->tm_mon
+ 1;
1441 day
= rtc_tm
->tm_mday
;
1442 hrs
= rtc_tm
->tm_hour
;
1443 min
= rtc_tm
->tm_min
;
1444 sec
= rtc_tm
->tm_sec
;
1449 if (!(CMOS_READ(RTC_CONTROL
) & RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
1458 save_control
= CMOS_READ(RTC_CONTROL
);
1459 CMOS_WRITE((save_control
|RTC_SET
), RTC_CONTROL
);
1460 save_freq_select
= CMOS_READ(RTC_FREQ_SELECT
);
1461 CMOS_WRITE((save_freq_select
|RTC_DIV_RESET2
), RTC_FREQ_SELECT
);
1463 CMOS_WRITE(yrs
, RTC_YEAR
);
1464 CMOS_WRITE(mon
, RTC_MONTH
);
1465 CMOS_WRITE(day
, RTC_DAY_OF_MONTH
);
1466 CMOS_WRITE(hrs
, RTC_HOURS
);
1467 CMOS_WRITE(min
, RTC_MINUTES
);
1468 CMOS_WRITE(sec
, RTC_SECONDS
);
1470 CMOS_WRITE(save_control
, RTC_CONTROL
);
1471 CMOS_WRITE(save_freq_select
, RTC_FREQ_SELECT
);
1475 #endif /* CONFIG_PCI */
1477 static void mostek_get_rtc_time(struct rtc_time
*rtc_tm
)
1479 void __iomem
*regs
= mstk48t02_regs
;
1482 spin_lock_irq(&mostek_lock
);
1484 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
1485 tmp
|= MSTK_CREG_READ
;
1486 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
1488 rtc_tm
->tm_sec
= MSTK_REG_SEC(regs
);
1489 rtc_tm
->tm_min
= MSTK_REG_MIN(regs
);
1490 rtc_tm
->tm_hour
= MSTK_REG_HOUR(regs
);
1491 rtc_tm
->tm_mday
= MSTK_REG_DOM(regs
);
1492 rtc_tm
->tm_mon
= MSTK_REG_MONTH(regs
);
1493 rtc_tm
->tm_year
= MSTK_CVT_YEAR( MSTK_REG_YEAR(regs
) );
1494 rtc_tm
->tm_wday
= MSTK_REG_DOW(regs
);
1496 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
1497 tmp
&= ~MSTK_CREG_READ
;
1498 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
1500 spin_unlock_irq(&mostek_lock
);
1504 rtc_tm
->tm_year
-= 1900;
1507 static int mostek_set_rtc_time(struct rtc_time
*rtc_tm
)
1509 unsigned char mon
, day
, hrs
, min
, sec
, wday
;
1510 void __iomem
*regs
= mstk48t02_regs
;
1514 yrs
= rtc_tm
->tm_year
+ 1900;
1515 mon
= rtc_tm
->tm_mon
+ 1;
1516 day
= rtc_tm
->tm_mday
;
1517 wday
= rtc_tm
->tm_wday
+ 1;
1518 hrs
= rtc_tm
->tm_hour
;
1519 min
= rtc_tm
->tm_min
;
1520 sec
= rtc_tm
->tm_sec
;
1522 spin_lock_irq(&mostek_lock
);
1524 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
1525 tmp
|= MSTK_CREG_WRITE
;
1526 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
1528 MSTK_SET_REG_SEC(regs
, sec
);
1529 MSTK_SET_REG_MIN(regs
, min
);
1530 MSTK_SET_REG_HOUR(regs
, hrs
);
1531 MSTK_SET_REG_DOW(regs
, wday
);
1532 MSTK_SET_REG_DOM(regs
, day
);
1533 MSTK_SET_REG_MONTH(regs
, mon
);
1534 MSTK_SET_REG_YEAR(regs
, yrs
- MSTK_YEAR_ZERO
);
1536 tmp
= mostek_read(regs
+ MOSTEK_CREG
);
1537 tmp
&= ~MSTK_CREG_WRITE
;
1538 mostek_write(regs
+ MOSTEK_CREG
, tmp
);
1540 spin_unlock_irq(&mostek_lock
);
1545 struct mini_rtc_ops
{
1546 void (*get_rtc_time
)(struct rtc_time
*);
1547 int (*set_rtc_time
)(struct rtc_time
*);
1550 static struct mini_rtc_ops starfire_rtc_ops
= {
1551 .get_rtc_time
= starfire_get_rtc_time
,
1552 .set_rtc_time
= starfire_set_rtc_time
,
1555 static struct mini_rtc_ops hypervisor_rtc_ops
= {
1556 .get_rtc_time
= hypervisor_get_rtc_time
,
1557 .set_rtc_time
= hypervisor_set_rtc_time
,
1561 static struct mini_rtc_ops bq4802_rtc_ops
= {
1562 .get_rtc_time
= bq4802_get_rtc_time
,
1563 .set_rtc_time
= bq4802_set_rtc_time
,
1566 static struct mini_rtc_ops cmos_rtc_ops
= {
1567 .get_rtc_time
= cmos_get_rtc_time
,
1568 .set_rtc_time
= cmos_set_rtc_time
,
1570 #endif /* CONFIG_PCI */
1572 static struct mini_rtc_ops mostek_rtc_ops
= {
1573 .get_rtc_time
= mostek_get_rtc_time
,
1574 .set_rtc_time
= mostek_set_rtc_time
,
1577 static struct mini_rtc_ops
*mini_rtc_ops
;
1579 static inline void mini_get_rtc_time(struct rtc_time
*time
)
1581 unsigned long flags
;
1583 spin_lock_irqsave(&rtc_lock
, flags
);
1584 mini_rtc_ops
->get_rtc_time(time
);
1585 spin_unlock_irqrestore(&rtc_lock
, flags
);
1588 static inline int mini_set_rtc_time(struct rtc_time
*time
)
1590 unsigned long flags
;
1593 spin_lock_irqsave(&rtc_lock
, flags
);
1594 err
= mini_rtc_ops
->set_rtc_time(time
);
1595 spin_unlock_irqrestore(&rtc_lock
, flags
);
1600 static int mini_rtc_ioctl(struct inode
*inode
, struct file
*file
,
1601 unsigned int cmd
, unsigned long arg
)
1603 struct rtc_time wtime
;
1604 void __user
*argp
= (void __user
*)arg
;
1614 case RTC_UIE_OFF
: /* disable ints from RTC updates. */
1617 case RTC_UIE_ON
: /* enable ints for RTC updates. */
1620 case RTC_RD_TIME
: /* Read the time/date from RTC */
1621 /* this doesn't get week-day, who cares */
1622 memset(&wtime
, 0, sizeof(wtime
));
1623 mini_get_rtc_time(&wtime
);
1625 return copy_to_user(argp
, &wtime
, sizeof(wtime
)) ? -EFAULT
: 0;
1627 case RTC_SET_TIME
: /* Set the RTC */
1631 if (!capable(CAP_SYS_TIME
))
1634 if (copy_from_user(&wtime
, argp
, sizeof(wtime
)))
1637 year
= wtime
.tm_year
+ 1900;
1638 days
= month_days
[wtime
.tm_mon
] +
1639 ((wtime
.tm_mon
== 1) && leapyear(year
));
1641 if ((wtime
.tm_mon
< 0 || wtime
.tm_mon
> 11) ||
1642 (wtime
.tm_mday
< 1))
1645 if (wtime
.tm_mday
< 0 || wtime
.tm_mday
> days
)
1648 if (wtime
.tm_hour
< 0 || wtime
.tm_hour
>= 24 ||
1649 wtime
.tm_min
< 0 || wtime
.tm_min
>= 60 ||
1650 wtime
.tm_sec
< 0 || wtime
.tm_sec
>= 60)
1653 return mini_set_rtc_time(&wtime
);
1660 static int mini_rtc_open(struct inode
*inode
, struct file
*file
)
1662 if (mini_rtc_status
& RTC_IS_OPEN
)
1665 mini_rtc_status
|= RTC_IS_OPEN
;
1670 static int mini_rtc_release(struct inode
*inode
, struct file
*file
)
1672 mini_rtc_status
&= ~RTC_IS_OPEN
;
1677 static const struct file_operations mini_rtc_fops
= {
1678 .owner
= THIS_MODULE
,
1679 .ioctl
= mini_rtc_ioctl
,
1680 .open
= mini_rtc_open
,
1681 .release
= mini_rtc_release
,
1684 static struct miscdevice rtc_mini_dev
=
1688 .fops
= &mini_rtc_fops
,
1691 static int __init
rtc_mini_init(void)
1695 if (tlb_type
== hypervisor
)
1696 mini_rtc_ops
= &hypervisor_rtc_ops
;
1697 else if (this_is_starfire
)
1698 mini_rtc_ops
= &starfire_rtc_ops
;
1700 else if (bq4802_regs
)
1701 mini_rtc_ops
= &bq4802_rtc_ops
;
1702 else if (ds1287_regs
)
1703 mini_rtc_ops
= &cmos_rtc_ops
;
1704 #endif /* CONFIG_PCI */
1705 else if (mstk48t02_regs
)
1706 mini_rtc_ops
= &mostek_rtc_ops
;
1710 printk(KERN_INFO
"Mini RTC Driver\n");
1712 retval
= misc_register(&rtc_mini_dev
);
1719 static void __exit
rtc_mini_exit(void)
1721 misc_deregister(&rtc_mini_dev
);
1724 int __devinit
read_current_timer(unsigned long *timer_val
)
1726 *timer_val
= tick_ops
->get_tick();
1730 module_init(rtc_mini_init
);
1731 module_exit(rtc_mini_exit
);