[PATCH] cpu hotplug: revert init patch submitted for 2.6.17
[linux-2.6/kmemtrace.git] / arch / ia64 / kernel / topology.c
blobf07c382b57b8c7eec4139cb8ed76acb4a859965d
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * This file contains NUMA specific variables and functions which can
7 * be split away from DISCONTIGMEM and are used on NUMA machines with
8 * contiguous memory.
9 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
10 * Populate cpu entries in sysfs for non-numa systems as well
11 * Intel Corporation - Ashok Raj
12 * 02/27/2006 Zhang, Yanmin
13 * Populate cpu cache entries in sysfs for cpu cache info
16 #include <linux/config.h>
17 #include <linux/cpu.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/node.h>
21 #include <linux/init.h>
22 #include <linux/bootmem.h>
23 #include <linux/nodemask.h>
24 #include <linux/notifier.h>
25 #include <asm/mmzone.h>
26 #include <asm/numa.h>
27 #include <asm/cpu.h>
29 static struct ia64_cpu *sysfs_cpus;
31 int arch_register_cpu(int num)
33 #if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU)
35 * If CPEI cannot be re-targetted, and this is
36 * CPEI target, then dont create the control file
38 if (!can_cpei_retarget() && is_cpu_cpei_target(num))
39 sysfs_cpus[num].cpu.no_control = 1;
40 #endif
42 return register_cpu(&sysfs_cpus[num].cpu, num);
45 #ifdef CONFIG_HOTPLUG_CPU
47 void arch_unregister_cpu(int num)
49 return unregister_cpu(&sysfs_cpus[num].cpu);
51 EXPORT_SYMBOL(arch_register_cpu);
52 EXPORT_SYMBOL(arch_unregister_cpu);
53 #endif /*CONFIG_HOTPLUG_CPU*/
56 static int __init topology_init(void)
58 int i, err = 0;
60 #ifdef CONFIG_NUMA
62 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
64 for_each_online_node(i) {
65 if ((err = register_one_node(i)))
66 goto out;
68 #endif
70 sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
71 if (!sysfs_cpus) {
72 err = -ENOMEM;
73 goto out;
76 for_each_present_cpu(i) {
77 if((err = arch_register_cpu(i)))
78 goto out;
80 out:
81 return err;
84 subsys_initcall(topology_init);
88 * Export cpu cache information through sysfs
92 * A bunch of string array to get pretty printing
94 static const char *cache_types[] = {
95 "", /* not used */
96 "Instruction",
97 "Data",
98 "Unified" /* unified */
101 static const char *cache_mattrib[]={
102 "WriteThrough",
103 "WriteBack",
104 "", /* reserved */
105 "" /* reserved */
108 struct cache_info {
109 pal_cache_config_info_t cci;
110 cpumask_t shared_cpu_map;
111 int level;
112 int type;
113 struct kobject kobj;
116 struct cpu_cache_info {
117 struct cache_info *cache_leaves;
118 int num_cache_leaves;
119 struct kobject kobj;
122 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
123 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
125 #ifdef CONFIG_SMP
126 static void cache_shared_cpu_map_setup( unsigned int cpu,
127 struct cache_info * this_leaf)
129 pal_cache_shared_info_t csi;
130 int num_shared, i = 0;
131 unsigned int j;
133 if (cpu_data(cpu)->threads_per_core <= 1 &&
134 cpu_data(cpu)->cores_per_socket <= 1) {
135 cpu_set(cpu, this_leaf->shared_cpu_map);
136 return;
139 if (ia64_pal_cache_shared_info(this_leaf->level,
140 this_leaf->type,
142 &csi) != PAL_STATUS_SUCCESS)
143 return;
145 num_shared = (int) csi.num_shared;
146 do {
147 for_each_possible_cpu(j)
148 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
149 && cpu_data(j)->core_id == csi.log1_cid
150 && cpu_data(j)->thread_id == csi.log1_tid)
151 cpu_set(j, this_leaf->shared_cpu_map);
153 i++;
154 } while (i < num_shared &&
155 ia64_pal_cache_shared_info(this_leaf->level,
156 this_leaf->type,
158 &csi) == PAL_STATUS_SUCCESS);
160 #else
161 static void cache_shared_cpu_map_setup(unsigned int cpu,
162 struct cache_info * this_leaf)
164 cpu_set(cpu, this_leaf->shared_cpu_map);
165 return;
167 #endif
169 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
170 char *buf)
172 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
175 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
176 char *buf)
178 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
181 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
183 return sprintf(buf,
184 "%s\n",
185 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
188 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
190 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
193 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
195 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
196 number_of_sets /= this_leaf->cci.pcci_assoc;
197 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
199 return sprintf(buf, "%u\n", number_of_sets);
202 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
204 ssize_t len;
205 cpumask_t shared_cpu_map;
207 cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
208 len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
209 len += sprintf(buf+len, "\n");
210 return len;
213 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
215 int type = this_leaf->type + this_leaf->cci.pcci_unified;
216 return sprintf(buf, "%s\n", cache_types[type]);
219 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
221 return sprintf(buf, "%u\n", this_leaf->level);
224 struct cache_attr {
225 struct attribute attr;
226 ssize_t (*show)(struct cache_info *, char *);
227 ssize_t (*store)(struct cache_info *, const char *, size_t count);
230 #ifdef define_one_ro
231 #undef define_one_ro
232 #endif
233 #define define_one_ro(_name) \
234 static struct cache_attr _name = \
235 __ATTR(_name, 0444, show_##_name, NULL)
237 define_one_ro(level);
238 define_one_ro(type);
239 define_one_ro(coherency_line_size);
240 define_one_ro(ways_of_associativity);
241 define_one_ro(size);
242 define_one_ro(number_of_sets);
243 define_one_ro(shared_cpu_map);
244 define_one_ro(attributes);
246 static struct attribute * cache_default_attrs[] = {
247 &type.attr,
248 &level.attr,
249 &coherency_line_size.attr,
250 &ways_of_associativity.attr,
251 &attributes.attr,
252 &size.attr,
253 &number_of_sets.attr,
254 &shared_cpu_map.attr,
255 NULL
258 #define to_object(k) container_of(k, struct cache_info, kobj)
259 #define to_attr(a) container_of(a, struct cache_attr, attr)
261 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
263 struct cache_attr *fattr = to_attr(attr);
264 struct cache_info *this_leaf = to_object(kobj);
265 ssize_t ret;
267 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
268 return ret;
271 static struct sysfs_ops cache_sysfs_ops = {
272 .show = cache_show
275 static struct kobj_type cache_ktype = {
276 .sysfs_ops = &cache_sysfs_ops,
277 .default_attrs = cache_default_attrs,
280 static struct kobj_type cache_ktype_percpu_entry = {
281 .sysfs_ops = &cache_sysfs_ops,
284 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
286 kfree(all_cpu_cache_info[cpu].cache_leaves);
287 all_cpu_cache_info[cpu].cache_leaves = NULL;
288 all_cpu_cache_info[cpu].num_cache_leaves = 0;
289 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
290 return;
293 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
295 u64 i, levels, unique_caches;
296 pal_cache_config_info_t cci;
297 int j;
298 s64 status;
299 struct cache_info *this_cache;
300 int num_cache_leaves = 0;
302 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
303 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
304 return -1;
307 this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
308 GFP_KERNEL);
309 if (this_cache == NULL)
310 return -ENOMEM;
312 for (i=0; i < levels; i++) {
313 for (j=2; j >0 ; j--) {
314 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
315 PAL_STATUS_SUCCESS)
316 continue;
318 this_cache[num_cache_leaves].cci = cci;
319 this_cache[num_cache_leaves].level = i + 1;
320 this_cache[num_cache_leaves].type = j;
322 cache_shared_cpu_map_setup(cpu,
323 &this_cache[num_cache_leaves]);
324 num_cache_leaves ++;
328 all_cpu_cache_info[cpu].cache_leaves = this_cache;
329 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
331 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
333 return 0;
336 /* Add cache interface for CPU device */
337 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
339 unsigned int cpu = sys_dev->id;
340 unsigned long i, j;
341 struct cache_info *this_object;
342 int retval = 0;
343 cpumask_t oldmask;
345 if (all_cpu_cache_info[cpu].kobj.parent)
346 return 0;
348 oldmask = current->cpus_allowed;
349 retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
350 if (unlikely(retval))
351 return retval;
353 retval = cpu_cache_sysfs_init(cpu);
354 set_cpus_allowed(current, oldmask);
355 if (unlikely(retval < 0))
356 return retval;
358 all_cpu_cache_info[cpu].kobj.parent = &sys_dev->kobj;
359 kobject_set_name(&all_cpu_cache_info[cpu].kobj, "%s", "cache");
360 all_cpu_cache_info[cpu].kobj.ktype = &cache_ktype_percpu_entry;
361 retval = kobject_register(&all_cpu_cache_info[cpu].kobj);
363 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
364 this_object = LEAF_KOBJECT_PTR(cpu,i);
365 this_object->kobj.parent = &all_cpu_cache_info[cpu].kobj;
366 kobject_set_name(&(this_object->kobj), "index%1lu", i);
367 this_object->kobj.ktype = &cache_ktype;
368 retval = kobject_register(&(this_object->kobj));
369 if (unlikely(retval)) {
370 for (j = 0; j < i; j++) {
371 kobject_unregister(
372 &(LEAF_KOBJECT_PTR(cpu,j)->kobj));
374 kobject_unregister(&all_cpu_cache_info[cpu].kobj);
375 cpu_cache_sysfs_exit(cpu);
376 break;
379 return retval;
382 /* Remove cache interface for CPU device */
383 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
385 unsigned int cpu = sys_dev->id;
386 unsigned long i;
388 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
389 kobject_unregister(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
391 if (all_cpu_cache_info[cpu].kobj.parent) {
392 kobject_unregister(&all_cpu_cache_info[cpu].kobj);
393 memset(&all_cpu_cache_info[cpu].kobj,
395 sizeof(struct kobject));
398 cpu_cache_sysfs_exit(cpu);
400 return 0;
404 * When a cpu is hot-plugged, do a check and initiate
405 * cache kobject if necessary
407 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
408 unsigned long action, void *hcpu)
410 unsigned int cpu = (unsigned long)hcpu;
411 struct sys_device *sys_dev;
413 sys_dev = get_cpu_sysdev(cpu);
414 switch (action) {
415 case CPU_ONLINE:
416 cache_add_dev(sys_dev);
417 break;
418 case CPU_DEAD:
419 cache_remove_dev(sys_dev);
420 break;
422 return NOTIFY_OK;
425 static struct notifier_block cache_cpu_notifier =
427 .notifier_call = cache_cpu_callback
430 static int __cpuinit cache_sysfs_init(void)
432 int i;
434 for_each_online_cpu(i) {
435 cache_cpu_callback(&cache_cpu_notifier, CPU_ONLINE,
436 (void *)(long)i);
439 register_cpu_notifier(&cache_cpu_notifier);
441 return 0;
444 device_initcall(cache_sysfs_init);