2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
37 unsigned int sysctl_sched_latency __read_mostly
= 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 2 msec, units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity __read_mostly
= 2000000ULL;
46 * SCHED_BATCH wake-up granularity.
47 * (default: 25 msec, units: nanoseconds)
49 * This option delays the preemption effects of decoupled workloads
50 * and reduces their over-scheduling. Synchronous workloads will still
51 * have immediate wakeup/sleep latencies.
53 unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly
= 25000000UL;
56 * SCHED_OTHER wake-up granularity.
57 * (default: 1 msec, units: nanoseconds)
59 * This option delays the preemption effects of decoupled workloads
60 * and reduces their over-scheduling. Synchronous workloads will still
61 * have immediate wakeup/sleep latencies.
63 unsigned int sysctl_sched_wakeup_granularity __read_mostly
= 1000000UL;
65 unsigned int sysctl_sched_stat_granularity __read_mostly
;
68 * Initialized in sched_init_granularity() [to 5 times the base granularity]:
70 unsigned int sysctl_sched_runtime_limit __read_mostly
;
73 * Debugging: various feature bits
76 SCHED_FEAT_FAIR_SLEEPERS
= 1,
77 SCHED_FEAT_SLEEPER_AVG
= 2,
78 SCHED_FEAT_SLEEPER_LOAD_AVG
= 4,
79 SCHED_FEAT_PRECISE_CPU_LOAD
= 8,
80 SCHED_FEAT_START_DEBIT
= 16,
81 SCHED_FEAT_SKIP_INITIAL
= 32,
84 unsigned int sysctl_sched_features __read_mostly
=
85 SCHED_FEAT_FAIR_SLEEPERS
*1 |
86 SCHED_FEAT_SLEEPER_AVG
*0 |
87 SCHED_FEAT_SLEEPER_LOAD_AVG
*1 |
88 SCHED_FEAT_PRECISE_CPU_LOAD
*1 |
89 SCHED_FEAT_START_DEBIT
*1 |
90 SCHED_FEAT_SKIP_INITIAL
*0;
92 extern struct sched_class fair_sched_class
;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
106 /* currently running entity (if any) on this cfs_rq */
107 static inline struct sched_entity
*cfs_rq_curr(struct cfs_rq
*cfs_rq
)
112 /* An entity is a task if it doesn't "own" a runqueue */
113 #define entity_is_task(se) (!se->my_q)
116 set_cfs_rq_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
121 #else /* CONFIG_FAIR_GROUP_SCHED */
123 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
125 return container_of(cfs_rq
, struct rq
, cfs
);
128 static inline struct sched_entity
*cfs_rq_curr(struct cfs_rq
*cfs_rq
)
130 struct rq
*rq
= rq_of(cfs_rq
);
132 if (unlikely(rq
->curr
->sched_class
!= &fair_sched_class
))
135 return &rq
->curr
->se
;
138 #define entity_is_task(se) 1
141 set_cfs_rq_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
143 #endif /* CONFIG_FAIR_GROUP_SCHED */
145 static inline struct task_struct
*task_of(struct sched_entity
*se
)
147 return container_of(se
, struct task_struct
, se
);
151 /**************************************************************
152 * Scheduling class tree data structure manipulation methods:
156 * Enqueue an entity into the rb-tree:
159 __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
161 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
162 struct rb_node
*parent
= NULL
;
163 struct sched_entity
*entry
;
164 s64 key
= se
->fair_key
;
168 * Find the right place in the rbtree:
172 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
174 * We dont care about collisions. Nodes with
175 * the same key stay together.
177 if (key
- entry
->fair_key
< 0) {
178 link
= &parent
->rb_left
;
180 link
= &parent
->rb_right
;
186 * Maintain a cache of leftmost tree entries (it is frequently
190 cfs_rq
->rb_leftmost
= &se
->run_node
;
192 rb_link_node(&se
->run_node
, parent
, link
);
193 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
194 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
195 cfs_rq
->nr_running
++;
198 schedstat_add(cfs_rq
, wait_runtime
, se
->wait_runtime
);
202 __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
204 if (cfs_rq
->rb_leftmost
== &se
->run_node
)
205 cfs_rq
->rb_leftmost
= rb_next(&se
->run_node
);
206 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
207 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
208 cfs_rq
->nr_running
--;
211 schedstat_add(cfs_rq
, wait_runtime
, -se
->wait_runtime
);
214 static inline struct rb_node
*first_fair(struct cfs_rq
*cfs_rq
)
216 return cfs_rq
->rb_leftmost
;
219 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
221 return rb_entry(first_fair(cfs_rq
), struct sched_entity
, run_node
);
224 /**************************************************************
225 * Scheduling class statistics methods:
229 * Calculate the preemption granularity needed to schedule every
230 * runnable task once per sysctl_sched_latency amount of time.
231 * (down to a sensible low limit on granularity)
233 * For example, if there are 2 tasks running and latency is 10 msecs,
234 * we switch tasks every 5 msecs. If we have 3 tasks running, we have
235 * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
236 * for each task. We do finer and finer scheduling up to until we
237 * reach the minimum granularity value.
239 * To achieve this we use the following dynamic-granularity rule:
241 * gran = lat/nr - lat/nr/nr
243 * This comes out of the following equations:
248 * kB2 = kB1 - d + d/nr
251 * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
252 * '1' is start of time, '2' is end of time, 'd' is delay between
253 * 1 and 2 (during which task B was running), 'nr' is number of tasks
254 * running, 'lat' is the the period of each task. ('lat' is the
255 * sched_latency that we aim for.)
258 sched_granularity(struct cfs_rq
*cfs_rq
)
260 unsigned int gran
= sysctl_sched_latency
;
261 unsigned int nr
= cfs_rq
->nr_running
;
264 gran
= gran
/nr
- gran
/nr
/nr
;
265 gran
= max(gran
, sysctl_sched_min_granularity
);
272 * We rescale the rescheduling granularity of tasks according to their
273 * nice level, but only linearly, not exponentially:
276 niced_granularity(struct sched_entity
*curr
, unsigned long granularity
)
280 if (likely(curr
->load
.weight
== NICE_0_LOAD
))
283 * Positive nice levels get the same granularity as nice-0:
285 if (likely(curr
->load
.weight
< NICE_0_LOAD
)) {
286 tmp
= curr
->load
.weight
* (u64
)granularity
;
287 return (long) (tmp
>> NICE_0_SHIFT
);
290 * Negative nice level tasks get linearly finer
293 tmp
= curr
->load
.inv_weight
* (u64
)granularity
;
296 * It will always fit into 'long':
298 return (long) (tmp
>> (WMULT_SHIFT
-NICE_0_SHIFT
));
302 limit_wait_runtime(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
304 long limit
= sysctl_sched_runtime_limit
;
307 * Niced tasks have the same history dynamic range as
310 if (unlikely(se
->wait_runtime
> limit
)) {
311 se
->wait_runtime
= limit
;
312 schedstat_inc(se
, wait_runtime_overruns
);
313 schedstat_inc(cfs_rq
, wait_runtime_overruns
);
315 if (unlikely(se
->wait_runtime
< -limit
)) {
316 se
->wait_runtime
= -limit
;
317 schedstat_inc(se
, wait_runtime_underruns
);
318 schedstat_inc(cfs_rq
, wait_runtime_underruns
);
323 __add_wait_runtime(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, long delta
)
325 se
->wait_runtime
+= delta
;
326 schedstat_add(se
, sum_wait_runtime
, delta
);
327 limit_wait_runtime(cfs_rq
, se
);
331 add_wait_runtime(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, long delta
)
333 schedstat_add(cfs_rq
, wait_runtime
, -se
->wait_runtime
);
334 __add_wait_runtime(cfs_rq
, se
, delta
);
335 schedstat_add(cfs_rq
, wait_runtime
, se
->wait_runtime
);
339 * Update the current task's runtime statistics. Skip current tasks that
340 * are not in our scheduling class.
343 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
345 unsigned long delta
, delta_exec
, delta_fair
, delta_mine
;
346 struct load_weight
*lw
= &cfs_rq
->load
;
347 unsigned long load
= lw
->weight
;
349 delta_exec
= curr
->delta_exec
;
350 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
352 curr
->sum_exec_runtime
+= delta_exec
;
353 cfs_rq
->exec_clock
+= delta_exec
;
358 delta_fair
= calc_delta_fair(delta_exec
, lw
);
359 delta_mine
= calc_delta_mine(delta_exec
, curr
->load
.weight
, lw
);
361 if (cfs_rq
->sleeper_bonus
> sysctl_sched_min_granularity
) {
362 delta
= min((u64
)delta_mine
, cfs_rq
->sleeper_bonus
);
363 delta
= min(delta
, (unsigned long)(
364 (long)sysctl_sched_runtime_limit
- curr
->wait_runtime
));
365 cfs_rq
->sleeper_bonus
-= delta
;
369 cfs_rq
->fair_clock
+= delta_fair
;
371 * We executed delta_exec amount of time on the CPU,
372 * but we were only entitled to delta_mine amount of
373 * time during that period (if nr_running == 1 then
374 * the two values are equal)
375 * [Note: delta_mine - delta_exec is negative]:
377 add_wait_runtime(cfs_rq
, curr
, delta_mine
- delta_exec
);
380 static void update_curr(struct cfs_rq
*cfs_rq
)
382 struct sched_entity
*curr
= cfs_rq_curr(cfs_rq
);
383 unsigned long delta_exec
;
389 * Get the amount of time the current task was running
390 * since the last time we changed load (this cannot
391 * overflow on 32 bits):
393 delta_exec
= (unsigned long)(rq_of(cfs_rq
)->clock
- curr
->exec_start
);
395 curr
->delta_exec
+= delta_exec
;
397 if (unlikely(curr
->delta_exec
> sysctl_sched_stat_granularity
)) {
398 __update_curr(cfs_rq
, curr
);
399 curr
->delta_exec
= 0;
401 curr
->exec_start
= rq_of(cfs_rq
)->clock
;
405 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
407 se
->wait_start_fair
= cfs_rq
->fair_clock
;
408 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
412 * We calculate fair deltas here, so protect against the random effects
413 * of a multiplication overflow by capping it to the runtime limit:
415 #if BITS_PER_LONG == 32
416 static inline unsigned long
417 calc_weighted(unsigned long delta
, unsigned long weight
, int shift
)
419 u64 tmp
= (u64
)delta
* weight
>> shift
;
421 if (unlikely(tmp
> sysctl_sched_runtime_limit
*2))
422 return sysctl_sched_runtime_limit
*2;
426 static inline unsigned long
427 calc_weighted(unsigned long delta
, unsigned long weight
, int shift
)
429 return delta
* weight
>> shift
;
434 * Task is being enqueued - update stats:
436 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
441 * Are we enqueueing a waiting task? (for current tasks
442 * a dequeue/enqueue event is a NOP)
444 if (se
!= cfs_rq_curr(cfs_rq
))
445 update_stats_wait_start(cfs_rq
, se
);
449 key
= cfs_rq
->fair_clock
;
452 * Optimize the common nice 0 case:
454 if (likely(se
->load
.weight
== NICE_0_LOAD
)) {
455 key
-= se
->wait_runtime
;
459 if (se
->wait_runtime
< 0) {
460 tmp
= -se
->wait_runtime
;
461 key
+= (tmp
* se
->load
.inv_weight
) >>
462 (WMULT_SHIFT
- NICE_0_SHIFT
);
464 tmp
= se
->wait_runtime
;
465 key
-= (tmp
* se
->load
.inv_weight
) >>
466 (WMULT_SHIFT
- NICE_0_SHIFT
);
474 * Note: must be called with a freshly updated rq->fair_clock.
477 __update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
479 unsigned long delta_fair
= se
->delta_fair_run
;
481 schedstat_set(se
->wait_max
, max(se
->wait_max
,
482 rq_of(cfs_rq
)->clock
- se
->wait_start
));
484 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
485 delta_fair
= calc_weighted(delta_fair
, se
->load
.weight
,
488 add_wait_runtime(cfs_rq
, se
, delta_fair
);
492 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
494 unsigned long delta_fair
;
496 if (unlikely(!se
->wait_start_fair
))
499 delta_fair
= (unsigned long)min((u64
)(2*sysctl_sched_runtime_limit
),
500 (u64
)(cfs_rq
->fair_clock
- se
->wait_start_fair
));
502 se
->delta_fair_run
+= delta_fair
;
503 if (unlikely(abs(se
->delta_fair_run
) >=
504 sysctl_sched_stat_granularity
)) {
505 __update_stats_wait_end(cfs_rq
, se
);
506 se
->delta_fair_run
= 0;
509 se
->wait_start_fair
= 0;
510 schedstat_set(se
->wait_start
, 0);
514 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
518 * Mark the end of the wait period if dequeueing a
521 if (se
!= cfs_rq_curr(cfs_rq
))
522 update_stats_wait_end(cfs_rq
, se
);
526 * We are picking a new current task - update its stats:
529 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
532 * We are starting a new run period:
534 se
->exec_start
= rq_of(cfs_rq
)->clock
;
538 * We are descheduling a task - update its stats:
541 update_stats_curr_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
546 /**************************************************
547 * Scheduling class queueing methods:
550 static void __enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
552 unsigned long load
= cfs_rq
->load
.weight
, delta_fair
;
556 * Do not boost sleepers if there's too much bonus 'in flight'
559 if (unlikely(cfs_rq
->sleeper_bonus
> sysctl_sched_runtime_limit
))
562 if (sysctl_sched_features
& SCHED_FEAT_SLEEPER_LOAD_AVG
)
563 load
= rq_of(cfs_rq
)->cpu_load
[2];
565 delta_fair
= se
->delta_fair_sleep
;
568 * Fix up delta_fair with the effect of us running
569 * during the whole sleep period:
571 if (sysctl_sched_features
& SCHED_FEAT_SLEEPER_AVG
)
572 delta_fair
= div64_likely32((u64
)delta_fair
* load
,
573 load
+ se
->load
.weight
);
575 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
576 delta_fair
= calc_weighted(delta_fair
, se
->load
.weight
,
579 prev_runtime
= se
->wait_runtime
;
580 __add_wait_runtime(cfs_rq
, se
, delta_fair
);
581 delta_fair
= se
->wait_runtime
- prev_runtime
;
584 * Track the amount of bonus we've given to sleepers:
586 cfs_rq
->sleeper_bonus
+= delta_fair
;
589 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
591 struct task_struct
*tsk
= task_of(se
);
592 unsigned long delta_fair
;
594 if ((entity_is_task(se
) && tsk
->policy
== SCHED_BATCH
) ||
595 !(sysctl_sched_features
& SCHED_FEAT_FAIR_SLEEPERS
))
598 delta_fair
= (unsigned long)min((u64
)(2*sysctl_sched_runtime_limit
),
599 (u64
)(cfs_rq
->fair_clock
- se
->sleep_start_fair
));
601 se
->delta_fair_sleep
+= delta_fair
;
602 if (unlikely(abs(se
->delta_fair_sleep
) >=
603 sysctl_sched_stat_granularity
)) {
604 __enqueue_sleeper(cfs_rq
, se
);
605 se
->delta_fair_sleep
= 0;
608 se
->sleep_start_fair
= 0;
610 #ifdef CONFIG_SCHEDSTATS
611 if (se
->sleep_start
) {
612 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
617 if (unlikely(delta
> se
->sleep_max
))
618 se
->sleep_max
= delta
;
621 se
->sum_sleep_runtime
+= delta
;
623 if (se
->block_start
) {
624 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
629 if (unlikely(delta
> se
->block_max
))
630 se
->block_max
= delta
;
633 se
->sum_sleep_runtime
+= delta
;
639 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
642 * Update the fair clock.
647 enqueue_sleeper(cfs_rq
, se
);
649 update_stats_enqueue(cfs_rq
, se
);
650 __enqueue_entity(cfs_rq
, se
);
654 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
656 update_stats_dequeue(cfs_rq
, se
);
658 se
->sleep_start_fair
= cfs_rq
->fair_clock
;
659 #ifdef CONFIG_SCHEDSTATS
660 if (entity_is_task(se
)) {
661 struct task_struct
*tsk
= task_of(se
);
663 if (tsk
->state
& TASK_INTERRUPTIBLE
)
664 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
665 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
666 se
->block_start
= rq_of(cfs_rq
)->clock
;
670 __dequeue_entity(cfs_rq
, se
);
674 * Preempt the current task with a newly woken task if needed:
677 __check_preempt_curr_fair(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
678 struct sched_entity
*curr
, unsigned long granularity
)
680 s64 __delta
= curr
->fair_key
- se
->fair_key
;
681 unsigned long ideal_runtime
, delta_exec
;
684 * ideal_runtime is compared against sum_exec_runtime, which is
685 * walltime, hence do not scale.
687 ideal_runtime
= max(sysctl_sched_latency
/ cfs_rq
->nr_running
,
688 (unsigned long)sysctl_sched_min_granularity
);
691 * If we executed more than what the latency constraint suggests,
692 * reduce the rescheduling granularity. This way the total latency
693 * of how much a task is not scheduled converges to
694 * sysctl_sched_latency:
696 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
697 if (delta_exec
> ideal_runtime
)
701 * Take scheduling granularity into account - do not
702 * preempt the current task unless the best task has
703 * a larger than sched_granularity fairness advantage:
705 * scale granularity as key space is in fair_clock.
707 if (__delta
> niced_granularity(curr
, granularity
))
708 resched_task(rq_of(cfs_rq
)->curr
);
712 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
715 * Any task has to be enqueued before it get to execute on
716 * a CPU. So account for the time it spent waiting on the
717 * runqueue. (note, here we rely on pick_next_task() having
718 * done a put_prev_task_fair() shortly before this, which
719 * updated rq->fair_clock - used by update_stats_wait_end())
721 update_stats_wait_end(cfs_rq
, se
);
722 update_stats_curr_start(cfs_rq
, se
);
723 set_cfs_rq_curr(cfs_rq
, se
);
724 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
727 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
729 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
731 set_next_entity(cfs_rq
, se
);
736 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
739 * If still on the runqueue then deactivate_task()
740 * was not called and update_curr() has to be done:
745 update_stats_curr_end(cfs_rq
, prev
);
748 update_stats_wait_start(cfs_rq
, prev
);
749 set_cfs_rq_curr(cfs_rq
, NULL
);
752 static void entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
754 struct sched_entity
*next
;
757 * Dequeue and enqueue the task to update its
758 * position within the tree:
760 dequeue_entity(cfs_rq
, curr
, 0);
761 enqueue_entity(cfs_rq
, curr
, 0);
764 * Reschedule if another task tops the current one.
766 next
= __pick_next_entity(cfs_rq
);
770 __check_preempt_curr_fair(cfs_rq
, next
, curr
,
771 sched_granularity(cfs_rq
));
774 /**************************************************
775 * CFS operations on tasks:
778 #ifdef CONFIG_FAIR_GROUP_SCHED
780 /* Walk up scheduling entities hierarchy */
781 #define for_each_sched_entity(se) \
782 for (; se; se = se->parent)
784 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
789 /* runqueue on which this entity is (to be) queued */
790 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
795 /* runqueue "owned" by this group */
796 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
801 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
802 * another cpu ('this_cpu')
804 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
806 /* A later patch will take group into account */
807 return &cpu_rq(this_cpu
)->cfs
;
810 /* Iterate thr' all leaf cfs_rq's on a runqueue */
811 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
812 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
814 /* Do the two (enqueued) tasks belong to the same group ? */
815 static inline int is_same_group(struct task_struct
*curr
, struct task_struct
*p
)
817 if (curr
->se
.cfs_rq
== p
->se
.cfs_rq
)
823 #else /* CONFIG_FAIR_GROUP_SCHED */
825 #define for_each_sched_entity(se) \
826 for (; se; se = NULL)
828 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
830 return &task_rq(p
)->cfs
;
833 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
835 struct task_struct
*p
= task_of(se
);
836 struct rq
*rq
= task_rq(p
);
841 /* runqueue "owned" by this group */
842 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
847 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
849 return &cpu_rq(this_cpu
)->cfs
;
852 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
853 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
855 static inline int is_same_group(struct task_struct
*curr
, struct task_struct
*p
)
860 #endif /* CONFIG_FAIR_GROUP_SCHED */
863 * The enqueue_task method is called before nr_running is
864 * increased. Here we update the fair scheduling stats and
865 * then put the task into the rbtree:
867 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
869 struct cfs_rq
*cfs_rq
;
870 struct sched_entity
*se
= &p
->se
;
872 for_each_sched_entity(se
) {
875 cfs_rq
= cfs_rq_of(se
);
876 enqueue_entity(cfs_rq
, se
, wakeup
);
881 * The dequeue_task method is called before nr_running is
882 * decreased. We remove the task from the rbtree and
883 * update the fair scheduling stats:
885 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
887 struct cfs_rq
*cfs_rq
;
888 struct sched_entity
*se
= &p
->se
;
890 for_each_sched_entity(se
) {
891 cfs_rq
= cfs_rq_of(se
);
892 dequeue_entity(cfs_rq
, se
, sleep
);
893 /* Don't dequeue parent if it has other entities besides us */
894 if (cfs_rq
->load
.weight
)
900 * sched_yield() support is very simple - we dequeue and enqueue
902 static void yield_task_fair(struct rq
*rq
, struct task_struct
*p
)
904 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
906 __update_rq_clock(rq
);
908 * Dequeue and enqueue the task to update its
909 * position within the tree:
911 dequeue_entity(cfs_rq
, &p
->se
, 0);
912 enqueue_entity(cfs_rq
, &p
->se
, 0);
916 * Preempt the current task with a newly woken task if needed:
918 static void check_preempt_curr_fair(struct rq
*rq
, struct task_struct
*p
)
920 struct task_struct
*curr
= rq
->curr
;
921 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
924 if (unlikely(rt_prio(p
->prio
))) {
931 gran
= sysctl_sched_wakeup_granularity
;
933 * Batch tasks prefer throughput over latency:
935 if (unlikely(p
->policy
== SCHED_BATCH
))
936 gran
= sysctl_sched_batch_wakeup_granularity
;
938 if (is_same_group(curr
, p
))
939 __check_preempt_curr_fair(cfs_rq
, &p
->se
, &curr
->se
, gran
);
942 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
944 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
945 struct sched_entity
*se
;
947 if (unlikely(!cfs_rq
->nr_running
))
951 se
= pick_next_entity(cfs_rq
);
952 cfs_rq
= group_cfs_rq(se
);
959 * Account for a descheduled task:
961 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
963 struct sched_entity
*se
= &prev
->se
;
964 struct cfs_rq
*cfs_rq
;
966 for_each_sched_entity(se
) {
967 cfs_rq
= cfs_rq_of(se
);
968 put_prev_entity(cfs_rq
, se
);
972 /**************************************************
973 * Fair scheduling class load-balancing methods:
977 * Load-balancing iterator. Note: while the runqueue stays locked
978 * during the whole iteration, the current task might be
979 * dequeued so the iterator has to be dequeue-safe. Here we
980 * achieve that by always pre-iterating before returning
983 static inline struct task_struct
*
984 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct rb_node
*curr
)
986 struct task_struct
*p
;
991 p
= rb_entry(curr
, struct task_struct
, se
.run_node
);
992 cfs_rq
->rb_load_balance_curr
= rb_next(curr
);
997 static struct task_struct
*load_balance_start_fair(void *arg
)
999 struct cfs_rq
*cfs_rq
= arg
;
1001 return __load_balance_iterator(cfs_rq
, first_fair(cfs_rq
));
1004 static struct task_struct
*load_balance_next_fair(void *arg
)
1006 struct cfs_rq
*cfs_rq
= arg
;
1008 return __load_balance_iterator(cfs_rq
, cfs_rq
->rb_load_balance_curr
);
1011 #ifdef CONFIG_FAIR_GROUP_SCHED
1012 static int cfs_rq_best_prio(struct cfs_rq
*cfs_rq
)
1014 struct sched_entity
*curr
;
1015 struct task_struct
*p
;
1017 if (!cfs_rq
->nr_running
)
1020 curr
= __pick_next_entity(cfs_rq
);
1027 static unsigned long
1028 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1029 unsigned long max_nr_move
, unsigned long max_load_move
,
1030 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1031 int *all_pinned
, int *this_best_prio
)
1033 struct cfs_rq
*busy_cfs_rq
;
1034 unsigned long load_moved
, total_nr_moved
= 0, nr_moved
;
1035 long rem_load_move
= max_load_move
;
1036 struct rq_iterator cfs_rq_iterator
;
1038 cfs_rq_iterator
.start
= load_balance_start_fair
;
1039 cfs_rq_iterator
.next
= load_balance_next_fair
;
1041 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1042 #ifdef CONFIG_FAIR_GROUP_SCHED
1043 struct cfs_rq
*this_cfs_rq
;
1045 unsigned long maxload
;
1047 this_cfs_rq
= cpu_cfs_rq(busy_cfs_rq
, this_cpu
);
1049 imbalance
= busy_cfs_rq
->load
.weight
- this_cfs_rq
->load
.weight
;
1050 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1054 /* Don't pull more than imbalance/2 */
1056 maxload
= min(rem_load_move
, imbalance
);
1058 *this_best_prio
= cfs_rq_best_prio(this_cfs_rq
);
1060 # define maxload rem_load_move
1062 /* pass busy_cfs_rq argument into
1063 * load_balance_[start|next]_fair iterators
1065 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1066 nr_moved
= balance_tasks(this_rq
, this_cpu
, busiest
,
1067 max_nr_move
, maxload
, sd
, idle
, all_pinned
,
1068 &load_moved
, this_best_prio
, &cfs_rq_iterator
);
1070 total_nr_moved
+= nr_moved
;
1071 max_nr_move
-= nr_moved
;
1072 rem_load_move
-= load_moved
;
1074 if (max_nr_move
<= 0 || rem_load_move
<= 0)
1078 return max_load_move
- rem_load_move
;
1082 * scheduler tick hitting a task of our scheduling class:
1084 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
)
1086 struct cfs_rq
*cfs_rq
;
1087 struct sched_entity
*se
= &curr
->se
;
1089 for_each_sched_entity(se
) {
1090 cfs_rq
= cfs_rq_of(se
);
1091 entity_tick(cfs_rq
, se
);
1096 * Share the fairness runtime between parent and child, thus the
1097 * total amount of pressure for CPU stays equal - new tasks
1098 * get a chance to run but frequent forkers are not allowed to
1099 * monopolize the CPU. Note: the parent runqueue is locked,
1100 * the child is not running yet.
1102 static void task_new_fair(struct rq
*rq
, struct task_struct
*p
)
1104 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1105 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq_curr(cfs_rq
);
1107 sched_info_queued(p
);
1109 update_curr(cfs_rq
);
1110 update_stats_enqueue(cfs_rq
, se
);
1112 * Child runs first: we let it run before the parent
1113 * until it reschedules once. We set up the key so that
1114 * it will preempt the parent:
1116 se
->fair_key
= curr
->fair_key
-
1117 niced_granularity(curr
, sched_granularity(cfs_rq
)) - 1;
1119 * The first wait is dominated by the child-runs-first logic,
1120 * so do not credit it with that waiting time yet:
1122 if (sysctl_sched_features
& SCHED_FEAT_SKIP_INITIAL
)
1123 se
->wait_start_fair
= 0;
1126 * The statistical average of wait_runtime is about
1127 * -granularity/2, so initialize the task with that:
1129 if (sysctl_sched_features
& SCHED_FEAT_START_DEBIT
)
1130 se
->wait_runtime
= -(sched_granularity(cfs_rq
) / 2);
1132 __enqueue_entity(cfs_rq
, se
);
1135 #ifdef CONFIG_FAIR_GROUP_SCHED
1136 /* Account for a task changing its policy or group.
1138 * This routine is mostly called to set cfs_rq->curr field when a task
1139 * migrates between groups/classes.
1141 static void set_curr_task_fair(struct rq
*rq
)
1143 struct sched_entity
*se
= &rq
->curr
->se
;
1145 for_each_sched_entity(se
)
1146 set_next_entity(cfs_rq_of(se
), se
);
1149 static void set_curr_task_fair(struct rq
*rq
)
1155 * All the scheduling class methods:
1157 struct sched_class fair_sched_class __read_mostly
= {
1158 .enqueue_task
= enqueue_task_fair
,
1159 .dequeue_task
= dequeue_task_fair
,
1160 .yield_task
= yield_task_fair
,
1162 .check_preempt_curr
= check_preempt_curr_fair
,
1164 .pick_next_task
= pick_next_task_fair
,
1165 .put_prev_task
= put_prev_task_fair
,
1167 .load_balance
= load_balance_fair
,
1169 .set_curr_task
= set_curr_task_fair
,
1170 .task_tick
= task_tick_fair
,
1171 .task_new
= task_new_fair
,
1174 #ifdef CONFIG_SCHED_DEBUG
1175 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
1177 struct cfs_rq
*cfs_rq
;
1179 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
1180 print_cfs_rq(m
, cpu
, cfs_rq
);