2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33 #include <linux/scatterlist.h>
38 #include <scsi/scsi_cmnd.h>
40 static void blk_unplug_work(struct work_struct
*work
);
41 static void blk_unplug_timeout(unsigned long data
);
42 static void drive_stat_acct(struct request
*rq
, int new_io
);
43 static void init_request_from_bio(struct request
*req
, struct bio
*bio
);
44 static int __make_request(struct request_queue
*q
, struct bio
*bio
);
45 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
);
46 static void blk_recalc_rq_segments(struct request
*rq
);
47 static void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
51 * For the allocated request tables
53 static struct kmem_cache
*request_cachep
;
56 * For queue allocation
58 static struct kmem_cache
*requestq_cachep
;
61 * For io context allocations
63 static struct kmem_cache
*iocontext_cachep
;
66 * Controlling structure to kblockd
68 static struct workqueue_struct
*kblockd_workqueue
;
70 unsigned long blk_max_low_pfn
, blk_max_pfn
;
72 EXPORT_SYMBOL(blk_max_low_pfn
);
73 EXPORT_SYMBOL(blk_max_pfn
);
75 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
77 /* Amount of time in which a process may batch requests */
78 #define BLK_BATCH_TIME (HZ/50UL)
80 /* Number of requests a "batching" process may submit */
81 #define BLK_BATCH_REQ 32
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
88 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
90 return q
->nr_congestion_on
;
94 * The threshold at which a queue is considered to be uncongested
96 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
98 return q
->nr_congestion_off
;
101 static void blk_queue_congestion_threshold(struct request_queue
*q
)
105 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
106 if (nr
> q
->nr_requests
)
108 q
->nr_congestion_on
= nr
;
110 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
113 q
->nr_congestion_off
= nr
;
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
120 * Locates the passed device's request queue and returns the address of its
123 * Will return NULL if the request queue cannot be located.
125 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
127 struct backing_dev_info
*ret
= NULL
;
128 struct request_queue
*q
= bdev_get_queue(bdev
);
131 ret
= &q
->backing_dev_info
;
134 EXPORT_SYMBOL(blk_get_backing_dev_info
);
137 * blk_queue_prep_rq - set a prepare_request function for queue
139 * @pfn: prepare_request function
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
147 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
152 EXPORT_SYMBOL(blk_queue_prep_rq
);
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
157 * @mbfn: merge_bvec_fn
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
170 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
172 q
->merge_bvec_fn
= mbfn
;
175 EXPORT_SYMBOL(blk_queue_merge_bvec
);
177 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
179 q
->softirq_done_fn
= fn
;
182 EXPORT_SYMBOL(blk_queue_softirq_done
);
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
206 void blk_queue_make_request(struct request_queue
* q
, make_request_fn
* mfn
)
211 q
->nr_requests
= BLKDEV_MAX_RQ
;
212 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
213 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
214 q
->make_request_fn
= mfn
;
215 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
216 q
->backing_dev_info
.state
= 0;
217 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
218 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
219 blk_queue_hardsect_size(q
, 512);
220 blk_queue_dma_alignment(q
, 511);
221 blk_queue_congestion_threshold(q
);
222 q
->nr_batching
= BLK_BATCH_REQ
;
224 q
->unplug_thresh
= 4; /* hmm */
225 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
226 if (q
->unplug_delay
== 0)
229 INIT_WORK(&q
->unplug_work
, blk_unplug_work
);
231 q
->unplug_timer
.function
= blk_unplug_timeout
;
232 q
->unplug_timer
.data
= (unsigned long)q
;
235 * by default assume old behaviour and bounce for any highmem page
237 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
240 EXPORT_SYMBOL(blk_queue_make_request
);
242 static void rq_init(struct request_queue
*q
, struct request
*rq
)
244 INIT_LIST_HEAD(&rq
->queuelist
);
245 INIT_LIST_HEAD(&rq
->donelist
);
248 rq
->bio
= rq
->biotail
= NULL
;
249 INIT_HLIST_NODE(&rq
->hash
);
250 RB_CLEAR_NODE(&rq
->rb_node
);
258 rq
->nr_phys_segments
= 0;
261 rq
->end_io_data
= NULL
;
262 rq
->completion_data
= NULL
;
267 * blk_queue_ordered - does this queue support ordered writes
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
279 int blk_queue_ordered(struct request_queue
*q
, unsigned ordered
,
280 prepare_flush_fn
*prepare_flush_fn
)
282 if (ordered
& (QUEUE_ORDERED_PREFLUSH
| QUEUE_ORDERED_POSTFLUSH
) &&
283 prepare_flush_fn
== NULL
) {
284 printk(KERN_ERR
"blk_queue_ordered: prepare_flush_fn required\n");
288 if (ordered
!= QUEUE_ORDERED_NONE
&&
289 ordered
!= QUEUE_ORDERED_DRAIN
&&
290 ordered
!= QUEUE_ORDERED_DRAIN_FLUSH
&&
291 ordered
!= QUEUE_ORDERED_DRAIN_FUA
&&
292 ordered
!= QUEUE_ORDERED_TAG
&&
293 ordered
!= QUEUE_ORDERED_TAG_FLUSH
&&
294 ordered
!= QUEUE_ORDERED_TAG_FUA
) {
295 printk(KERN_ERR
"blk_queue_ordered: bad value %d\n", ordered
);
299 q
->ordered
= ordered
;
300 q
->next_ordered
= ordered
;
301 q
->prepare_flush_fn
= prepare_flush_fn
;
306 EXPORT_SYMBOL(blk_queue_ordered
);
309 * Cache flushing for ordered writes handling
311 inline unsigned blk_ordered_cur_seq(struct request_queue
*q
)
315 return 1 << ffz(q
->ordseq
);
318 unsigned blk_ordered_req_seq(struct request
*rq
)
320 struct request_queue
*q
= rq
->q
;
322 BUG_ON(q
->ordseq
== 0);
324 if (rq
== &q
->pre_flush_rq
)
325 return QUEUE_ORDSEQ_PREFLUSH
;
326 if (rq
== &q
->bar_rq
)
327 return QUEUE_ORDSEQ_BAR
;
328 if (rq
== &q
->post_flush_rq
)
329 return QUEUE_ORDSEQ_POSTFLUSH
;
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
335 * http://thread.gmane.org/gmane.linux.kernel/537473
337 if (!blk_fs_request(rq
))
338 return QUEUE_ORDSEQ_DRAIN
;
340 if ((rq
->cmd_flags
& REQ_ORDERED_COLOR
) ==
341 (q
->orig_bar_rq
->cmd_flags
& REQ_ORDERED_COLOR
))
342 return QUEUE_ORDSEQ_DRAIN
;
344 return QUEUE_ORDSEQ_DONE
;
347 void blk_ordered_complete_seq(struct request_queue
*q
, unsigned seq
, int error
)
351 if (error
&& !q
->orderr
)
354 BUG_ON(q
->ordseq
& seq
);
357 if (blk_ordered_cur_seq(q
) != QUEUE_ORDSEQ_DONE
)
361 * Okay, sequence complete.
366 if (__blk_end_request(rq
, q
->orderr
, blk_rq_bytes(rq
)))
370 static void pre_flush_end_io(struct request
*rq
, int error
)
372 elv_completed_request(rq
->q
, rq
);
373 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_PREFLUSH
, error
);
376 static void bar_end_io(struct request
*rq
, int error
)
378 elv_completed_request(rq
->q
, rq
);
379 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_BAR
, error
);
382 static void post_flush_end_io(struct request
*rq
, int error
)
384 elv_completed_request(rq
->q
, rq
);
385 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_POSTFLUSH
, error
);
388 static void queue_flush(struct request_queue
*q
, unsigned which
)
391 rq_end_io_fn
*end_io
;
393 if (which
== QUEUE_ORDERED_PREFLUSH
) {
394 rq
= &q
->pre_flush_rq
;
395 end_io
= pre_flush_end_io
;
397 rq
= &q
->post_flush_rq
;
398 end_io
= post_flush_end_io
;
401 rq
->cmd_flags
= REQ_HARDBARRIER
;
403 rq
->elevator_private
= NULL
;
404 rq
->elevator_private2
= NULL
;
405 rq
->rq_disk
= q
->bar_rq
.rq_disk
;
407 q
->prepare_flush_fn(q
, rq
);
409 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
412 static inline struct request
*start_ordered(struct request_queue
*q
,
416 q
->ordered
= q
->next_ordered
;
417 q
->ordseq
|= QUEUE_ORDSEQ_STARTED
;
420 * Prep proxy barrier request.
422 blkdev_dequeue_request(rq
);
427 if (bio_data_dir(q
->orig_bar_rq
->bio
) == WRITE
)
428 rq
->cmd_flags
|= REQ_RW
;
429 if (q
->ordered
& QUEUE_ORDERED_FUA
)
430 rq
->cmd_flags
|= REQ_FUA
;
431 rq
->elevator_private
= NULL
;
432 rq
->elevator_private2
= NULL
;
433 init_request_from_bio(rq
, q
->orig_bar_rq
->bio
);
434 rq
->end_io
= bar_end_io
;
437 * Queue ordered sequence. As we stack them at the head, we
438 * need to queue in reverse order. Note that we rely on that
439 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
440 * request gets inbetween ordered sequence. If this request is
441 * an empty barrier, we don't need to do a postflush ever since
442 * there will be no data written between the pre and post flush.
443 * Hence a single flush will suffice.
445 if ((q
->ordered
& QUEUE_ORDERED_POSTFLUSH
) && !blk_empty_barrier(rq
))
446 queue_flush(q
, QUEUE_ORDERED_POSTFLUSH
);
448 q
->ordseq
|= QUEUE_ORDSEQ_POSTFLUSH
;
450 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
452 if (q
->ordered
& QUEUE_ORDERED_PREFLUSH
) {
453 queue_flush(q
, QUEUE_ORDERED_PREFLUSH
);
454 rq
= &q
->pre_flush_rq
;
456 q
->ordseq
|= QUEUE_ORDSEQ_PREFLUSH
;
458 if ((q
->ordered
& QUEUE_ORDERED_TAG
) || q
->in_flight
== 0)
459 q
->ordseq
|= QUEUE_ORDSEQ_DRAIN
;
466 int blk_do_ordered(struct request_queue
*q
, struct request
**rqp
)
468 struct request
*rq
= *rqp
;
469 const int is_barrier
= blk_fs_request(rq
) && blk_barrier_rq(rq
);
475 if (q
->next_ordered
!= QUEUE_ORDERED_NONE
) {
476 *rqp
= start_ordered(q
, rq
);
480 * This can happen when the queue switches to
481 * ORDERED_NONE while this request is on it.
483 blkdev_dequeue_request(rq
);
484 if (__blk_end_request(rq
, -EOPNOTSUPP
,
493 * Ordered sequence in progress
496 /* Special requests are not subject to ordering rules. */
497 if (!blk_fs_request(rq
) &&
498 rq
!= &q
->pre_flush_rq
&& rq
!= &q
->post_flush_rq
)
501 if (q
->ordered
& QUEUE_ORDERED_TAG
) {
502 /* Ordered by tag. Blocking the next barrier is enough. */
503 if (is_barrier
&& rq
!= &q
->bar_rq
)
506 /* Ordered by draining. Wait for turn. */
507 WARN_ON(blk_ordered_req_seq(rq
) < blk_ordered_cur_seq(q
));
508 if (blk_ordered_req_seq(rq
) > blk_ordered_cur_seq(q
))
515 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
516 unsigned int nbytes
, int error
)
518 struct request_queue
*q
= rq
->q
;
520 if (&q
->bar_rq
!= rq
) {
522 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
523 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
526 if (unlikely(nbytes
> bio
->bi_size
)) {
527 printk("%s: want %u bytes done, only %u left\n",
528 __FUNCTION__
, nbytes
, bio
->bi_size
);
529 nbytes
= bio
->bi_size
;
532 bio
->bi_size
-= nbytes
;
533 bio
->bi_sector
+= (nbytes
>> 9);
534 if (bio
->bi_size
== 0)
535 bio_endio(bio
, error
);
539 * Okay, this is the barrier request in progress, just
542 if (error
&& !q
->orderr
)
548 * blk_queue_bounce_limit - set bounce buffer limit for queue
549 * @q: the request queue for the device
550 * @dma_addr: bus address limit
553 * Different hardware can have different requirements as to what pages
554 * it can do I/O directly to. A low level driver can call
555 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
556 * buffers for doing I/O to pages residing above @page.
558 void blk_queue_bounce_limit(struct request_queue
*q
, u64 dma_addr
)
560 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
563 q
->bounce_gfp
= GFP_NOIO
;
564 #if BITS_PER_LONG == 64
565 /* Assume anything <= 4GB can be handled by IOMMU.
566 Actually some IOMMUs can handle everything, but I don't
567 know of a way to test this here. */
568 if (bounce_pfn
< (min_t(u64
,0xffffffff,BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
570 q
->bounce_pfn
= max_low_pfn
;
572 if (bounce_pfn
< blk_max_low_pfn
)
574 q
->bounce_pfn
= bounce_pfn
;
577 init_emergency_isa_pool();
578 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
579 q
->bounce_pfn
= bounce_pfn
;
583 EXPORT_SYMBOL(blk_queue_bounce_limit
);
586 * blk_queue_max_sectors - set max sectors for a request for this queue
587 * @q: the request queue for the device
588 * @max_sectors: max sectors in the usual 512b unit
591 * Enables a low level driver to set an upper limit on the size of
594 void blk_queue_max_sectors(struct request_queue
*q
, unsigned int max_sectors
)
596 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
597 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
598 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
601 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
602 q
->max_hw_sectors
= q
->max_sectors
= max_sectors
;
604 q
->max_sectors
= BLK_DEF_MAX_SECTORS
;
605 q
->max_hw_sectors
= max_sectors
;
609 EXPORT_SYMBOL(blk_queue_max_sectors
);
612 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
613 * @q: the request queue for the device
614 * @max_segments: max number of segments
617 * Enables a low level driver to set an upper limit on the number of
618 * physical data segments in a request. This would be the largest sized
619 * scatter list the driver could handle.
621 void blk_queue_max_phys_segments(struct request_queue
*q
,
622 unsigned short max_segments
)
626 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
629 q
->max_phys_segments
= max_segments
;
632 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
635 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
636 * @q: the request queue for the device
637 * @max_segments: max number of segments
640 * Enables a low level driver to set an upper limit on the number of
641 * hw data segments in a request. This would be the largest number of
642 * address/length pairs the host adapter can actually give as once
645 void blk_queue_max_hw_segments(struct request_queue
*q
,
646 unsigned short max_segments
)
650 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
653 q
->max_hw_segments
= max_segments
;
656 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
659 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
660 * @q: the request queue for the device
661 * @max_size: max size of segment in bytes
664 * Enables a low level driver to set an upper limit on the size of a
667 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
669 if (max_size
< PAGE_CACHE_SIZE
) {
670 max_size
= PAGE_CACHE_SIZE
;
671 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
674 q
->max_segment_size
= max_size
;
677 EXPORT_SYMBOL(blk_queue_max_segment_size
);
680 * blk_queue_hardsect_size - set hardware sector size for the queue
681 * @q: the request queue for the device
682 * @size: the hardware sector size, in bytes
685 * This should typically be set to the lowest possible sector size
686 * that the hardware can operate on (possible without reverting to
687 * even internal read-modify-write operations). Usually the default
688 * of 512 covers most hardware.
690 void blk_queue_hardsect_size(struct request_queue
*q
, unsigned short size
)
692 q
->hardsect_size
= size
;
695 EXPORT_SYMBOL(blk_queue_hardsect_size
);
698 * Returns the minimum that is _not_ zero, unless both are zero.
700 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
703 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
704 * @t: the stacking driver (top)
705 * @b: the underlying device (bottom)
707 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
709 /* zero is "infinity" */
710 t
->max_sectors
= min_not_zero(t
->max_sectors
,b
->max_sectors
);
711 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
,b
->max_hw_sectors
);
713 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
714 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
715 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
716 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
717 if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
))
718 clear_bit(QUEUE_FLAG_CLUSTER
, &t
->queue_flags
);
721 EXPORT_SYMBOL(blk_queue_stack_limits
);
724 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
726 * @q: the request queue for the device
727 * @buf: physically contiguous buffer
728 * @size: size of the buffer in bytes
730 * Some devices have excess DMA problems and can't simply discard (or
731 * zero fill) the unwanted piece of the transfer. They have to have a
732 * real area of memory to transfer it into. The use case for this is
733 * ATAPI devices in DMA mode. If the packet command causes a transfer
734 * bigger than the transfer size some HBAs will lock up if there
735 * aren't DMA elements to contain the excess transfer. What this API
736 * does is adjust the queue so that the buf is always appended
737 * silently to the scatterlist.
739 * Note: This routine adjusts max_hw_segments to make room for
740 * appending the drain buffer. If you call
741 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
742 * calling this routine, you must set the limit to one fewer than your
743 * device can support otherwise there won't be room for the drain
746 int blk_queue_dma_drain(struct request_queue
*q
, void *buf
,
749 if (q
->max_hw_segments
< 2 || q
->max_phys_segments
< 2)
751 /* make room for appending the drain */
752 --q
->max_hw_segments
;
753 --q
->max_phys_segments
;
754 q
->dma_drain_buffer
= buf
;
755 q
->dma_drain_size
= size
;
760 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
763 * blk_queue_segment_boundary - set boundary rules for segment merging
764 * @q: the request queue for the device
765 * @mask: the memory boundary mask
767 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
769 if (mask
< PAGE_CACHE_SIZE
- 1) {
770 mask
= PAGE_CACHE_SIZE
- 1;
771 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
774 q
->seg_boundary_mask
= mask
;
777 EXPORT_SYMBOL(blk_queue_segment_boundary
);
780 * blk_queue_dma_alignment - set dma length and memory alignment
781 * @q: the request queue for the device
782 * @mask: alignment mask
785 * set required memory and length aligment for direct dma transactions.
786 * this is used when buiding direct io requests for the queue.
789 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
791 q
->dma_alignment
= mask
;
794 EXPORT_SYMBOL(blk_queue_dma_alignment
);
797 * blk_queue_update_dma_alignment - update dma length and memory alignment
798 * @q: the request queue for the device
799 * @mask: alignment mask
802 * update required memory and length aligment for direct dma transactions.
803 * If the requested alignment is larger than the current alignment, then
804 * the current queue alignment is updated to the new value, otherwise it
805 * is left alone. The design of this is to allow multiple objects
806 * (driver, device, transport etc) to set their respective
807 * alignments without having them interfere.
810 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
812 BUG_ON(mask
> PAGE_SIZE
);
814 if (mask
> q
->dma_alignment
)
815 q
->dma_alignment
= mask
;
818 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
821 * blk_queue_find_tag - find a request by its tag and queue
822 * @q: The request queue for the device
823 * @tag: The tag of the request
826 * Should be used when a device returns a tag and you want to match
829 * no locks need be held.
831 struct request
*blk_queue_find_tag(struct request_queue
*q
, int tag
)
833 return blk_map_queue_find_tag(q
->queue_tags
, tag
);
836 EXPORT_SYMBOL(blk_queue_find_tag
);
839 * __blk_free_tags - release a given set of tag maintenance info
840 * @bqt: the tag map to free
842 * Tries to free the specified @bqt@. Returns true if it was
843 * actually freed and false if there are still references using it
845 static int __blk_free_tags(struct blk_queue_tag
*bqt
)
849 retval
= atomic_dec_and_test(&bqt
->refcnt
);
853 kfree(bqt
->tag_index
);
854 bqt
->tag_index
= NULL
;
867 * __blk_queue_free_tags - release tag maintenance info
868 * @q: the request queue for the device
871 * blk_cleanup_queue() will take care of calling this function, if tagging
872 * has been used. So there's no need to call this directly.
874 static void __blk_queue_free_tags(struct request_queue
*q
)
876 struct blk_queue_tag
*bqt
= q
->queue_tags
;
881 __blk_free_tags(bqt
);
883 q
->queue_tags
= NULL
;
884 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
889 * blk_free_tags - release a given set of tag maintenance info
890 * @bqt: the tag map to free
892 * For externally managed @bqt@ frees the map. Callers of this
893 * function must guarantee to have released all the queues that
894 * might have been using this tag map.
896 void blk_free_tags(struct blk_queue_tag
*bqt
)
898 if (unlikely(!__blk_free_tags(bqt
)))
901 EXPORT_SYMBOL(blk_free_tags
);
904 * blk_queue_free_tags - release tag maintenance info
905 * @q: the request queue for the device
908 * This is used to disabled tagged queuing to a device, yet leave
911 void blk_queue_free_tags(struct request_queue
*q
)
913 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
916 EXPORT_SYMBOL(blk_queue_free_tags
);
919 init_tag_map(struct request_queue
*q
, struct blk_queue_tag
*tags
, int depth
)
921 struct request
**tag_index
;
922 unsigned long *tag_map
;
925 if (q
&& depth
> q
->nr_requests
* 2) {
926 depth
= q
->nr_requests
* 2;
927 printk(KERN_ERR
"%s: adjusted depth to %d\n",
928 __FUNCTION__
, depth
);
931 tag_index
= kzalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
935 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
936 tag_map
= kzalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
940 tags
->real_max_depth
= depth
;
941 tags
->max_depth
= depth
;
942 tags
->tag_index
= tag_index
;
943 tags
->tag_map
= tag_map
;
951 static struct blk_queue_tag
*__blk_queue_init_tags(struct request_queue
*q
,
954 struct blk_queue_tag
*tags
;
956 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
960 if (init_tag_map(q
, tags
, depth
))
964 atomic_set(&tags
->refcnt
, 1);
972 * blk_init_tags - initialize the tag info for an external tag map
973 * @depth: the maximum queue depth supported
974 * @tags: the tag to use
976 struct blk_queue_tag
*blk_init_tags(int depth
)
978 return __blk_queue_init_tags(NULL
, depth
);
980 EXPORT_SYMBOL(blk_init_tags
);
983 * blk_queue_init_tags - initialize the queue tag info
984 * @q: the request queue for the device
985 * @depth: the maximum queue depth supported
986 * @tags: the tag to use
988 int blk_queue_init_tags(struct request_queue
*q
, int depth
,
989 struct blk_queue_tag
*tags
)
993 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
995 if (!tags
&& !q
->queue_tags
) {
996 tags
= __blk_queue_init_tags(q
, depth
);
1000 } else if (q
->queue_tags
) {
1001 if ((rc
= blk_queue_resize_tags(q
, depth
)))
1003 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
1006 atomic_inc(&tags
->refcnt
);
1009 * assign it, all done
1011 q
->queue_tags
= tags
;
1012 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
1013 INIT_LIST_HEAD(&q
->tag_busy_list
);
1020 EXPORT_SYMBOL(blk_queue_init_tags
);
1023 * blk_queue_resize_tags - change the queueing depth
1024 * @q: the request queue for the device
1025 * @new_depth: the new max command queueing depth
1028 * Must be called with the queue lock held.
1030 int blk_queue_resize_tags(struct request_queue
*q
, int new_depth
)
1032 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1033 struct request
**tag_index
;
1034 unsigned long *tag_map
;
1035 int max_depth
, nr_ulongs
;
1041 * if we already have large enough real_max_depth. just
1042 * adjust max_depth. *NOTE* as requests with tag value
1043 * between new_depth and real_max_depth can be in-flight, tag
1044 * map can not be shrunk blindly here.
1046 if (new_depth
<= bqt
->real_max_depth
) {
1047 bqt
->max_depth
= new_depth
;
1052 * Currently cannot replace a shared tag map with a new
1053 * one, so error out if this is the case
1055 if (atomic_read(&bqt
->refcnt
) != 1)
1059 * save the old state info, so we can copy it back
1061 tag_index
= bqt
->tag_index
;
1062 tag_map
= bqt
->tag_map
;
1063 max_depth
= bqt
->real_max_depth
;
1065 if (init_tag_map(q
, bqt
, new_depth
))
1068 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
1069 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1070 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
1077 EXPORT_SYMBOL(blk_queue_resize_tags
);
1080 * blk_queue_end_tag - end tag operations for a request
1081 * @q: the request queue for the device
1082 * @rq: the request that has completed
1085 * Typically called when end_that_request_first() returns 0, meaning
1086 * all transfers have been done for a request. It's important to call
1087 * this function before end_that_request_last(), as that will put the
1088 * request back on the free list thus corrupting the internal tag list.
1091 * queue lock must be held.
1093 void blk_queue_end_tag(struct request_queue
*q
, struct request
*rq
)
1095 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1100 if (unlikely(tag
>= bqt
->real_max_depth
))
1102 * This can happen after tag depth has been reduced.
1103 * FIXME: how about a warning or info message here?
1107 list_del_init(&rq
->queuelist
);
1108 rq
->cmd_flags
&= ~REQ_QUEUED
;
1111 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
1112 printk(KERN_ERR
"%s: tag %d is missing\n",
1115 bqt
->tag_index
[tag
] = NULL
;
1117 if (unlikely(!test_bit(tag
, bqt
->tag_map
))) {
1118 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
1123 * The tag_map bit acts as a lock for tag_index[bit], so we need
1124 * unlock memory barrier semantics.
1126 clear_bit_unlock(tag
, bqt
->tag_map
);
1130 EXPORT_SYMBOL(blk_queue_end_tag
);
1133 * blk_queue_start_tag - find a free tag and assign it
1134 * @q: the request queue for the device
1135 * @rq: the block request that needs tagging
1138 * This can either be used as a stand-alone helper, or possibly be
1139 * assigned as the queue &prep_rq_fn (in which case &struct request
1140 * automagically gets a tag assigned). Note that this function
1141 * assumes that any type of request can be queued! if this is not
1142 * true for your device, you must check the request type before
1143 * calling this function. The request will also be removed from
1144 * the request queue, so it's the drivers responsibility to readd
1145 * it if it should need to be restarted for some reason.
1148 * queue lock must be held.
1150 int blk_queue_start_tag(struct request_queue
*q
, struct request
*rq
)
1152 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1155 if (unlikely((rq
->cmd_flags
& REQ_QUEUED
))) {
1157 "%s: request %p for device [%s] already tagged %d",
1159 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
1164 * Protect against shared tag maps, as we may not have exclusive
1165 * access to the tag map.
1168 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
1169 if (tag
>= bqt
->max_depth
)
1172 } while (test_and_set_bit_lock(tag
, bqt
->tag_map
));
1174 * We need lock ordering semantics given by test_and_set_bit_lock.
1175 * See blk_queue_end_tag for details.
1178 rq
->cmd_flags
|= REQ_QUEUED
;
1180 bqt
->tag_index
[tag
] = rq
;
1181 blkdev_dequeue_request(rq
);
1182 list_add(&rq
->queuelist
, &q
->tag_busy_list
);
1187 EXPORT_SYMBOL(blk_queue_start_tag
);
1190 * blk_queue_invalidate_tags - invalidate all pending tags
1191 * @q: the request queue for the device
1194 * Hardware conditions may dictate a need to stop all pending requests.
1195 * In this case, we will safely clear the block side of the tag queue and
1196 * readd all requests to the request queue in the right order.
1199 * queue lock must be held.
1201 void blk_queue_invalidate_tags(struct request_queue
*q
)
1203 struct list_head
*tmp
, *n
;
1205 list_for_each_safe(tmp
, n
, &q
->tag_busy_list
)
1206 blk_requeue_request(q
, list_entry_rq(tmp
));
1209 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1211 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1215 printk("%s: dev %s: type=%x, flags=%x\n", msg
,
1216 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
1219 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1221 rq
->current_nr_sectors
);
1222 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1224 if (blk_pc_request(rq
)) {
1226 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1227 printk("%02x ", rq
->cmd
[bit
]);
1232 EXPORT_SYMBOL(blk_dump_rq_flags
);
1234 void blk_recount_segments(struct request_queue
*q
, struct bio
*bio
)
1237 struct bio
*nxt
= bio
->bi_next
;
1239 rq
.bio
= rq
.biotail
= bio
;
1240 bio
->bi_next
= NULL
;
1241 blk_recalc_rq_segments(&rq
);
1243 bio
->bi_phys_segments
= rq
.nr_phys_segments
;
1244 bio
->bi_hw_segments
= rq
.nr_hw_segments
;
1245 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1247 EXPORT_SYMBOL(blk_recount_segments
);
1249 static void blk_recalc_rq_segments(struct request
*rq
)
1253 unsigned int phys_size
;
1254 unsigned int hw_size
;
1255 struct bio_vec
*bv
, *bvprv
= NULL
;
1259 struct req_iterator iter
;
1260 int high
, highprv
= 1;
1261 struct request_queue
*q
= rq
->q
;
1266 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1267 hw_seg_size
= seg_size
= 0;
1268 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
1269 rq_for_each_segment(bv
, rq
, iter
) {
1271 * the trick here is making sure that a high page is never
1272 * considered part of another segment, since that might
1273 * change with the bounce page.
1275 high
= page_to_pfn(bv
->bv_page
) > q
->bounce_pfn
;
1276 if (high
|| highprv
)
1277 goto new_hw_segment
;
1279 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1281 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1283 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1285 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1286 goto new_hw_segment
;
1288 seg_size
+= bv
->bv_len
;
1289 hw_seg_size
+= bv
->bv_len
;
1294 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1295 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1296 hw_seg_size
+= bv
->bv_len
;
1299 if (nr_hw_segs
== 1 &&
1300 hw_seg_size
> rq
->bio
->bi_hw_front_size
)
1301 rq
->bio
->bi_hw_front_size
= hw_seg_size
;
1302 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1308 seg_size
= bv
->bv_len
;
1312 if (nr_hw_segs
== 1 &&
1313 hw_seg_size
> rq
->bio
->bi_hw_front_size
)
1314 rq
->bio
->bi_hw_front_size
= hw_seg_size
;
1315 if (hw_seg_size
> rq
->biotail
->bi_hw_back_size
)
1316 rq
->biotail
->bi_hw_back_size
= hw_seg_size
;
1317 rq
->nr_phys_segments
= nr_phys_segs
;
1318 rq
->nr_hw_segments
= nr_hw_segs
;
1321 static int blk_phys_contig_segment(struct request_queue
*q
, struct bio
*bio
,
1324 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1327 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1329 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1333 * bio and nxt are contigous in memory, check if the queue allows
1334 * these two to be merged into one
1336 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1342 static int blk_hw_contig_segment(struct request_queue
*q
, struct bio
*bio
,
1345 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1346 blk_recount_segments(q
, bio
);
1347 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1348 blk_recount_segments(q
, nxt
);
1349 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1350 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_back_size
+ nxt
->bi_hw_front_size
))
1352 if (bio
->bi_hw_back_size
+ nxt
->bi_hw_front_size
> q
->max_segment_size
)
1359 * map a request to scatterlist, return number of sg entries setup. Caller
1360 * must make sure sg can hold rq->nr_phys_segments entries
1362 int blk_rq_map_sg(struct request_queue
*q
, struct request
*rq
,
1363 struct scatterlist
*sglist
)
1365 struct bio_vec
*bvec
, *bvprv
;
1366 struct req_iterator iter
;
1367 struct scatterlist
*sg
;
1371 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1374 * for each bio in rq
1378 rq_for_each_segment(bvec
, rq
, iter
) {
1379 int nbytes
= bvec
->bv_len
;
1381 if (bvprv
&& cluster
) {
1382 if (sg
->length
+ nbytes
> q
->max_segment_size
)
1385 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1387 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1390 sg
->length
+= nbytes
;
1397 * If the driver previously mapped a shorter
1398 * list, we could see a termination bit
1399 * prematurely unless it fully inits the sg
1400 * table on each mapping. We KNOW that there
1401 * must be more entries here or the driver
1402 * would be buggy, so force clear the
1403 * termination bit to avoid doing a full
1404 * sg_init_table() in drivers for each command.
1406 sg
->page_link
&= ~0x02;
1410 sg_set_page(sg
, bvec
->bv_page
, nbytes
, bvec
->bv_offset
);
1414 } /* segments in rq */
1416 if (q
->dma_drain_size
) {
1417 sg
->page_link
&= ~0x02;
1419 sg_set_page(sg
, virt_to_page(q
->dma_drain_buffer
),
1421 ((unsigned long)q
->dma_drain_buffer
) &
1432 EXPORT_SYMBOL(blk_rq_map_sg
);
1435 * the standard queue merge functions, can be overridden with device
1436 * specific ones if so desired
1439 static inline int ll_new_mergeable(struct request_queue
*q
,
1440 struct request
*req
,
1443 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1445 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1446 req
->cmd_flags
|= REQ_NOMERGE
;
1447 if (req
== q
->last_merge
)
1448 q
->last_merge
= NULL
;
1453 * A hw segment is just getting larger, bump just the phys
1456 req
->nr_phys_segments
+= nr_phys_segs
;
1460 static inline int ll_new_hw_segment(struct request_queue
*q
,
1461 struct request
*req
,
1464 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1465 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1467 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1468 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1469 req
->cmd_flags
|= REQ_NOMERGE
;
1470 if (req
== q
->last_merge
)
1471 q
->last_merge
= NULL
;
1476 * This will form the start of a new hw segment. Bump both
1479 req
->nr_hw_segments
+= nr_hw_segs
;
1480 req
->nr_phys_segments
+= nr_phys_segs
;
1484 static int ll_back_merge_fn(struct request_queue
*q
, struct request
*req
,
1487 unsigned short max_sectors
;
1490 if (unlikely(blk_pc_request(req
)))
1491 max_sectors
= q
->max_hw_sectors
;
1493 max_sectors
= q
->max_sectors
;
1495 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1496 req
->cmd_flags
|= REQ_NOMERGE
;
1497 if (req
== q
->last_merge
)
1498 q
->last_merge
= NULL
;
1501 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1502 blk_recount_segments(q
, req
->biotail
);
1503 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1504 blk_recount_segments(q
, bio
);
1505 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1506 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1507 !BIOVEC_VIRT_OVERSIZE(len
)) {
1508 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1511 if (req
->nr_hw_segments
== 1)
1512 req
->bio
->bi_hw_front_size
= len
;
1513 if (bio
->bi_hw_segments
== 1)
1514 bio
->bi_hw_back_size
= len
;
1519 return ll_new_hw_segment(q
, req
, bio
);
1522 static int ll_front_merge_fn(struct request_queue
*q
, struct request
*req
,
1525 unsigned short max_sectors
;
1528 if (unlikely(blk_pc_request(req
)))
1529 max_sectors
= q
->max_hw_sectors
;
1531 max_sectors
= q
->max_sectors
;
1534 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1535 req
->cmd_flags
|= REQ_NOMERGE
;
1536 if (req
== q
->last_merge
)
1537 q
->last_merge
= NULL
;
1540 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1541 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1542 blk_recount_segments(q
, bio
);
1543 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1544 blk_recount_segments(q
, req
->bio
);
1545 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1546 !BIOVEC_VIRT_OVERSIZE(len
)) {
1547 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1550 if (bio
->bi_hw_segments
== 1)
1551 bio
->bi_hw_front_size
= len
;
1552 if (req
->nr_hw_segments
== 1)
1553 req
->biotail
->bi_hw_back_size
= len
;
1558 return ll_new_hw_segment(q
, req
, bio
);
1561 static int ll_merge_requests_fn(struct request_queue
*q
, struct request
*req
,
1562 struct request
*next
)
1564 int total_phys_segments
;
1565 int total_hw_segments
;
1568 * First check if the either of the requests are re-queued
1569 * requests. Can't merge them if they are.
1571 if (req
->special
|| next
->special
)
1575 * Will it become too large?
1577 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1580 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1581 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1582 total_phys_segments
--;
1584 if (total_phys_segments
> q
->max_phys_segments
)
1587 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1588 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1589 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1591 * propagate the combined length to the end of the requests
1593 if (req
->nr_hw_segments
== 1)
1594 req
->bio
->bi_hw_front_size
= len
;
1595 if (next
->nr_hw_segments
== 1)
1596 next
->biotail
->bi_hw_back_size
= len
;
1597 total_hw_segments
--;
1600 if (total_hw_segments
> q
->max_hw_segments
)
1603 /* Merge is OK... */
1604 req
->nr_phys_segments
= total_phys_segments
;
1605 req
->nr_hw_segments
= total_hw_segments
;
1610 * "plug" the device if there are no outstanding requests: this will
1611 * force the transfer to start only after we have put all the requests
1614 * This is called with interrupts off and no requests on the queue and
1615 * with the queue lock held.
1617 void blk_plug_device(struct request_queue
*q
)
1619 WARN_ON(!irqs_disabled());
1622 * don't plug a stopped queue, it must be paired with blk_start_queue()
1623 * which will restart the queueing
1625 if (blk_queue_stopped(q
))
1628 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
)) {
1629 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1630 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
1634 EXPORT_SYMBOL(blk_plug_device
);
1637 * remove the queue from the plugged list, if present. called with
1638 * queue lock held and interrupts disabled.
1640 int blk_remove_plug(struct request_queue
*q
)
1642 WARN_ON(!irqs_disabled());
1644 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1647 del_timer(&q
->unplug_timer
);
1651 EXPORT_SYMBOL(blk_remove_plug
);
1654 * remove the plug and let it rip..
1656 void __generic_unplug_device(struct request_queue
*q
)
1658 if (unlikely(blk_queue_stopped(q
)))
1661 if (!blk_remove_plug(q
))
1666 EXPORT_SYMBOL(__generic_unplug_device
);
1669 * generic_unplug_device - fire a request queue
1670 * @q: The &struct request_queue in question
1673 * Linux uses plugging to build bigger requests queues before letting
1674 * the device have at them. If a queue is plugged, the I/O scheduler
1675 * is still adding and merging requests on the queue. Once the queue
1676 * gets unplugged, the request_fn defined for the queue is invoked and
1677 * transfers started.
1679 void generic_unplug_device(struct request_queue
*q
)
1681 spin_lock_irq(q
->queue_lock
);
1682 __generic_unplug_device(q
);
1683 spin_unlock_irq(q
->queue_lock
);
1685 EXPORT_SYMBOL(generic_unplug_device
);
1687 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1690 struct request_queue
*q
= bdi
->unplug_io_data
;
1695 static void blk_unplug_work(struct work_struct
*work
)
1697 struct request_queue
*q
=
1698 container_of(work
, struct request_queue
, unplug_work
);
1700 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1701 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1706 static void blk_unplug_timeout(unsigned long data
)
1708 struct request_queue
*q
= (struct request_queue
*)data
;
1710 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
1711 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1713 kblockd_schedule_work(&q
->unplug_work
);
1716 void blk_unplug(struct request_queue
*q
)
1719 * devices don't necessarily have an ->unplug_fn defined
1722 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1723 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1728 EXPORT_SYMBOL(blk_unplug
);
1731 * blk_start_queue - restart a previously stopped queue
1732 * @q: The &struct request_queue in question
1735 * blk_start_queue() will clear the stop flag on the queue, and call
1736 * the request_fn for the queue if it was in a stopped state when
1737 * entered. Also see blk_stop_queue(). Queue lock must be held.
1739 void blk_start_queue(struct request_queue
*q
)
1741 WARN_ON(!irqs_disabled());
1743 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1746 * one level of recursion is ok and is much faster than kicking
1747 * the unplug handling
1749 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1751 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1754 kblockd_schedule_work(&q
->unplug_work
);
1758 EXPORT_SYMBOL(blk_start_queue
);
1761 * blk_stop_queue - stop a queue
1762 * @q: The &struct request_queue in question
1765 * The Linux block layer assumes that a block driver will consume all
1766 * entries on the request queue when the request_fn strategy is called.
1767 * Often this will not happen, because of hardware limitations (queue
1768 * depth settings). If a device driver gets a 'queue full' response,
1769 * or if it simply chooses not to queue more I/O at one point, it can
1770 * call this function to prevent the request_fn from being called until
1771 * the driver has signalled it's ready to go again. This happens by calling
1772 * blk_start_queue() to restart queue operations. Queue lock must be held.
1774 void blk_stop_queue(struct request_queue
*q
)
1777 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1779 EXPORT_SYMBOL(blk_stop_queue
);
1782 * blk_sync_queue - cancel any pending callbacks on a queue
1786 * The block layer may perform asynchronous callback activity
1787 * on a queue, such as calling the unplug function after a timeout.
1788 * A block device may call blk_sync_queue to ensure that any
1789 * such activity is cancelled, thus allowing it to release resources
1790 * that the callbacks might use. The caller must already have made sure
1791 * that its ->make_request_fn will not re-add plugging prior to calling
1795 void blk_sync_queue(struct request_queue
*q
)
1797 del_timer_sync(&q
->unplug_timer
);
1798 kblockd_flush_work(&q
->unplug_work
);
1800 EXPORT_SYMBOL(blk_sync_queue
);
1803 * blk_run_queue - run a single device queue
1804 * @q: The queue to run
1806 void blk_run_queue(struct request_queue
*q
)
1808 unsigned long flags
;
1810 spin_lock_irqsave(q
->queue_lock
, flags
);
1814 * Only recurse once to avoid overrunning the stack, let the unplug
1815 * handling reinvoke the handler shortly if we already got there.
1817 if (!elv_queue_empty(q
)) {
1818 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1820 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1823 kblockd_schedule_work(&q
->unplug_work
);
1827 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1829 EXPORT_SYMBOL(blk_run_queue
);
1832 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1833 * @kobj: the kobj belonging of the request queue to be released
1836 * blk_cleanup_queue is the pair to blk_init_queue() or
1837 * blk_queue_make_request(). It should be called when a request queue is
1838 * being released; typically when a block device is being de-registered.
1839 * Currently, its primary task it to free all the &struct request
1840 * structures that were allocated to the queue and the queue itself.
1843 * Hopefully the low level driver will have finished any
1844 * outstanding requests first...
1846 static void blk_release_queue(struct kobject
*kobj
)
1848 struct request_queue
*q
=
1849 container_of(kobj
, struct request_queue
, kobj
);
1850 struct request_list
*rl
= &q
->rq
;
1855 mempool_destroy(rl
->rq_pool
);
1858 __blk_queue_free_tags(q
);
1860 blk_trace_shutdown(q
);
1862 bdi_destroy(&q
->backing_dev_info
);
1863 kmem_cache_free(requestq_cachep
, q
);
1866 void blk_put_queue(struct request_queue
*q
)
1868 kobject_put(&q
->kobj
);
1870 EXPORT_SYMBOL(blk_put_queue
);
1872 void blk_cleanup_queue(struct request_queue
* q
)
1874 mutex_lock(&q
->sysfs_lock
);
1875 set_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
);
1876 mutex_unlock(&q
->sysfs_lock
);
1879 elevator_exit(q
->elevator
);
1884 EXPORT_SYMBOL(blk_cleanup_queue
);
1886 static int blk_init_free_list(struct request_queue
*q
)
1888 struct request_list
*rl
= &q
->rq
;
1890 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1891 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1893 init_waitqueue_head(&rl
->wait
[READ
]);
1894 init_waitqueue_head(&rl
->wait
[WRITE
]);
1896 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1897 mempool_free_slab
, request_cachep
, q
->node
);
1905 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
1907 return blk_alloc_queue_node(gfp_mask
, -1);
1909 EXPORT_SYMBOL(blk_alloc_queue
);
1911 static struct kobj_type queue_ktype
;
1913 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1915 struct request_queue
*q
;
1918 q
= kmem_cache_alloc_node(requestq_cachep
,
1919 gfp_mask
| __GFP_ZERO
, node_id
);
1923 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1924 q
->backing_dev_info
.unplug_io_data
= q
;
1925 err
= bdi_init(&q
->backing_dev_info
);
1927 kmem_cache_free(requestq_cachep
, q
);
1931 init_timer(&q
->unplug_timer
);
1933 kobject_init(&q
->kobj
, &queue_ktype
);
1935 mutex_init(&q
->sysfs_lock
);
1939 EXPORT_SYMBOL(blk_alloc_queue_node
);
1942 * blk_init_queue - prepare a request queue for use with a block device
1943 * @rfn: The function to be called to process requests that have been
1944 * placed on the queue.
1945 * @lock: Request queue spin lock
1948 * If a block device wishes to use the standard request handling procedures,
1949 * which sorts requests and coalesces adjacent requests, then it must
1950 * call blk_init_queue(). The function @rfn will be called when there
1951 * are requests on the queue that need to be processed. If the device
1952 * supports plugging, then @rfn may not be called immediately when requests
1953 * are available on the queue, but may be called at some time later instead.
1954 * Plugged queues are generally unplugged when a buffer belonging to one
1955 * of the requests on the queue is needed, or due to memory pressure.
1957 * @rfn is not required, or even expected, to remove all requests off the
1958 * queue, but only as many as it can handle at a time. If it does leave
1959 * requests on the queue, it is responsible for arranging that the requests
1960 * get dealt with eventually.
1962 * The queue spin lock must be held while manipulating the requests on the
1963 * request queue; this lock will be taken also from interrupt context, so irq
1964 * disabling is needed for it.
1966 * Function returns a pointer to the initialized request queue, or NULL if
1967 * it didn't succeed.
1970 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1971 * when the block device is deactivated (such as at module unload).
1974 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1976 return blk_init_queue_node(rfn
, lock
, -1);
1978 EXPORT_SYMBOL(blk_init_queue
);
1980 struct request_queue
*
1981 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1983 struct request_queue
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1989 if (blk_init_free_list(q
)) {
1990 kmem_cache_free(requestq_cachep
, q
);
1995 * if caller didn't supply a lock, they get per-queue locking with
1999 spin_lock_init(&q
->__queue_lock
);
2000 lock
= &q
->__queue_lock
;
2003 q
->request_fn
= rfn
;
2004 q
->prep_rq_fn
= NULL
;
2005 q
->unplug_fn
= generic_unplug_device
;
2006 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
2007 q
->queue_lock
= lock
;
2009 blk_queue_segment_boundary(q
, 0xffffffff);
2011 blk_queue_make_request(q
, __make_request
);
2012 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
2014 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
2015 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
2017 q
->sg_reserved_size
= INT_MAX
;
2022 if (!elevator_init(q
, NULL
)) {
2023 blk_queue_congestion_threshold(q
);
2030 EXPORT_SYMBOL(blk_init_queue_node
);
2032 int blk_get_queue(struct request_queue
*q
)
2034 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
2035 kobject_get(&q
->kobj
);
2042 EXPORT_SYMBOL(blk_get_queue
);
2044 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
2046 if (rq
->cmd_flags
& REQ_ELVPRIV
)
2047 elv_put_request(q
, rq
);
2048 mempool_free(rq
, q
->rq
.rq_pool
);
2051 static struct request
*
2052 blk_alloc_request(struct request_queue
*q
, int rw
, int priv
, gfp_t gfp_mask
)
2054 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
2060 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2061 * see bio.h and blkdev.h
2063 rq
->cmd_flags
= rw
| REQ_ALLOCED
;
2066 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
2067 mempool_free(rq
, q
->rq
.rq_pool
);
2070 rq
->cmd_flags
|= REQ_ELVPRIV
;
2077 * ioc_batching returns true if the ioc is a valid batching request and
2078 * should be given priority access to a request.
2080 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
2086 * Make sure the process is able to allocate at least 1 request
2087 * even if the batch times out, otherwise we could theoretically
2090 return ioc
->nr_batch_requests
== q
->nr_batching
||
2091 (ioc
->nr_batch_requests
> 0
2092 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
2096 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2097 * will cause the process to be a "batcher" on all queues in the system. This
2098 * is the behaviour we want though - once it gets a wakeup it should be given
2101 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
2103 if (!ioc
|| ioc_batching(q
, ioc
))
2106 ioc
->nr_batch_requests
= q
->nr_batching
;
2107 ioc
->last_waited
= jiffies
;
2110 static void __freed_request(struct request_queue
*q
, int rw
)
2112 struct request_list
*rl
= &q
->rq
;
2114 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
2115 blk_clear_queue_congested(q
, rw
);
2117 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
2118 if (waitqueue_active(&rl
->wait
[rw
]))
2119 wake_up(&rl
->wait
[rw
]);
2121 blk_clear_queue_full(q
, rw
);
2126 * A request has just been released. Account for it, update the full and
2127 * congestion status, wake up any waiters. Called under q->queue_lock.
2129 static void freed_request(struct request_queue
*q
, int rw
, int priv
)
2131 struct request_list
*rl
= &q
->rq
;
2137 __freed_request(q
, rw
);
2139 if (unlikely(rl
->starved
[rw
^ 1]))
2140 __freed_request(q
, rw
^ 1);
2143 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2145 * Get a free request, queue_lock must be held.
2146 * Returns NULL on failure, with queue_lock held.
2147 * Returns !NULL on success, with queue_lock *not held*.
2149 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
2150 struct bio
*bio
, gfp_t gfp_mask
)
2152 struct request
*rq
= NULL
;
2153 struct request_list
*rl
= &q
->rq
;
2154 struct io_context
*ioc
= NULL
;
2155 const int rw
= rw_flags
& 0x01;
2156 int may_queue
, priv
;
2158 may_queue
= elv_may_queue(q
, rw_flags
);
2159 if (may_queue
== ELV_MQUEUE_NO
)
2162 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
2163 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
2164 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
2166 * The queue will fill after this allocation, so set
2167 * it as full, and mark this process as "batching".
2168 * This process will be allowed to complete a batch of
2169 * requests, others will be blocked.
2171 if (!blk_queue_full(q
, rw
)) {
2172 ioc_set_batching(q
, ioc
);
2173 blk_set_queue_full(q
, rw
);
2175 if (may_queue
!= ELV_MQUEUE_MUST
2176 && !ioc_batching(q
, ioc
)) {
2178 * The queue is full and the allocating
2179 * process is not a "batcher", and not
2180 * exempted by the IO scheduler
2186 blk_set_queue_congested(q
, rw
);
2190 * Only allow batching queuers to allocate up to 50% over the defined
2191 * limit of requests, otherwise we could have thousands of requests
2192 * allocated with any setting of ->nr_requests
2194 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
2198 rl
->starved
[rw
] = 0;
2200 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
2204 spin_unlock_irq(q
->queue_lock
);
2206 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
2207 if (unlikely(!rq
)) {
2209 * Allocation failed presumably due to memory. Undo anything
2210 * we might have messed up.
2212 * Allocating task should really be put onto the front of the
2213 * wait queue, but this is pretty rare.
2215 spin_lock_irq(q
->queue_lock
);
2216 freed_request(q
, rw
, priv
);
2219 * in the very unlikely event that allocation failed and no
2220 * requests for this direction was pending, mark us starved
2221 * so that freeing of a request in the other direction will
2222 * notice us. another possible fix would be to split the
2223 * rq mempool into READ and WRITE
2226 if (unlikely(rl
->count
[rw
] == 0))
2227 rl
->starved
[rw
] = 1;
2233 * ioc may be NULL here, and ioc_batching will be false. That's
2234 * OK, if the queue is under the request limit then requests need
2235 * not count toward the nr_batch_requests limit. There will always
2236 * be some limit enforced by BLK_BATCH_TIME.
2238 if (ioc_batching(q
, ioc
))
2239 ioc
->nr_batch_requests
--;
2243 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
2249 * No available requests for this queue, unplug the device and wait for some
2250 * requests to become available.
2252 * Called with q->queue_lock held, and returns with it unlocked.
2254 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
2257 const int rw
= rw_flags
& 0x01;
2260 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
2263 struct request_list
*rl
= &q
->rq
;
2265 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
2266 TASK_UNINTERRUPTIBLE
);
2268 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
2271 struct io_context
*ioc
;
2273 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
2275 __generic_unplug_device(q
);
2276 spin_unlock_irq(q
->queue_lock
);
2280 * After sleeping, we become a "batching" process and
2281 * will be able to allocate at least one request, and
2282 * up to a big batch of them for a small period time.
2283 * See ioc_batching, ioc_set_batching
2285 ioc
= current_io_context(GFP_NOIO
, q
->node
);
2286 ioc_set_batching(q
, ioc
);
2288 spin_lock_irq(q
->queue_lock
);
2290 finish_wait(&rl
->wait
[rw
], &wait
);
2296 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
2300 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2302 spin_lock_irq(q
->queue_lock
);
2303 if (gfp_mask
& __GFP_WAIT
) {
2304 rq
= get_request_wait(q
, rw
, NULL
);
2306 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2308 spin_unlock_irq(q
->queue_lock
);
2310 /* q->queue_lock is unlocked at this point */
2314 EXPORT_SYMBOL(blk_get_request
);
2317 * blk_start_queueing - initiate dispatch of requests to device
2318 * @q: request queue to kick into gear
2320 * This is basically a helper to remove the need to know whether a queue
2321 * is plugged or not if someone just wants to initiate dispatch of requests
2324 * The queue lock must be held with interrupts disabled.
2326 void blk_start_queueing(struct request_queue
*q
)
2328 if (!blk_queue_plugged(q
))
2331 __generic_unplug_device(q
);
2333 EXPORT_SYMBOL(blk_start_queueing
);
2336 * blk_requeue_request - put a request back on queue
2337 * @q: request queue where request should be inserted
2338 * @rq: request to be inserted
2341 * Drivers often keep queueing requests until the hardware cannot accept
2342 * more, when that condition happens we need to put the request back
2343 * on the queue. Must be called with queue lock held.
2345 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
2347 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
2349 if (blk_rq_tagged(rq
))
2350 blk_queue_end_tag(q
, rq
);
2352 elv_requeue_request(q
, rq
);
2355 EXPORT_SYMBOL(blk_requeue_request
);
2358 * blk_insert_request - insert a special request in to a request queue
2359 * @q: request queue where request should be inserted
2360 * @rq: request to be inserted
2361 * @at_head: insert request at head or tail of queue
2362 * @data: private data
2365 * Many block devices need to execute commands asynchronously, so they don't
2366 * block the whole kernel from preemption during request execution. This is
2367 * accomplished normally by inserting aritficial requests tagged as
2368 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2369 * scheduled for actual execution by the request queue.
2371 * We have the option of inserting the head or the tail of the queue.
2372 * Typically we use the tail for new ioctls and so forth. We use the head
2373 * of the queue for things like a QUEUE_FULL message from a device, or a
2374 * host that is unable to accept a particular command.
2376 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
2377 int at_head
, void *data
)
2379 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2380 unsigned long flags
;
2383 * tell I/O scheduler that this isn't a regular read/write (ie it
2384 * must not attempt merges on this) and that it acts as a soft
2387 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
2388 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
2392 spin_lock_irqsave(q
->queue_lock
, flags
);
2395 * If command is tagged, release the tag
2397 if (blk_rq_tagged(rq
))
2398 blk_queue_end_tag(q
, rq
);
2400 drive_stat_acct(rq
, 1);
2401 __elv_add_request(q
, rq
, where
, 0);
2402 blk_start_queueing(q
);
2403 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2406 EXPORT_SYMBOL(blk_insert_request
);
2408 static int __blk_rq_unmap_user(struct bio
*bio
)
2413 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2414 bio_unmap_user(bio
);
2416 ret
= bio_uncopy_user(bio
);
2422 int blk_rq_append_bio(struct request_queue
*q
, struct request
*rq
,
2426 blk_rq_bio_prep(q
, rq
, bio
);
2427 else if (!ll_back_merge_fn(q
, rq
, bio
))
2430 rq
->biotail
->bi_next
= bio
;
2433 rq
->data_len
+= bio
->bi_size
;
2437 EXPORT_SYMBOL(blk_rq_append_bio
);
2439 static int __blk_rq_map_user(struct request_queue
*q
, struct request
*rq
,
2440 void __user
*ubuf
, unsigned int len
)
2442 unsigned long uaddr
;
2443 struct bio
*bio
, *orig_bio
;
2446 reading
= rq_data_dir(rq
) == READ
;
2449 * if alignment requirement is satisfied, map in user pages for
2450 * direct dma. else, set up kernel bounce buffers
2452 uaddr
= (unsigned long) ubuf
;
2453 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2454 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2456 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2459 return PTR_ERR(bio
);
2462 blk_queue_bounce(q
, &bio
);
2465 * We link the bounce buffer in and could have to traverse it
2466 * later so we have to get a ref to prevent it from being freed
2470 ret
= blk_rq_append_bio(q
, rq
, bio
);
2472 return bio
->bi_size
;
2474 /* if it was boucned we must call the end io function */
2476 __blk_rq_unmap_user(orig_bio
);
2482 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2483 * @q: request queue where request should be inserted
2484 * @rq: request structure to fill
2485 * @ubuf: the user buffer
2486 * @len: length of user data
2489 * Data will be mapped directly for zero copy io, if possible. Otherwise
2490 * a kernel bounce buffer is used.
2492 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2493 * still in process context.
2495 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2496 * before being submitted to the device, as pages mapped may be out of
2497 * reach. It's the callers responsibility to make sure this happens. The
2498 * original bio must be passed back in to blk_rq_unmap_user() for proper
2501 int blk_rq_map_user(struct request_queue
*q
, struct request
*rq
,
2502 void __user
*ubuf
, unsigned long len
)
2504 unsigned long bytes_read
= 0;
2505 struct bio
*bio
= NULL
;
2508 if (len
> (q
->max_hw_sectors
<< 9))
2513 while (bytes_read
!= len
) {
2514 unsigned long map_len
, end
, start
;
2516 map_len
= min_t(unsigned long, len
- bytes_read
, BIO_MAX_SIZE
);
2517 end
= ((unsigned long)ubuf
+ map_len
+ PAGE_SIZE
- 1)
2519 start
= (unsigned long)ubuf
>> PAGE_SHIFT
;
2522 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2523 * pages. If this happens we just lower the requested
2524 * mapping len by a page so that we can fit
2526 if (end
- start
> BIO_MAX_PAGES
)
2527 map_len
-= PAGE_SIZE
;
2529 ret
= __blk_rq_map_user(q
, rq
, ubuf
, map_len
);
2538 rq
->buffer
= rq
->data
= NULL
;
2541 blk_rq_unmap_user(bio
);
2545 EXPORT_SYMBOL(blk_rq_map_user
);
2548 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2549 * @q: request queue where request should be inserted
2550 * @rq: request to map data to
2551 * @iov: pointer to the iovec
2552 * @iov_count: number of elements in the iovec
2553 * @len: I/O byte count
2556 * Data will be mapped directly for zero copy io, if possible. Otherwise
2557 * a kernel bounce buffer is used.
2559 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2560 * still in process context.
2562 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2563 * before being submitted to the device, as pages mapped may be out of
2564 * reach. It's the callers responsibility to make sure this happens. The
2565 * original bio must be passed back in to blk_rq_unmap_user() for proper
2568 int blk_rq_map_user_iov(struct request_queue
*q
, struct request
*rq
,
2569 struct sg_iovec
*iov
, int iov_count
, unsigned int len
)
2573 if (!iov
|| iov_count
<= 0)
2576 /* we don't allow misaligned data like bio_map_user() does. If the
2577 * user is using sg, they're expected to know the alignment constraints
2578 * and respect them accordingly */
2579 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2581 return PTR_ERR(bio
);
2583 if (bio
->bi_size
!= len
) {
2585 bio_unmap_user(bio
);
2590 blk_rq_bio_prep(q
, rq
, bio
);
2591 rq
->buffer
= rq
->data
= NULL
;
2595 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2598 * blk_rq_unmap_user - unmap a request with user data
2599 * @bio: start of bio list
2602 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2603 * supply the original rq->bio from the blk_rq_map_user() return, since
2604 * the io completion may have changed rq->bio.
2606 int blk_rq_unmap_user(struct bio
*bio
)
2608 struct bio
*mapped_bio
;
2613 if (unlikely(bio_flagged(bio
, BIO_BOUNCED
)))
2614 mapped_bio
= bio
->bi_private
;
2616 ret2
= __blk_rq_unmap_user(mapped_bio
);
2622 bio_put(mapped_bio
);
2628 EXPORT_SYMBOL(blk_rq_unmap_user
);
2631 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2632 * @q: request queue where request should be inserted
2633 * @rq: request to fill
2634 * @kbuf: the kernel buffer
2635 * @len: length of user data
2636 * @gfp_mask: memory allocation flags
2638 int blk_rq_map_kern(struct request_queue
*q
, struct request
*rq
, void *kbuf
,
2639 unsigned int len
, gfp_t gfp_mask
)
2643 if (len
> (q
->max_hw_sectors
<< 9))
2648 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2650 return PTR_ERR(bio
);
2652 if (rq_data_dir(rq
) == WRITE
)
2653 bio
->bi_rw
|= (1 << BIO_RW
);
2655 blk_rq_bio_prep(q
, rq
, bio
);
2656 blk_queue_bounce(q
, &rq
->bio
);
2657 rq
->buffer
= rq
->data
= NULL
;
2661 EXPORT_SYMBOL(blk_rq_map_kern
);
2664 * blk_execute_rq_nowait - insert a request into queue for execution
2665 * @q: queue to insert the request in
2666 * @bd_disk: matching gendisk
2667 * @rq: request to insert
2668 * @at_head: insert request at head or tail of queue
2669 * @done: I/O completion handler
2672 * Insert a fully prepared request at the back of the io scheduler queue
2673 * for execution. Don't wait for completion.
2675 void blk_execute_rq_nowait(struct request_queue
*q
, struct gendisk
*bd_disk
,
2676 struct request
*rq
, int at_head
,
2679 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2681 rq
->rq_disk
= bd_disk
;
2682 rq
->cmd_flags
|= REQ_NOMERGE
;
2684 WARN_ON(irqs_disabled());
2685 spin_lock_irq(q
->queue_lock
);
2686 __elv_add_request(q
, rq
, where
, 1);
2687 __generic_unplug_device(q
);
2688 spin_unlock_irq(q
->queue_lock
);
2690 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
2693 * blk_execute_rq - insert a request into queue for execution
2694 * @q: queue to insert the request in
2695 * @bd_disk: matching gendisk
2696 * @rq: request to insert
2697 * @at_head: insert request at head or tail of queue
2700 * Insert a fully prepared request at the back of the io scheduler queue
2701 * for execution and wait for completion.
2703 int blk_execute_rq(struct request_queue
*q
, struct gendisk
*bd_disk
,
2704 struct request
*rq
, int at_head
)
2706 DECLARE_COMPLETION_ONSTACK(wait
);
2707 char sense
[SCSI_SENSE_BUFFERSIZE
];
2711 * we need an extra reference to the request, so we can look at
2712 * it after io completion
2717 memset(sense
, 0, sizeof(sense
));
2722 rq
->end_io_data
= &wait
;
2723 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2724 wait_for_completion(&wait
);
2732 EXPORT_SYMBOL(blk_execute_rq
);
2734 static void bio_end_empty_barrier(struct bio
*bio
, int err
)
2737 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2739 complete(bio
->bi_private
);
2743 * blkdev_issue_flush - queue a flush
2744 * @bdev: blockdev to issue flush for
2745 * @error_sector: error sector
2748 * Issue a flush for the block device in question. Caller can supply
2749 * room for storing the error offset in case of a flush error, if they
2750 * wish to. Caller must run wait_for_completion() on its own.
2752 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2754 DECLARE_COMPLETION_ONSTACK(wait
);
2755 struct request_queue
*q
;
2759 if (bdev
->bd_disk
== NULL
)
2762 q
= bdev_get_queue(bdev
);
2766 bio
= bio_alloc(GFP_KERNEL
, 0);
2770 bio
->bi_end_io
= bio_end_empty_barrier
;
2771 bio
->bi_private
= &wait
;
2772 bio
->bi_bdev
= bdev
;
2773 submit_bio(1 << BIO_RW_BARRIER
, bio
);
2775 wait_for_completion(&wait
);
2778 * The driver must store the error location in ->bi_sector, if
2779 * it supports it. For non-stacked drivers, this should be copied
2783 *error_sector
= bio
->bi_sector
;
2786 if (!bio_flagged(bio
, BIO_UPTODATE
))
2793 EXPORT_SYMBOL(blkdev_issue_flush
);
2795 static void drive_stat_acct(struct request
*rq
, int new_io
)
2797 int rw
= rq_data_dir(rq
);
2799 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2803 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2805 disk_round_stats(rq
->rq_disk
);
2806 rq
->rq_disk
->in_flight
++;
2811 * add-request adds a request to the linked list.
2812 * queue lock is held and interrupts disabled, as we muck with the
2813 * request queue list.
2815 static inline void add_request(struct request_queue
* q
, struct request
* req
)
2817 drive_stat_acct(req
, 1);
2820 * elevator indicated where it wants this request to be
2821 * inserted at elevator_merge time
2823 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2827 * disk_round_stats() - Round off the performance stats on a struct
2830 * The average IO queue length and utilisation statistics are maintained
2831 * by observing the current state of the queue length and the amount of
2832 * time it has been in this state for.
2834 * Normally, that accounting is done on IO completion, but that can result
2835 * in more than a second's worth of IO being accounted for within any one
2836 * second, leading to >100% utilisation. To deal with that, we call this
2837 * function to do a round-off before returning the results when reading
2838 * /proc/diskstats. This accounts immediately for all queue usage up to
2839 * the current jiffies and restarts the counters again.
2841 void disk_round_stats(struct gendisk
*disk
)
2843 unsigned long now
= jiffies
;
2845 if (now
== disk
->stamp
)
2848 if (disk
->in_flight
) {
2849 __disk_stat_add(disk
, time_in_queue
,
2850 disk
->in_flight
* (now
- disk
->stamp
));
2851 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2856 EXPORT_SYMBOL_GPL(disk_round_stats
);
2859 * queue lock must be held
2861 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
2865 if (unlikely(--req
->ref_count
))
2868 elv_completed_request(q
, req
);
2871 * Request may not have originated from ll_rw_blk. if not,
2872 * it didn't come out of our reserved rq pools
2874 if (req
->cmd_flags
& REQ_ALLOCED
) {
2875 int rw
= rq_data_dir(req
);
2876 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
2878 BUG_ON(!list_empty(&req
->queuelist
));
2879 BUG_ON(!hlist_unhashed(&req
->hash
));
2881 blk_free_request(q
, req
);
2882 freed_request(q
, rw
, priv
);
2886 EXPORT_SYMBOL_GPL(__blk_put_request
);
2888 void blk_put_request(struct request
*req
)
2890 unsigned long flags
;
2891 struct request_queue
*q
= req
->q
;
2894 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2895 * following if (q) test.
2898 spin_lock_irqsave(q
->queue_lock
, flags
);
2899 __blk_put_request(q
, req
);
2900 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2904 EXPORT_SYMBOL(blk_put_request
);
2907 * blk_end_sync_rq - executes a completion event on a request
2908 * @rq: request to complete
2909 * @error: end io status of the request
2911 void blk_end_sync_rq(struct request
*rq
, int error
)
2913 struct completion
*waiting
= rq
->end_io_data
;
2915 rq
->end_io_data
= NULL
;
2916 __blk_put_request(rq
->q
, rq
);
2919 * complete last, if this is a stack request the process (and thus
2920 * the rq pointer) could be invalid right after this complete()
2924 EXPORT_SYMBOL(blk_end_sync_rq
);
2927 * Has to be called with the request spinlock acquired
2929 static int attempt_merge(struct request_queue
*q
, struct request
*req
,
2930 struct request
*next
)
2932 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2938 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2941 if (rq_data_dir(req
) != rq_data_dir(next
)
2942 || req
->rq_disk
!= next
->rq_disk
2947 * If we are allowed to merge, then append bio list
2948 * from next to rq and release next. merge_requests_fn
2949 * will have updated segment counts, update sector
2952 if (!ll_merge_requests_fn(q
, req
, next
))
2956 * At this point we have either done a back merge
2957 * or front merge. We need the smaller start_time of
2958 * the merged requests to be the current request
2959 * for accounting purposes.
2961 if (time_after(req
->start_time
, next
->start_time
))
2962 req
->start_time
= next
->start_time
;
2964 req
->biotail
->bi_next
= next
->bio
;
2965 req
->biotail
= next
->biotail
;
2967 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2969 elv_merge_requests(q
, req
, next
);
2972 disk_round_stats(req
->rq_disk
);
2973 req
->rq_disk
->in_flight
--;
2976 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2978 __blk_put_request(q
, next
);
2982 static inline int attempt_back_merge(struct request_queue
*q
,
2985 struct request
*next
= elv_latter_request(q
, rq
);
2988 return attempt_merge(q
, rq
, next
);
2993 static inline int attempt_front_merge(struct request_queue
*q
,
2996 struct request
*prev
= elv_former_request(q
, rq
);
2999 return attempt_merge(q
, prev
, rq
);
3004 static void init_request_from_bio(struct request
*req
, struct bio
*bio
)
3006 req
->cmd_type
= REQ_TYPE_FS
;
3009 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
3011 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
3012 req
->cmd_flags
|= REQ_FAILFAST
;
3015 * REQ_BARRIER implies no merging, but lets make it explicit
3017 if (unlikely(bio_barrier(bio
)))
3018 req
->cmd_flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
3021 req
->cmd_flags
|= REQ_RW_SYNC
;
3022 if (bio_rw_meta(bio
))
3023 req
->cmd_flags
|= REQ_RW_META
;
3026 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
3027 req
->ioprio
= bio_prio(bio
);
3028 req
->start_time
= jiffies
;
3029 blk_rq_bio_prep(req
->q
, req
, bio
);
3032 static int __make_request(struct request_queue
*q
, struct bio
*bio
)
3034 struct request
*req
;
3035 int el_ret
, nr_sectors
, barrier
, err
;
3036 const unsigned short prio
= bio_prio(bio
);
3037 const int sync
= bio_sync(bio
);
3040 nr_sectors
= bio_sectors(bio
);
3043 * low level driver can indicate that it wants pages above a
3044 * certain limit bounced to low memory (ie for highmem, or even
3045 * ISA dma in theory)
3047 blk_queue_bounce(q
, &bio
);
3049 barrier
= bio_barrier(bio
);
3050 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
3055 spin_lock_irq(q
->queue_lock
);
3057 if (unlikely(barrier
) || elv_queue_empty(q
))
3060 el_ret
= elv_merge(q
, &req
, bio
);
3062 case ELEVATOR_BACK_MERGE
:
3063 BUG_ON(!rq_mergeable(req
));
3065 if (!ll_back_merge_fn(q
, req
, bio
))
3068 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
3070 req
->biotail
->bi_next
= bio
;
3072 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
3073 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
3074 drive_stat_acct(req
, 0);
3075 if (!attempt_back_merge(q
, req
))
3076 elv_merged_request(q
, req
, el_ret
);
3079 case ELEVATOR_FRONT_MERGE
:
3080 BUG_ON(!rq_mergeable(req
));
3082 if (!ll_front_merge_fn(q
, req
, bio
))
3085 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
3087 bio
->bi_next
= req
->bio
;
3091 * may not be valid. if the low level driver said
3092 * it didn't need a bounce buffer then it better
3093 * not touch req->buffer either...
3095 req
->buffer
= bio_data(bio
);
3096 req
->current_nr_sectors
= bio_cur_sectors(bio
);
3097 req
->hard_cur_sectors
= req
->current_nr_sectors
;
3098 req
->sector
= req
->hard_sector
= bio
->bi_sector
;
3099 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
3100 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
3101 drive_stat_acct(req
, 0);
3102 if (!attempt_front_merge(q
, req
))
3103 elv_merged_request(q
, req
, el_ret
);
3106 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3113 * This sync check and mask will be re-done in init_request_from_bio(),
3114 * but we need to set it earlier to expose the sync flag to the
3115 * rq allocator and io schedulers.
3117 rw_flags
= bio_data_dir(bio
);
3119 rw_flags
|= REQ_RW_SYNC
;
3122 * Grab a free request. This is might sleep but can not fail.
3123 * Returns with the queue unlocked.
3125 req
= get_request_wait(q
, rw_flags
, bio
);
3128 * After dropping the lock and possibly sleeping here, our request
3129 * may now be mergeable after it had proven unmergeable (above).
3130 * We don't worry about that case for efficiency. It won't happen
3131 * often, and the elevators are able to handle it.
3133 init_request_from_bio(req
, bio
);
3135 spin_lock_irq(q
->queue_lock
);
3136 if (elv_queue_empty(q
))
3138 add_request(q
, req
);
3141 __generic_unplug_device(q
);
3143 spin_unlock_irq(q
->queue_lock
);
3147 bio_endio(bio
, err
);
3152 * If bio->bi_dev is a partition, remap the location
3154 static inline void blk_partition_remap(struct bio
*bio
)
3156 struct block_device
*bdev
= bio
->bi_bdev
;
3158 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
3159 struct hd_struct
*p
= bdev
->bd_part
;
3160 const int rw
= bio_data_dir(bio
);
3162 p
->sectors
[rw
] += bio_sectors(bio
);
3165 bio
->bi_sector
+= p
->start_sect
;
3166 bio
->bi_bdev
= bdev
->bd_contains
;
3168 blk_add_trace_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
3169 bdev
->bd_dev
, bio
->bi_sector
,
3170 bio
->bi_sector
- p
->start_sect
);
3174 static void handle_bad_sector(struct bio
*bio
)
3176 char b
[BDEVNAME_SIZE
];
3178 printk(KERN_INFO
"attempt to access beyond end of device\n");
3179 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
3180 bdevname(bio
->bi_bdev
, b
),
3182 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
3183 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
3185 set_bit(BIO_EOF
, &bio
->bi_flags
);
3188 #ifdef CONFIG_FAIL_MAKE_REQUEST
3190 static DECLARE_FAULT_ATTR(fail_make_request
);
3192 static int __init
setup_fail_make_request(char *str
)
3194 return setup_fault_attr(&fail_make_request
, str
);
3196 __setup("fail_make_request=", setup_fail_make_request
);
3198 static int should_fail_request(struct bio
*bio
)
3200 if ((bio
->bi_bdev
->bd_disk
->flags
& GENHD_FL_FAIL
) ||
3201 (bio
->bi_bdev
->bd_part
&& bio
->bi_bdev
->bd_part
->make_it_fail
))
3202 return should_fail(&fail_make_request
, bio
->bi_size
);
3207 static int __init
fail_make_request_debugfs(void)
3209 return init_fault_attr_dentries(&fail_make_request
,
3210 "fail_make_request");
3213 late_initcall(fail_make_request_debugfs
);
3215 #else /* CONFIG_FAIL_MAKE_REQUEST */
3217 static inline int should_fail_request(struct bio
*bio
)
3222 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3225 * Check whether this bio extends beyond the end of the device.
3227 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
3234 /* Test device or partition size, when known. */
3235 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3237 sector_t sector
= bio
->bi_sector
;
3239 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
3241 * This may well happen - the kernel calls bread()
3242 * without checking the size of the device, e.g., when
3243 * mounting a device.
3245 handle_bad_sector(bio
);
3254 * generic_make_request: hand a buffer to its device driver for I/O
3255 * @bio: The bio describing the location in memory and on the device.
3257 * generic_make_request() is used to make I/O requests of block
3258 * devices. It is passed a &struct bio, which describes the I/O that needs
3261 * generic_make_request() does not return any status. The
3262 * success/failure status of the request, along with notification of
3263 * completion, is delivered asynchronously through the bio->bi_end_io
3264 * function described (one day) else where.
3266 * The caller of generic_make_request must make sure that bi_io_vec
3267 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3268 * set to describe the device address, and the
3269 * bi_end_io and optionally bi_private are set to describe how
3270 * completion notification should be signaled.
3272 * generic_make_request and the drivers it calls may use bi_next if this
3273 * bio happens to be merged with someone else, and may change bi_dev and
3274 * bi_sector for remaps as it sees fit. So the values of these fields
3275 * should NOT be depended on after the call to generic_make_request.
3277 static inline void __generic_make_request(struct bio
*bio
)
3279 struct request_queue
*q
;
3280 sector_t old_sector
;
3281 int ret
, nr_sectors
= bio_sectors(bio
);
3287 if (bio_check_eod(bio
, nr_sectors
))
3291 * Resolve the mapping until finished. (drivers are
3292 * still free to implement/resolve their own stacking
3293 * by explicitly returning 0)
3295 * NOTE: we don't repeat the blk_size check for each new device.
3296 * Stacking drivers are expected to know what they are doing.
3301 char b
[BDEVNAME_SIZE
];
3303 q
= bdev_get_queue(bio
->bi_bdev
);
3306 "generic_make_request: Trying to access "
3307 "nonexistent block-device %s (%Lu)\n",
3308 bdevname(bio
->bi_bdev
, b
),
3309 (long long) bio
->bi_sector
);
3311 bio_endio(bio
, err
);
3315 if (unlikely(nr_sectors
> q
->max_hw_sectors
)) {
3316 printk("bio too big device %s (%u > %u)\n",
3317 bdevname(bio
->bi_bdev
, b
),
3323 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
3326 if (should_fail_request(bio
))
3330 * If this device has partitions, remap block n
3331 * of partition p to block n+start(p) of the disk.
3333 blk_partition_remap(bio
);
3335 if (old_sector
!= -1)
3336 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
3339 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
3341 old_sector
= bio
->bi_sector
;
3342 old_dev
= bio
->bi_bdev
->bd_dev
;
3344 if (bio_check_eod(bio
, nr_sectors
))
3346 if (bio_empty_barrier(bio
) && !q
->prepare_flush_fn
) {
3351 ret
= q
->make_request_fn(q
, bio
);
3356 * We only want one ->make_request_fn to be active at a time,
3357 * else stack usage with stacked devices could be a problem.
3358 * So use current->bio_{list,tail} to keep a list of requests
3359 * submited by a make_request_fn function.
3360 * current->bio_tail is also used as a flag to say if
3361 * generic_make_request is currently active in this task or not.
3362 * If it is NULL, then no make_request is active. If it is non-NULL,
3363 * then a make_request is active, and new requests should be added
3366 void generic_make_request(struct bio
*bio
)
3368 if (current
->bio_tail
) {
3369 /* make_request is active */
3370 *(current
->bio_tail
) = bio
;
3371 bio
->bi_next
= NULL
;
3372 current
->bio_tail
= &bio
->bi_next
;
3375 /* following loop may be a bit non-obvious, and so deserves some
3377 * Before entering the loop, bio->bi_next is NULL (as all callers
3378 * ensure that) so we have a list with a single bio.
3379 * We pretend that we have just taken it off a longer list, so
3380 * we assign bio_list to the next (which is NULL) and bio_tail
3381 * to &bio_list, thus initialising the bio_list of new bios to be
3382 * added. __generic_make_request may indeed add some more bios
3383 * through a recursive call to generic_make_request. If it
3384 * did, we find a non-NULL value in bio_list and re-enter the loop
3385 * from the top. In this case we really did just take the bio
3386 * of the top of the list (no pretending) and so fixup bio_list and
3387 * bio_tail or bi_next, and call into __generic_make_request again.
3389 * The loop was structured like this to make only one call to
3390 * __generic_make_request (which is important as it is large and
3391 * inlined) and to keep the structure simple.
3393 BUG_ON(bio
->bi_next
);
3395 current
->bio_list
= bio
->bi_next
;
3396 if (bio
->bi_next
== NULL
)
3397 current
->bio_tail
= ¤t
->bio_list
;
3399 bio
->bi_next
= NULL
;
3400 __generic_make_request(bio
);
3401 bio
= current
->bio_list
;
3403 current
->bio_tail
= NULL
; /* deactivate */
3406 EXPORT_SYMBOL(generic_make_request
);
3409 * submit_bio: submit a bio to the block device layer for I/O
3410 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3411 * @bio: The &struct bio which describes the I/O
3413 * submit_bio() is very similar in purpose to generic_make_request(), and
3414 * uses that function to do most of the work. Both are fairly rough
3415 * interfaces, @bio must be presetup and ready for I/O.
3418 void submit_bio(int rw
, struct bio
*bio
)
3420 int count
= bio_sectors(bio
);
3425 * If it's a regular read/write or a barrier with data attached,
3426 * go through the normal accounting stuff before submission.
3428 if (!bio_empty_barrier(bio
)) {
3430 BIO_BUG_ON(!bio
->bi_size
);
3431 BIO_BUG_ON(!bio
->bi_io_vec
);
3434 count_vm_events(PGPGOUT
, count
);
3436 task_io_account_read(bio
->bi_size
);
3437 count_vm_events(PGPGIN
, count
);
3440 if (unlikely(block_dump
)) {
3441 char b
[BDEVNAME_SIZE
];
3442 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
3443 current
->comm
, task_pid_nr(current
),
3444 (rw
& WRITE
) ? "WRITE" : "READ",
3445 (unsigned long long)bio
->bi_sector
,
3446 bdevname(bio
->bi_bdev
,b
));
3450 generic_make_request(bio
);
3453 EXPORT_SYMBOL(submit_bio
);
3455 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3457 if (blk_fs_request(rq
)) {
3458 rq
->hard_sector
+= nsect
;
3459 rq
->hard_nr_sectors
-= nsect
;
3462 * Move the I/O submission pointers ahead if required.
3464 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3465 (rq
->sector
<= rq
->hard_sector
)) {
3466 rq
->sector
= rq
->hard_sector
;
3467 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3468 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3469 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3470 rq
->buffer
= bio_data(rq
->bio
);
3474 * if total number of sectors is less than the first segment
3475 * size, something has gone terribly wrong
3477 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3478 printk("blk: request botched\n");
3479 rq
->nr_sectors
= rq
->current_nr_sectors
;
3485 * __end_that_request_first - end I/O on a request
3486 * @req: the request being processed
3487 * @error: 0 for success, < 0 for error
3488 * @nr_bytes: number of bytes to complete
3491 * Ends I/O on a number of bytes attached to @req, and sets it up
3492 * for the next range of segments (if any) in the cluster.
3495 * 0 - we are done with this request, call end_that_request_last()
3496 * 1 - still buffers pending for this request
3498 static int __end_that_request_first(struct request
*req
, int error
,
3501 int total_bytes
, bio_nbytes
, next_idx
= 0;
3504 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
3507 * for a REQ_BLOCK_PC request, we want to carry any eventual
3508 * sense key with us all the way through
3510 if (!blk_pc_request(req
))
3514 if (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))
3515 printk("end_request: I/O error, dev %s, sector %llu\n",
3516 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3517 (unsigned long long)req
->sector
);
3520 if (blk_fs_request(req
) && req
->rq_disk
) {
3521 const int rw
= rq_data_dir(req
);
3523 disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3526 total_bytes
= bio_nbytes
= 0;
3527 while ((bio
= req
->bio
) != NULL
) {
3531 * For an empty barrier request, the low level driver must
3532 * store a potential error location in ->sector. We pass
3533 * that back up in ->bi_sector.
3535 if (blk_empty_barrier(req
))
3536 bio
->bi_sector
= req
->sector
;
3538 if (nr_bytes
>= bio
->bi_size
) {
3539 req
->bio
= bio
->bi_next
;
3540 nbytes
= bio
->bi_size
;
3541 req_bio_endio(req
, bio
, nbytes
, error
);
3545 int idx
= bio
->bi_idx
+ next_idx
;
3547 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3548 blk_dump_rq_flags(req
, "__end_that");
3549 printk("%s: bio idx %d >= vcnt %d\n",
3551 bio
->bi_idx
, bio
->bi_vcnt
);
3555 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3556 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3559 * not a complete bvec done
3561 if (unlikely(nbytes
> nr_bytes
)) {
3562 bio_nbytes
+= nr_bytes
;
3563 total_bytes
+= nr_bytes
;
3568 * advance to the next vector
3571 bio_nbytes
+= nbytes
;
3574 total_bytes
+= nbytes
;
3577 if ((bio
= req
->bio
)) {
3579 * end more in this run, or just return 'not-done'
3581 if (unlikely(nr_bytes
<= 0))
3593 * if the request wasn't completed, update state
3596 req_bio_endio(req
, bio
, bio_nbytes
, error
);
3597 bio
->bi_idx
+= next_idx
;
3598 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3599 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3602 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3603 blk_recalc_rq_segments(req
);
3608 * splice the completion data to a local structure and hand off to
3609 * process_completion_queue() to complete the requests
3611 static void blk_done_softirq(struct softirq_action
*h
)
3613 struct list_head
*cpu_list
, local_list
;
3615 local_irq_disable();
3616 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3617 list_replace_init(cpu_list
, &local_list
);
3620 while (!list_empty(&local_list
)) {
3621 struct request
*rq
= list_entry(local_list
.next
, struct request
, donelist
);
3623 list_del_init(&rq
->donelist
);
3624 rq
->q
->softirq_done_fn(rq
);
3628 static int __cpuinit
blk_cpu_notify(struct notifier_block
*self
, unsigned long action
,
3632 * If a CPU goes away, splice its entries to the current CPU
3633 * and trigger a run of the softirq
3635 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
3636 int cpu
= (unsigned long) hcpu
;
3638 local_irq_disable();
3639 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
3640 &__get_cpu_var(blk_cpu_done
));
3641 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3649 static struct notifier_block blk_cpu_notifier __cpuinitdata
= {
3650 .notifier_call
= blk_cpu_notify
,
3654 * blk_complete_request - end I/O on a request
3655 * @req: the request being processed
3658 * Ends all I/O on a request. It does not handle partial completions,
3659 * unless the driver actually implements this in its completion callback
3660 * through requeueing. The actual completion happens out-of-order,
3661 * through a softirq handler. The user must have registered a completion
3662 * callback through blk_queue_softirq_done().
3665 void blk_complete_request(struct request
*req
)
3667 struct list_head
*cpu_list
;
3668 unsigned long flags
;
3670 BUG_ON(!req
->q
->softirq_done_fn
);
3672 local_irq_save(flags
);
3674 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3675 list_add_tail(&req
->donelist
, cpu_list
);
3676 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3678 local_irq_restore(flags
);
3681 EXPORT_SYMBOL(blk_complete_request
);
3684 * queue lock must be held
3686 static void end_that_request_last(struct request
*req
, int error
)
3688 struct gendisk
*disk
= req
->rq_disk
;
3690 if (blk_rq_tagged(req
))
3691 blk_queue_end_tag(req
->q
, req
);
3693 if (blk_queued_rq(req
))
3694 blkdev_dequeue_request(req
);
3696 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3697 laptop_io_completion();
3700 * Account IO completion. bar_rq isn't accounted as a normal
3701 * IO on queueing nor completion. Accounting the containing
3702 * request is enough.
3704 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
3705 unsigned long duration
= jiffies
- req
->start_time
;
3706 const int rw
= rq_data_dir(req
);
3708 __disk_stat_inc(disk
, ios
[rw
]);
3709 __disk_stat_add(disk
, ticks
[rw
], duration
);
3710 disk_round_stats(disk
);
3715 req
->end_io(req
, error
);
3717 if (blk_bidi_rq(req
))
3718 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
3720 __blk_put_request(req
->q
, req
);
3724 static inline void __end_request(struct request
*rq
, int uptodate
,
3725 unsigned int nr_bytes
)
3730 error
= uptodate
? uptodate
: -EIO
;
3732 __blk_end_request(rq
, error
, nr_bytes
);
3736 * blk_rq_bytes - Returns bytes left to complete in the entire request
3738 unsigned int blk_rq_bytes(struct request
*rq
)
3740 if (blk_fs_request(rq
))
3741 return rq
->hard_nr_sectors
<< 9;
3743 return rq
->data_len
;
3745 EXPORT_SYMBOL_GPL(blk_rq_bytes
);
3748 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
3750 unsigned int blk_rq_cur_bytes(struct request
*rq
)
3752 if (blk_fs_request(rq
))
3753 return rq
->current_nr_sectors
<< 9;
3756 return rq
->bio
->bi_size
;
3758 return rq
->data_len
;
3760 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes
);
3763 * end_queued_request - end all I/O on a queued request
3764 * @rq: the request being processed
3765 * @uptodate: error value or 0/1 uptodate flag
3768 * Ends all I/O on a request, and removes it from the block layer queues.
3769 * Not suitable for normal IO completion, unless the driver still has
3770 * the request attached to the block layer.
3773 void end_queued_request(struct request
*rq
, int uptodate
)
3775 __end_request(rq
, uptodate
, blk_rq_bytes(rq
));
3777 EXPORT_SYMBOL(end_queued_request
);
3780 * end_dequeued_request - end all I/O on a dequeued request
3781 * @rq: the request being processed
3782 * @uptodate: error value or 0/1 uptodate flag
3785 * Ends all I/O on a request. The request must already have been
3786 * dequeued using blkdev_dequeue_request(), as is normally the case
3790 void end_dequeued_request(struct request
*rq
, int uptodate
)
3792 __end_request(rq
, uptodate
, blk_rq_bytes(rq
));
3794 EXPORT_SYMBOL(end_dequeued_request
);
3798 * end_request - end I/O on the current segment of the request
3799 * @req: the request being processed
3800 * @uptodate: error value or 0/1 uptodate flag
3803 * Ends I/O on the current segment of a request. If that is the only
3804 * remaining segment, the request is also completed and freed.
3806 * This is a remnant of how older block drivers handled IO completions.
3807 * Modern drivers typically end IO on the full request in one go, unless
3808 * they have a residual value to account for. For that case this function
3809 * isn't really useful, unless the residual just happens to be the
3810 * full current segment. In other words, don't use this function in new
3811 * code. Either use end_request_completely(), or the
3812 * end_that_request_chunk() (along with end_that_request_last()) for
3813 * partial completions.
3816 void end_request(struct request
*req
, int uptodate
)
3818 __end_request(req
, uptodate
, req
->hard_cur_sectors
<< 9);
3820 EXPORT_SYMBOL(end_request
);
3823 * blk_end_io - Generic end_io function to complete a request.
3824 * @rq: the request being processed
3825 * @error: 0 for success, < 0 for error
3826 * @nr_bytes: number of bytes to complete @rq
3827 * @bidi_bytes: number of bytes to complete @rq->next_rq
3828 * @drv_callback: function called between completion of bios in the request
3829 * and completion of the request.
3830 * If the callback returns non 0, this helper returns without
3831 * completion of the request.
3834 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3835 * If @rq has leftover, sets it up for the next range of segments.
3838 * 0 - we are done with this request
3839 * 1 - this request is not freed yet, it still has pending buffers.
3841 static int blk_end_io(struct request
*rq
, int error
, int nr_bytes
,
3842 int bidi_bytes
, int (drv_callback
)(struct request
*))
3844 struct request_queue
*q
= rq
->q
;
3845 unsigned long flags
= 0UL;
3847 if (blk_fs_request(rq
) || blk_pc_request(rq
)) {
3848 if (__end_that_request_first(rq
, error
, nr_bytes
))
3851 /* Bidi request must be completed as a whole */
3852 if (blk_bidi_rq(rq
) &&
3853 __end_that_request_first(rq
->next_rq
, error
, bidi_bytes
))
3857 /* Special feature for tricky drivers */
3858 if (drv_callback
&& drv_callback(rq
))
3861 add_disk_randomness(rq
->rq_disk
);
3863 spin_lock_irqsave(q
->queue_lock
, flags
);
3864 end_that_request_last(rq
, error
);
3865 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3871 * blk_end_request - Helper function for drivers to complete the request.
3872 * @rq: the request being processed
3873 * @error: 0 for success, < 0 for error
3874 * @nr_bytes: number of bytes to complete
3877 * Ends I/O on a number of bytes attached to @rq.
3878 * If @rq has leftover, sets it up for the next range of segments.
3881 * 0 - we are done with this request
3882 * 1 - still buffers pending for this request
3884 int blk_end_request(struct request
*rq
, int error
, int nr_bytes
)
3886 return blk_end_io(rq
, error
, nr_bytes
, 0, NULL
);
3888 EXPORT_SYMBOL_GPL(blk_end_request
);
3891 * __blk_end_request - Helper function for drivers to complete the request.
3892 * @rq: the request being processed
3893 * @error: 0 for success, < 0 for error
3894 * @nr_bytes: number of bytes to complete
3897 * Must be called with queue lock held unlike blk_end_request().
3900 * 0 - we are done with this request
3901 * 1 - still buffers pending for this request
3903 int __blk_end_request(struct request
*rq
, int error
, int nr_bytes
)
3905 if (blk_fs_request(rq
) || blk_pc_request(rq
)) {
3906 if (__end_that_request_first(rq
, error
, nr_bytes
))
3910 add_disk_randomness(rq
->rq_disk
);
3912 end_that_request_last(rq
, error
);
3916 EXPORT_SYMBOL_GPL(__blk_end_request
);
3919 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
3920 * @rq: the bidi request being processed
3921 * @error: 0 for success, < 0 for error
3922 * @nr_bytes: number of bytes to complete @rq
3923 * @bidi_bytes: number of bytes to complete @rq->next_rq
3926 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3929 * 0 - we are done with this request
3930 * 1 - still buffers pending for this request
3932 int blk_end_bidi_request(struct request
*rq
, int error
, int nr_bytes
,
3935 return blk_end_io(rq
, error
, nr_bytes
, bidi_bytes
, NULL
);
3937 EXPORT_SYMBOL_GPL(blk_end_bidi_request
);
3940 * blk_end_request_callback - Special helper function for tricky drivers
3941 * @rq: the request being processed
3942 * @error: 0 for success, < 0 for error
3943 * @nr_bytes: number of bytes to complete
3944 * @drv_callback: function called between completion of bios in the request
3945 * and completion of the request.
3946 * If the callback returns non 0, this helper returns without
3947 * completion of the request.
3950 * Ends I/O on a number of bytes attached to @rq.
3951 * If @rq has leftover, sets it up for the next range of segments.
3953 * This special helper function is used only for existing tricky drivers.
3954 * (e.g. cdrom_newpc_intr() of ide-cd)
3955 * This interface will be removed when such drivers are rewritten.
3956 * Don't use this interface in other places anymore.
3959 * 0 - we are done with this request
3960 * 1 - this request is not freed yet.
3961 * this request still has pending buffers or
3962 * the driver doesn't want to finish this request yet.
3964 int blk_end_request_callback(struct request
*rq
, int error
, int nr_bytes
,
3965 int (drv_callback
)(struct request
*))
3967 return blk_end_io(rq
, error
, nr_bytes
, 0, drv_callback
);
3969 EXPORT_SYMBOL_GPL(blk_end_request_callback
);
3971 static void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
3974 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3975 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
3977 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3978 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3979 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3980 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3981 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3982 rq
->buffer
= bio_data(bio
);
3983 rq
->data_len
= bio
->bi_size
;
3985 rq
->bio
= rq
->biotail
= bio
;
3988 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
3991 int kblockd_schedule_work(struct work_struct
*work
)
3993 return queue_work(kblockd_workqueue
, work
);
3996 EXPORT_SYMBOL(kblockd_schedule_work
);
3998 void kblockd_flush_work(struct work_struct
*work
)
4000 cancel_work_sync(work
);
4002 EXPORT_SYMBOL(kblockd_flush_work
);
4004 int __init
blk_dev_init(void)
4008 kblockd_workqueue
= create_workqueue("kblockd");
4009 if (!kblockd_workqueue
)
4010 panic("Failed to create kblockd\n");
4012 request_cachep
= kmem_cache_create("blkdev_requests",
4013 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
4015 requestq_cachep
= kmem_cache_create("blkdev_queue",
4016 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
4018 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
4019 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
);
4021 for_each_possible_cpu(i
)
4022 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
4024 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
4025 register_hotcpu_notifier(&blk_cpu_notifier
);
4027 blk_max_low_pfn
= max_low_pfn
- 1;
4028 blk_max_pfn
= max_pfn
- 1;
4033 static void cfq_dtor(struct io_context
*ioc
)
4035 struct cfq_io_context
*cic
[1];
4039 * We don't have a specific key to lookup with, so use the gang
4040 * lookup to just retrieve the first item stored. The cfq exit
4041 * function will iterate the full tree, so any member will do.
4043 r
= radix_tree_gang_lookup(&ioc
->radix_root
, (void **) cic
, 0, 1);
4049 * IO Context helper functions. put_io_context() returns 1 if there are no
4050 * more users of this io context, 0 otherwise.
4052 int put_io_context(struct io_context
*ioc
)
4057 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
4059 if (atomic_dec_and_test(&ioc
->refcount
)) {
4061 if (ioc
->aic
&& ioc
->aic
->dtor
)
4062 ioc
->aic
->dtor(ioc
->aic
);
4066 kmem_cache_free(iocontext_cachep
, ioc
);
4071 EXPORT_SYMBOL(put_io_context
);
4073 static void cfq_exit(struct io_context
*ioc
)
4075 struct cfq_io_context
*cic
[1];
4080 * See comment for cfq_dtor()
4082 r
= radix_tree_gang_lookup(&ioc
->radix_root
, (void **) cic
, 0, 1);
4089 /* Called by the exitting task */
4090 void exit_io_context(void)
4092 struct io_context
*ioc
;
4095 ioc
= current
->io_context
;
4096 current
->io_context
= NULL
;
4097 task_unlock(current
);
4099 if (atomic_dec_and_test(&ioc
->nr_tasks
)) {
4100 if (ioc
->aic
&& ioc
->aic
->exit
)
4101 ioc
->aic
->exit(ioc
->aic
);
4104 put_io_context(ioc
);
4108 struct io_context
*alloc_io_context(gfp_t gfp_flags
, int node
)
4110 struct io_context
*ret
;
4112 ret
= kmem_cache_alloc_node(iocontext_cachep
, gfp_flags
, node
);
4114 atomic_set(&ret
->refcount
, 1);
4115 atomic_set(&ret
->nr_tasks
, 1);
4116 spin_lock_init(&ret
->lock
);
4117 ret
->ioprio_changed
= 0;
4119 ret
->last_waited
= jiffies
; /* doesn't matter... */
4120 ret
->nr_batch_requests
= 0; /* because this is 0 */
4122 INIT_RADIX_TREE(&ret
->radix_root
, GFP_ATOMIC
| __GFP_HIGH
);
4123 ret
->ioc_data
= NULL
;
4130 * If the current task has no IO context then create one and initialise it.
4131 * Otherwise, return its existing IO context.
4133 * This returned IO context doesn't have a specifically elevated refcount,
4134 * but since the current task itself holds a reference, the context can be
4135 * used in general code, so long as it stays within `current` context.
4137 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
)
4139 struct task_struct
*tsk
= current
;
4140 struct io_context
*ret
;
4142 ret
= tsk
->io_context
;
4146 ret
= alloc_io_context(gfp_flags
, node
);
4148 /* make sure set_task_ioprio() sees the settings above */
4150 tsk
->io_context
= ret
;
4157 * If the current task has no IO context then create one and initialise it.
4158 * If it does have a context, take a ref on it.
4160 * This is always called in the context of the task which submitted the I/O.
4162 struct io_context
*get_io_context(gfp_t gfp_flags
, int node
)
4164 struct io_context
*ret
= NULL
;
4167 * Check for unlikely race with exiting task. ioc ref count is
4168 * zero when ioc is being detached.
4171 ret
= current_io_context(gfp_flags
, node
);
4174 } while (!atomic_inc_not_zero(&ret
->refcount
));
4178 EXPORT_SYMBOL(get_io_context
);
4180 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
4182 struct io_context
*src
= *psrc
;
4183 struct io_context
*dst
= *pdst
;
4186 BUG_ON(atomic_read(&src
->refcount
) == 0);
4187 atomic_inc(&src
->refcount
);
4188 put_io_context(dst
);
4192 EXPORT_SYMBOL(copy_io_context
);
4194 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
4196 struct io_context
*temp
;
4201 EXPORT_SYMBOL(swap_io_context
);
4206 struct queue_sysfs_entry
{
4207 struct attribute attr
;
4208 ssize_t (*show
)(struct request_queue
*, char *);
4209 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
4213 queue_var_show(unsigned int var
, char *page
)
4215 return sprintf(page
, "%d\n", var
);
4219 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
4221 char *p
= (char *) page
;
4223 *var
= simple_strtoul(p
, &p
, 10);
4227 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
4229 return queue_var_show(q
->nr_requests
, (page
));
4233 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
4235 struct request_list
*rl
= &q
->rq
;
4237 int ret
= queue_var_store(&nr
, page
, count
);
4238 if (nr
< BLKDEV_MIN_RQ
)
4241 spin_lock_irq(q
->queue_lock
);
4242 q
->nr_requests
= nr
;
4243 blk_queue_congestion_threshold(q
);
4245 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
4246 blk_set_queue_congested(q
, READ
);
4247 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
4248 blk_clear_queue_congested(q
, READ
);
4250 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
4251 blk_set_queue_congested(q
, WRITE
);
4252 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
4253 blk_clear_queue_congested(q
, WRITE
);
4255 if (rl
->count
[READ
] >= q
->nr_requests
) {
4256 blk_set_queue_full(q
, READ
);
4257 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
4258 blk_clear_queue_full(q
, READ
);
4259 wake_up(&rl
->wait
[READ
]);
4262 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
4263 blk_set_queue_full(q
, WRITE
);
4264 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
4265 blk_clear_queue_full(q
, WRITE
);
4266 wake_up(&rl
->wait
[WRITE
]);
4268 spin_unlock_irq(q
->queue_lock
);
4272 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
4274 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
4276 return queue_var_show(ra_kb
, (page
));
4280 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
4282 unsigned long ra_kb
;
4283 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
4285 spin_lock_irq(q
->queue_lock
);
4286 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
4287 spin_unlock_irq(q
->queue_lock
);
4292 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
4294 int max_sectors_kb
= q
->max_sectors
>> 1;
4296 return queue_var_show(max_sectors_kb
, (page
));
4300 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
4302 unsigned long max_sectors_kb
,
4303 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
4304 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
4305 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
4307 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
4310 * Take the queue lock to update the readahead and max_sectors
4311 * values synchronously:
4313 spin_lock_irq(q
->queue_lock
);
4314 q
->max_sectors
= max_sectors_kb
<< 1;
4315 spin_unlock_irq(q
->queue_lock
);
4320 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
4322 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
4324 return queue_var_show(max_hw_sectors_kb
, (page
));
4328 static struct queue_sysfs_entry queue_requests_entry
= {
4329 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
4330 .show
= queue_requests_show
,
4331 .store
= queue_requests_store
,
4334 static struct queue_sysfs_entry queue_ra_entry
= {
4335 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
4336 .show
= queue_ra_show
,
4337 .store
= queue_ra_store
,
4340 static struct queue_sysfs_entry queue_max_sectors_entry
= {
4341 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
4342 .show
= queue_max_sectors_show
,
4343 .store
= queue_max_sectors_store
,
4346 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
4347 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
4348 .show
= queue_max_hw_sectors_show
,
4351 static struct queue_sysfs_entry queue_iosched_entry
= {
4352 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
4353 .show
= elv_iosched_show
,
4354 .store
= elv_iosched_store
,
4357 static struct attribute
*default_attrs
[] = {
4358 &queue_requests_entry
.attr
,
4359 &queue_ra_entry
.attr
,
4360 &queue_max_hw_sectors_entry
.attr
,
4361 &queue_max_sectors_entry
.attr
,
4362 &queue_iosched_entry
.attr
,
4366 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4369 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
4371 struct queue_sysfs_entry
*entry
= to_queue(attr
);
4372 struct request_queue
*q
=
4373 container_of(kobj
, struct request_queue
, kobj
);
4378 mutex_lock(&q
->sysfs_lock
);
4379 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
4380 mutex_unlock(&q
->sysfs_lock
);
4383 res
= entry
->show(q
, page
);
4384 mutex_unlock(&q
->sysfs_lock
);
4389 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
4390 const char *page
, size_t length
)
4392 struct queue_sysfs_entry
*entry
= to_queue(attr
);
4393 struct request_queue
*q
= container_of(kobj
, struct request_queue
, kobj
);
4399 mutex_lock(&q
->sysfs_lock
);
4400 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
4401 mutex_unlock(&q
->sysfs_lock
);
4404 res
= entry
->store(q
, page
, length
);
4405 mutex_unlock(&q
->sysfs_lock
);
4409 static struct sysfs_ops queue_sysfs_ops
= {
4410 .show
= queue_attr_show
,
4411 .store
= queue_attr_store
,
4414 static struct kobj_type queue_ktype
= {
4415 .sysfs_ops
= &queue_sysfs_ops
,
4416 .default_attrs
= default_attrs
,
4417 .release
= blk_release_queue
,
4420 int blk_register_queue(struct gendisk
*disk
)
4424 struct request_queue
*q
= disk
->queue
;
4426 if (!q
|| !q
->request_fn
)
4429 ret
= kobject_add(&q
->kobj
, kobject_get(&disk
->dev
.kobj
),
4434 kobject_uevent(&q
->kobj
, KOBJ_ADD
);
4436 ret
= elv_register_queue(q
);
4438 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
4439 kobject_del(&q
->kobj
);
4446 void blk_unregister_queue(struct gendisk
*disk
)
4448 struct request_queue
*q
= disk
->queue
;
4450 if (q
&& q
->request_fn
) {
4451 elv_unregister_queue(q
);
4453 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
4454 kobject_del(&q
->kobj
);
4455 kobject_put(&disk
->dev
.kobj
);