[PATCH] mm: microopt conditions
[linux-2.6/kmemtrace.git] / mm / page_alloc.c
blobb0647b515277deaffe6a2bed3887a9b7c463ecee
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
40 #include <asm/tlbflush.h>
41 #include "internal.h"
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 * initializer cleaner
47 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
48 EXPORT_SYMBOL(node_online_map);
49 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
50 EXPORT_SYMBOL(node_possible_map);
51 struct pglist_data *pgdat_list __read_mostly;
52 unsigned long totalram_pages __read_mostly;
53 unsigned long totalhigh_pages __read_mostly;
54 long nr_swap_pages;
57 * results with 256, 32 in the lowmem_reserve sysctl:
58 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59 * 1G machine -> (16M dma, 784M normal, 224M high)
60 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
64 * TBD: should special case ZONE_DMA32 machines here - in those we normally
65 * don't need any ZONE_NORMAL reservation
67 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
69 EXPORT_SYMBOL(totalram_pages);
72 * Used by page_zone() to look up the address of the struct zone whose
73 * id is encoded in the upper bits of page->flags
75 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
76 EXPORT_SYMBOL(zone_table);
78 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
79 int min_free_kbytes = 1024;
81 unsigned long __initdata nr_kernel_pages;
82 unsigned long __initdata nr_all_pages;
84 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
86 int ret = 0;
87 unsigned seq;
88 unsigned long pfn = page_to_pfn(page);
90 do {
91 seq = zone_span_seqbegin(zone);
92 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
93 ret = 1;
94 else if (pfn < zone->zone_start_pfn)
95 ret = 1;
96 } while (zone_span_seqretry(zone, seq));
98 return ret;
101 static int page_is_consistent(struct zone *zone, struct page *page)
103 #ifdef CONFIG_HOLES_IN_ZONE
104 if (!pfn_valid(page_to_pfn(page)))
105 return 0;
106 #endif
107 if (zone != page_zone(page))
108 return 0;
110 return 1;
113 * Temporary debugging check for pages not lying within a given zone.
115 static int bad_range(struct zone *zone, struct page *page)
117 if (page_outside_zone_boundaries(zone, page))
118 return 1;
119 if (!page_is_consistent(zone, page))
120 return 1;
122 return 0;
125 static void bad_page(const char *function, struct page *page)
127 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
128 function, current->comm, page);
129 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
130 (int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
131 page->mapping, page_mapcount(page), page_count(page));
132 printk(KERN_EMERG "Backtrace:\n");
133 dump_stack();
134 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
135 page->flags &= ~(1 << PG_lru |
136 1 << PG_private |
137 1 << PG_locked |
138 1 << PG_active |
139 1 << PG_dirty |
140 1 << PG_reclaim |
141 1 << PG_slab |
142 1 << PG_swapcache |
143 1 << PG_writeback );
144 set_page_count(page, 0);
145 reset_page_mapcount(page);
146 page->mapping = NULL;
147 add_taint(TAINT_BAD_PAGE);
151 * Higher-order pages are called "compound pages". They are structured thusly:
153 * The first PAGE_SIZE page is called the "head page".
155 * The remaining PAGE_SIZE pages are called "tail pages".
157 * All pages have PG_compound set. All pages have their ->private pointing at
158 * the head page (even the head page has this).
160 * The first tail page's ->mapping, if non-zero, holds the address of the
161 * compound page's put_page() function.
163 * The order of the allocation is stored in the first tail page's ->index
164 * This is only for debug at present. This usage means that zero-order pages
165 * may not be compound.
167 static void prep_compound_page(struct page *page, unsigned long order)
169 int i;
170 int nr_pages = 1 << order;
172 page[1].mapping = NULL;
173 page[1].index = order;
174 for (i = 0; i < nr_pages; i++) {
175 struct page *p = page + i;
177 SetPageCompound(p);
178 set_page_private(p, (unsigned long)page);
182 static void destroy_compound_page(struct page *page, unsigned long order)
184 int i;
185 int nr_pages = 1 << order;
187 if (!PageCompound(page))
188 return;
190 if (page[1].index != order)
191 bad_page(__FUNCTION__, page);
193 for (i = 0; i < nr_pages; i++) {
194 struct page *p = page + i;
196 if (!PageCompound(p))
197 bad_page(__FUNCTION__, page);
198 if (page_private(p) != (unsigned long)page)
199 bad_page(__FUNCTION__, page);
200 ClearPageCompound(p);
205 * function for dealing with page's order in buddy system.
206 * zone->lock is already acquired when we use these.
207 * So, we don't need atomic page->flags operations here.
209 static inline unsigned long page_order(struct page *page) {
210 return page_private(page);
213 static inline void set_page_order(struct page *page, int order) {
214 set_page_private(page, order);
215 __SetPagePrivate(page);
218 static inline void rmv_page_order(struct page *page)
220 __ClearPagePrivate(page);
221 set_page_private(page, 0);
225 * Locate the struct page for both the matching buddy in our
226 * pair (buddy1) and the combined O(n+1) page they form (page).
228 * 1) Any buddy B1 will have an order O twin B2 which satisfies
229 * the following equation:
230 * B2 = B1 ^ (1 << O)
231 * For example, if the starting buddy (buddy2) is #8 its order
232 * 1 buddy is #10:
233 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
235 * 2) Any buddy B will have an order O+1 parent P which
236 * satisfies the following equation:
237 * P = B & ~(1 << O)
239 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
241 static inline struct page *
242 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
244 unsigned long buddy_idx = page_idx ^ (1 << order);
246 return page + (buddy_idx - page_idx);
249 static inline unsigned long
250 __find_combined_index(unsigned long page_idx, unsigned int order)
252 return (page_idx & ~(1 << order));
256 * This function checks whether a page is free && is the buddy
257 * we can do coalesce a page and its buddy if
258 * (a) the buddy is free &&
259 * (b) the buddy is on the buddy system &&
260 * (c) a page and its buddy have the same order.
261 * for recording page's order, we use page_private(page) and PG_private.
264 static inline int page_is_buddy(struct page *page, int order)
266 if (PagePrivate(page) &&
267 (page_order(page) == order) &&
268 page_count(page) == 0)
269 return 1;
270 return 0;
274 * Freeing function for a buddy system allocator.
276 * The concept of a buddy system is to maintain direct-mapped table
277 * (containing bit values) for memory blocks of various "orders".
278 * The bottom level table contains the map for the smallest allocatable
279 * units of memory (here, pages), and each level above it describes
280 * pairs of units from the levels below, hence, "buddies".
281 * At a high level, all that happens here is marking the table entry
282 * at the bottom level available, and propagating the changes upward
283 * as necessary, plus some accounting needed to play nicely with other
284 * parts of the VM system.
285 * At each level, we keep a list of pages, which are heads of continuous
286 * free pages of length of (1 << order) and marked with PG_Private.Page's
287 * order is recorded in page_private(page) field.
288 * So when we are allocating or freeing one, we can derive the state of the
289 * other. That is, if we allocate a small block, and both were
290 * free, the remainder of the region must be split into blocks.
291 * If a block is freed, and its buddy is also free, then this
292 * triggers coalescing into a block of larger size.
294 * -- wli
297 static inline void __free_pages_bulk (struct page *page,
298 struct zone *zone, unsigned int order)
300 unsigned long page_idx;
301 int order_size = 1 << order;
303 if (unlikely(order))
304 destroy_compound_page(page, order);
306 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
308 BUG_ON(page_idx & (order_size - 1));
309 BUG_ON(bad_range(zone, page));
311 zone->free_pages += order_size;
312 while (order < MAX_ORDER-1) {
313 unsigned long combined_idx;
314 struct free_area *area;
315 struct page *buddy;
317 combined_idx = __find_combined_index(page_idx, order);
318 buddy = __page_find_buddy(page, page_idx, order);
320 if (bad_range(zone, buddy))
321 break;
322 if (!page_is_buddy(buddy, order))
323 break; /* Move the buddy up one level. */
324 list_del(&buddy->lru);
325 area = zone->free_area + order;
326 area->nr_free--;
327 rmv_page_order(buddy);
328 page = page + (combined_idx - page_idx);
329 page_idx = combined_idx;
330 order++;
332 set_page_order(page, order);
333 list_add(&page->lru, &zone->free_area[order].free_list);
334 zone->free_area[order].nr_free++;
337 static inline int free_pages_check(const char *function, struct page *page)
339 if (unlikely(page_mapcount(page) |
340 (page->mapping != NULL) |
341 (page_count(page) != 0) |
342 (page->flags & (
343 1 << PG_lru |
344 1 << PG_private |
345 1 << PG_locked |
346 1 << PG_active |
347 1 << PG_reclaim |
348 1 << PG_slab |
349 1 << PG_swapcache |
350 1 << PG_writeback |
351 1 << PG_reserved ))))
352 bad_page(function, page);
353 if (PageDirty(page))
354 __ClearPageDirty(page);
356 * For now, we report if PG_reserved was found set, but do not
357 * clear it, and do not free the page. But we shall soon need
358 * to do more, for when the ZERO_PAGE count wraps negative.
360 return PageReserved(page);
364 * Frees a list of pages.
365 * Assumes all pages on list are in same zone, and of same order.
366 * count is the number of pages to free.
368 * If the zone was previously in an "all pages pinned" state then look to
369 * see if this freeing clears that state.
371 * And clear the zone's pages_scanned counter, to hold off the "all pages are
372 * pinned" detection logic.
374 static int
375 free_pages_bulk(struct zone *zone, int count,
376 struct list_head *list, unsigned int order)
378 struct page *page = NULL;
379 int ret = 0;
381 spin_lock(&zone->lock);
382 zone->all_unreclaimable = 0;
383 zone->pages_scanned = 0;
384 while (!list_empty(list) && count--) {
385 page = list_entry(list->prev, struct page, lru);
386 /* have to delete it as __free_pages_bulk list manipulates */
387 list_del(&page->lru);
388 __free_pages_bulk(page, zone, order);
389 ret++;
391 spin_unlock(&zone->lock);
392 return ret;
395 void __free_pages_ok(struct page *page, unsigned int order)
397 unsigned long flags;
398 LIST_HEAD(list);
399 int i;
400 int reserved = 0;
402 arch_free_page(page, order);
404 #ifndef CONFIG_MMU
405 if (order > 0)
406 for (i = 1 ; i < (1 << order) ; ++i)
407 __put_page(page + i);
408 #endif
410 for (i = 0 ; i < (1 << order) ; ++i)
411 reserved += free_pages_check(__FUNCTION__, page + i);
412 if (reserved)
413 return;
415 list_add(&page->lru, &list);
416 mod_page_state(pgfree, 1 << order);
417 kernel_map_pages(page, 1<<order, 0);
418 local_irq_save(flags);
419 free_pages_bulk(page_zone(page), 1, &list, order);
420 local_irq_restore(flags);
425 * The order of subdivision here is critical for the IO subsystem.
426 * Please do not alter this order without good reasons and regression
427 * testing. Specifically, as large blocks of memory are subdivided,
428 * the order in which smaller blocks are delivered depends on the order
429 * they're subdivided in this function. This is the primary factor
430 * influencing the order in which pages are delivered to the IO
431 * subsystem according to empirical testing, and this is also justified
432 * by considering the behavior of a buddy system containing a single
433 * large block of memory acted on by a series of small allocations.
434 * This behavior is a critical factor in sglist merging's success.
436 * -- wli
438 static inline struct page *
439 expand(struct zone *zone, struct page *page,
440 int low, int high, struct free_area *area)
442 unsigned long size = 1 << high;
444 while (high > low) {
445 area--;
446 high--;
447 size >>= 1;
448 BUG_ON(bad_range(zone, &page[size]));
449 list_add(&page[size].lru, &area->free_list);
450 area->nr_free++;
451 set_page_order(&page[size], high);
453 return page;
457 * This page is about to be returned from the page allocator
459 static int prep_new_page(struct page *page, int order)
461 if (unlikely(page_mapcount(page) |
462 (page->mapping != NULL) |
463 (page_count(page) != 0) |
464 (page->flags & (
465 1 << PG_lru |
466 1 << PG_private |
467 1 << PG_locked |
468 1 << PG_active |
469 1 << PG_dirty |
470 1 << PG_reclaim |
471 1 << PG_slab |
472 1 << PG_swapcache |
473 1 << PG_writeback |
474 1 << PG_reserved ))))
475 bad_page(__FUNCTION__, page);
478 * For now, we report if PG_reserved was found set, but do not
479 * clear it, and do not allocate the page: as a safety net.
481 if (PageReserved(page))
482 return 1;
484 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
485 1 << PG_referenced | 1 << PG_arch_1 |
486 1 << PG_checked | 1 << PG_mappedtodisk);
487 set_page_private(page, 0);
488 set_page_refs(page, order);
489 kernel_map_pages(page, 1 << order, 1);
490 return 0;
494 * Do the hard work of removing an element from the buddy allocator.
495 * Call me with the zone->lock already held.
497 static struct page *__rmqueue(struct zone *zone, unsigned int order)
499 struct free_area * area;
500 unsigned int current_order;
501 struct page *page;
503 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
504 area = zone->free_area + current_order;
505 if (list_empty(&area->free_list))
506 continue;
508 page = list_entry(area->free_list.next, struct page, lru);
509 list_del(&page->lru);
510 rmv_page_order(page);
511 area->nr_free--;
512 zone->free_pages -= 1UL << order;
513 return expand(zone, page, order, current_order, area);
516 return NULL;
520 * Obtain a specified number of elements from the buddy allocator, all under
521 * a single hold of the lock, for efficiency. Add them to the supplied list.
522 * Returns the number of new pages which were placed at *list.
524 static int rmqueue_bulk(struct zone *zone, unsigned int order,
525 unsigned long count, struct list_head *list)
527 int i;
528 int allocated = 0;
529 struct page *page;
531 spin_lock(&zone->lock);
532 for (i = 0; i < count; ++i) {
533 page = __rmqueue(zone, order);
534 if (page == NULL)
535 break;
536 allocated++;
537 list_add_tail(&page->lru, list);
539 spin_unlock(&zone->lock);
540 return allocated;
543 #ifdef CONFIG_NUMA
544 /* Called from the slab reaper to drain remote pagesets */
545 void drain_remote_pages(void)
547 struct zone *zone;
548 int i;
549 unsigned long flags;
551 local_irq_save(flags);
552 for_each_zone(zone) {
553 struct per_cpu_pageset *pset;
555 /* Do not drain local pagesets */
556 if (zone->zone_pgdat->node_id == numa_node_id())
557 continue;
559 pset = zone->pageset[smp_processor_id()];
560 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
561 struct per_cpu_pages *pcp;
563 pcp = &pset->pcp[i];
564 if (pcp->count)
565 pcp->count -= free_pages_bulk(zone, pcp->count,
566 &pcp->list, 0);
569 local_irq_restore(flags);
571 #endif
573 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
574 static void __drain_pages(unsigned int cpu)
576 unsigned long flags;
577 struct zone *zone;
578 int i;
580 for_each_zone(zone) {
581 struct per_cpu_pageset *pset;
583 pset = zone_pcp(zone, cpu);
584 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
585 struct per_cpu_pages *pcp;
587 pcp = &pset->pcp[i];
588 local_irq_save(flags);
589 pcp->count -= free_pages_bulk(zone, pcp->count,
590 &pcp->list, 0);
591 local_irq_restore(flags);
595 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
597 #ifdef CONFIG_PM
599 void mark_free_pages(struct zone *zone)
601 unsigned long zone_pfn, flags;
602 int order;
603 struct list_head *curr;
605 if (!zone->spanned_pages)
606 return;
608 spin_lock_irqsave(&zone->lock, flags);
609 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
610 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
612 for (order = MAX_ORDER - 1; order >= 0; --order)
613 list_for_each(curr, &zone->free_area[order].free_list) {
614 unsigned long start_pfn, i;
616 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
618 for (i=0; i < (1<<order); i++)
619 SetPageNosaveFree(pfn_to_page(start_pfn+i));
621 spin_unlock_irqrestore(&zone->lock, flags);
625 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
627 void drain_local_pages(void)
629 unsigned long flags;
631 local_irq_save(flags);
632 __drain_pages(smp_processor_id());
633 local_irq_restore(flags);
635 #endif /* CONFIG_PM */
637 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
639 #ifdef CONFIG_NUMA
640 unsigned long flags;
641 int cpu;
642 pg_data_t *pg = z->zone_pgdat;
643 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
644 struct per_cpu_pageset *p;
646 local_irq_save(flags);
647 cpu = smp_processor_id();
648 p = zone_pcp(z,cpu);
649 if (pg == orig) {
650 p->numa_hit++;
651 } else {
652 p->numa_miss++;
653 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
655 if (pg == NODE_DATA(numa_node_id()))
656 p->local_node++;
657 else
658 p->other_node++;
659 local_irq_restore(flags);
660 #endif
664 * Free a 0-order page
666 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
667 static void fastcall free_hot_cold_page(struct page *page, int cold)
669 struct zone *zone = page_zone(page);
670 struct per_cpu_pages *pcp;
671 unsigned long flags;
673 arch_free_page(page, 0);
675 if (PageAnon(page))
676 page->mapping = NULL;
677 if (free_pages_check(__FUNCTION__, page))
678 return;
680 inc_page_state(pgfree);
681 kernel_map_pages(page, 1, 0);
683 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
684 local_irq_save(flags);
685 list_add(&page->lru, &pcp->list);
686 pcp->count++;
687 if (pcp->count >= pcp->high)
688 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
689 local_irq_restore(flags);
690 put_cpu();
693 void fastcall free_hot_page(struct page *page)
695 free_hot_cold_page(page, 0);
698 void fastcall free_cold_page(struct page *page)
700 free_hot_cold_page(page, 1);
703 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
705 int i;
707 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
708 for(i = 0; i < (1 << order); i++)
709 clear_highpage(page + i);
713 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
714 * we cheat by calling it from here, in the order > 0 path. Saves a branch
715 * or two.
717 static struct page *
718 buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
720 unsigned long flags;
721 struct page *page;
722 int cold = !!(gfp_flags & __GFP_COLD);
724 again:
725 if (order == 0) {
726 struct per_cpu_pages *pcp;
728 page = NULL;
729 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
730 local_irq_save(flags);
731 if (pcp->count <= pcp->low)
732 pcp->count += rmqueue_bulk(zone, 0,
733 pcp->batch, &pcp->list);
734 if (likely(pcp->count)) {
735 page = list_entry(pcp->list.next, struct page, lru);
736 list_del(&page->lru);
737 pcp->count--;
739 local_irq_restore(flags);
740 put_cpu();
741 } else {
742 spin_lock_irqsave(&zone->lock, flags);
743 page = __rmqueue(zone, order);
744 spin_unlock_irqrestore(&zone->lock, flags);
747 if (page != NULL) {
748 BUG_ON(bad_range(zone, page));
749 mod_page_state_zone(zone, pgalloc, 1 << order);
750 if (prep_new_page(page, order))
751 goto again;
753 if (gfp_flags & __GFP_ZERO)
754 prep_zero_page(page, order, gfp_flags);
756 if (order && (gfp_flags & __GFP_COMP))
757 prep_compound_page(page, order);
759 return page;
762 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
763 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
764 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
765 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
766 #define ALLOC_HARDER 0x10 /* try to alloc harder */
767 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
768 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
771 * Return 1 if free pages are above 'mark'. This takes into account the order
772 * of the allocation.
774 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
775 int classzone_idx, int alloc_flags)
777 /* free_pages my go negative - that's OK */
778 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
779 int o;
781 if (alloc_flags & ALLOC_HIGH)
782 min -= min / 2;
783 if (alloc_flags & ALLOC_HARDER)
784 min -= min / 4;
786 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
787 return 0;
788 for (o = 0; o < order; o++) {
789 /* At the next order, this order's pages become unavailable */
790 free_pages -= z->free_area[o].nr_free << o;
792 /* Require fewer higher order pages to be free */
793 min >>= 1;
795 if (free_pages <= min)
796 return 0;
798 return 1;
802 * get_page_from_freeliest goes through the zonelist trying to allocate
803 * a page.
805 static struct page *
806 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
807 struct zonelist *zonelist, int alloc_flags)
809 struct zone **z = zonelist->zones;
810 struct page *page = NULL;
811 int classzone_idx = zone_idx(*z);
814 * Go through the zonelist once, looking for a zone with enough free.
815 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
817 do {
818 if ((alloc_flags & ALLOC_CPUSET) &&
819 !cpuset_zone_allowed(*z, gfp_mask))
820 continue;
822 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
823 unsigned long mark;
824 if (alloc_flags & ALLOC_WMARK_MIN)
825 mark = (*z)->pages_min;
826 else if (alloc_flags & ALLOC_WMARK_LOW)
827 mark = (*z)->pages_low;
828 else
829 mark = (*z)->pages_high;
830 if (!zone_watermark_ok(*z, order, mark,
831 classzone_idx, alloc_flags))
832 continue;
835 page = buffered_rmqueue(*z, order, gfp_mask);
836 if (page) {
837 zone_statistics(zonelist, *z);
838 break;
840 } while (*(++z) != NULL);
841 return page;
845 * This is the 'heart' of the zoned buddy allocator.
847 struct page * fastcall
848 __alloc_pages(gfp_t gfp_mask, unsigned int order,
849 struct zonelist *zonelist)
851 const gfp_t wait = gfp_mask & __GFP_WAIT;
852 struct zone **z;
853 struct page *page;
854 struct reclaim_state reclaim_state;
855 struct task_struct *p = current;
856 int do_retry;
857 int alloc_flags;
858 int did_some_progress;
860 might_sleep_if(wait);
862 restart:
863 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
865 if (unlikely(*z == NULL)) {
866 /* Should this ever happen?? */
867 return NULL;
870 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
871 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
872 if (page)
873 goto got_pg;
875 do {
876 wakeup_kswapd(*z, order);
877 } while (*(++z));
880 * OK, we're below the kswapd watermark and have kicked background
881 * reclaim. Now things get more complex, so set up alloc_flags according
882 * to how we want to proceed.
884 * The caller may dip into page reserves a bit more if the caller
885 * cannot run direct reclaim, or if the caller has realtime scheduling
886 * policy.
888 alloc_flags = ALLOC_WMARK_MIN;
889 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
890 alloc_flags |= ALLOC_HARDER;
891 if (gfp_mask & __GFP_HIGH)
892 alloc_flags |= ALLOC_HIGH;
893 alloc_flags |= ALLOC_CPUSET;
896 * Go through the zonelist again. Let __GFP_HIGH and allocations
897 * coming from realtime tasks go deeper into reserves.
899 * This is the last chance, in general, before the goto nopage.
900 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
901 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
903 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
904 if (page)
905 goto got_pg;
907 /* This allocation should allow future memory freeing. */
909 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
910 && !in_interrupt()) {
911 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
912 nofail_alloc:
913 /* go through the zonelist yet again, ignoring mins */
914 page = get_page_from_freelist(gfp_mask, order,
915 zonelist, ALLOC_NO_WATERMARKS);
916 if (page)
917 goto got_pg;
918 if (gfp_mask & __GFP_NOFAIL) {
919 blk_congestion_wait(WRITE, HZ/50);
920 goto nofail_alloc;
923 goto nopage;
926 /* Atomic allocations - we can't balance anything */
927 if (!wait)
928 goto nopage;
930 rebalance:
931 cond_resched();
933 /* We now go into synchronous reclaim */
934 p->flags |= PF_MEMALLOC;
935 reclaim_state.reclaimed_slab = 0;
936 p->reclaim_state = &reclaim_state;
938 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
940 p->reclaim_state = NULL;
941 p->flags &= ~PF_MEMALLOC;
943 cond_resched();
945 if (likely(did_some_progress)) {
946 page = get_page_from_freelist(gfp_mask, order,
947 zonelist, alloc_flags);
948 if (page)
949 goto got_pg;
950 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
952 * Go through the zonelist yet one more time, keep
953 * very high watermark here, this is only to catch
954 * a parallel oom killing, we must fail if we're still
955 * under heavy pressure.
957 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
958 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
959 if (page)
960 goto got_pg;
962 out_of_memory(gfp_mask, order);
963 goto restart;
967 * Don't let big-order allocations loop unless the caller explicitly
968 * requests that. Wait for some write requests to complete then retry.
970 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
971 * <= 3, but that may not be true in other implementations.
973 do_retry = 0;
974 if (!(gfp_mask & __GFP_NORETRY)) {
975 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
976 do_retry = 1;
977 if (gfp_mask & __GFP_NOFAIL)
978 do_retry = 1;
980 if (do_retry) {
981 blk_congestion_wait(WRITE, HZ/50);
982 goto rebalance;
985 nopage:
986 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
987 printk(KERN_WARNING "%s: page allocation failure."
988 " order:%d, mode:0x%x\n",
989 p->comm, order, gfp_mask);
990 dump_stack();
991 show_mem();
993 got_pg:
994 return page;
997 EXPORT_SYMBOL(__alloc_pages);
1000 * Common helper functions.
1002 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1004 struct page * page;
1005 page = alloc_pages(gfp_mask, order);
1006 if (!page)
1007 return 0;
1008 return (unsigned long) page_address(page);
1011 EXPORT_SYMBOL(__get_free_pages);
1013 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1015 struct page * page;
1018 * get_zeroed_page() returns a 32-bit address, which cannot represent
1019 * a highmem page
1021 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1023 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1024 if (page)
1025 return (unsigned long) page_address(page);
1026 return 0;
1029 EXPORT_SYMBOL(get_zeroed_page);
1031 void __pagevec_free(struct pagevec *pvec)
1033 int i = pagevec_count(pvec);
1035 while (--i >= 0)
1036 free_hot_cold_page(pvec->pages[i], pvec->cold);
1039 fastcall void __free_pages(struct page *page, unsigned int order)
1041 if (put_page_testzero(page)) {
1042 if (order == 0)
1043 free_hot_page(page);
1044 else
1045 __free_pages_ok(page, order);
1049 EXPORT_SYMBOL(__free_pages);
1051 fastcall void free_pages(unsigned long addr, unsigned int order)
1053 if (addr != 0) {
1054 BUG_ON(!virt_addr_valid((void *)addr));
1055 __free_pages(virt_to_page((void *)addr), order);
1059 EXPORT_SYMBOL(free_pages);
1062 * Total amount of free (allocatable) RAM:
1064 unsigned int nr_free_pages(void)
1066 unsigned int sum = 0;
1067 struct zone *zone;
1069 for_each_zone(zone)
1070 sum += zone->free_pages;
1072 return sum;
1075 EXPORT_SYMBOL(nr_free_pages);
1077 #ifdef CONFIG_NUMA
1078 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1080 unsigned int i, sum = 0;
1082 for (i = 0; i < MAX_NR_ZONES; i++)
1083 sum += pgdat->node_zones[i].free_pages;
1085 return sum;
1087 #endif
1089 static unsigned int nr_free_zone_pages(int offset)
1091 /* Just pick one node, since fallback list is circular */
1092 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1093 unsigned int sum = 0;
1095 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1096 struct zone **zonep = zonelist->zones;
1097 struct zone *zone;
1099 for (zone = *zonep++; zone; zone = *zonep++) {
1100 unsigned long size = zone->present_pages;
1101 unsigned long high = zone->pages_high;
1102 if (size > high)
1103 sum += size - high;
1106 return sum;
1110 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1112 unsigned int nr_free_buffer_pages(void)
1114 return nr_free_zone_pages(gfp_zone(GFP_USER));
1118 * Amount of free RAM allocatable within all zones
1120 unsigned int nr_free_pagecache_pages(void)
1122 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1125 #ifdef CONFIG_HIGHMEM
1126 unsigned int nr_free_highpages (void)
1128 pg_data_t *pgdat;
1129 unsigned int pages = 0;
1131 for_each_pgdat(pgdat)
1132 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1134 return pages;
1136 #endif
1138 #ifdef CONFIG_NUMA
1139 static void show_node(struct zone *zone)
1141 printk("Node %d ", zone->zone_pgdat->node_id);
1143 #else
1144 #define show_node(zone) do { } while (0)
1145 #endif
1148 * Accumulate the page_state information across all CPUs.
1149 * The result is unavoidably approximate - it can change
1150 * during and after execution of this function.
1152 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1154 atomic_t nr_pagecache = ATOMIC_INIT(0);
1155 EXPORT_SYMBOL(nr_pagecache);
1156 #ifdef CONFIG_SMP
1157 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1158 #endif
1160 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1162 int cpu = 0;
1164 memset(ret, 0, sizeof(*ret));
1165 cpus_and(*cpumask, *cpumask, cpu_online_map);
1167 cpu = first_cpu(*cpumask);
1168 while (cpu < NR_CPUS) {
1169 unsigned long *in, *out, off;
1171 in = (unsigned long *)&per_cpu(page_states, cpu);
1173 cpu = next_cpu(cpu, *cpumask);
1175 if (cpu < NR_CPUS)
1176 prefetch(&per_cpu(page_states, cpu));
1178 out = (unsigned long *)ret;
1179 for (off = 0; off < nr; off++)
1180 *out++ += *in++;
1184 void get_page_state_node(struct page_state *ret, int node)
1186 int nr;
1187 cpumask_t mask = node_to_cpumask(node);
1189 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1190 nr /= sizeof(unsigned long);
1192 __get_page_state(ret, nr+1, &mask);
1195 void get_page_state(struct page_state *ret)
1197 int nr;
1198 cpumask_t mask = CPU_MASK_ALL;
1200 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1201 nr /= sizeof(unsigned long);
1203 __get_page_state(ret, nr + 1, &mask);
1206 void get_full_page_state(struct page_state *ret)
1208 cpumask_t mask = CPU_MASK_ALL;
1210 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1213 unsigned long __read_page_state(unsigned long offset)
1215 unsigned long ret = 0;
1216 int cpu;
1218 for_each_online_cpu(cpu) {
1219 unsigned long in;
1221 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1222 ret += *((unsigned long *)in);
1224 return ret;
1227 void __mod_page_state(unsigned long offset, unsigned long delta)
1229 unsigned long flags;
1230 void* ptr;
1232 local_irq_save(flags);
1233 ptr = &__get_cpu_var(page_states);
1234 *(unsigned long*)(ptr + offset) += delta;
1235 local_irq_restore(flags);
1238 EXPORT_SYMBOL(__mod_page_state);
1240 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1241 unsigned long *free, struct pglist_data *pgdat)
1243 struct zone *zones = pgdat->node_zones;
1244 int i;
1246 *active = 0;
1247 *inactive = 0;
1248 *free = 0;
1249 for (i = 0; i < MAX_NR_ZONES; i++) {
1250 *active += zones[i].nr_active;
1251 *inactive += zones[i].nr_inactive;
1252 *free += zones[i].free_pages;
1256 void get_zone_counts(unsigned long *active,
1257 unsigned long *inactive, unsigned long *free)
1259 struct pglist_data *pgdat;
1261 *active = 0;
1262 *inactive = 0;
1263 *free = 0;
1264 for_each_pgdat(pgdat) {
1265 unsigned long l, m, n;
1266 __get_zone_counts(&l, &m, &n, pgdat);
1267 *active += l;
1268 *inactive += m;
1269 *free += n;
1273 void si_meminfo(struct sysinfo *val)
1275 val->totalram = totalram_pages;
1276 val->sharedram = 0;
1277 val->freeram = nr_free_pages();
1278 val->bufferram = nr_blockdev_pages();
1279 #ifdef CONFIG_HIGHMEM
1280 val->totalhigh = totalhigh_pages;
1281 val->freehigh = nr_free_highpages();
1282 #else
1283 val->totalhigh = 0;
1284 val->freehigh = 0;
1285 #endif
1286 val->mem_unit = PAGE_SIZE;
1289 EXPORT_SYMBOL(si_meminfo);
1291 #ifdef CONFIG_NUMA
1292 void si_meminfo_node(struct sysinfo *val, int nid)
1294 pg_data_t *pgdat = NODE_DATA(nid);
1296 val->totalram = pgdat->node_present_pages;
1297 val->freeram = nr_free_pages_pgdat(pgdat);
1298 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1299 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1300 val->mem_unit = PAGE_SIZE;
1302 #endif
1304 #define K(x) ((x) << (PAGE_SHIFT-10))
1307 * Show free area list (used inside shift_scroll-lock stuff)
1308 * We also calculate the percentage fragmentation. We do this by counting the
1309 * memory on each free list with the exception of the first item on the list.
1311 void show_free_areas(void)
1313 struct page_state ps;
1314 int cpu, temperature;
1315 unsigned long active;
1316 unsigned long inactive;
1317 unsigned long free;
1318 struct zone *zone;
1320 for_each_zone(zone) {
1321 show_node(zone);
1322 printk("%s per-cpu:", zone->name);
1324 if (!zone->present_pages) {
1325 printk(" empty\n");
1326 continue;
1327 } else
1328 printk("\n");
1330 for_each_online_cpu(cpu) {
1331 struct per_cpu_pageset *pageset;
1333 pageset = zone_pcp(zone, cpu);
1335 for (temperature = 0; temperature < 2; temperature++)
1336 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1337 cpu,
1338 temperature ? "cold" : "hot",
1339 pageset->pcp[temperature].low,
1340 pageset->pcp[temperature].high,
1341 pageset->pcp[temperature].batch,
1342 pageset->pcp[temperature].count);
1346 get_page_state(&ps);
1347 get_zone_counts(&active, &inactive, &free);
1349 printk("Free pages: %11ukB (%ukB HighMem)\n",
1350 K(nr_free_pages()),
1351 K(nr_free_highpages()));
1353 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1354 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1355 active,
1356 inactive,
1357 ps.nr_dirty,
1358 ps.nr_writeback,
1359 ps.nr_unstable,
1360 nr_free_pages(),
1361 ps.nr_slab,
1362 ps.nr_mapped,
1363 ps.nr_page_table_pages);
1365 for_each_zone(zone) {
1366 int i;
1368 show_node(zone);
1369 printk("%s"
1370 " free:%lukB"
1371 " min:%lukB"
1372 " low:%lukB"
1373 " high:%lukB"
1374 " active:%lukB"
1375 " inactive:%lukB"
1376 " present:%lukB"
1377 " pages_scanned:%lu"
1378 " all_unreclaimable? %s"
1379 "\n",
1380 zone->name,
1381 K(zone->free_pages),
1382 K(zone->pages_min),
1383 K(zone->pages_low),
1384 K(zone->pages_high),
1385 K(zone->nr_active),
1386 K(zone->nr_inactive),
1387 K(zone->present_pages),
1388 zone->pages_scanned,
1389 (zone->all_unreclaimable ? "yes" : "no")
1391 printk("lowmem_reserve[]:");
1392 for (i = 0; i < MAX_NR_ZONES; i++)
1393 printk(" %lu", zone->lowmem_reserve[i]);
1394 printk("\n");
1397 for_each_zone(zone) {
1398 unsigned long nr, flags, order, total = 0;
1400 show_node(zone);
1401 printk("%s: ", zone->name);
1402 if (!zone->present_pages) {
1403 printk("empty\n");
1404 continue;
1407 spin_lock_irqsave(&zone->lock, flags);
1408 for (order = 0; order < MAX_ORDER; order++) {
1409 nr = zone->free_area[order].nr_free;
1410 total += nr << order;
1411 printk("%lu*%lukB ", nr, K(1UL) << order);
1413 spin_unlock_irqrestore(&zone->lock, flags);
1414 printk("= %lukB\n", K(total));
1417 show_swap_cache_info();
1421 * Builds allocation fallback zone lists.
1423 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1425 switch (k) {
1426 struct zone *zone;
1427 default:
1428 BUG();
1429 case ZONE_HIGHMEM:
1430 zone = pgdat->node_zones + ZONE_HIGHMEM;
1431 if (zone->present_pages) {
1432 #ifndef CONFIG_HIGHMEM
1433 BUG();
1434 #endif
1435 zonelist->zones[j++] = zone;
1437 case ZONE_NORMAL:
1438 zone = pgdat->node_zones + ZONE_NORMAL;
1439 if (zone->present_pages)
1440 zonelist->zones[j++] = zone;
1441 case ZONE_DMA32:
1442 zone = pgdat->node_zones + ZONE_DMA32;
1443 if (zone->present_pages)
1444 zonelist->zones[j++] = zone;
1445 case ZONE_DMA:
1446 zone = pgdat->node_zones + ZONE_DMA;
1447 if (zone->present_pages)
1448 zonelist->zones[j++] = zone;
1451 return j;
1454 static inline int highest_zone(int zone_bits)
1456 int res = ZONE_NORMAL;
1457 if (zone_bits & (__force int)__GFP_HIGHMEM)
1458 res = ZONE_HIGHMEM;
1459 if (zone_bits & (__force int)__GFP_DMA32)
1460 res = ZONE_DMA32;
1461 if (zone_bits & (__force int)__GFP_DMA)
1462 res = ZONE_DMA;
1463 return res;
1466 #ifdef CONFIG_NUMA
1467 #define MAX_NODE_LOAD (num_online_nodes())
1468 static int __initdata node_load[MAX_NUMNODES];
1470 * find_next_best_node - find the next node that should appear in a given node's fallback list
1471 * @node: node whose fallback list we're appending
1472 * @used_node_mask: nodemask_t of already used nodes
1474 * We use a number of factors to determine which is the next node that should
1475 * appear on a given node's fallback list. The node should not have appeared
1476 * already in @node's fallback list, and it should be the next closest node
1477 * according to the distance array (which contains arbitrary distance values
1478 * from each node to each node in the system), and should also prefer nodes
1479 * with no CPUs, since presumably they'll have very little allocation pressure
1480 * on them otherwise.
1481 * It returns -1 if no node is found.
1483 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1485 int i, n, val;
1486 int min_val = INT_MAX;
1487 int best_node = -1;
1489 for_each_online_node(i) {
1490 cpumask_t tmp;
1492 /* Start from local node */
1493 n = (node+i) % num_online_nodes();
1495 /* Don't want a node to appear more than once */
1496 if (node_isset(n, *used_node_mask))
1497 continue;
1499 /* Use the local node if we haven't already */
1500 if (!node_isset(node, *used_node_mask)) {
1501 best_node = node;
1502 break;
1505 /* Use the distance array to find the distance */
1506 val = node_distance(node, n);
1508 /* Give preference to headless and unused nodes */
1509 tmp = node_to_cpumask(n);
1510 if (!cpus_empty(tmp))
1511 val += PENALTY_FOR_NODE_WITH_CPUS;
1513 /* Slight preference for less loaded node */
1514 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1515 val += node_load[n];
1517 if (val < min_val) {
1518 min_val = val;
1519 best_node = n;
1523 if (best_node >= 0)
1524 node_set(best_node, *used_node_mask);
1526 return best_node;
1529 static void __init build_zonelists(pg_data_t *pgdat)
1531 int i, j, k, node, local_node;
1532 int prev_node, load;
1533 struct zonelist *zonelist;
1534 nodemask_t used_mask;
1536 /* initialize zonelists */
1537 for (i = 0; i < GFP_ZONETYPES; i++) {
1538 zonelist = pgdat->node_zonelists + i;
1539 zonelist->zones[0] = NULL;
1542 /* NUMA-aware ordering of nodes */
1543 local_node = pgdat->node_id;
1544 load = num_online_nodes();
1545 prev_node = local_node;
1546 nodes_clear(used_mask);
1547 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1549 * We don't want to pressure a particular node.
1550 * So adding penalty to the first node in same
1551 * distance group to make it round-robin.
1553 if (node_distance(local_node, node) !=
1554 node_distance(local_node, prev_node))
1555 node_load[node] += load;
1556 prev_node = node;
1557 load--;
1558 for (i = 0; i < GFP_ZONETYPES; i++) {
1559 zonelist = pgdat->node_zonelists + i;
1560 for (j = 0; zonelist->zones[j] != NULL; j++);
1562 k = highest_zone(i);
1564 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1565 zonelist->zones[j] = NULL;
1570 #else /* CONFIG_NUMA */
1572 static void __init build_zonelists(pg_data_t *pgdat)
1574 int i, j, k, node, local_node;
1576 local_node = pgdat->node_id;
1577 for (i = 0; i < GFP_ZONETYPES; i++) {
1578 struct zonelist *zonelist;
1580 zonelist = pgdat->node_zonelists + i;
1582 j = 0;
1583 k = highest_zone(i);
1584 j = build_zonelists_node(pgdat, zonelist, j, k);
1586 * Now we build the zonelist so that it contains the zones
1587 * of all the other nodes.
1588 * We don't want to pressure a particular node, so when
1589 * building the zones for node N, we make sure that the
1590 * zones coming right after the local ones are those from
1591 * node N+1 (modulo N)
1593 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1594 if (!node_online(node))
1595 continue;
1596 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1598 for (node = 0; node < local_node; node++) {
1599 if (!node_online(node))
1600 continue;
1601 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1604 zonelist->zones[j] = NULL;
1608 #endif /* CONFIG_NUMA */
1610 void __init build_all_zonelists(void)
1612 int i;
1614 for_each_online_node(i)
1615 build_zonelists(NODE_DATA(i));
1616 printk("Built %i zonelists\n", num_online_nodes());
1617 cpuset_init_current_mems_allowed();
1621 * Helper functions to size the waitqueue hash table.
1622 * Essentially these want to choose hash table sizes sufficiently
1623 * large so that collisions trying to wait on pages are rare.
1624 * But in fact, the number of active page waitqueues on typical
1625 * systems is ridiculously low, less than 200. So this is even
1626 * conservative, even though it seems large.
1628 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1629 * waitqueues, i.e. the size of the waitq table given the number of pages.
1631 #define PAGES_PER_WAITQUEUE 256
1633 static inline unsigned long wait_table_size(unsigned long pages)
1635 unsigned long size = 1;
1637 pages /= PAGES_PER_WAITQUEUE;
1639 while (size < pages)
1640 size <<= 1;
1643 * Once we have dozens or even hundreds of threads sleeping
1644 * on IO we've got bigger problems than wait queue collision.
1645 * Limit the size of the wait table to a reasonable size.
1647 size = min(size, 4096UL);
1649 return max(size, 4UL);
1653 * This is an integer logarithm so that shifts can be used later
1654 * to extract the more random high bits from the multiplicative
1655 * hash function before the remainder is taken.
1657 static inline unsigned long wait_table_bits(unsigned long size)
1659 return ffz(~size);
1662 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1664 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1665 unsigned long *zones_size, unsigned long *zholes_size)
1667 unsigned long realtotalpages, totalpages = 0;
1668 int i;
1670 for (i = 0; i < MAX_NR_ZONES; i++)
1671 totalpages += zones_size[i];
1672 pgdat->node_spanned_pages = totalpages;
1674 realtotalpages = totalpages;
1675 if (zholes_size)
1676 for (i = 0; i < MAX_NR_ZONES; i++)
1677 realtotalpages -= zholes_size[i];
1678 pgdat->node_present_pages = realtotalpages;
1679 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1684 * Initially all pages are reserved - free ones are freed
1685 * up by free_all_bootmem() once the early boot process is
1686 * done. Non-atomic initialization, single-pass.
1688 void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1689 unsigned long start_pfn)
1691 struct page *page;
1692 unsigned long end_pfn = start_pfn + size;
1693 unsigned long pfn;
1695 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1696 if (!early_pfn_valid(pfn))
1697 continue;
1698 page = pfn_to_page(pfn);
1699 set_page_links(page, zone, nid, pfn);
1700 set_page_count(page, 1);
1701 reset_page_mapcount(page);
1702 SetPageReserved(page);
1703 INIT_LIST_HEAD(&page->lru);
1704 #ifdef WANT_PAGE_VIRTUAL
1705 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1706 if (!is_highmem_idx(zone))
1707 set_page_address(page, __va(pfn << PAGE_SHIFT));
1708 #endif
1712 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1713 unsigned long size)
1715 int order;
1716 for (order = 0; order < MAX_ORDER ; order++) {
1717 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1718 zone->free_area[order].nr_free = 0;
1722 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1723 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1724 unsigned long size)
1726 unsigned long snum = pfn_to_section_nr(pfn);
1727 unsigned long end = pfn_to_section_nr(pfn + size);
1729 if (FLAGS_HAS_NODE)
1730 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1731 else
1732 for (; snum <= end; snum++)
1733 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1736 #ifndef __HAVE_ARCH_MEMMAP_INIT
1737 #define memmap_init(size, nid, zone, start_pfn) \
1738 memmap_init_zone((size), (nid), (zone), (start_pfn))
1739 #endif
1741 static int __devinit zone_batchsize(struct zone *zone)
1743 int batch;
1746 * The per-cpu-pages pools are set to around 1000th of the
1747 * size of the zone. But no more than 1/2 of a meg.
1749 * OK, so we don't know how big the cache is. So guess.
1751 batch = zone->present_pages / 1024;
1752 if (batch * PAGE_SIZE > 512 * 1024)
1753 batch = (512 * 1024) / PAGE_SIZE;
1754 batch /= 4; /* We effectively *= 4 below */
1755 if (batch < 1)
1756 batch = 1;
1759 * Clamp the batch to a 2^n - 1 value. Having a power
1760 * of 2 value was found to be more likely to have
1761 * suboptimal cache aliasing properties in some cases.
1763 * For example if 2 tasks are alternately allocating
1764 * batches of pages, one task can end up with a lot
1765 * of pages of one half of the possible page colors
1766 * and the other with pages of the other colors.
1768 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1770 return batch;
1773 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1775 struct per_cpu_pages *pcp;
1777 memset(p, 0, sizeof(*p));
1779 pcp = &p->pcp[0]; /* hot */
1780 pcp->count = 0;
1781 pcp->low = 0;
1782 pcp->high = 6 * batch;
1783 pcp->batch = max(1UL, 1 * batch);
1784 INIT_LIST_HEAD(&pcp->list);
1786 pcp = &p->pcp[1]; /* cold*/
1787 pcp->count = 0;
1788 pcp->low = 0;
1789 pcp->high = 2 * batch;
1790 pcp->batch = max(1UL, batch/2);
1791 INIT_LIST_HEAD(&pcp->list);
1794 #ifdef CONFIG_NUMA
1796 * Boot pageset table. One per cpu which is going to be used for all
1797 * zones and all nodes. The parameters will be set in such a way
1798 * that an item put on a list will immediately be handed over to
1799 * the buddy list. This is safe since pageset manipulation is done
1800 * with interrupts disabled.
1802 * Some NUMA counter updates may also be caught by the boot pagesets.
1804 * The boot_pagesets must be kept even after bootup is complete for
1805 * unused processors and/or zones. They do play a role for bootstrapping
1806 * hotplugged processors.
1808 * zoneinfo_show() and maybe other functions do
1809 * not check if the processor is online before following the pageset pointer.
1810 * Other parts of the kernel may not check if the zone is available.
1812 static struct per_cpu_pageset
1813 boot_pageset[NR_CPUS];
1816 * Dynamically allocate memory for the
1817 * per cpu pageset array in struct zone.
1819 static int __devinit process_zones(int cpu)
1821 struct zone *zone, *dzone;
1823 for_each_zone(zone) {
1825 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1826 GFP_KERNEL, cpu_to_node(cpu));
1827 if (!zone->pageset[cpu])
1828 goto bad;
1830 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1833 return 0;
1834 bad:
1835 for_each_zone(dzone) {
1836 if (dzone == zone)
1837 break;
1838 kfree(dzone->pageset[cpu]);
1839 dzone->pageset[cpu] = NULL;
1841 return -ENOMEM;
1844 static inline void free_zone_pagesets(int cpu)
1846 #ifdef CONFIG_NUMA
1847 struct zone *zone;
1849 for_each_zone(zone) {
1850 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1852 zone_pcp(zone, cpu) = NULL;
1853 kfree(pset);
1855 #endif
1858 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1859 unsigned long action,
1860 void *hcpu)
1862 int cpu = (long)hcpu;
1863 int ret = NOTIFY_OK;
1865 switch (action) {
1866 case CPU_UP_PREPARE:
1867 if (process_zones(cpu))
1868 ret = NOTIFY_BAD;
1869 break;
1870 case CPU_UP_CANCELED:
1871 case CPU_DEAD:
1872 free_zone_pagesets(cpu);
1873 break;
1874 default:
1875 break;
1877 return ret;
1880 static struct notifier_block pageset_notifier =
1881 { &pageset_cpuup_callback, NULL, 0 };
1883 void __init setup_per_cpu_pageset(void)
1885 int err;
1887 /* Initialize per_cpu_pageset for cpu 0.
1888 * A cpuup callback will do this for every cpu
1889 * as it comes online
1891 err = process_zones(smp_processor_id());
1892 BUG_ON(err);
1893 register_cpu_notifier(&pageset_notifier);
1896 #endif
1898 static __devinit
1899 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1901 int i;
1902 struct pglist_data *pgdat = zone->zone_pgdat;
1905 * The per-page waitqueue mechanism uses hashed waitqueues
1906 * per zone.
1908 zone->wait_table_size = wait_table_size(zone_size_pages);
1909 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1910 zone->wait_table = (wait_queue_head_t *)
1911 alloc_bootmem_node(pgdat, zone->wait_table_size
1912 * sizeof(wait_queue_head_t));
1914 for(i = 0; i < zone->wait_table_size; ++i)
1915 init_waitqueue_head(zone->wait_table + i);
1918 static __devinit void zone_pcp_init(struct zone *zone)
1920 int cpu;
1921 unsigned long batch = zone_batchsize(zone);
1923 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1924 #ifdef CONFIG_NUMA
1925 /* Early boot. Slab allocator not functional yet */
1926 zone->pageset[cpu] = &boot_pageset[cpu];
1927 setup_pageset(&boot_pageset[cpu],0);
1928 #else
1929 setup_pageset(zone_pcp(zone,cpu), batch);
1930 #endif
1932 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1933 zone->name, zone->present_pages, batch);
1936 static __devinit void init_currently_empty_zone(struct zone *zone,
1937 unsigned long zone_start_pfn, unsigned long size)
1939 struct pglist_data *pgdat = zone->zone_pgdat;
1941 zone_wait_table_init(zone, size);
1942 pgdat->nr_zones = zone_idx(zone) + 1;
1944 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1945 zone->zone_start_pfn = zone_start_pfn;
1947 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1949 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1953 * Set up the zone data structures:
1954 * - mark all pages reserved
1955 * - mark all memory queues empty
1956 * - clear the memory bitmaps
1958 static void __init free_area_init_core(struct pglist_data *pgdat,
1959 unsigned long *zones_size, unsigned long *zholes_size)
1961 unsigned long j;
1962 int nid = pgdat->node_id;
1963 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1965 pgdat_resize_init(pgdat);
1966 pgdat->nr_zones = 0;
1967 init_waitqueue_head(&pgdat->kswapd_wait);
1968 pgdat->kswapd_max_order = 0;
1970 for (j = 0; j < MAX_NR_ZONES; j++) {
1971 struct zone *zone = pgdat->node_zones + j;
1972 unsigned long size, realsize;
1974 realsize = size = zones_size[j];
1975 if (zholes_size)
1976 realsize -= zholes_size[j];
1978 if (j < ZONE_HIGHMEM)
1979 nr_kernel_pages += realsize;
1980 nr_all_pages += realsize;
1982 zone->spanned_pages = size;
1983 zone->present_pages = realsize;
1984 zone->name = zone_names[j];
1985 spin_lock_init(&zone->lock);
1986 spin_lock_init(&zone->lru_lock);
1987 zone_seqlock_init(zone);
1988 zone->zone_pgdat = pgdat;
1989 zone->free_pages = 0;
1991 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1993 zone_pcp_init(zone);
1994 INIT_LIST_HEAD(&zone->active_list);
1995 INIT_LIST_HEAD(&zone->inactive_list);
1996 zone->nr_scan_active = 0;
1997 zone->nr_scan_inactive = 0;
1998 zone->nr_active = 0;
1999 zone->nr_inactive = 0;
2000 atomic_set(&zone->reclaim_in_progress, 0);
2001 if (!size)
2002 continue;
2004 zonetable_add(zone, nid, j, zone_start_pfn, size);
2005 init_currently_empty_zone(zone, zone_start_pfn, size);
2006 zone_start_pfn += size;
2010 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2012 /* Skip empty nodes */
2013 if (!pgdat->node_spanned_pages)
2014 return;
2016 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2017 /* ia64 gets its own node_mem_map, before this, without bootmem */
2018 if (!pgdat->node_mem_map) {
2019 unsigned long size;
2020 struct page *map;
2022 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2023 map = alloc_remap(pgdat->node_id, size);
2024 if (!map)
2025 map = alloc_bootmem_node(pgdat, size);
2026 pgdat->node_mem_map = map;
2028 #ifdef CONFIG_FLATMEM
2030 * With no DISCONTIG, the global mem_map is just set as node 0's
2032 if (pgdat == NODE_DATA(0))
2033 mem_map = NODE_DATA(0)->node_mem_map;
2034 #endif
2035 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2038 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2039 unsigned long *zones_size, unsigned long node_start_pfn,
2040 unsigned long *zholes_size)
2042 pgdat->node_id = nid;
2043 pgdat->node_start_pfn = node_start_pfn;
2044 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2046 alloc_node_mem_map(pgdat);
2048 free_area_init_core(pgdat, zones_size, zholes_size);
2051 #ifndef CONFIG_NEED_MULTIPLE_NODES
2052 static bootmem_data_t contig_bootmem_data;
2053 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2055 EXPORT_SYMBOL(contig_page_data);
2056 #endif
2058 void __init free_area_init(unsigned long *zones_size)
2060 free_area_init_node(0, NODE_DATA(0), zones_size,
2061 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2064 #ifdef CONFIG_PROC_FS
2066 #include <linux/seq_file.h>
2068 static void *frag_start(struct seq_file *m, loff_t *pos)
2070 pg_data_t *pgdat;
2071 loff_t node = *pos;
2073 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2074 --node;
2076 return pgdat;
2079 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2081 pg_data_t *pgdat = (pg_data_t *)arg;
2083 (*pos)++;
2084 return pgdat->pgdat_next;
2087 static void frag_stop(struct seq_file *m, void *arg)
2092 * This walks the free areas for each zone.
2094 static int frag_show(struct seq_file *m, void *arg)
2096 pg_data_t *pgdat = (pg_data_t *)arg;
2097 struct zone *zone;
2098 struct zone *node_zones = pgdat->node_zones;
2099 unsigned long flags;
2100 int order;
2102 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2103 if (!zone->present_pages)
2104 continue;
2106 spin_lock_irqsave(&zone->lock, flags);
2107 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2108 for (order = 0; order < MAX_ORDER; ++order)
2109 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2110 spin_unlock_irqrestore(&zone->lock, flags);
2111 seq_putc(m, '\n');
2113 return 0;
2116 struct seq_operations fragmentation_op = {
2117 .start = frag_start,
2118 .next = frag_next,
2119 .stop = frag_stop,
2120 .show = frag_show,
2124 * Output information about zones in @pgdat.
2126 static int zoneinfo_show(struct seq_file *m, void *arg)
2128 pg_data_t *pgdat = arg;
2129 struct zone *zone;
2130 struct zone *node_zones = pgdat->node_zones;
2131 unsigned long flags;
2133 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2134 int i;
2136 if (!zone->present_pages)
2137 continue;
2139 spin_lock_irqsave(&zone->lock, flags);
2140 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2141 seq_printf(m,
2142 "\n pages free %lu"
2143 "\n min %lu"
2144 "\n low %lu"
2145 "\n high %lu"
2146 "\n active %lu"
2147 "\n inactive %lu"
2148 "\n scanned %lu (a: %lu i: %lu)"
2149 "\n spanned %lu"
2150 "\n present %lu",
2151 zone->free_pages,
2152 zone->pages_min,
2153 zone->pages_low,
2154 zone->pages_high,
2155 zone->nr_active,
2156 zone->nr_inactive,
2157 zone->pages_scanned,
2158 zone->nr_scan_active, zone->nr_scan_inactive,
2159 zone->spanned_pages,
2160 zone->present_pages);
2161 seq_printf(m,
2162 "\n protection: (%lu",
2163 zone->lowmem_reserve[0]);
2164 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2165 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2166 seq_printf(m,
2168 "\n pagesets");
2169 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2170 struct per_cpu_pageset *pageset;
2171 int j;
2173 pageset = zone_pcp(zone, i);
2174 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2175 if (pageset->pcp[j].count)
2176 break;
2178 if (j == ARRAY_SIZE(pageset->pcp))
2179 continue;
2180 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2181 seq_printf(m,
2182 "\n cpu: %i pcp: %i"
2183 "\n count: %i"
2184 "\n low: %i"
2185 "\n high: %i"
2186 "\n batch: %i",
2187 i, j,
2188 pageset->pcp[j].count,
2189 pageset->pcp[j].low,
2190 pageset->pcp[j].high,
2191 pageset->pcp[j].batch);
2193 #ifdef CONFIG_NUMA
2194 seq_printf(m,
2195 "\n numa_hit: %lu"
2196 "\n numa_miss: %lu"
2197 "\n numa_foreign: %lu"
2198 "\n interleave_hit: %lu"
2199 "\n local_node: %lu"
2200 "\n other_node: %lu",
2201 pageset->numa_hit,
2202 pageset->numa_miss,
2203 pageset->numa_foreign,
2204 pageset->interleave_hit,
2205 pageset->local_node,
2206 pageset->other_node);
2207 #endif
2209 seq_printf(m,
2210 "\n all_unreclaimable: %u"
2211 "\n prev_priority: %i"
2212 "\n temp_priority: %i"
2213 "\n start_pfn: %lu",
2214 zone->all_unreclaimable,
2215 zone->prev_priority,
2216 zone->temp_priority,
2217 zone->zone_start_pfn);
2218 spin_unlock_irqrestore(&zone->lock, flags);
2219 seq_putc(m, '\n');
2221 return 0;
2224 struct seq_operations zoneinfo_op = {
2225 .start = frag_start, /* iterate over all zones. The same as in
2226 * fragmentation. */
2227 .next = frag_next,
2228 .stop = frag_stop,
2229 .show = zoneinfo_show,
2232 static char *vmstat_text[] = {
2233 "nr_dirty",
2234 "nr_writeback",
2235 "nr_unstable",
2236 "nr_page_table_pages",
2237 "nr_mapped",
2238 "nr_slab",
2240 "pgpgin",
2241 "pgpgout",
2242 "pswpin",
2243 "pswpout",
2244 "pgalloc_high",
2246 "pgalloc_normal",
2247 "pgalloc_dma",
2248 "pgfree",
2249 "pgactivate",
2250 "pgdeactivate",
2252 "pgfault",
2253 "pgmajfault",
2254 "pgrefill_high",
2255 "pgrefill_normal",
2256 "pgrefill_dma",
2258 "pgsteal_high",
2259 "pgsteal_normal",
2260 "pgsteal_dma",
2261 "pgscan_kswapd_high",
2262 "pgscan_kswapd_normal",
2264 "pgscan_kswapd_dma",
2265 "pgscan_direct_high",
2266 "pgscan_direct_normal",
2267 "pgscan_direct_dma",
2268 "pginodesteal",
2270 "slabs_scanned",
2271 "kswapd_steal",
2272 "kswapd_inodesteal",
2273 "pageoutrun",
2274 "allocstall",
2276 "pgrotated",
2277 "nr_bounce",
2280 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2282 struct page_state *ps;
2284 if (*pos >= ARRAY_SIZE(vmstat_text))
2285 return NULL;
2287 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2288 m->private = ps;
2289 if (!ps)
2290 return ERR_PTR(-ENOMEM);
2291 get_full_page_state(ps);
2292 ps->pgpgin /= 2; /* sectors -> kbytes */
2293 ps->pgpgout /= 2;
2294 return (unsigned long *)ps + *pos;
2297 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2299 (*pos)++;
2300 if (*pos >= ARRAY_SIZE(vmstat_text))
2301 return NULL;
2302 return (unsigned long *)m->private + *pos;
2305 static int vmstat_show(struct seq_file *m, void *arg)
2307 unsigned long *l = arg;
2308 unsigned long off = l - (unsigned long *)m->private;
2310 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2311 return 0;
2314 static void vmstat_stop(struct seq_file *m, void *arg)
2316 kfree(m->private);
2317 m->private = NULL;
2320 struct seq_operations vmstat_op = {
2321 .start = vmstat_start,
2322 .next = vmstat_next,
2323 .stop = vmstat_stop,
2324 .show = vmstat_show,
2327 #endif /* CONFIG_PROC_FS */
2329 #ifdef CONFIG_HOTPLUG_CPU
2330 static int page_alloc_cpu_notify(struct notifier_block *self,
2331 unsigned long action, void *hcpu)
2333 int cpu = (unsigned long)hcpu;
2334 long *count;
2335 unsigned long *src, *dest;
2337 if (action == CPU_DEAD) {
2338 int i;
2340 /* Drain local pagecache count. */
2341 count = &per_cpu(nr_pagecache_local, cpu);
2342 atomic_add(*count, &nr_pagecache);
2343 *count = 0;
2344 local_irq_disable();
2345 __drain_pages(cpu);
2347 /* Add dead cpu's page_states to our own. */
2348 dest = (unsigned long *)&__get_cpu_var(page_states);
2349 src = (unsigned long *)&per_cpu(page_states, cpu);
2351 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2352 i++) {
2353 dest[i] += src[i];
2354 src[i] = 0;
2357 local_irq_enable();
2359 return NOTIFY_OK;
2361 #endif /* CONFIG_HOTPLUG_CPU */
2363 void __init page_alloc_init(void)
2365 hotcpu_notifier(page_alloc_cpu_notify, 0);
2369 * setup_per_zone_lowmem_reserve - called whenever
2370 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2371 * has a correct pages reserved value, so an adequate number of
2372 * pages are left in the zone after a successful __alloc_pages().
2374 static void setup_per_zone_lowmem_reserve(void)
2376 struct pglist_data *pgdat;
2377 int j, idx;
2379 for_each_pgdat(pgdat) {
2380 for (j = 0; j < MAX_NR_ZONES; j++) {
2381 struct zone *zone = pgdat->node_zones + j;
2382 unsigned long present_pages = zone->present_pages;
2384 zone->lowmem_reserve[j] = 0;
2386 for (idx = j-1; idx >= 0; idx--) {
2387 struct zone *lower_zone;
2389 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2390 sysctl_lowmem_reserve_ratio[idx] = 1;
2392 lower_zone = pgdat->node_zones + idx;
2393 lower_zone->lowmem_reserve[j] = present_pages /
2394 sysctl_lowmem_reserve_ratio[idx];
2395 present_pages += lower_zone->present_pages;
2402 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2403 * that the pages_{min,low,high} values for each zone are set correctly
2404 * with respect to min_free_kbytes.
2406 void setup_per_zone_pages_min(void)
2408 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2409 unsigned long lowmem_pages = 0;
2410 struct zone *zone;
2411 unsigned long flags;
2413 /* Calculate total number of !ZONE_HIGHMEM pages */
2414 for_each_zone(zone) {
2415 if (!is_highmem(zone))
2416 lowmem_pages += zone->present_pages;
2419 for_each_zone(zone) {
2420 unsigned long tmp;
2421 spin_lock_irqsave(&zone->lru_lock, flags);
2422 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2423 if (is_highmem(zone)) {
2425 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2426 * need highmem pages, so cap pages_min to a small
2427 * value here.
2429 * The (pages_high-pages_low) and (pages_low-pages_min)
2430 * deltas controls asynch page reclaim, and so should
2431 * not be capped for highmem.
2433 int min_pages;
2435 min_pages = zone->present_pages / 1024;
2436 if (min_pages < SWAP_CLUSTER_MAX)
2437 min_pages = SWAP_CLUSTER_MAX;
2438 if (min_pages > 128)
2439 min_pages = 128;
2440 zone->pages_min = min_pages;
2441 } else {
2443 * If it's a lowmem zone, reserve a number of pages
2444 * proportionate to the zone's size.
2446 zone->pages_min = tmp;
2449 zone->pages_low = zone->pages_min + tmp / 4;
2450 zone->pages_high = zone->pages_min + tmp / 2;
2451 spin_unlock_irqrestore(&zone->lru_lock, flags);
2456 * Initialise min_free_kbytes.
2458 * For small machines we want it small (128k min). For large machines
2459 * we want it large (64MB max). But it is not linear, because network
2460 * bandwidth does not increase linearly with machine size. We use
2462 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2463 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2465 * which yields
2467 * 16MB: 512k
2468 * 32MB: 724k
2469 * 64MB: 1024k
2470 * 128MB: 1448k
2471 * 256MB: 2048k
2472 * 512MB: 2896k
2473 * 1024MB: 4096k
2474 * 2048MB: 5792k
2475 * 4096MB: 8192k
2476 * 8192MB: 11584k
2477 * 16384MB: 16384k
2479 static int __init init_per_zone_pages_min(void)
2481 unsigned long lowmem_kbytes;
2483 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2485 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2486 if (min_free_kbytes < 128)
2487 min_free_kbytes = 128;
2488 if (min_free_kbytes > 65536)
2489 min_free_kbytes = 65536;
2490 setup_per_zone_pages_min();
2491 setup_per_zone_lowmem_reserve();
2492 return 0;
2494 module_init(init_per_zone_pages_min)
2497 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2498 * that we can call two helper functions whenever min_free_kbytes
2499 * changes.
2501 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2502 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2504 proc_dointvec(table, write, file, buffer, length, ppos);
2505 setup_per_zone_pages_min();
2506 return 0;
2510 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2511 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2512 * whenever sysctl_lowmem_reserve_ratio changes.
2514 * The reserve ratio obviously has absolutely no relation with the
2515 * pages_min watermarks. The lowmem reserve ratio can only make sense
2516 * if in function of the boot time zone sizes.
2518 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2519 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2521 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2522 setup_per_zone_lowmem_reserve();
2523 return 0;
2526 __initdata int hashdist = HASHDIST_DEFAULT;
2528 #ifdef CONFIG_NUMA
2529 static int __init set_hashdist(char *str)
2531 if (!str)
2532 return 0;
2533 hashdist = simple_strtoul(str, &str, 0);
2534 return 1;
2536 __setup("hashdist=", set_hashdist);
2537 #endif
2540 * allocate a large system hash table from bootmem
2541 * - it is assumed that the hash table must contain an exact power-of-2
2542 * quantity of entries
2543 * - limit is the number of hash buckets, not the total allocation size
2545 void *__init alloc_large_system_hash(const char *tablename,
2546 unsigned long bucketsize,
2547 unsigned long numentries,
2548 int scale,
2549 int flags,
2550 unsigned int *_hash_shift,
2551 unsigned int *_hash_mask,
2552 unsigned long limit)
2554 unsigned long long max = limit;
2555 unsigned long log2qty, size;
2556 void *table = NULL;
2558 /* allow the kernel cmdline to have a say */
2559 if (!numentries) {
2560 /* round applicable memory size up to nearest megabyte */
2561 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2562 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2563 numentries >>= 20 - PAGE_SHIFT;
2564 numentries <<= 20 - PAGE_SHIFT;
2566 /* limit to 1 bucket per 2^scale bytes of low memory */
2567 if (scale > PAGE_SHIFT)
2568 numentries >>= (scale - PAGE_SHIFT);
2569 else
2570 numentries <<= (PAGE_SHIFT - scale);
2572 /* rounded up to nearest power of 2 in size */
2573 numentries = 1UL << (long_log2(numentries) + 1);
2575 /* limit allocation size to 1/16 total memory by default */
2576 if (max == 0) {
2577 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2578 do_div(max, bucketsize);
2581 if (numentries > max)
2582 numentries = max;
2584 log2qty = long_log2(numentries);
2586 do {
2587 size = bucketsize << log2qty;
2588 if (flags & HASH_EARLY)
2589 table = alloc_bootmem(size);
2590 else if (hashdist)
2591 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2592 else {
2593 unsigned long order;
2594 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2596 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2598 } while (!table && size > PAGE_SIZE && --log2qty);
2600 if (!table)
2601 panic("Failed to allocate %s hash table\n", tablename);
2603 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2604 tablename,
2605 (1U << log2qty),
2606 long_log2(size) - PAGE_SHIFT,
2607 size);
2609 if (_hash_shift)
2610 *_hash_shift = log2qty;
2611 if (_hash_mask)
2612 *_hash_mask = (1 << log2qty) - 1;
2614 return table;