2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
25 static unsigned long nr_huge_pages
, free_huge_pages
, resv_huge_pages
;
26 static unsigned long surplus_huge_pages
;
27 static unsigned long nr_overcommit_huge_pages
;
28 unsigned long max_huge_pages
;
29 unsigned long sysctl_overcommit_huge_pages
;
30 static struct list_head hugepage_freelists
[MAX_NUMNODES
];
31 static unsigned int nr_huge_pages_node
[MAX_NUMNODES
];
32 static unsigned int free_huge_pages_node
[MAX_NUMNODES
];
33 static unsigned int surplus_huge_pages_node
[MAX_NUMNODES
];
34 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
35 unsigned long hugepages_treat_as_movable
;
36 static int hugetlb_next_nid
;
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
41 static DEFINE_SPINLOCK(hugetlb_lock
);
43 static void clear_huge_page(struct page
*page
, unsigned long addr
)
48 for (i
= 0; i
< (HPAGE_SIZE
/PAGE_SIZE
); i
++) {
50 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
54 static void copy_huge_page(struct page
*dst
, struct page
*src
,
55 unsigned long addr
, struct vm_area_struct
*vma
)
60 for (i
= 0; i
< HPAGE_SIZE
/PAGE_SIZE
; i
++) {
62 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
66 static void enqueue_huge_page(struct page
*page
)
68 int nid
= page_to_nid(page
);
69 list_add(&page
->lru
, &hugepage_freelists
[nid
]);
71 free_huge_pages_node
[nid
]++;
74 static struct page
*dequeue_huge_page(struct vm_area_struct
*vma
,
75 unsigned long address
)
78 struct page
*page
= NULL
;
79 struct mempolicy
*mpol
;
80 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
81 htlb_alloc_mask
, &mpol
);
84 for (z
= zonelist
->zones
; *z
; z
++) {
85 nid
= zone_to_nid(*z
);
86 if (cpuset_zone_allowed_softwall(*z
, htlb_alloc_mask
) &&
87 !list_empty(&hugepage_freelists
[nid
])) {
88 page
= list_entry(hugepage_freelists
[nid
].next
,
92 free_huge_pages_node
[nid
]--;
93 if (vma
&& vma
->vm_flags
& VM_MAYSHARE
)
98 mpol_free(mpol
); /* unref if mpol !NULL */
102 static void update_and_free_page(struct page
*page
)
106 nr_huge_pages_node
[page_to_nid(page
)]--;
107 for (i
= 0; i
< (HPAGE_SIZE
/ PAGE_SIZE
); i
++) {
108 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
109 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
110 1 << PG_private
| 1<< PG_writeback
);
112 set_compound_page_dtor(page
, NULL
);
113 set_page_refcounted(page
);
114 __free_pages(page
, HUGETLB_PAGE_ORDER
);
117 static void free_huge_page(struct page
*page
)
119 int nid
= page_to_nid(page
);
120 struct address_space
*mapping
;
122 mapping
= (struct address_space
*) page_private(page
);
123 BUG_ON(page_count(page
));
124 INIT_LIST_HEAD(&page
->lru
);
126 spin_lock(&hugetlb_lock
);
127 if (surplus_huge_pages_node
[nid
]) {
128 update_and_free_page(page
);
129 surplus_huge_pages
--;
130 surplus_huge_pages_node
[nid
]--;
132 enqueue_huge_page(page
);
134 spin_unlock(&hugetlb_lock
);
136 hugetlb_put_quota(mapping
, 1);
137 set_page_private(page
, 0);
141 * Increment or decrement surplus_huge_pages. Keep node-specific counters
142 * balanced by operating on them in a round-robin fashion.
143 * Returns 1 if an adjustment was made.
145 static int adjust_pool_surplus(int delta
)
151 VM_BUG_ON(delta
!= -1 && delta
!= 1);
153 nid
= next_node(nid
, node_online_map
);
154 if (nid
== MAX_NUMNODES
)
155 nid
= first_node(node_online_map
);
157 /* To shrink on this node, there must be a surplus page */
158 if (delta
< 0 && !surplus_huge_pages_node
[nid
])
160 /* Surplus cannot exceed the total number of pages */
161 if (delta
> 0 && surplus_huge_pages_node
[nid
] >=
162 nr_huge_pages_node
[nid
])
165 surplus_huge_pages
+= delta
;
166 surplus_huge_pages_node
[nid
] += delta
;
169 } while (nid
!= prev_nid
);
175 static struct page
*alloc_fresh_huge_page_node(int nid
)
179 page
= alloc_pages_node(nid
,
180 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|__GFP_NOWARN
,
183 set_compound_page_dtor(page
, free_huge_page
);
184 spin_lock(&hugetlb_lock
);
186 nr_huge_pages_node
[nid
]++;
187 spin_unlock(&hugetlb_lock
);
188 put_page(page
); /* free it into the hugepage allocator */
194 static int alloc_fresh_huge_page(void)
201 start_nid
= hugetlb_next_nid
;
204 page
= alloc_fresh_huge_page_node(hugetlb_next_nid
);
208 * Use a helper variable to find the next node and then
209 * copy it back to hugetlb_next_nid afterwards:
210 * otherwise there's a window in which a racer might
211 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
212 * But we don't need to use a spin_lock here: it really
213 * doesn't matter if occasionally a racer chooses the
214 * same nid as we do. Move nid forward in the mask even
215 * if we just successfully allocated a hugepage so that
216 * the next caller gets hugepages on the next node.
218 next_nid
= next_node(hugetlb_next_nid
, node_online_map
);
219 if (next_nid
== MAX_NUMNODES
)
220 next_nid
= first_node(node_online_map
);
221 hugetlb_next_nid
= next_nid
;
222 } while (!page
&& hugetlb_next_nid
!= start_nid
);
227 static struct page
*alloc_buddy_huge_page(struct vm_area_struct
*vma
,
228 unsigned long address
)
234 * Assume we will successfully allocate the surplus page to
235 * prevent racing processes from causing the surplus to exceed
238 * This however introduces a different race, where a process B
239 * tries to grow the static hugepage pool while alloc_pages() is
240 * called by process A. B will only examine the per-node
241 * counters in determining if surplus huge pages can be
242 * converted to normal huge pages in adjust_pool_surplus(). A
243 * won't be able to increment the per-node counter, until the
244 * lock is dropped by B, but B doesn't drop hugetlb_lock until
245 * no more huge pages can be converted from surplus to normal
246 * state (and doesn't try to convert again). Thus, we have a
247 * case where a surplus huge page exists, the pool is grown, and
248 * the surplus huge page still exists after, even though it
249 * should just have been converted to a normal huge page. This
250 * does not leak memory, though, as the hugepage will be freed
251 * once it is out of use. It also does not allow the counters to
252 * go out of whack in adjust_pool_surplus() as we don't modify
253 * the node values until we've gotten the hugepage and only the
254 * per-node value is checked there.
256 spin_lock(&hugetlb_lock
);
257 if (surplus_huge_pages
>= nr_overcommit_huge_pages
) {
258 spin_unlock(&hugetlb_lock
);
262 surplus_huge_pages
++;
264 spin_unlock(&hugetlb_lock
);
266 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|__GFP_NOWARN
,
269 spin_lock(&hugetlb_lock
);
271 nid
= page_to_nid(page
);
272 set_compound_page_dtor(page
, free_huge_page
);
274 * We incremented the global counters already
276 nr_huge_pages_node
[nid
]++;
277 surplus_huge_pages_node
[nid
]++;
280 surplus_huge_pages
--;
282 spin_unlock(&hugetlb_lock
);
288 * Increase the hugetlb pool such that it can accomodate a reservation
291 static int gather_surplus_pages(int delta
)
293 struct list_head surplus_list
;
294 struct page
*page
, *tmp
;
296 int needed
, allocated
;
298 needed
= (resv_huge_pages
+ delta
) - free_huge_pages
;
303 INIT_LIST_HEAD(&surplus_list
);
307 spin_unlock(&hugetlb_lock
);
308 for (i
= 0; i
< needed
; i
++) {
309 page
= alloc_buddy_huge_page(NULL
, 0);
312 * We were not able to allocate enough pages to
313 * satisfy the entire reservation so we free what
314 * we've allocated so far.
316 spin_lock(&hugetlb_lock
);
321 list_add(&page
->lru
, &surplus_list
);
326 * After retaking hugetlb_lock, we need to recalculate 'needed'
327 * because either resv_huge_pages or free_huge_pages may have changed.
329 spin_lock(&hugetlb_lock
);
330 needed
= (resv_huge_pages
+ delta
) - (free_huge_pages
+ allocated
);
335 * The surplus_list now contains _at_least_ the number of extra pages
336 * needed to accomodate the reservation. Add the appropriate number
337 * of pages to the hugetlb pool and free the extras back to the buddy
343 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
344 list_del(&page
->lru
);
346 enqueue_huge_page(page
);
349 * Decrement the refcount and free the page using its
350 * destructor. This must be done with hugetlb_lock
351 * unlocked which is safe because free_huge_page takes
352 * hugetlb_lock before deciding how to free the page.
354 spin_unlock(&hugetlb_lock
);
356 spin_lock(&hugetlb_lock
);
364 * When releasing a hugetlb pool reservation, any surplus pages that were
365 * allocated to satisfy the reservation must be explicitly freed if they were
368 static void return_unused_surplus_pages(unsigned long unused_resv_pages
)
372 unsigned long nr_pages
;
374 nr_pages
= min(unused_resv_pages
, surplus_huge_pages
);
377 nid
= next_node(nid
, node_online_map
);
378 if (nid
== MAX_NUMNODES
)
379 nid
= first_node(node_online_map
);
381 if (!surplus_huge_pages_node
[nid
])
384 if (!list_empty(&hugepage_freelists
[nid
])) {
385 page
= list_entry(hugepage_freelists
[nid
].next
,
387 list_del(&page
->lru
);
388 update_and_free_page(page
);
390 free_huge_pages_node
[nid
]--;
391 surplus_huge_pages
--;
392 surplus_huge_pages_node
[nid
]--;
399 static struct page
*alloc_huge_page_shared(struct vm_area_struct
*vma
,
404 spin_lock(&hugetlb_lock
);
405 page
= dequeue_huge_page(vma
, addr
);
406 spin_unlock(&hugetlb_lock
);
407 return page
? page
: ERR_PTR(-VM_FAULT_OOM
);
410 static struct page
*alloc_huge_page_private(struct vm_area_struct
*vma
,
413 struct page
*page
= NULL
;
415 if (hugetlb_get_quota(vma
->vm_file
->f_mapping
, 1))
416 return ERR_PTR(-VM_FAULT_SIGBUS
);
418 spin_lock(&hugetlb_lock
);
419 if (free_huge_pages
> resv_huge_pages
)
420 page
= dequeue_huge_page(vma
, addr
);
421 spin_unlock(&hugetlb_lock
);
423 page
= alloc_buddy_huge_page(vma
, addr
);
425 hugetlb_put_quota(vma
->vm_file
->f_mapping
, 1);
426 return ERR_PTR(-VM_FAULT_OOM
);
432 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
436 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
438 if (vma
->vm_flags
& VM_MAYSHARE
)
439 page
= alloc_huge_page_shared(vma
, addr
);
441 page
= alloc_huge_page_private(vma
, addr
);
444 set_page_refcounted(page
);
445 set_page_private(page
, (unsigned long) mapping
);
450 static int __init
hugetlb_init(void)
454 if (HPAGE_SHIFT
== 0)
457 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
458 INIT_LIST_HEAD(&hugepage_freelists
[i
]);
460 hugetlb_next_nid
= first_node(node_online_map
);
462 for (i
= 0; i
< max_huge_pages
; ++i
) {
463 if (!alloc_fresh_huge_page())
466 max_huge_pages
= free_huge_pages
= nr_huge_pages
= i
;
467 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages
);
470 module_init(hugetlb_init
);
472 static int __init
hugetlb_setup(char *s
)
474 if (sscanf(s
, "%lu", &max_huge_pages
) <= 0)
478 __setup("hugepages=", hugetlb_setup
);
480 static unsigned int cpuset_mems_nr(unsigned int *array
)
485 for_each_node_mask(node
, cpuset_current_mems_allowed
)
492 #ifdef CONFIG_HIGHMEM
493 static void try_to_free_low(unsigned long count
)
497 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
498 struct page
*page
, *next
;
499 list_for_each_entry_safe(page
, next
, &hugepage_freelists
[i
], lru
) {
500 if (count
>= nr_huge_pages
)
502 if (PageHighMem(page
))
504 list_del(&page
->lru
);
505 update_and_free_page(page
);
507 free_huge_pages_node
[page_to_nid(page
)]--;
512 static inline void try_to_free_low(unsigned long count
)
517 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
518 static unsigned long set_max_huge_pages(unsigned long count
)
520 unsigned long min_count
, ret
;
523 * Increase the pool size
524 * First take pages out of surplus state. Then make up the
525 * remaining difference by allocating fresh huge pages.
527 * We might race with alloc_buddy_huge_page() here and be unable
528 * to convert a surplus huge page to a normal huge page. That is
529 * not critical, though, it just means the overall size of the
530 * pool might be one hugepage larger than it needs to be, but
531 * within all the constraints specified by the sysctls.
533 spin_lock(&hugetlb_lock
);
534 while (surplus_huge_pages
&& count
> persistent_huge_pages
) {
535 if (!adjust_pool_surplus(-1))
539 while (count
> persistent_huge_pages
) {
542 * If this allocation races such that we no longer need the
543 * page, free_huge_page will handle it by freeing the page
544 * and reducing the surplus.
546 spin_unlock(&hugetlb_lock
);
547 ret
= alloc_fresh_huge_page();
548 spin_lock(&hugetlb_lock
);
555 * Decrease the pool size
556 * First return free pages to the buddy allocator (being careful
557 * to keep enough around to satisfy reservations). Then place
558 * pages into surplus state as needed so the pool will shrink
559 * to the desired size as pages become free.
561 * By placing pages into the surplus state independent of the
562 * overcommit value, we are allowing the surplus pool size to
563 * exceed overcommit. There are few sane options here. Since
564 * alloc_buddy_huge_page() is checking the global counter,
565 * though, we'll note that we're not allowed to exceed surplus
566 * and won't grow the pool anywhere else. Not until one of the
567 * sysctls are changed, or the surplus pages go out of use.
569 min_count
= resv_huge_pages
+ nr_huge_pages
- free_huge_pages
;
570 min_count
= max(count
, min_count
);
571 try_to_free_low(min_count
);
572 while (min_count
< persistent_huge_pages
) {
573 struct page
*page
= dequeue_huge_page(NULL
, 0);
576 update_and_free_page(page
);
578 while (count
< persistent_huge_pages
) {
579 if (!adjust_pool_surplus(1))
583 ret
= persistent_huge_pages
;
584 spin_unlock(&hugetlb_lock
);
588 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
589 struct file
*file
, void __user
*buffer
,
590 size_t *length
, loff_t
*ppos
)
592 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
593 max_huge_pages
= set_max_huge_pages(max_huge_pages
);
597 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
598 struct file
*file
, void __user
*buffer
,
599 size_t *length
, loff_t
*ppos
)
601 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
602 if (hugepages_treat_as_movable
)
603 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
605 htlb_alloc_mask
= GFP_HIGHUSER
;
609 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
610 struct file
*file
, void __user
*buffer
,
611 size_t *length
, loff_t
*ppos
)
613 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
614 spin_lock(&hugetlb_lock
);
615 nr_overcommit_huge_pages
= sysctl_overcommit_huge_pages
;
616 spin_unlock(&hugetlb_lock
);
620 #endif /* CONFIG_SYSCTL */
622 int hugetlb_report_meminfo(char *buf
)
625 "HugePages_Total: %5lu\n"
626 "HugePages_Free: %5lu\n"
627 "HugePages_Rsvd: %5lu\n"
628 "HugePages_Surp: %5lu\n"
629 "Hugepagesize: %5lu kB\n",
637 int hugetlb_report_node_meminfo(int nid
, char *buf
)
640 "Node %d HugePages_Total: %5u\n"
641 "Node %d HugePages_Free: %5u\n",
642 nid
, nr_huge_pages_node
[nid
],
643 nid
, free_huge_pages_node
[nid
]);
646 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
647 unsigned long hugetlb_total_pages(void)
649 return nr_huge_pages
* (HPAGE_SIZE
/ PAGE_SIZE
);
653 * We cannot handle pagefaults against hugetlb pages at all. They cause
654 * handle_mm_fault() to try to instantiate regular-sized pages in the
655 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
658 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
664 struct vm_operations_struct hugetlb_vm_ops
= {
665 .fault
= hugetlb_vm_op_fault
,
668 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
675 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
677 entry
= pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
679 entry
= pte_mkyoung(entry
);
680 entry
= pte_mkhuge(entry
);
685 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
686 unsigned long address
, pte_t
*ptep
)
690 entry
= pte_mkwrite(pte_mkdirty(*ptep
));
691 if (ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
692 update_mmu_cache(vma
, address
, entry
);
697 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
698 struct vm_area_struct
*vma
)
700 pte_t
*src_pte
, *dst_pte
, entry
;
701 struct page
*ptepage
;
705 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
707 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= HPAGE_SIZE
) {
708 src_pte
= huge_pte_offset(src
, addr
);
711 dst_pte
= huge_pte_alloc(dst
, addr
);
715 /* If the pagetables are shared don't copy or take references */
716 if (dst_pte
== src_pte
)
719 spin_lock(&dst
->page_table_lock
);
720 spin_lock(&src
->page_table_lock
);
721 if (!pte_none(*src_pte
)) {
723 ptep_set_wrprotect(src
, addr
, src_pte
);
725 ptepage
= pte_page(entry
);
727 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
729 spin_unlock(&src
->page_table_lock
);
730 spin_unlock(&dst
->page_table_lock
);
738 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
741 struct mm_struct
*mm
= vma
->vm_mm
;
742 unsigned long address
;
748 * A page gathering list, protected by per file i_mmap_lock. The
749 * lock is used to avoid list corruption from multiple unmapping
750 * of the same page since we are using page->lru.
752 LIST_HEAD(page_list
);
754 WARN_ON(!is_vm_hugetlb_page(vma
));
755 BUG_ON(start
& ~HPAGE_MASK
);
756 BUG_ON(end
& ~HPAGE_MASK
);
758 spin_lock(&mm
->page_table_lock
);
759 for (address
= start
; address
< end
; address
+= HPAGE_SIZE
) {
760 ptep
= huge_pte_offset(mm
, address
);
764 if (huge_pmd_unshare(mm
, &address
, ptep
))
767 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
771 page
= pte_page(pte
);
773 set_page_dirty(page
);
774 list_add(&page
->lru
, &page_list
);
776 spin_unlock(&mm
->page_table_lock
);
777 flush_tlb_range(vma
, start
, end
);
778 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
779 list_del(&page
->lru
);
784 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
788 * It is undesirable to test vma->vm_file as it should be non-null
789 * for valid hugetlb area. However, vm_file will be NULL in the error
790 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
791 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
792 * to clean up. Since no pte has actually been setup, it is safe to
793 * do nothing in this case.
796 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
797 __unmap_hugepage_range(vma
, start
, end
);
798 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
802 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
803 unsigned long address
, pte_t
*ptep
, pte_t pte
)
805 struct page
*old_page
, *new_page
;
808 old_page
= pte_page(pte
);
810 /* If no-one else is actually using this page, avoid the copy
811 * and just make the page writable */
812 avoidcopy
= (page_count(old_page
) == 1);
814 set_huge_ptep_writable(vma
, address
, ptep
);
818 page_cache_get(old_page
);
819 new_page
= alloc_huge_page(vma
, address
);
821 if (IS_ERR(new_page
)) {
822 page_cache_release(old_page
);
823 return -PTR_ERR(new_page
);
826 spin_unlock(&mm
->page_table_lock
);
827 copy_huge_page(new_page
, old_page
, address
, vma
);
828 __SetPageUptodate(new_page
);
829 spin_lock(&mm
->page_table_lock
);
831 ptep
= huge_pte_offset(mm
, address
& HPAGE_MASK
);
832 if (likely(pte_same(*ptep
, pte
))) {
834 set_huge_pte_at(mm
, address
, ptep
,
835 make_huge_pte(vma
, new_page
, 1));
836 /* Make the old page be freed below */
839 page_cache_release(new_page
);
840 page_cache_release(old_page
);
844 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
845 unsigned long address
, pte_t
*ptep
, int write_access
)
847 int ret
= VM_FAULT_SIGBUS
;
851 struct address_space
*mapping
;
854 mapping
= vma
->vm_file
->f_mapping
;
855 idx
= ((address
- vma
->vm_start
) >> HPAGE_SHIFT
)
856 + (vma
->vm_pgoff
>> (HPAGE_SHIFT
- PAGE_SHIFT
));
859 * Use page lock to guard against racing truncation
860 * before we get page_table_lock.
863 page
= find_lock_page(mapping
, idx
);
865 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
868 page
= alloc_huge_page(vma
, address
);
870 ret
= -PTR_ERR(page
);
873 clear_huge_page(page
, address
);
874 __SetPageUptodate(page
);
876 if (vma
->vm_flags
& VM_SHARED
) {
878 struct inode
*inode
= mapping
->host
;
880 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
888 spin_lock(&inode
->i_lock
);
889 inode
->i_blocks
+= BLOCKS_PER_HUGEPAGE
;
890 spin_unlock(&inode
->i_lock
);
895 spin_lock(&mm
->page_table_lock
);
896 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
901 if (!pte_none(*ptep
))
904 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
905 && (vma
->vm_flags
& VM_SHARED
)));
906 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
908 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
909 /* Optimization, do the COW without a second fault */
910 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
);
913 spin_unlock(&mm
->page_table_lock
);
919 spin_unlock(&mm
->page_table_lock
);
925 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
926 unsigned long address
, int write_access
)
931 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
933 ptep
= huge_pte_alloc(mm
, address
);
938 * Serialize hugepage allocation and instantiation, so that we don't
939 * get spurious allocation failures if two CPUs race to instantiate
940 * the same page in the page cache.
942 mutex_lock(&hugetlb_instantiation_mutex
);
944 if (pte_none(entry
)) {
945 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
946 mutex_unlock(&hugetlb_instantiation_mutex
);
952 spin_lock(&mm
->page_table_lock
);
953 /* Check for a racing update before calling hugetlb_cow */
954 if (likely(pte_same(entry
, *ptep
)))
955 if (write_access
&& !pte_write(entry
))
956 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
);
957 spin_unlock(&mm
->page_table_lock
);
958 mutex_unlock(&hugetlb_instantiation_mutex
);
963 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
964 struct page
**pages
, struct vm_area_struct
**vmas
,
965 unsigned long *position
, int *length
, int i
,
968 unsigned long pfn_offset
;
969 unsigned long vaddr
= *position
;
970 int remainder
= *length
;
972 spin_lock(&mm
->page_table_lock
);
973 while (vaddr
< vma
->vm_end
&& remainder
) {
978 * Some archs (sparc64, sh*) have multiple pte_ts to
979 * each hugepage. We have to make * sure we get the
980 * first, for the page indexing below to work.
982 pte
= huge_pte_offset(mm
, vaddr
& HPAGE_MASK
);
984 if (!pte
|| pte_none(*pte
) || (write
&& !pte_write(*pte
))) {
987 spin_unlock(&mm
->page_table_lock
);
988 ret
= hugetlb_fault(mm
, vma
, vaddr
, write
);
989 spin_lock(&mm
->page_table_lock
);
990 if (!(ret
& VM_FAULT_ERROR
))
999 pfn_offset
= (vaddr
& ~HPAGE_MASK
) >> PAGE_SHIFT
;
1000 page
= pte_page(*pte
);
1004 pages
[i
] = page
+ pfn_offset
;
1014 if (vaddr
< vma
->vm_end
&& remainder
&&
1015 pfn_offset
< HPAGE_SIZE
/PAGE_SIZE
) {
1017 * We use pfn_offset to avoid touching the pageframes
1018 * of this compound page.
1023 spin_unlock(&mm
->page_table_lock
);
1024 *length
= remainder
;
1030 void hugetlb_change_protection(struct vm_area_struct
*vma
,
1031 unsigned long address
, unsigned long end
, pgprot_t newprot
)
1033 struct mm_struct
*mm
= vma
->vm_mm
;
1034 unsigned long start
= address
;
1038 BUG_ON(address
>= end
);
1039 flush_cache_range(vma
, address
, end
);
1041 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1042 spin_lock(&mm
->page_table_lock
);
1043 for (; address
< end
; address
+= HPAGE_SIZE
) {
1044 ptep
= huge_pte_offset(mm
, address
);
1047 if (huge_pmd_unshare(mm
, &address
, ptep
))
1049 if (!pte_none(*ptep
)) {
1050 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1051 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
1052 set_huge_pte_at(mm
, address
, ptep
, pte
);
1055 spin_unlock(&mm
->page_table_lock
);
1056 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1058 flush_tlb_range(vma
, start
, end
);
1061 struct file_region
{
1062 struct list_head link
;
1067 static long region_add(struct list_head
*head
, long f
, long t
)
1069 struct file_region
*rg
, *nrg
, *trg
;
1071 /* Locate the region we are either in or before. */
1072 list_for_each_entry(rg
, head
, link
)
1076 /* Round our left edge to the current segment if it encloses us. */
1080 /* Check for and consume any regions we now overlap with. */
1082 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
1083 if (&rg
->link
== head
)
1088 /* If this area reaches higher then extend our area to
1089 * include it completely. If this is not the first area
1090 * which we intend to reuse, free it. */
1094 list_del(&rg
->link
);
1103 static long region_chg(struct list_head
*head
, long f
, long t
)
1105 struct file_region
*rg
, *nrg
;
1108 /* Locate the region we are before or in. */
1109 list_for_each_entry(rg
, head
, link
)
1113 /* If we are below the current region then a new region is required.
1114 * Subtle, allocate a new region at the position but make it zero
1115 * size such that we can guarantee to record the reservation. */
1116 if (&rg
->link
== head
|| t
< rg
->from
) {
1117 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
1122 INIT_LIST_HEAD(&nrg
->link
);
1123 list_add(&nrg
->link
, rg
->link
.prev
);
1128 /* Round our left edge to the current segment if it encloses us. */
1133 /* Check for and consume any regions we now overlap with. */
1134 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
1135 if (&rg
->link
== head
)
1140 /* We overlap with this area, if it extends futher than
1141 * us then we must extend ourselves. Account for its
1142 * existing reservation. */
1147 chg
-= rg
->to
- rg
->from
;
1152 static long region_truncate(struct list_head
*head
, long end
)
1154 struct file_region
*rg
, *trg
;
1157 /* Locate the region we are either in or before. */
1158 list_for_each_entry(rg
, head
, link
)
1161 if (&rg
->link
== head
)
1164 /* If we are in the middle of a region then adjust it. */
1165 if (end
> rg
->from
) {
1168 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
1171 /* Drop any remaining regions. */
1172 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
1173 if (&rg
->link
== head
)
1175 chg
+= rg
->to
- rg
->from
;
1176 list_del(&rg
->link
);
1182 static int hugetlb_acct_memory(long delta
)
1186 spin_lock(&hugetlb_lock
);
1188 * When cpuset is configured, it breaks the strict hugetlb page
1189 * reservation as the accounting is done on a global variable. Such
1190 * reservation is completely rubbish in the presence of cpuset because
1191 * the reservation is not checked against page availability for the
1192 * current cpuset. Application can still potentially OOM'ed by kernel
1193 * with lack of free htlb page in cpuset that the task is in.
1194 * Attempt to enforce strict accounting with cpuset is almost
1195 * impossible (or too ugly) because cpuset is too fluid that
1196 * task or memory node can be dynamically moved between cpusets.
1198 * The change of semantics for shared hugetlb mapping with cpuset is
1199 * undesirable. However, in order to preserve some of the semantics,
1200 * we fall back to check against current free page availability as
1201 * a best attempt and hopefully to minimize the impact of changing
1202 * semantics that cpuset has.
1205 if (gather_surplus_pages(delta
) < 0)
1208 if (delta
> cpuset_mems_nr(free_huge_pages_node
))
1213 resv_huge_pages
+= delta
;
1215 return_unused_surplus_pages((unsigned long) -delta
);
1218 spin_unlock(&hugetlb_lock
);
1222 int hugetlb_reserve_pages(struct inode
*inode
, long from
, long to
)
1226 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
1230 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
1232 ret
= hugetlb_acct_memory(chg
);
1234 hugetlb_put_quota(inode
->i_mapping
, chg
);
1237 region_add(&inode
->i_mapping
->private_list
, from
, to
);
1241 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
1243 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
1245 spin_lock(&inode
->i_lock
);
1246 inode
->i_blocks
-= BLOCKS_PER_HUGEPAGE
* freed
;
1247 spin_unlock(&inode
->i_lock
);
1249 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
1250 hugetlb_acct_memory(-(chg
- freed
));