[PATCH] slab: object to index mapping cleanup
[linux-2.6/kmemtrace.git] / mm / slab.c
blob3d18b711ab8289ce94736a7a9a4114e15efc78c8
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/seq_file.h>
98 #include <linux/notifier.h>
99 #include <linux/kallsyms.h>
100 #include <linux/cpu.h>
101 #include <linux/sysctl.h>
102 #include <linux/module.h>
103 #include <linux/rcupdate.h>
104 #include <linux/string.h>
105 #include <linux/nodemask.h>
106 #include <linux/mempolicy.h>
107 #include <linux/mutex.h>
109 #include <asm/uaccess.h>
110 #include <asm/cacheflush.h>
111 #include <asm/tlbflush.h>
112 #include <asm/page.h>
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 #ifdef CONFIG_DEBUG_SLAB
126 #define DEBUG 1
127 #define STATS 1
128 #define FORCED_DEBUG 1
129 #else
130 #define DEBUG 0
131 #define STATS 0
132 #define FORCED_DEBUG 0
133 #endif
135 /* Shouldn't this be in a header file somewhere? */
136 #define BYTES_PER_WORD sizeof(void *)
138 #ifndef cache_line_size
139 #define cache_line_size() L1_CACHE_BYTES
140 #endif
142 #ifndef ARCH_KMALLOC_MINALIGN
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
151 #define ARCH_KMALLOC_MINALIGN 0
152 #endif
154 #ifndef ARCH_SLAB_MINALIGN
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
162 #define ARCH_SLAB_MINALIGN 0
163 #endif
165 #ifndef ARCH_KMALLOC_FLAGS
166 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167 #endif
169 /* Legal flag mask for kmem_cache_create(). */
170 #if DEBUG
171 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177 #else
178 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182 #endif
185 * kmem_bufctl_t:
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 typedef unsigned int kmem_bufctl_t;
204 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
208 /* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
211 static unsigned long offslab_limit;
214 * struct slab
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
230 * struct slab_rcu
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
252 * struct array_cache
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
277 /* bootstrap: The caches do not work without cpuarrays anymore,
278 * but the cpuarrays are allocated from the generic caches...
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init {
282 struct array_cache cache;
283 void *entries[BOOT_CPUCACHE_ENTRIES];
287 * The slab lists for all objects.
289 struct kmem_list3 {
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned long next_reap;
295 int free_touched;
296 unsigned int free_limit;
297 unsigned int colour_next; /* Per-node cache coloring */
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
304 * Need this for bootstrapping a per node allocator.
306 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308 #define CACHE_CACHE 0
309 #define SIZE_AC 1
310 #define SIZE_L3 (1 + MAX_NUMNODES)
313 * This function must be completely optimized away if
314 * a constant is passed to it. Mostly the same as
315 * what is in linux/slab.h except it returns an
316 * index.
318 static __always_inline int index_of(const size_t size)
320 extern void __bad_size(void);
322 if (__builtin_constant_p(size)) {
323 int i = 0;
325 #define CACHE(x) \
326 if (size <=x) \
327 return i; \
328 else \
329 i++;
330 #include "linux/kmalloc_sizes.h"
331 #undef CACHE
332 __bad_size();
333 } else
334 __bad_size();
335 return 0;
338 #define INDEX_AC index_of(sizeof(struct arraycache_init))
339 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
341 static void kmem_list3_init(struct kmem_list3 *parent)
343 INIT_LIST_HEAD(&parent->slabs_full);
344 INIT_LIST_HEAD(&parent->slabs_partial);
345 INIT_LIST_HEAD(&parent->slabs_free);
346 parent->shared = NULL;
347 parent->alien = NULL;
348 parent->colour_next = 0;
349 spin_lock_init(&parent->list_lock);
350 parent->free_objects = 0;
351 parent->free_touched = 0;
354 #define MAKE_LIST(cachep, listp, slab, nodeid) \
355 do { \
356 INIT_LIST_HEAD(listp); \
357 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
358 } while (0)
360 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
361 do { \
362 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
365 } while (0)
368 * struct kmem_cache
370 * manages a cache.
373 struct kmem_cache {
374 /* 1) per-cpu data, touched during every alloc/free */
375 struct array_cache *array[NR_CPUS];
376 unsigned int batchcount;
377 unsigned int limit;
378 unsigned int shared;
379 unsigned int buffer_size;
380 /* 2) touched by every alloc & free from the backend */
381 struct kmem_list3 *nodelists[MAX_NUMNODES];
382 unsigned int flags; /* constant flags */
383 unsigned int num; /* # of objs per slab */
384 spinlock_t spinlock;
386 /* 3) cache_grow/shrink */
387 /* order of pgs per slab (2^n) */
388 unsigned int gfporder;
390 /* force GFP flags, e.g. GFP_DMA */
391 gfp_t gfpflags;
393 size_t colour; /* cache colouring range */
394 unsigned int colour_off; /* colour offset */
395 struct kmem_cache *slabp_cache;
396 unsigned int slab_size;
397 unsigned int dflags; /* dynamic flags */
399 /* constructor func */
400 void (*ctor) (void *, struct kmem_cache *, unsigned long);
402 /* de-constructor func */
403 void (*dtor) (void *, struct kmem_cache *, unsigned long);
405 /* 4) cache creation/removal */
406 const char *name;
407 struct list_head next;
409 /* 5) statistics */
410 #if STATS
411 unsigned long num_active;
412 unsigned long num_allocations;
413 unsigned long high_mark;
414 unsigned long grown;
415 unsigned long reaped;
416 unsigned long errors;
417 unsigned long max_freeable;
418 unsigned long node_allocs;
419 unsigned long node_frees;
420 atomic_t allochit;
421 atomic_t allocmiss;
422 atomic_t freehit;
423 atomic_t freemiss;
424 #endif
425 #if DEBUG
427 * If debugging is enabled, then the allocator can add additional
428 * fields and/or padding to every object. buffer_size contains the total
429 * object size including these internal fields, the following two
430 * variables contain the offset to the user object and its size.
432 int obj_offset;
433 int obj_size;
434 #endif
437 #define CFLGS_OFF_SLAB (0x80000000UL)
438 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
440 #define BATCHREFILL_LIMIT 16
441 /* Optimization question: fewer reaps means less
442 * probability for unnessary cpucache drain/refill cycles.
444 * OTOH the cpuarrays can contain lots of objects,
445 * which could lock up otherwise freeable slabs.
447 #define REAPTIMEOUT_CPUC (2*HZ)
448 #define REAPTIMEOUT_LIST3 (4*HZ)
450 #if STATS
451 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
452 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
453 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454 #define STATS_INC_GROWN(x) ((x)->grown++)
455 #define STATS_INC_REAPED(x) ((x)->reaped++)
456 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
457 (x)->high_mark = (x)->num_active; \
458 } while (0)
459 #define STATS_INC_ERR(x) ((x)->errors++)
460 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
461 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
462 #define STATS_SET_FREEABLE(x, i) \
463 do { if ((x)->max_freeable < i) \
464 (x)->max_freeable = i; \
465 } while (0)
467 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
468 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
469 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
470 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
471 #else
472 #define STATS_INC_ACTIVE(x) do { } while (0)
473 #define STATS_DEC_ACTIVE(x) do { } while (0)
474 #define STATS_INC_ALLOCED(x) do { } while (0)
475 #define STATS_INC_GROWN(x) do { } while (0)
476 #define STATS_INC_REAPED(x) do { } while (0)
477 #define STATS_SET_HIGH(x) do { } while (0)
478 #define STATS_INC_ERR(x) do { } while (0)
479 #define STATS_INC_NODEALLOCS(x) do { } while (0)
480 #define STATS_INC_NODEFREES(x) do { } while (0)
481 #define STATS_SET_FREEABLE(x, i) \
482 do { } while (0)
484 #define STATS_INC_ALLOCHIT(x) do { } while (0)
485 #define STATS_INC_ALLOCMISS(x) do { } while (0)
486 #define STATS_INC_FREEHIT(x) do { } while (0)
487 #define STATS_INC_FREEMISS(x) do { } while (0)
488 #endif
490 #if DEBUG
491 /* Magic nums for obj red zoning.
492 * Placed in the first word before and the first word after an obj.
494 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
495 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
497 /* ...and for poisoning */
498 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
499 #define POISON_FREE 0x6b /* for use-after-free poisoning */
500 #define POISON_END 0xa5 /* end-byte of poisoning */
502 /* memory layout of objects:
503 * 0 : objp
504 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
505 * the end of an object is aligned with the end of the real
506 * allocation. Catches writes behind the end of the allocation.
507 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
508 * redzone word.
509 * cachep->obj_offset: The real object.
510 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
511 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
513 static int obj_offset(struct kmem_cache *cachep)
515 return cachep->obj_offset;
518 static int obj_size(struct kmem_cache *cachep)
520 return cachep->obj_size;
523 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
525 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
526 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
529 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
531 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
532 if (cachep->flags & SLAB_STORE_USER)
533 return (unsigned long *)(objp + cachep->buffer_size -
534 2 * BYTES_PER_WORD);
535 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
538 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
540 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
541 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
544 #else
546 #define obj_offset(x) 0
547 #define obj_size(cachep) (cachep->buffer_size)
548 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
549 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
550 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
552 #endif
555 * Maximum size of an obj (in 2^order pages)
556 * and absolute limit for the gfp order.
558 #if defined(CONFIG_LARGE_ALLOCS)
559 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
560 #define MAX_GFP_ORDER 13 /* up to 32Mb */
561 #elif defined(CONFIG_MMU)
562 #define MAX_OBJ_ORDER 5 /* 32 pages */
563 #define MAX_GFP_ORDER 5 /* 32 pages */
564 #else
565 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
566 #define MAX_GFP_ORDER 8 /* up to 1Mb */
567 #endif
570 * Do not go above this order unless 0 objects fit into the slab.
572 #define BREAK_GFP_ORDER_HI 1
573 #define BREAK_GFP_ORDER_LO 0
574 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
576 /* Functions for storing/retrieving the cachep and or slab from the
577 * global 'mem_map'. These are used to find the slab an obj belongs to.
578 * With kfree(), these are used to find the cache which an obj belongs to.
580 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
582 page->lru.next = (struct list_head *)cache;
585 static inline struct kmem_cache *page_get_cache(struct page *page)
587 return (struct kmem_cache *)page->lru.next;
590 static inline void page_set_slab(struct page *page, struct slab *slab)
592 page->lru.prev = (struct list_head *)slab;
595 static inline struct slab *page_get_slab(struct page *page)
597 return (struct slab *)page->lru.prev;
600 static inline struct kmem_cache *virt_to_cache(const void *obj)
602 struct page *page = virt_to_page(obj);
603 return page_get_cache(page);
606 static inline struct slab *virt_to_slab(const void *obj)
608 struct page *page = virt_to_page(obj);
609 return page_get_slab(page);
612 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
613 unsigned int idx)
615 return slab->s_mem + cache->buffer_size * idx;
618 static inline unsigned int obj_to_index(struct kmem_cache *cache,
619 struct slab *slab, void *obj)
621 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
624 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
625 struct cache_sizes malloc_sizes[] = {
626 #define CACHE(x) { .cs_size = (x) },
627 #include <linux/kmalloc_sizes.h>
628 CACHE(ULONG_MAX)
629 #undef CACHE
631 EXPORT_SYMBOL(malloc_sizes);
633 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
634 struct cache_names {
635 char *name;
636 char *name_dma;
639 static struct cache_names __initdata cache_names[] = {
640 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
641 #include <linux/kmalloc_sizes.h>
642 {NULL,}
643 #undef CACHE
646 static struct arraycache_init initarray_cache __initdata =
647 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
648 static struct arraycache_init initarray_generic =
649 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
651 /* internal cache of cache description objs */
652 static struct kmem_cache cache_cache = {
653 .batchcount = 1,
654 .limit = BOOT_CPUCACHE_ENTRIES,
655 .shared = 1,
656 .buffer_size = sizeof(struct kmem_cache),
657 .flags = SLAB_NO_REAP,
658 .spinlock = SPIN_LOCK_UNLOCKED,
659 .name = "kmem_cache",
660 #if DEBUG
661 .obj_size = sizeof(struct kmem_cache),
662 #endif
665 /* Guard access to the cache-chain. */
666 static DEFINE_MUTEX(cache_chain_mutex);
667 static struct list_head cache_chain;
670 * vm_enough_memory() looks at this to determine how many
671 * slab-allocated pages are possibly freeable under pressure
673 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
675 atomic_t slab_reclaim_pages;
678 * chicken and egg problem: delay the per-cpu array allocation
679 * until the general caches are up.
681 static enum {
682 NONE,
683 PARTIAL_AC,
684 PARTIAL_L3,
685 FULL
686 } g_cpucache_up;
688 static DEFINE_PER_CPU(struct work_struct, reap_work);
690 static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
691 static void enable_cpucache(struct kmem_cache *cachep);
692 static void cache_reap(void *unused);
693 static int __node_shrink(struct kmem_cache *cachep, int node);
695 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
697 return cachep->array[smp_processor_id()];
700 static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
702 struct cache_sizes *csizep = malloc_sizes;
704 #if DEBUG
705 /* This happens if someone tries to call
706 * kmem_cache_create(), or __kmalloc(), before
707 * the generic caches are initialized.
709 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
710 #endif
711 while (size > csizep->cs_size)
712 csizep++;
715 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
716 * has cs_{dma,}cachep==NULL. Thus no special case
717 * for large kmalloc calls required.
719 if (unlikely(gfpflags & GFP_DMA))
720 return csizep->cs_dmacachep;
721 return csizep->cs_cachep;
724 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
726 return __find_general_cachep(size, gfpflags);
728 EXPORT_SYMBOL(kmem_find_general_cachep);
730 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
732 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
735 /* Calculate the number of objects and left-over bytes for a given
736 buffer size. */
737 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
738 size_t align, int flags, size_t *left_over,
739 unsigned int *num)
741 int nr_objs;
742 size_t mgmt_size;
743 size_t slab_size = PAGE_SIZE << gfporder;
746 * The slab management structure can be either off the slab or
747 * on it. For the latter case, the memory allocated for a
748 * slab is used for:
750 * - The struct slab
751 * - One kmem_bufctl_t for each object
752 * - Padding to respect alignment of @align
753 * - @buffer_size bytes for each object
755 * If the slab management structure is off the slab, then the
756 * alignment will already be calculated into the size. Because
757 * the slabs are all pages aligned, the objects will be at the
758 * correct alignment when allocated.
760 if (flags & CFLGS_OFF_SLAB) {
761 mgmt_size = 0;
762 nr_objs = slab_size / buffer_size;
764 if (nr_objs > SLAB_LIMIT)
765 nr_objs = SLAB_LIMIT;
766 } else {
768 * Ignore padding for the initial guess. The padding
769 * is at most @align-1 bytes, and @buffer_size is at
770 * least @align. In the worst case, this result will
771 * be one greater than the number of objects that fit
772 * into the memory allocation when taking the padding
773 * into account.
775 nr_objs = (slab_size - sizeof(struct slab)) /
776 (buffer_size + sizeof(kmem_bufctl_t));
779 * This calculated number will be either the right
780 * amount, or one greater than what we want.
782 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
783 > slab_size)
784 nr_objs--;
786 if (nr_objs > SLAB_LIMIT)
787 nr_objs = SLAB_LIMIT;
789 mgmt_size = slab_mgmt_size(nr_objs, align);
791 *num = nr_objs;
792 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
795 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
797 static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
799 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
800 function, cachep->name, msg);
801 dump_stack();
804 #ifdef CONFIG_NUMA
806 * Special reaping functions for NUMA systems called from cache_reap().
807 * These take care of doing round robin flushing of alien caches (containing
808 * objects freed on different nodes from which they were allocated) and the
809 * flushing of remote pcps by calling drain_node_pages.
811 static DEFINE_PER_CPU(unsigned long, reap_node);
813 static void init_reap_node(int cpu)
815 int node;
817 node = next_node(cpu_to_node(cpu), node_online_map);
818 if (node == MAX_NUMNODES)
819 node = 0;
821 __get_cpu_var(reap_node) = node;
824 static void next_reap_node(void)
826 int node = __get_cpu_var(reap_node);
829 * Also drain per cpu pages on remote zones
831 if (node != numa_node_id())
832 drain_node_pages(node);
834 node = next_node(node, node_online_map);
835 if (unlikely(node >= MAX_NUMNODES))
836 node = first_node(node_online_map);
837 __get_cpu_var(reap_node) = node;
840 #else
841 #define init_reap_node(cpu) do { } while (0)
842 #define next_reap_node(void) do { } while (0)
843 #endif
846 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
847 * via the workqueue/eventd.
848 * Add the CPU number into the expiration time to minimize the possibility of
849 * the CPUs getting into lockstep and contending for the global cache chain
850 * lock.
852 static void __devinit start_cpu_timer(int cpu)
854 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
857 * When this gets called from do_initcalls via cpucache_init(),
858 * init_workqueues() has already run, so keventd will be setup
859 * at that time.
861 if (keventd_up() && reap_work->func == NULL) {
862 init_reap_node(cpu);
863 INIT_WORK(reap_work, cache_reap, NULL);
864 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
868 static struct array_cache *alloc_arraycache(int node, int entries,
869 int batchcount)
871 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
872 struct array_cache *nc = NULL;
874 nc = kmalloc_node(memsize, GFP_KERNEL, node);
875 if (nc) {
876 nc->avail = 0;
877 nc->limit = entries;
878 nc->batchcount = batchcount;
879 nc->touched = 0;
880 spin_lock_init(&nc->lock);
882 return nc;
885 #ifdef CONFIG_NUMA
886 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
888 static struct array_cache **alloc_alien_cache(int node, int limit)
890 struct array_cache **ac_ptr;
891 int memsize = sizeof(void *) * MAX_NUMNODES;
892 int i;
894 if (limit > 1)
895 limit = 12;
896 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
897 if (ac_ptr) {
898 for_each_node(i) {
899 if (i == node || !node_online(i)) {
900 ac_ptr[i] = NULL;
901 continue;
903 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
904 if (!ac_ptr[i]) {
905 for (i--; i <= 0; i--)
906 kfree(ac_ptr[i]);
907 kfree(ac_ptr);
908 return NULL;
912 return ac_ptr;
915 static void free_alien_cache(struct array_cache **ac_ptr)
917 int i;
919 if (!ac_ptr)
920 return;
922 for_each_node(i)
923 kfree(ac_ptr[i]);
925 kfree(ac_ptr);
928 static void __drain_alien_cache(struct kmem_cache *cachep,
929 struct array_cache *ac, int node)
931 struct kmem_list3 *rl3 = cachep->nodelists[node];
933 if (ac->avail) {
934 spin_lock(&rl3->list_lock);
935 free_block(cachep, ac->entry, ac->avail, node);
936 ac->avail = 0;
937 spin_unlock(&rl3->list_lock);
942 * Called from cache_reap() to regularly drain alien caches round robin.
944 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
946 int node = __get_cpu_var(reap_node);
948 if (l3->alien) {
949 struct array_cache *ac = l3->alien[node];
950 if (ac && ac->avail) {
951 spin_lock_irq(&ac->lock);
952 __drain_alien_cache(cachep, ac, node);
953 spin_unlock_irq(&ac->lock);
958 static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
960 int i = 0;
961 struct array_cache *ac;
962 unsigned long flags;
964 for_each_online_node(i) {
965 ac = alien[i];
966 if (ac) {
967 spin_lock_irqsave(&ac->lock, flags);
968 __drain_alien_cache(cachep, ac, i);
969 spin_unlock_irqrestore(&ac->lock, flags);
973 #else
975 #define drain_alien_cache(cachep, alien) do { } while (0)
976 #define reap_alien(cachep, l3) do { } while (0)
978 static inline struct array_cache **alloc_alien_cache(int node, int limit)
980 return (struct array_cache **) 0x01020304ul;
983 static inline void free_alien_cache(struct array_cache **ac_ptr)
987 #endif
989 static int __devinit cpuup_callback(struct notifier_block *nfb,
990 unsigned long action, void *hcpu)
992 long cpu = (long)hcpu;
993 struct kmem_cache *cachep;
994 struct kmem_list3 *l3 = NULL;
995 int node = cpu_to_node(cpu);
996 int memsize = sizeof(struct kmem_list3);
998 switch (action) {
999 case CPU_UP_PREPARE:
1000 mutex_lock(&cache_chain_mutex);
1001 /* we need to do this right in the beginning since
1002 * alloc_arraycache's are going to use this list.
1003 * kmalloc_node allows us to add the slab to the right
1004 * kmem_list3 and not this cpu's kmem_list3
1007 list_for_each_entry(cachep, &cache_chain, next) {
1008 /* setup the size64 kmemlist for cpu before we can
1009 * begin anything. Make sure some other cpu on this
1010 * node has not already allocated this
1012 if (!cachep->nodelists[node]) {
1013 if (!(l3 = kmalloc_node(memsize,
1014 GFP_KERNEL, node)))
1015 goto bad;
1016 kmem_list3_init(l3);
1017 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1018 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1021 * The l3s don't come and go as CPUs come and
1022 * go. cache_chain_mutex is sufficient
1023 * protection here.
1025 cachep->nodelists[node] = l3;
1028 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1029 cachep->nodelists[node]->free_limit =
1030 (1 + nr_cpus_node(node)) *
1031 cachep->batchcount + cachep->num;
1032 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1035 /* Now we can go ahead with allocating the shared array's
1036 & array cache's */
1037 list_for_each_entry(cachep, &cache_chain, next) {
1038 struct array_cache *nc;
1039 struct array_cache *shared;
1040 struct array_cache **alien;
1042 nc = alloc_arraycache(node, cachep->limit,
1043 cachep->batchcount);
1044 if (!nc)
1045 goto bad;
1046 shared = alloc_arraycache(node,
1047 cachep->shared * cachep->batchcount,
1048 0xbaadf00d);
1049 if (!shared)
1050 goto bad;
1052 alien = alloc_alien_cache(node, cachep->limit);
1053 if (!alien)
1054 goto bad;
1055 cachep->array[cpu] = nc;
1057 l3 = cachep->nodelists[node];
1058 BUG_ON(!l3);
1060 spin_lock_irq(&l3->list_lock);
1061 if (!l3->shared) {
1063 * We are serialised from CPU_DEAD or
1064 * CPU_UP_CANCELLED by the cpucontrol lock
1066 l3->shared = shared;
1067 shared = NULL;
1069 #ifdef CONFIG_NUMA
1070 if (!l3->alien) {
1071 l3->alien = alien;
1072 alien = NULL;
1074 #endif
1075 spin_unlock_irq(&l3->list_lock);
1077 kfree(shared);
1078 free_alien_cache(alien);
1080 mutex_unlock(&cache_chain_mutex);
1081 break;
1082 case CPU_ONLINE:
1083 start_cpu_timer(cpu);
1084 break;
1085 #ifdef CONFIG_HOTPLUG_CPU
1086 case CPU_DEAD:
1088 * Even if all the cpus of a node are down, we don't free the
1089 * kmem_list3 of any cache. This to avoid a race between
1090 * cpu_down, and a kmalloc allocation from another cpu for
1091 * memory from the node of the cpu going down. The list3
1092 * structure is usually allocated from kmem_cache_create() and
1093 * gets destroyed at kmem_cache_destroy().
1095 /* fall thru */
1096 case CPU_UP_CANCELED:
1097 mutex_lock(&cache_chain_mutex);
1099 list_for_each_entry(cachep, &cache_chain, next) {
1100 struct array_cache *nc;
1101 struct array_cache *shared;
1102 struct array_cache **alien;
1103 cpumask_t mask;
1105 mask = node_to_cpumask(node);
1106 /* cpu is dead; no one can alloc from it. */
1107 nc = cachep->array[cpu];
1108 cachep->array[cpu] = NULL;
1109 l3 = cachep->nodelists[node];
1111 if (!l3)
1112 goto free_array_cache;
1114 spin_lock_irq(&l3->list_lock);
1116 /* Free limit for this kmem_list3 */
1117 l3->free_limit -= cachep->batchcount;
1118 if (nc)
1119 free_block(cachep, nc->entry, nc->avail, node);
1121 if (!cpus_empty(mask)) {
1122 spin_unlock_irq(&l3->list_lock);
1123 goto free_array_cache;
1126 shared = l3->shared;
1127 if (shared) {
1128 free_block(cachep, l3->shared->entry,
1129 l3->shared->avail, node);
1130 l3->shared = NULL;
1133 alien = l3->alien;
1134 l3->alien = NULL;
1136 spin_unlock_irq(&l3->list_lock);
1138 kfree(shared);
1139 if (alien) {
1140 drain_alien_cache(cachep, alien);
1141 free_alien_cache(alien);
1143 free_array_cache:
1144 kfree(nc);
1147 * In the previous loop, all the objects were freed to
1148 * the respective cache's slabs, now we can go ahead and
1149 * shrink each nodelist to its limit.
1151 list_for_each_entry(cachep, &cache_chain, next) {
1152 l3 = cachep->nodelists[node];
1153 if (!l3)
1154 continue;
1155 spin_lock_irq(&l3->list_lock);
1156 /* free slabs belonging to this node */
1157 __node_shrink(cachep, node);
1158 spin_unlock_irq(&l3->list_lock);
1160 mutex_unlock(&cache_chain_mutex);
1161 break;
1162 #endif
1164 return NOTIFY_OK;
1165 bad:
1166 mutex_unlock(&cache_chain_mutex);
1167 return NOTIFY_BAD;
1170 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1173 * swap the static kmem_list3 with kmalloced memory
1175 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
1177 struct kmem_list3 *ptr;
1179 BUG_ON(cachep->nodelists[nodeid] != list);
1180 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1181 BUG_ON(!ptr);
1183 local_irq_disable();
1184 memcpy(ptr, list, sizeof(struct kmem_list3));
1185 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1186 cachep->nodelists[nodeid] = ptr;
1187 local_irq_enable();
1190 /* Initialisation.
1191 * Called after the gfp() functions have been enabled, and before smp_init().
1193 void __init kmem_cache_init(void)
1195 size_t left_over;
1196 struct cache_sizes *sizes;
1197 struct cache_names *names;
1198 int i;
1199 int order;
1201 for (i = 0; i < NUM_INIT_LISTS; i++) {
1202 kmem_list3_init(&initkmem_list3[i]);
1203 if (i < MAX_NUMNODES)
1204 cache_cache.nodelists[i] = NULL;
1208 * Fragmentation resistance on low memory - only use bigger
1209 * page orders on machines with more than 32MB of memory.
1211 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1212 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1214 /* Bootstrap is tricky, because several objects are allocated
1215 * from caches that do not exist yet:
1216 * 1) initialize the cache_cache cache: it contains the struct kmem_cache
1217 * structures of all caches, except cache_cache itself: cache_cache
1218 * is statically allocated.
1219 * Initially an __init data area is used for the head array and the
1220 * kmem_list3 structures, it's replaced with a kmalloc allocated
1221 * array at the end of the bootstrap.
1222 * 2) Create the first kmalloc cache.
1223 * The struct kmem_cache for the new cache is allocated normally.
1224 * An __init data area is used for the head array.
1225 * 3) Create the remaining kmalloc caches, with minimally sized
1226 * head arrays.
1227 * 4) Replace the __init data head arrays for cache_cache and the first
1228 * kmalloc cache with kmalloc allocated arrays.
1229 * 5) Replace the __init data for kmem_list3 for cache_cache and
1230 * the other cache's with kmalloc allocated memory.
1231 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1234 /* 1) create the cache_cache */
1235 INIT_LIST_HEAD(&cache_chain);
1236 list_add(&cache_cache.next, &cache_chain);
1237 cache_cache.colour_off = cache_line_size();
1238 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1239 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1241 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
1243 for (order = 0; order < MAX_ORDER; order++) {
1244 cache_estimate(order, cache_cache.buffer_size,
1245 cache_line_size(), 0, &left_over, &cache_cache.num);
1246 if (cache_cache.num)
1247 break;
1249 if (!cache_cache.num)
1250 BUG();
1251 cache_cache.gfporder = order;
1252 cache_cache.colour = left_over / cache_cache.colour_off;
1253 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1254 sizeof(struct slab), cache_line_size());
1256 /* 2+3) create the kmalloc caches */
1257 sizes = malloc_sizes;
1258 names = cache_names;
1260 /* Initialize the caches that provide memory for the array cache
1261 * and the kmem_list3 structures first.
1262 * Without this, further allocations will bug
1265 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1266 sizes[INDEX_AC].cs_size,
1267 ARCH_KMALLOC_MINALIGN,
1268 (ARCH_KMALLOC_FLAGS |
1269 SLAB_PANIC), NULL, NULL);
1271 if (INDEX_AC != INDEX_L3)
1272 sizes[INDEX_L3].cs_cachep =
1273 kmem_cache_create(names[INDEX_L3].name,
1274 sizes[INDEX_L3].cs_size,
1275 ARCH_KMALLOC_MINALIGN,
1276 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1277 NULL);
1279 while (sizes->cs_size != ULONG_MAX) {
1281 * For performance, all the general caches are L1 aligned.
1282 * This should be particularly beneficial on SMP boxes, as it
1283 * eliminates "false sharing".
1284 * Note for systems short on memory removing the alignment will
1285 * allow tighter packing of the smaller caches.
1287 if (!sizes->cs_cachep)
1288 sizes->cs_cachep = kmem_cache_create(names->name,
1289 sizes->cs_size,
1290 ARCH_KMALLOC_MINALIGN,
1291 (ARCH_KMALLOC_FLAGS
1292 | SLAB_PANIC),
1293 NULL, NULL);
1295 /* Inc off-slab bufctl limit until the ceiling is hit. */
1296 if (!(OFF_SLAB(sizes->cs_cachep))) {
1297 offslab_limit = sizes->cs_size - sizeof(struct slab);
1298 offslab_limit /= sizeof(kmem_bufctl_t);
1301 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1302 sizes->cs_size,
1303 ARCH_KMALLOC_MINALIGN,
1304 (ARCH_KMALLOC_FLAGS |
1305 SLAB_CACHE_DMA |
1306 SLAB_PANIC), NULL,
1307 NULL);
1309 sizes++;
1310 names++;
1312 /* 4) Replace the bootstrap head arrays */
1314 void *ptr;
1316 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1318 local_irq_disable();
1319 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1320 memcpy(ptr, cpu_cache_get(&cache_cache),
1321 sizeof(struct arraycache_init));
1322 cache_cache.array[smp_processor_id()] = ptr;
1323 local_irq_enable();
1325 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1327 local_irq_disable();
1328 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1329 != &initarray_generic.cache);
1330 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1331 sizeof(struct arraycache_init));
1332 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1333 ptr;
1334 local_irq_enable();
1336 /* 5) Replace the bootstrap kmem_list3's */
1338 int node;
1339 /* Replace the static kmem_list3 structures for the boot cpu */
1340 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1341 numa_node_id());
1343 for_each_online_node(node) {
1344 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1345 &initkmem_list3[SIZE_AC + node], node);
1347 if (INDEX_AC != INDEX_L3) {
1348 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1349 &initkmem_list3[SIZE_L3 + node],
1350 node);
1355 /* 6) resize the head arrays to their final sizes */
1357 struct kmem_cache *cachep;
1358 mutex_lock(&cache_chain_mutex);
1359 list_for_each_entry(cachep, &cache_chain, next)
1360 enable_cpucache(cachep);
1361 mutex_unlock(&cache_chain_mutex);
1364 /* Done! */
1365 g_cpucache_up = FULL;
1367 /* Register a cpu startup notifier callback
1368 * that initializes cpu_cache_get for all new cpus
1370 register_cpu_notifier(&cpucache_notifier);
1372 /* The reap timers are started later, with a module init call:
1373 * That part of the kernel is not yet operational.
1377 static int __init cpucache_init(void)
1379 int cpu;
1382 * Register the timers that return unneeded
1383 * pages to gfp.
1385 for_each_online_cpu(cpu)
1386 start_cpu_timer(cpu);
1388 return 0;
1391 __initcall(cpucache_init);
1394 * Interface to system's page allocator. No need to hold the cache-lock.
1396 * If we requested dmaable memory, we will get it. Even if we
1397 * did not request dmaable memory, we might get it, but that
1398 * would be relatively rare and ignorable.
1400 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1402 struct page *page;
1403 void *addr;
1404 int i;
1406 flags |= cachep->gfpflags;
1407 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1408 if (!page)
1409 return NULL;
1410 addr = page_address(page);
1412 i = (1 << cachep->gfporder);
1413 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1414 atomic_add(i, &slab_reclaim_pages);
1415 add_page_state(nr_slab, i);
1416 while (i--) {
1417 __SetPageSlab(page);
1418 page++;
1420 return addr;
1424 * Interface to system's page release.
1426 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1428 unsigned long i = (1 << cachep->gfporder);
1429 struct page *page = virt_to_page(addr);
1430 const unsigned long nr_freed = i;
1432 while (i--) {
1433 BUG_ON(!PageSlab(page));
1434 __ClearPageSlab(page);
1435 page++;
1437 sub_page_state(nr_slab, nr_freed);
1438 if (current->reclaim_state)
1439 current->reclaim_state->reclaimed_slab += nr_freed;
1440 free_pages((unsigned long)addr, cachep->gfporder);
1441 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1442 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1445 static void kmem_rcu_free(struct rcu_head *head)
1447 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1448 struct kmem_cache *cachep = slab_rcu->cachep;
1450 kmem_freepages(cachep, slab_rcu->addr);
1451 if (OFF_SLAB(cachep))
1452 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1455 #if DEBUG
1457 #ifdef CONFIG_DEBUG_PAGEALLOC
1458 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1459 unsigned long caller)
1461 int size = obj_size(cachep);
1463 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1465 if (size < 5 * sizeof(unsigned long))
1466 return;
1468 *addr++ = 0x12345678;
1469 *addr++ = caller;
1470 *addr++ = smp_processor_id();
1471 size -= 3 * sizeof(unsigned long);
1473 unsigned long *sptr = &caller;
1474 unsigned long svalue;
1476 while (!kstack_end(sptr)) {
1477 svalue = *sptr++;
1478 if (kernel_text_address(svalue)) {
1479 *addr++ = svalue;
1480 size -= sizeof(unsigned long);
1481 if (size <= sizeof(unsigned long))
1482 break;
1487 *addr++ = 0x87654321;
1489 #endif
1491 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1493 int size = obj_size(cachep);
1494 addr = &((char *)addr)[obj_offset(cachep)];
1496 memset(addr, val, size);
1497 *(unsigned char *)(addr + size - 1) = POISON_END;
1500 static void dump_line(char *data, int offset, int limit)
1502 int i;
1503 printk(KERN_ERR "%03x:", offset);
1504 for (i = 0; i < limit; i++) {
1505 printk(" %02x", (unsigned char)data[offset + i]);
1507 printk("\n");
1509 #endif
1511 #if DEBUG
1513 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1515 int i, size;
1516 char *realobj;
1518 if (cachep->flags & SLAB_RED_ZONE) {
1519 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1520 *dbg_redzone1(cachep, objp),
1521 *dbg_redzone2(cachep, objp));
1524 if (cachep->flags & SLAB_STORE_USER) {
1525 printk(KERN_ERR "Last user: [<%p>]",
1526 *dbg_userword(cachep, objp));
1527 print_symbol("(%s)",
1528 (unsigned long)*dbg_userword(cachep, objp));
1529 printk("\n");
1531 realobj = (char *)objp + obj_offset(cachep);
1532 size = obj_size(cachep);
1533 for (i = 0; i < size && lines; i += 16, lines--) {
1534 int limit;
1535 limit = 16;
1536 if (i + limit > size)
1537 limit = size - i;
1538 dump_line(realobj, i, limit);
1542 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1544 char *realobj;
1545 int size, i;
1546 int lines = 0;
1548 realobj = (char *)objp + obj_offset(cachep);
1549 size = obj_size(cachep);
1551 for (i = 0; i < size; i++) {
1552 char exp = POISON_FREE;
1553 if (i == size - 1)
1554 exp = POISON_END;
1555 if (realobj[i] != exp) {
1556 int limit;
1557 /* Mismatch ! */
1558 /* Print header */
1559 if (lines == 0) {
1560 printk(KERN_ERR
1561 "Slab corruption: start=%p, len=%d\n",
1562 realobj, size);
1563 print_objinfo(cachep, objp, 0);
1565 /* Hexdump the affected line */
1566 i = (i / 16) * 16;
1567 limit = 16;
1568 if (i + limit > size)
1569 limit = size - i;
1570 dump_line(realobj, i, limit);
1571 i += 16;
1572 lines++;
1573 /* Limit to 5 lines */
1574 if (lines > 5)
1575 break;
1578 if (lines != 0) {
1579 /* Print some data about the neighboring objects, if they
1580 * exist:
1582 struct slab *slabp = virt_to_slab(objp);
1583 unsigned int objnr;
1585 objnr = obj_to_index(cachep, slabp, objp);
1586 if (objnr) {
1587 objp = index_to_obj(cachep, slabp, objnr - 1);
1588 realobj = (char *)objp + obj_offset(cachep);
1589 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1590 realobj, size);
1591 print_objinfo(cachep, objp, 2);
1593 if (objnr + 1 < cachep->num) {
1594 objp = index_to_obj(cachep, slabp, objnr + 1);
1595 realobj = (char *)objp + obj_offset(cachep);
1596 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1597 realobj, size);
1598 print_objinfo(cachep, objp, 2);
1602 #endif
1604 #if DEBUG
1606 * slab_destroy_objs - call the registered destructor for each object in
1607 * a slab that is to be destroyed.
1609 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1611 int i;
1612 for (i = 0; i < cachep->num; i++) {
1613 void *objp = index_to_obj(cachep, slabp, i);
1615 if (cachep->flags & SLAB_POISON) {
1616 #ifdef CONFIG_DEBUG_PAGEALLOC
1617 if ((cachep->buffer_size % PAGE_SIZE) == 0
1618 && OFF_SLAB(cachep))
1619 kernel_map_pages(virt_to_page(objp),
1620 cachep->buffer_size / PAGE_SIZE,
1622 else
1623 check_poison_obj(cachep, objp);
1624 #else
1625 check_poison_obj(cachep, objp);
1626 #endif
1628 if (cachep->flags & SLAB_RED_ZONE) {
1629 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1630 slab_error(cachep, "start of a freed object "
1631 "was overwritten");
1632 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1633 slab_error(cachep, "end of a freed object "
1634 "was overwritten");
1636 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1637 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1640 #else
1641 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1643 if (cachep->dtor) {
1644 int i;
1645 for (i = 0; i < cachep->num; i++) {
1646 void *objp = index_to_obj(cachep, slabp, i);
1647 (cachep->dtor) (objp, cachep, 0);
1651 #endif
1654 * Destroy all the objs in a slab, and release the mem back to the system.
1655 * Before calling the slab must have been unlinked from the cache.
1656 * The cache-lock is not held/needed.
1658 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1660 void *addr = slabp->s_mem - slabp->colouroff;
1662 slab_destroy_objs(cachep, slabp);
1663 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1664 struct slab_rcu *slab_rcu;
1666 slab_rcu = (struct slab_rcu *)slabp;
1667 slab_rcu->cachep = cachep;
1668 slab_rcu->addr = addr;
1669 call_rcu(&slab_rcu->head, kmem_rcu_free);
1670 } else {
1671 kmem_freepages(cachep, addr);
1672 if (OFF_SLAB(cachep))
1673 kmem_cache_free(cachep->slabp_cache, slabp);
1677 /* For setting up all the kmem_list3s for cache whose buffer_size is same
1678 as size of kmem_list3. */
1679 static void set_up_list3s(struct kmem_cache *cachep, int index)
1681 int node;
1683 for_each_online_node(node) {
1684 cachep->nodelists[node] = &initkmem_list3[index + node];
1685 cachep->nodelists[node]->next_reap = jiffies +
1686 REAPTIMEOUT_LIST3 +
1687 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1692 * calculate_slab_order - calculate size (page order) of slabs
1693 * @cachep: pointer to the cache that is being created
1694 * @size: size of objects to be created in this cache.
1695 * @align: required alignment for the objects.
1696 * @flags: slab allocation flags
1698 * Also calculates the number of objects per slab.
1700 * This could be made much more intelligent. For now, try to avoid using
1701 * high order pages for slabs. When the gfp() functions are more friendly
1702 * towards high-order requests, this should be changed.
1704 static inline size_t calculate_slab_order(struct kmem_cache *cachep,
1705 size_t size, size_t align, unsigned long flags)
1707 size_t left_over = 0;
1708 int gfporder;
1710 for (gfporder = 0 ; gfporder <= MAX_GFP_ORDER; gfporder++) {
1711 unsigned int num;
1712 size_t remainder;
1714 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1715 if (!num)
1716 continue;
1718 /* More than offslab_limit objects will cause problems */
1719 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1720 break;
1722 /* Found something acceptable - save it away */
1723 cachep->num = num;
1724 cachep->gfporder = gfporder;
1725 left_over = remainder;
1728 * A VFS-reclaimable slab tends to have most allocations
1729 * as GFP_NOFS and we really don't want to have to be allocating
1730 * higher-order pages when we are unable to shrink dcache.
1732 if (flags & SLAB_RECLAIM_ACCOUNT)
1733 break;
1736 * Large number of objects is good, but very large slabs are
1737 * currently bad for the gfp()s.
1739 if (gfporder >= slab_break_gfp_order)
1740 break;
1743 * Acceptable internal fragmentation?
1745 if ((left_over * 8) <= (PAGE_SIZE << gfporder))
1746 break;
1748 return left_over;
1752 * kmem_cache_create - Create a cache.
1753 * @name: A string which is used in /proc/slabinfo to identify this cache.
1754 * @size: The size of objects to be created in this cache.
1755 * @align: The required alignment for the objects.
1756 * @flags: SLAB flags
1757 * @ctor: A constructor for the objects.
1758 * @dtor: A destructor for the objects.
1760 * Returns a ptr to the cache on success, NULL on failure.
1761 * Cannot be called within a int, but can be interrupted.
1762 * The @ctor is run when new pages are allocated by the cache
1763 * and the @dtor is run before the pages are handed back.
1765 * @name must be valid until the cache is destroyed. This implies that
1766 * the module calling this has to destroy the cache before getting
1767 * unloaded.
1769 * The flags are
1771 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1772 * to catch references to uninitialised memory.
1774 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1775 * for buffer overruns.
1777 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1778 * memory pressure.
1780 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1781 * cacheline. This can be beneficial if you're counting cycles as closely
1782 * as davem.
1784 struct kmem_cache *
1785 kmem_cache_create (const char *name, size_t size, size_t align,
1786 unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
1787 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1789 size_t left_over, slab_size, ralign;
1790 struct kmem_cache *cachep = NULL;
1791 struct list_head *p;
1794 * Sanity checks... these are all serious usage bugs.
1796 if ((!name) ||
1797 in_interrupt() ||
1798 (size < BYTES_PER_WORD) ||
1799 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1800 printk(KERN_ERR "%s: Early error in slab %s\n",
1801 __FUNCTION__, name);
1802 BUG();
1806 * Prevent CPUs from coming and going.
1807 * lock_cpu_hotplug() nests outside cache_chain_mutex
1809 lock_cpu_hotplug();
1811 mutex_lock(&cache_chain_mutex);
1813 list_for_each(p, &cache_chain) {
1814 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1815 mm_segment_t old_fs = get_fs();
1816 char tmp;
1817 int res;
1820 * This happens when the module gets unloaded and doesn't
1821 * destroy its slab cache and no-one else reuses the vmalloc
1822 * area of the module. Print a warning.
1824 set_fs(KERNEL_DS);
1825 res = __get_user(tmp, pc->name);
1826 set_fs(old_fs);
1827 if (res) {
1828 printk("SLAB: cache with size %d has lost its name\n",
1829 pc->buffer_size);
1830 continue;
1833 if (!strcmp(pc->name, name)) {
1834 printk("kmem_cache_create: duplicate cache %s\n", name);
1835 dump_stack();
1836 goto oops;
1840 #if DEBUG
1841 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1842 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1843 /* No constructor, but inital state check requested */
1844 printk(KERN_ERR "%s: No con, but init state check "
1845 "requested - %s\n", __FUNCTION__, name);
1846 flags &= ~SLAB_DEBUG_INITIAL;
1848 #if FORCED_DEBUG
1850 * Enable redzoning and last user accounting, except for caches with
1851 * large objects, if the increased size would increase the object size
1852 * above the next power of two: caches with object sizes just above a
1853 * power of two have a significant amount of internal fragmentation.
1855 if ((size < 4096
1856 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1857 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1858 if (!(flags & SLAB_DESTROY_BY_RCU))
1859 flags |= SLAB_POISON;
1860 #endif
1861 if (flags & SLAB_DESTROY_BY_RCU)
1862 BUG_ON(flags & SLAB_POISON);
1863 #endif
1864 if (flags & SLAB_DESTROY_BY_RCU)
1865 BUG_ON(dtor);
1868 * Always checks flags, a caller might be expecting debug
1869 * support which isn't available.
1871 if (flags & ~CREATE_MASK)
1872 BUG();
1874 /* Check that size is in terms of words. This is needed to avoid
1875 * unaligned accesses for some archs when redzoning is used, and makes
1876 * sure any on-slab bufctl's are also correctly aligned.
1878 if (size & (BYTES_PER_WORD - 1)) {
1879 size += (BYTES_PER_WORD - 1);
1880 size &= ~(BYTES_PER_WORD - 1);
1883 /* calculate out the final buffer alignment: */
1884 /* 1) arch recommendation: can be overridden for debug */
1885 if (flags & SLAB_HWCACHE_ALIGN) {
1886 /* Default alignment: as specified by the arch code.
1887 * Except if an object is really small, then squeeze multiple
1888 * objects into one cacheline.
1890 ralign = cache_line_size();
1891 while (size <= ralign / 2)
1892 ralign /= 2;
1893 } else {
1894 ralign = BYTES_PER_WORD;
1896 /* 2) arch mandated alignment: disables debug if necessary */
1897 if (ralign < ARCH_SLAB_MINALIGN) {
1898 ralign = ARCH_SLAB_MINALIGN;
1899 if (ralign > BYTES_PER_WORD)
1900 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1902 /* 3) caller mandated alignment: disables debug if necessary */
1903 if (ralign < align) {
1904 ralign = align;
1905 if (ralign > BYTES_PER_WORD)
1906 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1908 /* 4) Store it. Note that the debug code below can reduce
1909 * the alignment to BYTES_PER_WORD.
1911 align = ralign;
1913 /* Get cache's description obj. */
1914 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1915 if (!cachep)
1916 goto oops;
1917 memset(cachep, 0, sizeof(struct kmem_cache));
1919 #if DEBUG
1920 cachep->obj_size = size;
1922 if (flags & SLAB_RED_ZONE) {
1923 /* redzoning only works with word aligned caches */
1924 align = BYTES_PER_WORD;
1926 /* add space for red zone words */
1927 cachep->obj_offset += BYTES_PER_WORD;
1928 size += 2 * BYTES_PER_WORD;
1930 if (flags & SLAB_STORE_USER) {
1931 /* user store requires word alignment and
1932 * one word storage behind the end of the real
1933 * object.
1935 align = BYTES_PER_WORD;
1936 size += BYTES_PER_WORD;
1938 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1939 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1940 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
1941 cachep->obj_offset += PAGE_SIZE - size;
1942 size = PAGE_SIZE;
1944 #endif
1945 #endif
1947 /* Determine if the slab management is 'on' or 'off' slab. */
1948 if (size >= (PAGE_SIZE >> 3))
1950 * Size is large, assume best to place the slab management obj
1951 * off-slab (should allow better packing of objs).
1953 flags |= CFLGS_OFF_SLAB;
1955 size = ALIGN(size, align);
1957 left_over = calculate_slab_order(cachep, size, align, flags);
1959 if (!cachep->num) {
1960 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1961 kmem_cache_free(&cache_cache, cachep);
1962 cachep = NULL;
1963 goto oops;
1965 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
1966 + sizeof(struct slab), align);
1969 * If the slab has been placed off-slab, and we have enough space then
1970 * move it on-slab. This is at the expense of any extra colouring.
1972 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1973 flags &= ~CFLGS_OFF_SLAB;
1974 left_over -= slab_size;
1977 if (flags & CFLGS_OFF_SLAB) {
1978 /* really off slab. No need for manual alignment */
1979 slab_size =
1980 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1983 cachep->colour_off = cache_line_size();
1984 /* Offset must be a multiple of the alignment. */
1985 if (cachep->colour_off < align)
1986 cachep->colour_off = align;
1987 cachep->colour = left_over / cachep->colour_off;
1988 cachep->slab_size = slab_size;
1989 cachep->flags = flags;
1990 cachep->gfpflags = 0;
1991 if (flags & SLAB_CACHE_DMA)
1992 cachep->gfpflags |= GFP_DMA;
1993 spin_lock_init(&cachep->spinlock);
1994 cachep->buffer_size = size;
1996 if (flags & CFLGS_OFF_SLAB)
1997 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1998 cachep->ctor = ctor;
1999 cachep->dtor = dtor;
2000 cachep->name = name;
2003 if (g_cpucache_up == FULL) {
2004 enable_cpucache(cachep);
2005 } else {
2006 if (g_cpucache_up == NONE) {
2007 /* Note: the first kmem_cache_create must create
2008 * the cache that's used by kmalloc(24), otherwise
2009 * the creation of further caches will BUG().
2011 cachep->array[smp_processor_id()] =
2012 &initarray_generic.cache;
2014 /* If the cache that's used by
2015 * kmalloc(sizeof(kmem_list3)) is the first cache,
2016 * then we need to set up all its list3s, otherwise
2017 * the creation of further caches will BUG().
2019 set_up_list3s(cachep, SIZE_AC);
2020 if (INDEX_AC == INDEX_L3)
2021 g_cpucache_up = PARTIAL_L3;
2022 else
2023 g_cpucache_up = PARTIAL_AC;
2024 } else {
2025 cachep->array[smp_processor_id()] =
2026 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2028 if (g_cpucache_up == PARTIAL_AC) {
2029 set_up_list3s(cachep, SIZE_L3);
2030 g_cpucache_up = PARTIAL_L3;
2031 } else {
2032 int node;
2033 for_each_online_node(node) {
2035 cachep->nodelists[node] =
2036 kmalloc_node(sizeof
2037 (struct kmem_list3),
2038 GFP_KERNEL, node);
2039 BUG_ON(!cachep->nodelists[node]);
2040 kmem_list3_init(cachep->
2041 nodelists[node]);
2045 cachep->nodelists[numa_node_id()]->next_reap =
2046 jiffies + REAPTIMEOUT_LIST3 +
2047 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2049 BUG_ON(!cpu_cache_get(cachep));
2050 cpu_cache_get(cachep)->avail = 0;
2051 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2052 cpu_cache_get(cachep)->batchcount = 1;
2053 cpu_cache_get(cachep)->touched = 0;
2054 cachep->batchcount = 1;
2055 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2058 /* cache setup completed, link it into the list */
2059 list_add(&cachep->next, &cache_chain);
2060 oops:
2061 if (!cachep && (flags & SLAB_PANIC))
2062 panic("kmem_cache_create(): failed to create slab `%s'\n",
2063 name);
2064 mutex_unlock(&cache_chain_mutex);
2065 unlock_cpu_hotplug();
2066 return cachep;
2068 EXPORT_SYMBOL(kmem_cache_create);
2070 #if DEBUG
2071 static void check_irq_off(void)
2073 BUG_ON(!irqs_disabled());
2076 static void check_irq_on(void)
2078 BUG_ON(irqs_disabled());
2081 static void check_spinlock_acquired(struct kmem_cache *cachep)
2083 #ifdef CONFIG_SMP
2084 check_irq_off();
2085 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2086 #endif
2089 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2091 #ifdef CONFIG_SMP
2092 check_irq_off();
2093 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2094 #endif
2097 #else
2098 #define check_irq_off() do { } while(0)
2099 #define check_irq_on() do { } while(0)
2100 #define check_spinlock_acquired(x) do { } while(0)
2101 #define check_spinlock_acquired_node(x, y) do { } while(0)
2102 #endif
2105 * Waits for all CPUs to execute func().
2107 static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
2109 check_irq_on();
2110 preempt_disable();
2112 local_irq_disable();
2113 func(arg);
2114 local_irq_enable();
2116 if (smp_call_function(func, arg, 1, 1))
2117 BUG();
2119 preempt_enable();
2122 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2123 int force, int node);
2125 static void do_drain(void *arg)
2127 struct kmem_cache *cachep = (struct kmem_cache *) arg;
2128 struct array_cache *ac;
2129 int node = numa_node_id();
2131 check_irq_off();
2132 ac = cpu_cache_get(cachep);
2133 spin_lock(&cachep->nodelists[node]->list_lock);
2134 free_block(cachep, ac->entry, ac->avail, node);
2135 spin_unlock(&cachep->nodelists[node]->list_lock);
2136 ac->avail = 0;
2139 static void drain_cpu_caches(struct kmem_cache *cachep)
2141 struct kmem_list3 *l3;
2142 int node;
2144 smp_call_function_all_cpus(do_drain, cachep);
2145 check_irq_on();
2146 for_each_online_node(node) {
2147 l3 = cachep->nodelists[node];
2148 if (l3) {
2149 spin_lock_irq(&l3->list_lock);
2150 drain_array_locked(cachep, l3->shared, 1, node);
2151 spin_unlock_irq(&l3->list_lock);
2152 if (l3->alien)
2153 drain_alien_cache(cachep, l3->alien);
2158 static int __node_shrink(struct kmem_cache *cachep, int node)
2160 struct slab *slabp;
2161 struct kmem_list3 *l3 = cachep->nodelists[node];
2162 int ret;
2164 for (;;) {
2165 struct list_head *p;
2167 p = l3->slabs_free.prev;
2168 if (p == &l3->slabs_free)
2169 break;
2171 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2172 #if DEBUG
2173 if (slabp->inuse)
2174 BUG();
2175 #endif
2176 list_del(&slabp->list);
2178 l3->free_objects -= cachep->num;
2179 spin_unlock_irq(&l3->list_lock);
2180 slab_destroy(cachep, slabp);
2181 spin_lock_irq(&l3->list_lock);
2183 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2184 return ret;
2187 static int __cache_shrink(struct kmem_cache *cachep)
2189 int ret = 0, i = 0;
2190 struct kmem_list3 *l3;
2192 drain_cpu_caches(cachep);
2194 check_irq_on();
2195 for_each_online_node(i) {
2196 l3 = cachep->nodelists[i];
2197 if (l3) {
2198 spin_lock_irq(&l3->list_lock);
2199 ret += __node_shrink(cachep, i);
2200 spin_unlock_irq(&l3->list_lock);
2203 return (ret ? 1 : 0);
2207 * kmem_cache_shrink - Shrink a cache.
2208 * @cachep: The cache to shrink.
2210 * Releases as many slabs as possible for a cache.
2211 * To help debugging, a zero exit status indicates all slabs were released.
2213 int kmem_cache_shrink(struct kmem_cache *cachep)
2215 if (!cachep || in_interrupt())
2216 BUG();
2218 return __cache_shrink(cachep);
2220 EXPORT_SYMBOL(kmem_cache_shrink);
2223 * kmem_cache_destroy - delete a cache
2224 * @cachep: the cache to destroy
2226 * Remove a struct kmem_cache object from the slab cache.
2227 * Returns 0 on success.
2229 * It is expected this function will be called by a module when it is
2230 * unloaded. This will remove the cache completely, and avoid a duplicate
2231 * cache being allocated each time a module is loaded and unloaded, if the
2232 * module doesn't have persistent in-kernel storage across loads and unloads.
2234 * The cache must be empty before calling this function.
2236 * The caller must guarantee that noone will allocate memory from the cache
2237 * during the kmem_cache_destroy().
2239 int kmem_cache_destroy(struct kmem_cache *cachep)
2241 int i;
2242 struct kmem_list3 *l3;
2244 if (!cachep || in_interrupt())
2245 BUG();
2247 /* Don't let CPUs to come and go */
2248 lock_cpu_hotplug();
2250 /* Find the cache in the chain of caches. */
2251 mutex_lock(&cache_chain_mutex);
2253 * the chain is never empty, cache_cache is never destroyed
2255 list_del(&cachep->next);
2256 mutex_unlock(&cache_chain_mutex);
2258 if (__cache_shrink(cachep)) {
2259 slab_error(cachep, "Can't free all objects");
2260 mutex_lock(&cache_chain_mutex);
2261 list_add(&cachep->next, &cache_chain);
2262 mutex_unlock(&cache_chain_mutex);
2263 unlock_cpu_hotplug();
2264 return 1;
2267 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2268 synchronize_rcu();
2270 for_each_online_cpu(i)
2271 kfree(cachep->array[i]);
2273 /* NUMA: free the list3 structures */
2274 for_each_online_node(i) {
2275 if ((l3 = cachep->nodelists[i])) {
2276 kfree(l3->shared);
2277 free_alien_cache(l3->alien);
2278 kfree(l3);
2281 kmem_cache_free(&cache_cache, cachep);
2283 unlock_cpu_hotplug();
2285 return 0;
2287 EXPORT_SYMBOL(kmem_cache_destroy);
2289 /* Get the memory for a slab management obj. */
2290 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2291 int colour_off, gfp_t local_flags)
2293 struct slab *slabp;
2295 if (OFF_SLAB(cachep)) {
2296 /* Slab management obj is off-slab. */
2297 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2298 if (!slabp)
2299 return NULL;
2300 } else {
2301 slabp = objp + colour_off;
2302 colour_off += cachep->slab_size;
2304 slabp->inuse = 0;
2305 slabp->colouroff = colour_off;
2306 slabp->s_mem = objp + colour_off;
2308 return slabp;
2311 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2313 return (kmem_bufctl_t *) (slabp + 1);
2316 static void cache_init_objs(struct kmem_cache *cachep,
2317 struct slab *slabp, unsigned long ctor_flags)
2319 int i;
2321 for (i = 0; i < cachep->num; i++) {
2322 void *objp = index_to_obj(cachep, slabp, i);
2323 #if DEBUG
2324 /* need to poison the objs? */
2325 if (cachep->flags & SLAB_POISON)
2326 poison_obj(cachep, objp, POISON_FREE);
2327 if (cachep->flags & SLAB_STORE_USER)
2328 *dbg_userword(cachep, objp) = NULL;
2330 if (cachep->flags & SLAB_RED_ZONE) {
2331 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2332 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2335 * Constructors are not allowed to allocate memory from
2336 * the same cache which they are a constructor for.
2337 * Otherwise, deadlock. They must also be threaded.
2339 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2340 cachep->ctor(objp + obj_offset(cachep), cachep,
2341 ctor_flags);
2343 if (cachep->flags & SLAB_RED_ZONE) {
2344 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2345 slab_error(cachep, "constructor overwrote the"
2346 " end of an object");
2347 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2348 slab_error(cachep, "constructor overwrote the"
2349 " start of an object");
2351 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
2352 && cachep->flags & SLAB_POISON)
2353 kernel_map_pages(virt_to_page(objp),
2354 cachep->buffer_size / PAGE_SIZE, 0);
2355 #else
2356 if (cachep->ctor)
2357 cachep->ctor(objp, cachep, ctor_flags);
2358 #endif
2359 slab_bufctl(slabp)[i] = i + 1;
2361 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2362 slabp->free = 0;
2365 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2367 if (flags & SLAB_DMA) {
2368 if (!(cachep->gfpflags & GFP_DMA))
2369 BUG();
2370 } else {
2371 if (cachep->gfpflags & GFP_DMA)
2372 BUG();
2376 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
2378 void *objp = index_to_obj(cachep, slabp, slabp->free);
2379 kmem_bufctl_t next;
2381 slabp->inuse++;
2382 next = slab_bufctl(slabp)[slabp->free];
2383 #if DEBUG
2384 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2385 WARN_ON(slabp->nodeid != nodeid);
2386 #endif
2387 slabp->free = next;
2389 return objp;
2392 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
2393 int nodeid)
2395 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2397 #if DEBUG
2398 /* Verify that the slab belongs to the intended node */
2399 WARN_ON(slabp->nodeid != nodeid);
2401 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2402 printk(KERN_ERR "slab: double free detected in cache "
2403 "'%s', objp %p\n", cachep->name, objp);
2404 BUG();
2406 #endif
2407 slab_bufctl(slabp)[objnr] = slabp->free;
2408 slabp->free = objnr;
2409 slabp->inuse--;
2412 static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
2414 int i;
2415 struct page *page;
2417 /* Nasty!!!!!! I hope this is OK. */
2418 i = 1 << cachep->gfporder;
2419 page = virt_to_page(objp);
2420 do {
2421 page_set_cache(page, cachep);
2422 page_set_slab(page, slabp);
2423 page++;
2424 } while (--i);
2428 * Grow (by 1) the number of slabs within a cache. This is called by
2429 * kmem_cache_alloc() when there are no active objs left in a cache.
2431 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2433 struct slab *slabp;
2434 void *objp;
2435 size_t offset;
2436 gfp_t local_flags;
2437 unsigned long ctor_flags;
2438 struct kmem_list3 *l3;
2440 /* Be lazy and only check for valid flags here,
2441 * keeping it out of the critical path in kmem_cache_alloc().
2443 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2444 BUG();
2445 if (flags & SLAB_NO_GROW)
2446 return 0;
2448 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2449 local_flags = (flags & SLAB_LEVEL_MASK);
2450 if (!(local_flags & __GFP_WAIT))
2452 * Not allowed to sleep. Need to tell a constructor about
2453 * this - it might need to know...
2455 ctor_flags |= SLAB_CTOR_ATOMIC;
2457 /* Take the l3 list lock to change the colour_next on this node */
2458 check_irq_off();
2459 l3 = cachep->nodelists[nodeid];
2460 spin_lock(&l3->list_lock);
2462 /* Get colour for the slab, and cal the next value. */
2463 offset = l3->colour_next;
2464 l3->colour_next++;
2465 if (l3->colour_next >= cachep->colour)
2466 l3->colour_next = 0;
2467 spin_unlock(&l3->list_lock);
2469 offset *= cachep->colour_off;
2471 if (local_flags & __GFP_WAIT)
2472 local_irq_enable();
2475 * The test for missing atomic flag is performed here, rather than
2476 * the more obvious place, simply to reduce the critical path length
2477 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2478 * will eventually be caught here (where it matters).
2480 kmem_flagcheck(cachep, flags);
2482 /* Get mem for the objs.
2483 * Attempt to allocate a physical page from 'nodeid',
2485 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2486 goto failed;
2488 /* Get slab management. */
2489 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2490 goto opps1;
2492 slabp->nodeid = nodeid;
2493 set_slab_attr(cachep, slabp, objp);
2495 cache_init_objs(cachep, slabp, ctor_flags);
2497 if (local_flags & __GFP_WAIT)
2498 local_irq_disable();
2499 check_irq_off();
2500 spin_lock(&l3->list_lock);
2502 /* Make slab active. */
2503 list_add_tail(&slabp->list, &(l3->slabs_free));
2504 STATS_INC_GROWN(cachep);
2505 l3->free_objects += cachep->num;
2506 spin_unlock(&l3->list_lock);
2507 return 1;
2508 opps1:
2509 kmem_freepages(cachep, objp);
2510 failed:
2511 if (local_flags & __GFP_WAIT)
2512 local_irq_disable();
2513 return 0;
2516 #if DEBUG
2519 * Perform extra freeing checks:
2520 * - detect bad pointers.
2521 * - POISON/RED_ZONE checking
2522 * - destructor calls, for caches with POISON+dtor
2524 static void kfree_debugcheck(const void *objp)
2526 struct page *page;
2528 if (!virt_addr_valid(objp)) {
2529 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2530 (unsigned long)objp);
2531 BUG();
2533 page = virt_to_page(objp);
2534 if (!PageSlab(page)) {
2535 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2536 (unsigned long)objp);
2537 BUG();
2541 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2542 void *caller)
2544 struct page *page;
2545 unsigned int objnr;
2546 struct slab *slabp;
2548 objp -= obj_offset(cachep);
2549 kfree_debugcheck(objp);
2550 page = virt_to_page(objp);
2552 if (page_get_cache(page) != cachep) {
2553 printk(KERN_ERR
2554 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2555 page_get_cache(page), cachep);
2556 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2557 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2558 page_get_cache(page)->name);
2559 WARN_ON(1);
2561 slabp = page_get_slab(page);
2563 if (cachep->flags & SLAB_RED_ZONE) {
2564 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2565 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2566 slab_error(cachep,
2567 "double free, or memory outside"
2568 " object was overwritten");
2569 printk(KERN_ERR
2570 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2571 objp, *dbg_redzone1(cachep, objp),
2572 *dbg_redzone2(cachep, objp));
2574 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2575 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2577 if (cachep->flags & SLAB_STORE_USER)
2578 *dbg_userword(cachep, objp) = caller;
2580 objnr = obj_to_index(cachep, slabp, objp);
2582 BUG_ON(objnr >= cachep->num);
2583 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2585 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2586 /* Need to call the slab's constructor so the
2587 * caller can perform a verify of its state (debugging).
2588 * Called without the cache-lock held.
2590 cachep->ctor(objp + obj_offset(cachep),
2591 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2593 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2594 /* we want to cache poison the object,
2595 * call the destruction callback
2597 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2599 if (cachep->flags & SLAB_POISON) {
2600 #ifdef CONFIG_DEBUG_PAGEALLOC
2601 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2602 store_stackinfo(cachep, objp, (unsigned long)caller);
2603 kernel_map_pages(virt_to_page(objp),
2604 cachep->buffer_size / PAGE_SIZE, 0);
2605 } else {
2606 poison_obj(cachep, objp, POISON_FREE);
2608 #else
2609 poison_obj(cachep, objp, POISON_FREE);
2610 #endif
2612 return objp;
2615 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2617 kmem_bufctl_t i;
2618 int entries = 0;
2620 /* Check slab's freelist to see if this obj is there. */
2621 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2622 entries++;
2623 if (entries > cachep->num || i >= cachep->num)
2624 goto bad;
2626 if (entries != cachep->num - slabp->inuse) {
2627 bad:
2628 printk(KERN_ERR
2629 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2630 cachep->name, cachep->num, slabp, slabp->inuse);
2631 for (i = 0;
2632 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2633 i++) {
2634 if ((i % 16) == 0)
2635 printk("\n%03x:", i);
2636 printk(" %02x", ((unsigned char *)slabp)[i]);
2638 printk("\n");
2639 BUG();
2642 #else
2643 #define kfree_debugcheck(x) do { } while(0)
2644 #define cache_free_debugcheck(x,objp,z) (objp)
2645 #define check_slabp(x,y) do { } while(0)
2646 #endif
2648 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2650 int batchcount;
2651 struct kmem_list3 *l3;
2652 struct array_cache *ac;
2654 check_irq_off();
2655 ac = cpu_cache_get(cachep);
2656 retry:
2657 batchcount = ac->batchcount;
2658 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2659 /* if there was little recent activity on this
2660 * cache, then perform only a partial refill.
2661 * Otherwise we could generate refill bouncing.
2663 batchcount = BATCHREFILL_LIMIT;
2665 l3 = cachep->nodelists[numa_node_id()];
2667 BUG_ON(ac->avail > 0 || !l3);
2668 spin_lock(&l3->list_lock);
2670 if (l3->shared) {
2671 struct array_cache *shared_array = l3->shared;
2672 if (shared_array->avail) {
2673 if (batchcount > shared_array->avail)
2674 batchcount = shared_array->avail;
2675 shared_array->avail -= batchcount;
2676 ac->avail = batchcount;
2677 memcpy(ac->entry,
2678 &(shared_array->entry[shared_array->avail]),
2679 sizeof(void *) * batchcount);
2680 shared_array->touched = 1;
2681 goto alloc_done;
2684 while (batchcount > 0) {
2685 struct list_head *entry;
2686 struct slab *slabp;
2687 /* Get slab alloc is to come from. */
2688 entry = l3->slabs_partial.next;
2689 if (entry == &l3->slabs_partial) {
2690 l3->free_touched = 1;
2691 entry = l3->slabs_free.next;
2692 if (entry == &l3->slabs_free)
2693 goto must_grow;
2696 slabp = list_entry(entry, struct slab, list);
2697 check_slabp(cachep, slabp);
2698 check_spinlock_acquired(cachep);
2699 while (slabp->inuse < cachep->num && batchcount--) {
2700 STATS_INC_ALLOCED(cachep);
2701 STATS_INC_ACTIVE(cachep);
2702 STATS_SET_HIGH(cachep);
2704 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2705 numa_node_id());
2707 check_slabp(cachep, slabp);
2709 /* move slabp to correct slabp list: */
2710 list_del(&slabp->list);
2711 if (slabp->free == BUFCTL_END)
2712 list_add(&slabp->list, &l3->slabs_full);
2713 else
2714 list_add(&slabp->list, &l3->slabs_partial);
2717 must_grow:
2718 l3->free_objects -= ac->avail;
2719 alloc_done:
2720 spin_unlock(&l3->list_lock);
2722 if (unlikely(!ac->avail)) {
2723 int x;
2724 x = cache_grow(cachep, flags, numa_node_id());
2726 // cache_grow can reenable interrupts, then ac could change.
2727 ac = cpu_cache_get(cachep);
2728 if (!x && ac->avail == 0) // no objects in sight? abort
2729 return NULL;
2731 if (!ac->avail) // objects refilled by interrupt?
2732 goto retry;
2734 ac->touched = 1;
2735 return ac->entry[--ac->avail];
2738 static inline void
2739 cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
2741 might_sleep_if(flags & __GFP_WAIT);
2742 #if DEBUG
2743 kmem_flagcheck(cachep, flags);
2744 #endif
2747 #if DEBUG
2748 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
2749 void *objp, void *caller)
2751 if (!objp)
2752 return objp;
2753 if (cachep->flags & SLAB_POISON) {
2754 #ifdef CONFIG_DEBUG_PAGEALLOC
2755 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2756 kernel_map_pages(virt_to_page(objp),
2757 cachep->buffer_size / PAGE_SIZE, 1);
2758 else
2759 check_poison_obj(cachep, objp);
2760 #else
2761 check_poison_obj(cachep, objp);
2762 #endif
2763 poison_obj(cachep, objp, POISON_INUSE);
2765 if (cachep->flags & SLAB_STORE_USER)
2766 *dbg_userword(cachep, objp) = caller;
2768 if (cachep->flags & SLAB_RED_ZONE) {
2769 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2770 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2771 slab_error(cachep,
2772 "double free, or memory outside"
2773 " object was overwritten");
2774 printk(KERN_ERR
2775 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2776 objp, *dbg_redzone1(cachep, objp),
2777 *dbg_redzone2(cachep, objp));
2779 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2780 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2782 objp += obj_offset(cachep);
2783 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2784 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2786 if (!(flags & __GFP_WAIT))
2787 ctor_flags |= SLAB_CTOR_ATOMIC;
2789 cachep->ctor(objp, cachep, ctor_flags);
2791 return objp;
2793 #else
2794 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2795 #endif
2797 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2799 void *objp;
2800 struct array_cache *ac;
2802 #ifdef CONFIG_NUMA
2803 if (unlikely(current->mempolicy && !in_interrupt())) {
2804 int nid = slab_node(current->mempolicy);
2806 if (nid != numa_node_id())
2807 return __cache_alloc_node(cachep, flags, nid);
2809 #endif
2811 check_irq_off();
2812 ac = cpu_cache_get(cachep);
2813 if (likely(ac->avail)) {
2814 STATS_INC_ALLOCHIT(cachep);
2815 ac->touched = 1;
2816 objp = ac->entry[--ac->avail];
2817 } else {
2818 STATS_INC_ALLOCMISS(cachep);
2819 objp = cache_alloc_refill(cachep, flags);
2821 return objp;
2824 static __always_inline void *
2825 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
2827 unsigned long save_flags;
2828 void *objp;
2830 cache_alloc_debugcheck_before(cachep, flags);
2832 local_irq_save(save_flags);
2833 objp = ____cache_alloc(cachep, flags);
2834 local_irq_restore(save_flags);
2835 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2836 caller);
2837 prefetchw(objp);
2838 return objp;
2841 #ifdef CONFIG_NUMA
2843 * A interface to enable slab creation on nodeid
2845 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2847 struct list_head *entry;
2848 struct slab *slabp;
2849 struct kmem_list3 *l3;
2850 void *obj;
2851 int x;
2853 l3 = cachep->nodelists[nodeid];
2854 BUG_ON(!l3);
2856 retry:
2857 check_irq_off();
2858 spin_lock(&l3->list_lock);
2859 entry = l3->slabs_partial.next;
2860 if (entry == &l3->slabs_partial) {
2861 l3->free_touched = 1;
2862 entry = l3->slabs_free.next;
2863 if (entry == &l3->slabs_free)
2864 goto must_grow;
2867 slabp = list_entry(entry, struct slab, list);
2868 check_spinlock_acquired_node(cachep, nodeid);
2869 check_slabp(cachep, slabp);
2871 STATS_INC_NODEALLOCS(cachep);
2872 STATS_INC_ACTIVE(cachep);
2873 STATS_SET_HIGH(cachep);
2875 BUG_ON(slabp->inuse == cachep->num);
2877 obj = slab_get_obj(cachep, slabp, nodeid);
2878 check_slabp(cachep, slabp);
2879 l3->free_objects--;
2880 /* move slabp to correct slabp list: */
2881 list_del(&slabp->list);
2883 if (slabp->free == BUFCTL_END) {
2884 list_add(&slabp->list, &l3->slabs_full);
2885 } else {
2886 list_add(&slabp->list, &l3->slabs_partial);
2889 spin_unlock(&l3->list_lock);
2890 goto done;
2892 must_grow:
2893 spin_unlock(&l3->list_lock);
2894 x = cache_grow(cachep, flags, nodeid);
2896 if (!x)
2897 return NULL;
2899 goto retry;
2900 done:
2901 return obj;
2903 #endif
2906 * Caller needs to acquire correct kmem_list's list_lock
2908 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2909 int node)
2911 int i;
2912 struct kmem_list3 *l3;
2914 for (i = 0; i < nr_objects; i++) {
2915 void *objp = objpp[i];
2916 struct slab *slabp;
2918 slabp = virt_to_slab(objp);
2919 l3 = cachep->nodelists[node];
2920 list_del(&slabp->list);
2921 check_spinlock_acquired_node(cachep, node);
2922 check_slabp(cachep, slabp);
2923 slab_put_obj(cachep, slabp, objp, node);
2924 STATS_DEC_ACTIVE(cachep);
2925 l3->free_objects++;
2926 check_slabp(cachep, slabp);
2928 /* fixup slab chains */
2929 if (slabp->inuse == 0) {
2930 if (l3->free_objects > l3->free_limit) {
2931 l3->free_objects -= cachep->num;
2932 slab_destroy(cachep, slabp);
2933 } else {
2934 list_add(&slabp->list, &l3->slabs_free);
2936 } else {
2937 /* Unconditionally move a slab to the end of the
2938 * partial list on free - maximum time for the
2939 * other objects to be freed, too.
2941 list_add_tail(&slabp->list, &l3->slabs_partial);
2946 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
2948 int batchcount;
2949 struct kmem_list3 *l3;
2950 int node = numa_node_id();
2952 batchcount = ac->batchcount;
2953 #if DEBUG
2954 BUG_ON(!batchcount || batchcount > ac->avail);
2955 #endif
2956 check_irq_off();
2957 l3 = cachep->nodelists[node];
2958 spin_lock(&l3->list_lock);
2959 if (l3->shared) {
2960 struct array_cache *shared_array = l3->shared;
2961 int max = shared_array->limit - shared_array->avail;
2962 if (max) {
2963 if (batchcount > max)
2964 batchcount = max;
2965 memcpy(&(shared_array->entry[shared_array->avail]),
2966 ac->entry, sizeof(void *) * batchcount);
2967 shared_array->avail += batchcount;
2968 goto free_done;
2972 free_block(cachep, ac->entry, batchcount, node);
2973 free_done:
2974 #if STATS
2976 int i = 0;
2977 struct list_head *p;
2979 p = l3->slabs_free.next;
2980 while (p != &(l3->slabs_free)) {
2981 struct slab *slabp;
2983 slabp = list_entry(p, struct slab, list);
2984 BUG_ON(slabp->inuse);
2986 i++;
2987 p = p->next;
2989 STATS_SET_FREEABLE(cachep, i);
2991 #endif
2992 spin_unlock(&l3->list_lock);
2993 ac->avail -= batchcount;
2994 memmove(ac->entry, &(ac->entry[batchcount]),
2995 sizeof(void *) * ac->avail);
2999 * __cache_free
3000 * Release an obj back to its cache. If the obj has a constructed
3001 * state, it must be in this state _before_ it is released.
3003 * Called with disabled ints.
3005 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3007 struct array_cache *ac = cpu_cache_get(cachep);
3009 check_irq_off();
3010 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3012 /* Make sure we are not freeing a object from another
3013 * node to the array cache on this cpu.
3015 #ifdef CONFIG_NUMA
3017 struct slab *slabp;
3018 slabp = virt_to_slab(objp);
3019 if (unlikely(slabp->nodeid != numa_node_id())) {
3020 struct array_cache *alien = NULL;
3021 int nodeid = slabp->nodeid;
3022 struct kmem_list3 *l3 =
3023 cachep->nodelists[numa_node_id()];
3025 STATS_INC_NODEFREES(cachep);
3026 if (l3->alien && l3->alien[nodeid]) {
3027 alien = l3->alien[nodeid];
3028 spin_lock(&alien->lock);
3029 if (unlikely(alien->avail == alien->limit))
3030 __drain_alien_cache(cachep,
3031 alien, nodeid);
3032 alien->entry[alien->avail++] = objp;
3033 spin_unlock(&alien->lock);
3034 } else {
3035 spin_lock(&(cachep->nodelists[nodeid])->
3036 list_lock);
3037 free_block(cachep, &objp, 1, nodeid);
3038 spin_unlock(&(cachep->nodelists[nodeid])->
3039 list_lock);
3041 return;
3044 #endif
3045 if (likely(ac->avail < ac->limit)) {
3046 STATS_INC_FREEHIT(cachep);
3047 ac->entry[ac->avail++] = objp;
3048 return;
3049 } else {
3050 STATS_INC_FREEMISS(cachep);
3051 cache_flusharray(cachep, ac);
3052 ac->entry[ac->avail++] = objp;
3057 * kmem_cache_alloc - Allocate an object
3058 * @cachep: The cache to allocate from.
3059 * @flags: See kmalloc().
3061 * Allocate an object from this cache. The flags are only relevant
3062 * if the cache has no available objects.
3064 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3066 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3068 EXPORT_SYMBOL(kmem_cache_alloc);
3071 * kmem_ptr_validate - check if an untrusted pointer might
3072 * be a slab entry.
3073 * @cachep: the cache we're checking against
3074 * @ptr: pointer to validate
3076 * This verifies that the untrusted pointer looks sane:
3077 * it is _not_ a guarantee that the pointer is actually
3078 * part of the slab cache in question, but it at least
3079 * validates that the pointer can be dereferenced and
3080 * looks half-way sane.
3082 * Currently only used for dentry validation.
3084 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3086 unsigned long addr = (unsigned long)ptr;
3087 unsigned long min_addr = PAGE_OFFSET;
3088 unsigned long align_mask = BYTES_PER_WORD - 1;
3089 unsigned long size = cachep->buffer_size;
3090 struct page *page;
3092 if (unlikely(addr < min_addr))
3093 goto out;
3094 if (unlikely(addr > (unsigned long)high_memory - size))
3095 goto out;
3096 if (unlikely(addr & align_mask))
3097 goto out;
3098 if (unlikely(!kern_addr_valid(addr)))
3099 goto out;
3100 if (unlikely(!kern_addr_valid(addr + size - 1)))
3101 goto out;
3102 page = virt_to_page(ptr);
3103 if (unlikely(!PageSlab(page)))
3104 goto out;
3105 if (unlikely(page_get_cache(page) != cachep))
3106 goto out;
3107 return 1;
3108 out:
3109 return 0;
3112 #ifdef CONFIG_NUMA
3114 * kmem_cache_alloc_node - Allocate an object on the specified node
3115 * @cachep: The cache to allocate from.
3116 * @flags: See kmalloc().
3117 * @nodeid: node number of the target node.
3119 * Identical to kmem_cache_alloc, except that this function is slow
3120 * and can sleep. And it will allocate memory on the given node, which
3121 * can improve the performance for cpu bound structures.
3122 * New and improved: it will now make sure that the object gets
3123 * put on the correct node list so that there is no false sharing.
3125 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3127 unsigned long save_flags;
3128 void *ptr;
3130 cache_alloc_debugcheck_before(cachep, flags);
3131 local_irq_save(save_flags);
3133 if (nodeid == -1 || nodeid == numa_node_id() ||
3134 !cachep->nodelists[nodeid])
3135 ptr = ____cache_alloc(cachep, flags);
3136 else
3137 ptr = __cache_alloc_node(cachep, flags, nodeid);
3138 local_irq_restore(save_flags);
3140 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3141 __builtin_return_address(0));
3143 return ptr;
3145 EXPORT_SYMBOL(kmem_cache_alloc_node);
3147 void *kmalloc_node(size_t size, gfp_t flags, int node)
3149 struct kmem_cache *cachep;
3151 cachep = kmem_find_general_cachep(size, flags);
3152 if (unlikely(cachep == NULL))
3153 return NULL;
3154 return kmem_cache_alloc_node(cachep, flags, node);
3156 EXPORT_SYMBOL(kmalloc_node);
3157 #endif
3160 * kmalloc - allocate memory
3161 * @size: how many bytes of memory are required.
3162 * @flags: the type of memory to allocate.
3164 * kmalloc is the normal method of allocating memory
3165 * in the kernel.
3167 * The @flags argument may be one of:
3169 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3171 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3173 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3175 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3176 * must be suitable for DMA. This can mean different things on different
3177 * platforms. For example, on i386, it means that the memory must come
3178 * from the first 16MB.
3180 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3181 void *caller)
3183 struct kmem_cache *cachep;
3185 /* If you want to save a few bytes .text space: replace
3186 * __ with kmem_.
3187 * Then kmalloc uses the uninlined functions instead of the inline
3188 * functions.
3190 cachep = __find_general_cachep(size, flags);
3191 if (unlikely(cachep == NULL))
3192 return NULL;
3193 return __cache_alloc(cachep, flags, caller);
3196 #ifndef CONFIG_DEBUG_SLAB
3198 void *__kmalloc(size_t size, gfp_t flags)
3200 return __do_kmalloc(size, flags, NULL);
3202 EXPORT_SYMBOL(__kmalloc);
3204 #else
3206 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3208 return __do_kmalloc(size, flags, caller);
3210 EXPORT_SYMBOL(__kmalloc_track_caller);
3212 #endif
3214 #ifdef CONFIG_SMP
3216 * __alloc_percpu - allocate one copy of the object for every present
3217 * cpu in the system, zeroing them.
3218 * Objects should be dereferenced using the per_cpu_ptr macro only.
3220 * @size: how many bytes of memory are required.
3222 void *__alloc_percpu(size_t size)
3224 int i;
3225 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3227 if (!pdata)
3228 return NULL;
3231 * Cannot use for_each_online_cpu since a cpu may come online
3232 * and we have no way of figuring out how to fix the array
3233 * that we have allocated then....
3235 for_each_cpu(i) {
3236 int node = cpu_to_node(i);
3238 if (node_online(node))
3239 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3240 else
3241 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3243 if (!pdata->ptrs[i])
3244 goto unwind_oom;
3245 memset(pdata->ptrs[i], 0, size);
3248 /* Catch derefs w/o wrappers */
3249 return (void *)(~(unsigned long)pdata);
3251 unwind_oom:
3252 while (--i >= 0) {
3253 if (!cpu_possible(i))
3254 continue;
3255 kfree(pdata->ptrs[i]);
3257 kfree(pdata);
3258 return NULL;
3260 EXPORT_SYMBOL(__alloc_percpu);
3261 #endif
3264 * kmem_cache_free - Deallocate an object
3265 * @cachep: The cache the allocation was from.
3266 * @objp: The previously allocated object.
3268 * Free an object which was previously allocated from this
3269 * cache.
3271 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3273 unsigned long flags;
3275 local_irq_save(flags);
3276 __cache_free(cachep, objp);
3277 local_irq_restore(flags);
3279 EXPORT_SYMBOL(kmem_cache_free);
3282 * kfree - free previously allocated memory
3283 * @objp: pointer returned by kmalloc.
3285 * If @objp is NULL, no operation is performed.
3287 * Don't free memory not originally allocated by kmalloc()
3288 * or you will run into trouble.
3290 void kfree(const void *objp)
3292 struct kmem_cache *c;
3293 unsigned long flags;
3295 if (unlikely(!objp))
3296 return;
3297 local_irq_save(flags);
3298 kfree_debugcheck(objp);
3299 c = virt_to_cache(objp);
3300 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3301 __cache_free(c, (void *)objp);
3302 local_irq_restore(flags);
3304 EXPORT_SYMBOL(kfree);
3306 #ifdef CONFIG_SMP
3308 * free_percpu - free previously allocated percpu memory
3309 * @objp: pointer returned by alloc_percpu.
3311 * Don't free memory not originally allocated by alloc_percpu()
3312 * The complemented objp is to check for that.
3314 void free_percpu(const void *objp)
3316 int i;
3317 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3320 * We allocate for all cpus so we cannot use for online cpu here.
3322 for_each_cpu(i)
3323 kfree(p->ptrs[i]);
3324 kfree(p);
3326 EXPORT_SYMBOL(free_percpu);
3327 #endif
3329 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3331 return obj_size(cachep);
3333 EXPORT_SYMBOL(kmem_cache_size);
3335 const char *kmem_cache_name(struct kmem_cache *cachep)
3337 return cachep->name;
3339 EXPORT_SYMBOL_GPL(kmem_cache_name);
3342 * This initializes kmem_list3 for all nodes.
3344 static int alloc_kmemlist(struct kmem_cache *cachep)
3346 int node;
3347 struct kmem_list3 *l3;
3348 int err = 0;
3350 for_each_online_node(node) {
3351 struct array_cache *nc = NULL, *new;
3352 struct array_cache **new_alien = NULL;
3353 #ifdef CONFIG_NUMA
3354 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3355 goto fail;
3356 #endif
3357 if (!(new = alloc_arraycache(node, (cachep->shared *
3358 cachep->batchcount),
3359 0xbaadf00d)))
3360 goto fail;
3361 if ((l3 = cachep->nodelists[node])) {
3363 spin_lock_irq(&l3->list_lock);
3365 if ((nc = cachep->nodelists[node]->shared))
3366 free_block(cachep, nc->entry, nc->avail, node);
3368 l3->shared = new;
3369 if (!cachep->nodelists[node]->alien) {
3370 l3->alien = new_alien;
3371 new_alien = NULL;
3373 l3->free_limit = (1 + nr_cpus_node(node)) *
3374 cachep->batchcount + cachep->num;
3375 spin_unlock_irq(&l3->list_lock);
3376 kfree(nc);
3377 free_alien_cache(new_alien);
3378 continue;
3380 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
3381 GFP_KERNEL, node)))
3382 goto fail;
3384 kmem_list3_init(l3);
3385 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3386 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3387 l3->shared = new;
3388 l3->alien = new_alien;
3389 l3->free_limit = (1 + nr_cpus_node(node)) *
3390 cachep->batchcount + cachep->num;
3391 cachep->nodelists[node] = l3;
3393 return err;
3394 fail:
3395 err = -ENOMEM;
3396 return err;
3399 struct ccupdate_struct {
3400 struct kmem_cache *cachep;
3401 struct array_cache *new[NR_CPUS];
3404 static void do_ccupdate_local(void *info)
3406 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3407 struct array_cache *old;
3409 check_irq_off();
3410 old = cpu_cache_get(new->cachep);
3412 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3413 new->new[smp_processor_id()] = old;
3416 static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
3417 int shared)
3419 struct ccupdate_struct new;
3420 int i, err;
3422 memset(&new.new, 0, sizeof(new.new));
3423 for_each_online_cpu(i) {
3424 new.new[i] =
3425 alloc_arraycache(cpu_to_node(i), limit, batchcount);
3426 if (!new.new[i]) {
3427 for (i--; i >= 0; i--)
3428 kfree(new.new[i]);
3429 return -ENOMEM;
3432 new.cachep = cachep;
3434 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3436 check_irq_on();
3437 spin_lock(&cachep->spinlock);
3438 cachep->batchcount = batchcount;
3439 cachep->limit = limit;
3440 cachep->shared = shared;
3441 spin_unlock(&cachep->spinlock);
3443 for_each_online_cpu(i) {
3444 struct array_cache *ccold = new.new[i];
3445 if (!ccold)
3446 continue;
3447 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3448 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3449 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3450 kfree(ccold);
3453 err = alloc_kmemlist(cachep);
3454 if (err) {
3455 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3456 cachep->name, -err);
3457 BUG();
3459 return 0;
3462 static void enable_cpucache(struct kmem_cache *cachep)
3464 int err;
3465 int limit, shared;
3467 /* The head array serves three purposes:
3468 * - create a LIFO ordering, i.e. return objects that are cache-warm
3469 * - reduce the number of spinlock operations.
3470 * - reduce the number of linked list operations on the slab and
3471 * bufctl chains: array operations are cheaper.
3472 * The numbers are guessed, we should auto-tune as described by
3473 * Bonwick.
3475 if (cachep->buffer_size > 131072)
3476 limit = 1;
3477 else if (cachep->buffer_size > PAGE_SIZE)
3478 limit = 8;
3479 else if (cachep->buffer_size > 1024)
3480 limit = 24;
3481 else if (cachep->buffer_size > 256)
3482 limit = 54;
3483 else
3484 limit = 120;
3486 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3487 * allocation behaviour: Most allocs on one cpu, most free operations
3488 * on another cpu. For these cases, an efficient object passing between
3489 * cpus is necessary. This is provided by a shared array. The array
3490 * replaces Bonwick's magazine layer.
3491 * On uniprocessor, it's functionally equivalent (but less efficient)
3492 * to a larger limit. Thus disabled by default.
3494 shared = 0;
3495 #ifdef CONFIG_SMP
3496 if (cachep->buffer_size <= PAGE_SIZE)
3497 shared = 8;
3498 #endif
3500 #if DEBUG
3501 /* With debugging enabled, large batchcount lead to excessively
3502 * long periods with disabled local interrupts. Limit the
3503 * batchcount
3505 if (limit > 32)
3506 limit = 32;
3507 #endif
3508 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3509 if (err)
3510 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3511 cachep->name, -err);
3514 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
3515 int force, int node)
3517 int tofree;
3519 check_spinlock_acquired_node(cachep, node);
3520 if (ac->touched && !force) {
3521 ac->touched = 0;
3522 } else if (ac->avail) {
3523 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3524 if (tofree > ac->avail) {
3525 tofree = (ac->avail + 1) / 2;
3527 free_block(cachep, ac->entry, tofree, node);
3528 ac->avail -= tofree;
3529 memmove(ac->entry, &(ac->entry[tofree]),
3530 sizeof(void *) * ac->avail);
3535 * cache_reap - Reclaim memory from caches.
3536 * @unused: unused parameter
3538 * Called from workqueue/eventd every few seconds.
3539 * Purpose:
3540 * - clear the per-cpu caches for this CPU.
3541 * - return freeable pages to the main free memory pool.
3543 * If we cannot acquire the cache chain mutex then just give up - we'll
3544 * try again on the next iteration.
3546 static void cache_reap(void *unused)
3548 struct list_head *walk;
3549 struct kmem_list3 *l3;
3551 if (!mutex_trylock(&cache_chain_mutex)) {
3552 /* Give up. Setup the next iteration. */
3553 schedule_delayed_work(&__get_cpu_var(reap_work),
3554 REAPTIMEOUT_CPUC);
3555 return;
3558 list_for_each(walk, &cache_chain) {
3559 struct kmem_cache *searchp;
3560 struct list_head *p;
3561 int tofree;
3562 struct slab *slabp;
3564 searchp = list_entry(walk, struct kmem_cache, next);
3566 if (searchp->flags & SLAB_NO_REAP)
3567 goto next;
3569 check_irq_on();
3571 l3 = searchp->nodelists[numa_node_id()];
3572 reap_alien(searchp, l3);
3573 spin_lock_irq(&l3->list_lock);
3575 drain_array_locked(searchp, cpu_cache_get(searchp), 0,
3576 numa_node_id());
3578 if (time_after(l3->next_reap, jiffies))
3579 goto next_unlock;
3581 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3583 if (l3->shared)
3584 drain_array_locked(searchp, l3->shared, 0,
3585 numa_node_id());
3587 if (l3->free_touched) {
3588 l3->free_touched = 0;
3589 goto next_unlock;
3592 tofree =
3593 (l3->free_limit + 5 * searchp->num -
3594 1) / (5 * searchp->num);
3595 do {
3596 p = l3->slabs_free.next;
3597 if (p == &(l3->slabs_free))
3598 break;
3600 slabp = list_entry(p, struct slab, list);
3601 BUG_ON(slabp->inuse);
3602 list_del(&slabp->list);
3603 STATS_INC_REAPED(searchp);
3605 /* Safe to drop the lock. The slab is no longer
3606 * linked to the cache.
3607 * searchp cannot disappear, we hold
3608 * cache_chain_lock
3610 l3->free_objects -= searchp->num;
3611 spin_unlock_irq(&l3->list_lock);
3612 slab_destroy(searchp, slabp);
3613 spin_lock_irq(&l3->list_lock);
3614 } while (--tofree > 0);
3615 next_unlock:
3616 spin_unlock_irq(&l3->list_lock);
3617 next:
3618 cond_resched();
3620 check_irq_on();
3621 mutex_unlock(&cache_chain_mutex);
3622 next_reap_node();
3623 /* Setup the next iteration */
3624 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3627 #ifdef CONFIG_PROC_FS
3629 static void print_slabinfo_header(struct seq_file *m)
3632 * Output format version, so at least we can change it
3633 * without _too_ many complaints.
3635 #if STATS
3636 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3637 #else
3638 seq_puts(m, "slabinfo - version: 2.1\n");
3639 #endif
3640 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3641 "<objperslab> <pagesperslab>");
3642 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3643 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3644 #if STATS
3645 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3646 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3647 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3648 #endif
3649 seq_putc(m, '\n');
3652 static void *s_start(struct seq_file *m, loff_t *pos)
3654 loff_t n = *pos;
3655 struct list_head *p;
3657 mutex_lock(&cache_chain_mutex);
3658 if (!n)
3659 print_slabinfo_header(m);
3660 p = cache_chain.next;
3661 while (n--) {
3662 p = p->next;
3663 if (p == &cache_chain)
3664 return NULL;
3666 return list_entry(p, struct kmem_cache, next);
3669 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3671 struct kmem_cache *cachep = p;
3672 ++*pos;
3673 return cachep->next.next == &cache_chain ? NULL
3674 : list_entry(cachep->next.next, struct kmem_cache, next);
3677 static void s_stop(struct seq_file *m, void *p)
3679 mutex_unlock(&cache_chain_mutex);
3682 static int s_show(struct seq_file *m, void *p)
3684 struct kmem_cache *cachep = p;
3685 struct list_head *q;
3686 struct slab *slabp;
3687 unsigned long active_objs;
3688 unsigned long num_objs;
3689 unsigned long active_slabs = 0;
3690 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3691 const char *name;
3692 char *error = NULL;
3693 int node;
3694 struct kmem_list3 *l3;
3696 spin_lock(&cachep->spinlock);
3697 active_objs = 0;
3698 num_slabs = 0;
3699 for_each_online_node(node) {
3700 l3 = cachep->nodelists[node];
3701 if (!l3)
3702 continue;
3704 check_irq_on();
3705 spin_lock_irq(&l3->list_lock);
3707 list_for_each(q, &l3->slabs_full) {
3708 slabp = list_entry(q, struct slab, list);
3709 if (slabp->inuse != cachep->num && !error)
3710 error = "slabs_full accounting error";
3711 active_objs += cachep->num;
3712 active_slabs++;
3714 list_for_each(q, &l3->slabs_partial) {
3715 slabp = list_entry(q, struct slab, list);
3716 if (slabp->inuse == cachep->num && !error)
3717 error = "slabs_partial inuse accounting error";
3718 if (!slabp->inuse && !error)
3719 error = "slabs_partial/inuse accounting error";
3720 active_objs += slabp->inuse;
3721 active_slabs++;
3723 list_for_each(q, &l3->slabs_free) {
3724 slabp = list_entry(q, struct slab, list);
3725 if (slabp->inuse && !error)
3726 error = "slabs_free/inuse accounting error";
3727 num_slabs++;
3729 free_objects += l3->free_objects;
3730 if (l3->shared)
3731 shared_avail += l3->shared->avail;
3733 spin_unlock_irq(&l3->list_lock);
3735 num_slabs += active_slabs;
3736 num_objs = num_slabs * cachep->num;
3737 if (num_objs - active_objs != free_objects && !error)
3738 error = "free_objects accounting error";
3740 name = cachep->name;
3741 if (error)
3742 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3744 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3745 name, active_objs, num_objs, cachep->buffer_size,
3746 cachep->num, (1 << cachep->gfporder));
3747 seq_printf(m, " : tunables %4u %4u %4u",
3748 cachep->limit, cachep->batchcount, cachep->shared);
3749 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3750 active_slabs, num_slabs, shared_avail);
3751 #if STATS
3752 { /* list3 stats */
3753 unsigned long high = cachep->high_mark;
3754 unsigned long allocs = cachep->num_allocations;
3755 unsigned long grown = cachep->grown;
3756 unsigned long reaped = cachep->reaped;
3757 unsigned long errors = cachep->errors;
3758 unsigned long max_freeable = cachep->max_freeable;
3759 unsigned long node_allocs = cachep->node_allocs;
3760 unsigned long node_frees = cachep->node_frees;
3762 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3763 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
3765 /* cpu stats */
3767 unsigned long allochit = atomic_read(&cachep->allochit);
3768 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3769 unsigned long freehit = atomic_read(&cachep->freehit);
3770 unsigned long freemiss = atomic_read(&cachep->freemiss);
3772 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3773 allochit, allocmiss, freehit, freemiss);
3775 #endif
3776 seq_putc(m, '\n');
3777 spin_unlock(&cachep->spinlock);
3778 return 0;
3782 * slabinfo_op - iterator that generates /proc/slabinfo
3784 * Output layout:
3785 * cache-name
3786 * num-active-objs
3787 * total-objs
3788 * object size
3789 * num-active-slabs
3790 * total-slabs
3791 * num-pages-per-slab
3792 * + further values on SMP and with statistics enabled
3795 struct seq_operations slabinfo_op = {
3796 .start = s_start,
3797 .next = s_next,
3798 .stop = s_stop,
3799 .show = s_show,
3802 #define MAX_SLABINFO_WRITE 128
3804 * slabinfo_write - Tuning for the slab allocator
3805 * @file: unused
3806 * @buffer: user buffer
3807 * @count: data length
3808 * @ppos: unused
3810 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3811 size_t count, loff_t *ppos)
3813 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3814 int limit, batchcount, shared, res;
3815 struct list_head *p;
3817 if (count > MAX_SLABINFO_WRITE)
3818 return -EINVAL;
3819 if (copy_from_user(&kbuf, buffer, count))
3820 return -EFAULT;
3821 kbuf[MAX_SLABINFO_WRITE] = '\0';
3823 tmp = strchr(kbuf, ' ');
3824 if (!tmp)
3825 return -EINVAL;
3826 *tmp = '\0';
3827 tmp++;
3828 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3829 return -EINVAL;
3831 /* Find the cache in the chain of caches. */
3832 mutex_lock(&cache_chain_mutex);
3833 res = -EINVAL;
3834 list_for_each(p, &cache_chain) {
3835 struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
3836 next);
3838 if (!strcmp(cachep->name, kbuf)) {
3839 if (limit < 1 ||
3840 batchcount < 1 ||
3841 batchcount > limit || shared < 0) {
3842 res = 0;
3843 } else {
3844 res = do_tune_cpucache(cachep, limit,
3845 batchcount, shared);
3847 break;
3850 mutex_unlock(&cache_chain_mutex);
3851 if (res >= 0)
3852 res = count;
3853 return res;
3855 #endif
3858 * ksize - get the actual amount of memory allocated for a given object
3859 * @objp: Pointer to the object
3861 * kmalloc may internally round up allocations and return more memory
3862 * than requested. ksize() can be used to determine the actual amount of
3863 * memory allocated. The caller may use this additional memory, even though
3864 * a smaller amount of memory was initially specified with the kmalloc call.
3865 * The caller must guarantee that objp points to a valid object previously
3866 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3867 * must not be freed during the duration of the call.
3869 unsigned int ksize(const void *objp)
3871 if (unlikely(objp == NULL))
3872 return 0;
3874 return obj_size(virt_to_cache(objp));