dcdbas: add DMI-based module autloading
[linux-2.6/kmemtrace.git] / kernel / hrtimer.c
blob668f3967eb394e37fcecc65e47e6dce75173b5dc
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
47 #include <asm/uaccess.h>
49 /**
50 * ktime_get - get the monotonic time in ktime_t format
52 * returns the time in ktime_t format
54 ktime_t ktime_get(void)
56 struct timespec now;
58 ktime_get_ts(&now);
60 return timespec_to_ktime(now);
62 EXPORT_SYMBOL_GPL(ktime_get);
64 /**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
67 * returns the time in ktime_t format
69 ktime_t ktime_get_real(void)
71 struct timespec now;
73 getnstimeofday(&now);
75 return timespec_to_ktime(now);
78 EXPORT_SYMBOL_GPL(ktime_get_real);
81 * The timer bases:
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
89 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
92 .clock_base =
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
97 .resolution = KTIME_LOW_RES,
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
102 .resolution = KTIME_LOW_RES,
108 * ktime_get_ts - get the monotonic clock in timespec format
109 * @ts: pointer to timespec variable
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
113 * in normalized timespec format in the variable pointed to by @ts.
115 void ktime_get_ts(struct timespec *ts)
117 struct timespec tomono;
118 unsigned long seq;
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
125 } while (read_seqretry(&xtime_lock, seq));
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
130 EXPORT_SYMBOL_GPL(ktime_get_ts);
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
136 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
138 ktime_t xtim, tomono;
139 struct timespec xts, tom;
140 unsigned long seq;
142 do {
143 seq = read_seqbegin(&xtime_lock);
144 xts = current_kernel_time();
145 tom = wall_to_monotonic;
146 } while (read_seqretry(&xtime_lock, seq));
148 xtim = timespec_to_ktime(xts);
149 tomono = timespec_to_ktime(tom);
150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151 base->clock_base[CLOCK_MONOTONIC].softirq_time =
152 ktime_add(xtim, tomono);
156 * Helper function to check, whether the timer is running the callback
157 * function
159 static inline int hrtimer_callback_running(struct hrtimer *timer)
161 return timer->state & HRTIMER_STATE_CALLBACK;
165 * Functions and macros which are different for UP/SMP systems are kept in a
166 * single place
168 #ifdef CONFIG_SMP
171 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
172 * means that all timers which are tied to this base via timer->base are
173 * locked, and the base itself is locked too.
175 * So __run_timers/migrate_timers can safely modify all timers which could
176 * be found on the lists/queues.
178 * When the timer's base is locked, and the timer removed from list, it is
179 * possible to set timer->base = NULL and drop the lock: the timer remains
180 * locked.
182 static
183 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
184 unsigned long *flags)
186 struct hrtimer_clock_base *base;
188 for (;;) {
189 base = timer->base;
190 if (likely(base != NULL)) {
191 spin_lock_irqsave(&base->cpu_base->lock, *flags);
192 if (likely(base == timer->base))
193 return base;
194 /* The timer has migrated to another CPU: */
195 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
197 cpu_relax();
202 * Switch the timer base to the current CPU when possible.
204 static inline struct hrtimer_clock_base *
205 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
207 struct hrtimer_clock_base *new_base;
208 struct hrtimer_cpu_base *new_cpu_base;
210 new_cpu_base = &__get_cpu_var(hrtimer_bases);
211 new_base = &new_cpu_base->clock_base[base->index];
213 if (base != new_base) {
215 * We are trying to schedule the timer on the local CPU.
216 * However we can't change timer's base while it is running,
217 * so we keep it on the same CPU. No hassle vs. reprogramming
218 * the event source in the high resolution case. The softirq
219 * code will take care of this when the timer function has
220 * completed. There is no conflict as we hold the lock until
221 * the timer is enqueued.
223 if (unlikely(hrtimer_callback_running(timer)))
224 return base;
226 /* See the comment in lock_timer_base() */
227 timer->base = NULL;
228 spin_unlock(&base->cpu_base->lock);
229 spin_lock(&new_base->cpu_base->lock);
230 timer->base = new_base;
232 return new_base;
235 #else /* CONFIG_SMP */
237 static inline struct hrtimer_clock_base *
238 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
240 struct hrtimer_clock_base *base = timer->base;
242 spin_lock_irqsave(&base->cpu_base->lock, *flags);
244 return base;
247 # define switch_hrtimer_base(t, b) (b)
249 #endif /* !CONFIG_SMP */
252 * Functions for the union type storage format of ktime_t which are
253 * too large for inlining:
255 #if BITS_PER_LONG < 64
256 # ifndef CONFIG_KTIME_SCALAR
258 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
259 * @kt: addend
260 * @nsec: the scalar nsec value to add
262 * Returns the sum of kt and nsec in ktime_t format
264 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
266 ktime_t tmp;
268 if (likely(nsec < NSEC_PER_SEC)) {
269 tmp.tv64 = nsec;
270 } else {
271 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
273 tmp = ktime_set((long)nsec, rem);
276 return ktime_add(kt, tmp);
279 EXPORT_SYMBOL_GPL(ktime_add_ns);
282 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
283 * @kt: minuend
284 * @nsec: the scalar nsec value to subtract
286 * Returns the subtraction of @nsec from @kt in ktime_t format
288 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
290 ktime_t tmp;
292 if (likely(nsec < NSEC_PER_SEC)) {
293 tmp.tv64 = nsec;
294 } else {
295 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
297 tmp = ktime_set((long)nsec, rem);
300 return ktime_sub(kt, tmp);
303 EXPORT_SYMBOL_GPL(ktime_sub_ns);
304 # endif /* !CONFIG_KTIME_SCALAR */
307 * Divide a ktime value by a nanosecond value
309 u64 ktime_divns(const ktime_t kt, s64 div)
311 u64 dclc, inc, dns;
312 int sft = 0;
314 dclc = dns = ktime_to_ns(kt);
315 inc = div;
316 /* Make sure the divisor is less than 2^32: */
317 while (div >> 32) {
318 sft++;
319 div >>= 1;
321 dclc >>= sft;
322 do_div(dclc, (unsigned long) div);
324 return dclc;
326 #endif /* BITS_PER_LONG >= 64 */
329 * Check, whether the timer is on the callback pending list
331 static inline int hrtimer_cb_pending(const struct hrtimer *timer)
333 return timer->state & HRTIMER_STATE_PENDING;
337 * Remove a timer from the callback pending list
339 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
341 list_del_init(&timer->cb_entry);
344 /* High resolution timer related functions */
345 #ifdef CONFIG_HIGH_RES_TIMERS
348 * High resolution timer enabled ?
350 static int hrtimer_hres_enabled __read_mostly = 1;
353 * Enable / Disable high resolution mode
355 static int __init setup_hrtimer_hres(char *str)
357 if (!strcmp(str, "off"))
358 hrtimer_hres_enabled = 0;
359 else if (!strcmp(str, "on"))
360 hrtimer_hres_enabled = 1;
361 else
362 return 0;
363 return 1;
366 __setup("highres=", setup_hrtimer_hres);
369 * hrtimer_high_res_enabled - query, if the highres mode is enabled
371 static inline int hrtimer_is_hres_enabled(void)
373 return hrtimer_hres_enabled;
377 * Is the high resolution mode active ?
379 static inline int hrtimer_hres_active(void)
381 return __get_cpu_var(hrtimer_bases).hres_active;
385 * Reprogram the event source with checking both queues for the
386 * next event
387 * Called with interrupts disabled and base->lock held
389 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
391 int i;
392 struct hrtimer_clock_base *base = cpu_base->clock_base;
393 ktime_t expires;
395 cpu_base->expires_next.tv64 = KTIME_MAX;
397 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
398 struct hrtimer *timer;
400 if (!base->first)
401 continue;
402 timer = rb_entry(base->first, struct hrtimer, node);
403 expires = ktime_sub(timer->expires, base->offset);
404 if (expires.tv64 < cpu_base->expires_next.tv64)
405 cpu_base->expires_next = expires;
408 if (cpu_base->expires_next.tv64 != KTIME_MAX)
409 tick_program_event(cpu_base->expires_next, 1);
413 * Shared reprogramming for clock_realtime and clock_monotonic
415 * When a timer is enqueued and expires earlier than the already enqueued
416 * timers, we have to check, whether it expires earlier than the timer for
417 * which the clock event device was armed.
419 * Called with interrupts disabled and base->cpu_base.lock held
421 static int hrtimer_reprogram(struct hrtimer *timer,
422 struct hrtimer_clock_base *base)
424 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
425 ktime_t expires = ktime_sub(timer->expires, base->offset);
426 int res;
429 * When the callback is running, we do not reprogram the clock event
430 * device. The timer callback is either running on a different CPU or
431 * the callback is executed in the hrtimer_interrupt context. The
432 * reprogramming is handled either by the softirq, which called the
433 * callback or at the end of the hrtimer_interrupt.
435 if (hrtimer_callback_running(timer))
436 return 0;
438 if (expires.tv64 >= expires_next->tv64)
439 return 0;
442 * Clockevents returns -ETIME, when the event was in the past.
444 res = tick_program_event(expires, 0);
445 if (!IS_ERR_VALUE(res))
446 *expires_next = expires;
447 return res;
452 * Retrigger next event is called after clock was set
454 * Called with interrupts disabled via on_each_cpu()
456 static void retrigger_next_event(void *arg)
458 struct hrtimer_cpu_base *base;
459 struct timespec realtime_offset;
460 unsigned long seq;
462 if (!hrtimer_hres_active())
463 return;
465 do {
466 seq = read_seqbegin(&xtime_lock);
467 set_normalized_timespec(&realtime_offset,
468 -wall_to_monotonic.tv_sec,
469 -wall_to_monotonic.tv_nsec);
470 } while (read_seqretry(&xtime_lock, seq));
472 base = &__get_cpu_var(hrtimer_bases);
474 /* Adjust CLOCK_REALTIME offset */
475 spin_lock(&base->lock);
476 base->clock_base[CLOCK_REALTIME].offset =
477 timespec_to_ktime(realtime_offset);
479 hrtimer_force_reprogram(base);
480 spin_unlock(&base->lock);
484 * Clock realtime was set
486 * Change the offset of the realtime clock vs. the monotonic
487 * clock.
489 * We might have to reprogram the high resolution timer interrupt. On
490 * SMP we call the architecture specific code to retrigger _all_ high
491 * resolution timer interrupts. On UP we just disable interrupts and
492 * call the high resolution interrupt code.
494 void clock_was_set(void)
496 /* Retrigger the CPU local events everywhere */
497 on_each_cpu(retrigger_next_event, NULL, 0, 1);
501 * During resume we might have to reprogram the high resolution timer
502 * interrupt (on the local CPU):
504 void hres_timers_resume(void)
506 WARN_ON_ONCE(num_online_cpus() > 1);
508 /* Retrigger the CPU local events: */
509 retrigger_next_event(NULL);
513 * Initialize the high resolution related parts of cpu_base
515 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
517 base->expires_next.tv64 = KTIME_MAX;
518 base->hres_active = 0;
522 * Initialize the high resolution related parts of a hrtimer
524 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
529 * When High resolution timers are active, try to reprogram. Note, that in case
530 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
531 * check happens. The timer gets enqueued into the rbtree. The reprogramming
532 * and expiry check is done in the hrtimer_interrupt or in the softirq.
534 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
535 struct hrtimer_clock_base *base)
537 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
539 /* Timer is expired, act upon the callback mode */
540 switch(timer->cb_mode) {
541 case HRTIMER_CB_IRQSAFE_NO_RESTART:
543 * We can call the callback from here. No restart
544 * happens, so no danger of recursion
546 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
547 return 1;
548 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
550 * This is solely for the sched tick emulation with
551 * dynamic tick support to ensure that we do not
552 * restart the tick right on the edge and end up with
553 * the tick timer in the softirq ! The calling site
554 * takes care of this.
556 return 1;
557 case HRTIMER_CB_IRQSAFE:
558 case HRTIMER_CB_SOFTIRQ:
560 * Move everything else into the softirq pending list !
562 list_add_tail(&timer->cb_entry,
563 &base->cpu_base->cb_pending);
564 timer->state = HRTIMER_STATE_PENDING;
565 raise_softirq(HRTIMER_SOFTIRQ);
566 return 1;
567 default:
568 BUG();
571 return 0;
575 * Switch to high resolution mode
577 static int hrtimer_switch_to_hres(void)
579 int cpu = smp_processor_id();
580 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
581 unsigned long flags;
583 if (base->hres_active)
584 return 1;
586 local_irq_save(flags);
588 if (tick_init_highres()) {
589 local_irq_restore(flags);
590 printk(KERN_WARNING "Could not switch to high resolution "
591 "mode on CPU %d\n", cpu);
592 return 0;
594 base->hres_active = 1;
595 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
596 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
598 tick_setup_sched_timer();
600 /* "Retrigger" the interrupt to get things going */
601 retrigger_next_event(NULL);
602 local_irq_restore(flags);
603 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
604 smp_processor_id());
605 return 1;
608 #else
610 static inline int hrtimer_hres_active(void) { return 0; }
611 static inline int hrtimer_is_hres_enabled(void) { return 0; }
612 static inline int hrtimer_switch_to_hres(void) { return 0; }
613 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
614 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
615 struct hrtimer_clock_base *base)
617 return 0;
619 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
620 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
621 static inline int hrtimer_reprogram(struct hrtimer *timer,
622 struct hrtimer_clock_base *base)
624 return 0;
627 #endif /* CONFIG_HIGH_RES_TIMERS */
629 #ifdef CONFIG_TIMER_STATS
630 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
632 if (timer->start_site)
633 return;
635 timer->start_site = addr;
636 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
637 timer->start_pid = current->pid;
639 #endif
642 * Counterpart to lock_hrtimer_base above:
644 static inline
645 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
647 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
651 * hrtimer_forward - forward the timer expiry
652 * @timer: hrtimer to forward
653 * @now: forward past this time
654 * @interval: the interval to forward
656 * Forward the timer expiry so it will expire in the future.
657 * Returns the number of overruns.
659 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
661 u64 orun = 1;
662 ktime_t delta;
664 delta = ktime_sub(now, timer->expires);
666 if (delta.tv64 < 0)
667 return 0;
669 if (interval.tv64 < timer->base->resolution.tv64)
670 interval.tv64 = timer->base->resolution.tv64;
672 if (unlikely(delta.tv64 >= interval.tv64)) {
673 s64 incr = ktime_to_ns(interval);
675 orun = ktime_divns(delta, incr);
676 timer->expires = ktime_add_ns(timer->expires, incr * orun);
677 if (timer->expires.tv64 > now.tv64)
678 return orun;
680 * This (and the ktime_add() below) is the
681 * correction for exact:
683 orun++;
685 timer->expires = ktime_add(timer->expires, interval);
687 * Make sure, that the result did not wrap with a very large
688 * interval.
690 if (timer->expires.tv64 < 0)
691 timer->expires = ktime_set(KTIME_SEC_MAX, 0);
693 return orun;
695 EXPORT_SYMBOL_GPL(hrtimer_forward);
698 * enqueue_hrtimer - internal function to (re)start a timer
700 * The timer is inserted in expiry order. Insertion into the
701 * red black tree is O(log(n)). Must hold the base lock.
703 static void enqueue_hrtimer(struct hrtimer *timer,
704 struct hrtimer_clock_base *base, int reprogram)
706 struct rb_node **link = &base->active.rb_node;
707 struct rb_node *parent = NULL;
708 struct hrtimer *entry;
709 int leftmost = 1;
712 * Find the right place in the rbtree:
714 while (*link) {
715 parent = *link;
716 entry = rb_entry(parent, struct hrtimer, node);
718 * We dont care about collisions. Nodes with
719 * the same expiry time stay together.
721 if (timer->expires.tv64 < entry->expires.tv64) {
722 link = &(*link)->rb_left;
723 } else {
724 link = &(*link)->rb_right;
725 leftmost = 0;
730 * Insert the timer to the rbtree and check whether it
731 * replaces the first pending timer
733 if (leftmost) {
735 * Reprogram the clock event device. When the timer is already
736 * expired hrtimer_enqueue_reprogram has either called the
737 * callback or added it to the pending list and raised the
738 * softirq.
740 * This is a NOP for !HIGHRES
742 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
743 return;
745 base->first = &timer->node;
748 rb_link_node(&timer->node, parent, link);
749 rb_insert_color(&timer->node, &base->active);
751 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
752 * state of a possibly running callback.
754 timer->state |= HRTIMER_STATE_ENQUEUED;
758 * __remove_hrtimer - internal function to remove a timer
760 * Caller must hold the base lock.
762 * High resolution timer mode reprograms the clock event device when the
763 * timer is the one which expires next. The caller can disable this by setting
764 * reprogram to zero. This is useful, when the context does a reprogramming
765 * anyway (e.g. timer interrupt)
767 static void __remove_hrtimer(struct hrtimer *timer,
768 struct hrtimer_clock_base *base,
769 unsigned long newstate, int reprogram)
771 /* High res. callback list. NOP for !HIGHRES */
772 if (hrtimer_cb_pending(timer))
773 hrtimer_remove_cb_pending(timer);
774 else {
776 * Remove the timer from the rbtree and replace the
777 * first entry pointer if necessary.
779 if (base->first == &timer->node) {
780 base->first = rb_next(&timer->node);
781 /* Reprogram the clock event device. if enabled */
782 if (reprogram && hrtimer_hres_active())
783 hrtimer_force_reprogram(base->cpu_base);
785 rb_erase(&timer->node, &base->active);
787 timer->state = newstate;
791 * remove hrtimer, called with base lock held
793 static inline int
794 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
796 if (hrtimer_is_queued(timer)) {
797 int reprogram;
800 * Remove the timer and force reprogramming when high
801 * resolution mode is active and the timer is on the current
802 * CPU. If we remove a timer on another CPU, reprogramming is
803 * skipped. The interrupt event on this CPU is fired and
804 * reprogramming happens in the interrupt handler. This is a
805 * rare case and less expensive than a smp call.
807 timer_stats_hrtimer_clear_start_info(timer);
808 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
809 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
810 reprogram);
811 return 1;
813 return 0;
817 * hrtimer_start - (re)start an relative timer on the current CPU
818 * @timer: the timer to be added
819 * @tim: expiry time
820 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
822 * Returns:
823 * 0 on success
824 * 1 when the timer was active
827 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
829 struct hrtimer_clock_base *base, *new_base;
830 unsigned long flags;
831 int ret;
833 base = lock_hrtimer_base(timer, &flags);
835 /* Remove an active timer from the queue: */
836 ret = remove_hrtimer(timer, base);
838 /* Switch the timer base, if necessary: */
839 new_base = switch_hrtimer_base(timer, base);
841 if (mode == HRTIMER_MODE_REL) {
842 tim = ktime_add(tim, new_base->get_time());
844 * CONFIG_TIME_LOW_RES is a temporary way for architectures
845 * to signal that they simply return xtime in
846 * do_gettimeoffset(). In this case we want to round up by
847 * resolution when starting a relative timer, to avoid short
848 * timeouts. This will go away with the GTOD framework.
850 #ifdef CONFIG_TIME_LOW_RES
851 tim = ktime_add(tim, base->resolution);
852 #endif
854 * Careful here: User space might have asked for a
855 * very long sleep, so the add above might result in a
856 * negative number, which enqueues the timer in front
857 * of the queue.
859 if (tim.tv64 < 0)
860 tim.tv64 = KTIME_MAX;
862 timer->expires = tim;
864 timer_stats_hrtimer_set_start_info(timer);
867 * Only allow reprogramming if the new base is on this CPU.
868 * (it might still be on another CPU if the timer was pending)
870 enqueue_hrtimer(timer, new_base,
871 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
873 unlock_hrtimer_base(timer, &flags);
875 return ret;
877 EXPORT_SYMBOL_GPL(hrtimer_start);
880 * hrtimer_try_to_cancel - try to deactivate a timer
881 * @timer: hrtimer to stop
883 * Returns:
884 * 0 when the timer was not active
885 * 1 when the timer was active
886 * -1 when the timer is currently excuting the callback function and
887 * cannot be stopped
889 int hrtimer_try_to_cancel(struct hrtimer *timer)
891 struct hrtimer_clock_base *base;
892 unsigned long flags;
893 int ret = -1;
895 base = lock_hrtimer_base(timer, &flags);
897 if (!hrtimer_callback_running(timer))
898 ret = remove_hrtimer(timer, base);
900 unlock_hrtimer_base(timer, &flags);
902 return ret;
905 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
908 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
909 * @timer: the timer to be cancelled
911 * Returns:
912 * 0 when the timer was not active
913 * 1 when the timer was active
915 int hrtimer_cancel(struct hrtimer *timer)
917 for (;;) {
918 int ret = hrtimer_try_to_cancel(timer);
920 if (ret >= 0)
921 return ret;
922 cpu_relax();
925 EXPORT_SYMBOL_GPL(hrtimer_cancel);
928 * hrtimer_get_remaining - get remaining time for the timer
929 * @timer: the timer to read
931 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
933 struct hrtimer_clock_base *base;
934 unsigned long flags;
935 ktime_t rem;
937 base = lock_hrtimer_base(timer, &flags);
938 rem = ktime_sub(timer->expires, base->get_time());
939 unlock_hrtimer_base(timer, &flags);
941 return rem;
943 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
945 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
947 * hrtimer_get_next_event - get the time until next expiry event
949 * Returns the delta to the next expiry event or KTIME_MAX if no timer
950 * is pending.
952 ktime_t hrtimer_get_next_event(void)
954 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
955 struct hrtimer_clock_base *base = cpu_base->clock_base;
956 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
957 unsigned long flags;
958 int i;
960 spin_lock_irqsave(&cpu_base->lock, flags);
962 if (!hrtimer_hres_active()) {
963 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
964 struct hrtimer *timer;
966 if (!base->first)
967 continue;
969 timer = rb_entry(base->first, struct hrtimer, node);
970 delta.tv64 = timer->expires.tv64;
971 delta = ktime_sub(delta, base->get_time());
972 if (delta.tv64 < mindelta.tv64)
973 mindelta.tv64 = delta.tv64;
977 spin_unlock_irqrestore(&cpu_base->lock, flags);
979 if (mindelta.tv64 < 0)
980 mindelta.tv64 = 0;
981 return mindelta;
983 #endif
986 * hrtimer_init - initialize a timer to the given clock
987 * @timer: the timer to be initialized
988 * @clock_id: the clock to be used
989 * @mode: timer mode abs/rel
991 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
992 enum hrtimer_mode mode)
994 struct hrtimer_cpu_base *cpu_base;
996 memset(timer, 0, sizeof(struct hrtimer));
998 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1000 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1001 clock_id = CLOCK_MONOTONIC;
1003 timer->base = &cpu_base->clock_base[clock_id];
1004 INIT_LIST_HEAD(&timer->cb_entry);
1005 hrtimer_init_timer_hres(timer);
1007 #ifdef CONFIG_TIMER_STATS
1008 timer->start_site = NULL;
1009 timer->start_pid = -1;
1010 memset(timer->start_comm, 0, TASK_COMM_LEN);
1011 #endif
1013 EXPORT_SYMBOL_GPL(hrtimer_init);
1016 * hrtimer_get_res - get the timer resolution for a clock
1017 * @which_clock: which clock to query
1018 * @tp: pointer to timespec variable to store the resolution
1020 * Store the resolution of the clock selected by @which_clock in the
1021 * variable pointed to by @tp.
1023 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1025 struct hrtimer_cpu_base *cpu_base;
1027 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1028 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1030 return 0;
1032 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1034 static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
1036 spin_lock_irq(&cpu_base->lock);
1038 while (!list_empty(&cpu_base->cb_pending)) {
1039 enum hrtimer_restart (*fn)(struct hrtimer *);
1040 struct hrtimer *timer;
1041 int restart;
1043 timer = list_entry(cpu_base->cb_pending.next,
1044 struct hrtimer, cb_entry);
1046 timer_stats_account_hrtimer(timer);
1048 fn = timer->function;
1049 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1050 spin_unlock_irq(&cpu_base->lock);
1052 restart = fn(timer);
1054 spin_lock_irq(&cpu_base->lock);
1056 timer->state &= ~HRTIMER_STATE_CALLBACK;
1057 if (restart == HRTIMER_RESTART) {
1058 BUG_ON(hrtimer_active(timer));
1060 * Enqueue the timer, allow reprogramming of the event
1061 * device
1063 enqueue_hrtimer(timer, timer->base, 1);
1064 } else if (hrtimer_active(timer)) {
1066 * If the timer was rearmed on another CPU, reprogram
1067 * the event device.
1069 if (timer->base->first == &timer->node)
1070 hrtimer_reprogram(timer, timer->base);
1073 spin_unlock_irq(&cpu_base->lock);
1076 static void __run_hrtimer(struct hrtimer *timer)
1078 struct hrtimer_clock_base *base = timer->base;
1079 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1080 enum hrtimer_restart (*fn)(struct hrtimer *);
1081 int restart;
1083 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1084 timer_stats_account_hrtimer(timer);
1086 fn = timer->function;
1087 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) {
1089 * Used for scheduler timers, avoid lock inversion with
1090 * rq->lock and tasklist_lock.
1092 * These timers are required to deal with enqueue expiry
1093 * themselves and are not allowed to migrate.
1095 spin_unlock(&cpu_base->lock);
1096 restart = fn(timer);
1097 spin_lock(&cpu_base->lock);
1098 } else
1099 restart = fn(timer);
1102 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1103 * reprogramming of the event hardware. This happens at the end of this
1104 * function anyway.
1106 if (restart != HRTIMER_NORESTART) {
1107 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1108 enqueue_hrtimer(timer, base, 0);
1110 timer->state &= ~HRTIMER_STATE_CALLBACK;
1113 #ifdef CONFIG_HIGH_RES_TIMERS
1116 * High resolution timer interrupt
1117 * Called with interrupts disabled
1119 void hrtimer_interrupt(struct clock_event_device *dev)
1121 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1122 struct hrtimer_clock_base *base;
1123 ktime_t expires_next, now;
1124 int i, raise = 0;
1126 BUG_ON(!cpu_base->hres_active);
1127 cpu_base->nr_events++;
1128 dev->next_event.tv64 = KTIME_MAX;
1130 retry:
1131 now = ktime_get();
1133 expires_next.tv64 = KTIME_MAX;
1135 base = cpu_base->clock_base;
1137 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1138 ktime_t basenow;
1139 struct rb_node *node;
1141 spin_lock(&cpu_base->lock);
1143 basenow = ktime_add(now, base->offset);
1145 while ((node = base->first)) {
1146 struct hrtimer *timer;
1148 timer = rb_entry(node, struct hrtimer, node);
1150 if (basenow.tv64 < timer->expires.tv64) {
1151 ktime_t expires;
1153 expires = ktime_sub(timer->expires,
1154 base->offset);
1155 if (expires.tv64 < expires_next.tv64)
1156 expires_next = expires;
1157 break;
1160 /* Move softirq callbacks to the pending list */
1161 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1162 __remove_hrtimer(timer, base,
1163 HRTIMER_STATE_PENDING, 0);
1164 list_add_tail(&timer->cb_entry,
1165 &base->cpu_base->cb_pending);
1166 raise = 1;
1167 continue;
1170 __run_hrtimer(timer);
1172 spin_unlock(&cpu_base->lock);
1173 base++;
1176 cpu_base->expires_next = expires_next;
1178 /* Reprogramming necessary ? */
1179 if (expires_next.tv64 != KTIME_MAX) {
1180 if (tick_program_event(expires_next, 0))
1181 goto retry;
1184 /* Raise softirq ? */
1185 if (raise)
1186 raise_softirq(HRTIMER_SOFTIRQ);
1189 static void run_hrtimer_softirq(struct softirq_action *h)
1191 run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
1194 #endif /* CONFIG_HIGH_RES_TIMERS */
1197 * Called from timer softirq every jiffy, expire hrtimers:
1199 * For HRT its the fall back code to run the softirq in the timer
1200 * softirq context in case the hrtimer initialization failed or has
1201 * not been done yet.
1203 void hrtimer_run_pending(void)
1205 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1207 if (hrtimer_hres_active())
1208 return;
1211 * This _is_ ugly: We have to check in the softirq context,
1212 * whether we can switch to highres and / or nohz mode. The
1213 * clocksource switch happens in the timer interrupt with
1214 * xtime_lock held. Notification from there only sets the
1215 * check bit in the tick_oneshot code, otherwise we might
1216 * deadlock vs. xtime_lock.
1218 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1219 hrtimer_switch_to_hres();
1221 run_hrtimer_pending(cpu_base);
1225 * Called from hardirq context every jiffy
1227 static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1228 int index)
1230 struct rb_node *node;
1231 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
1233 if (!base->first)
1234 return;
1236 if (base->get_softirq_time)
1237 base->softirq_time = base->get_softirq_time();
1239 spin_lock(&cpu_base->lock);
1241 while ((node = base->first)) {
1242 struct hrtimer *timer;
1244 timer = rb_entry(node, struct hrtimer, node);
1245 if (base->softirq_time.tv64 <= timer->expires.tv64)
1246 break;
1248 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1249 __remove_hrtimer(timer, base, HRTIMER_STATE_PENDING, 0);
1250 list_add_tail(&timer->cb_entry,
1251 &base->cpu_base->cb_pending);
1252 continue;
1255 __run_hrtimer(timer);
1257 spin_unlock(&cpu_base->lock);
1260 void hrtimer_run_queues(void)
1262 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1263 int i;
1265 if (hrtimer_hres_active())
1266 return;
1268 hrtimer_get_softirq_time(cpu_base);
1270 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1271 run_hrtimer_queue(cpu_base, i);
1275 * Sleep related functions:
1277 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1279 struct hrtimer_sleeper *t =
1280 container_of(timer, struct hrtimer_sleeper, timer);
1281 struct task_struct *task = t->task;
1283 t->task = NULL;
1284 if (task)
1285 wake_up_process(task);
1287 return HRTIMER_NORESTART;
1290 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1292 sl->timer.function = hrtimer_wakeup;
1293 sl->task = task;
1294 #ifdef CONFIG_HIGH_RES_TIMERS
1295 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1296 #endif
1299 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1301 hrtimer_init_sleeper(t, current);
1303 do {
1304 set_current_state(TASK_INTERRUPTIBLE);
1305 hrtimer_start(&t->timer, t->timer.expires, mode);
1306 if (!hrtimer_active(&t->timer))
1307 t->task = NULL;
1309 if (likely(t->task))
1310 schedule();
1312 hrtimer_cancel(&t->timer);
1313 mode = HRTIMER_MODE_ABS;
1315 } while (t->task && !signal_pending(current));
1317 __set_current_state(TASK_RUNNING);
1319 return t->task == NULL;
1322 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1324 struct hrtimer_sleeper t;
1325 struct timespec *rmtp;
1326 ktime_t time;
1328 restart->fn = do_no_restart_syscall;
1330 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1331 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
1333 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1334 return 0;
1336 rmtp = (struct timespec *)restart->arg1;
1337 if (rmtp) {
1338 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1339 if (time.tv64 <= 0)
1340 return 0;
1341 *rmtp = ktime_to_timespec(time);
1344 restart->fn = hrtimer_nanosleep_restart;
1346 /* The other values in restart are already filled in */
1347 return -ERESTART_RESTARTBLOCK;
1350 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec *rmtp,
1351 const enum hrtimer_mode mode, const clockid_t clockid)
1353 struct restart_block *restart;
1354 struct hrtimer_sleeper t;
1355 ktime_t rem;
1357 hrtimer_init(&t.timer, clockid, mode);
1358 t.timer.expires = timespec_to_ktime(*rqtp);
1359 if (do_nanosleep(&t, mode))
1360 return 0;
1362 /* Absolute timers do not update the rmtp value and restart: */
1363 if (mode == HRTIMER_MODE_ABS)
1364 return -ERESTARTNOHAND;
1366 if (rmtp) {
1367 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1368 if (rem.tv64 <= 0)
1369 return 0;
1370 *rmtp = ktime_to_timespec(rem);
1373 restart = &current_thread_info()->restart_block;
1374 restart->fn = hrtimer_nanosleep_restart;
1375 restart->arg0 = (unsigned long) t.timer.base->index;
1376 restart->arg1 = (unsigned long) rmtp;
1377 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1378 restart->arg3 = t.timer.expires.tv64 >> 32;
1380 return -ERESTART_RESTARTBLOCK;
1383 asmlinkage long
1384 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1386 struct timespec tu, rmt;
1387 int ret;
1389 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1390 return -EFAULT;
1392 if (!timespec_valid(&tu))
1393 return -EINVAL;
1395 ret = hrtimer_nanosleep(&tu, rmtp ? &rmt : NULL, HRTIMER_MODE_REL,
1396 CLOCK_MONOTONIC);
1398 if (ret && rmtp) {
1399 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1400 return -EFAULT;
1403 return ret;
1407 * Functions related to boot-time initialization:
1409 static void __cpuinit init_hrtimers_cpu(int cpu)
1411 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1412 int i;
1414 spin_lock_init(&cpu_base->lock);
1415 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1417 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1418 cpu_base->clock_base[i].cpu_base = cpu_base;
1420 INIT_LIST_HEAD(&cpu_base->cb_pending);
1421 hrtimer_init_hres(cpu_base);
1424 #ifdef CONFIG_HOTPLUG_CPU
1426 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1427 struct hrtimer_clock_base *new_base)
1429 struct hrtimer *timer;
1430 struct rb_node *node;
1432 while ((node = rb_first(&old_base->active))) {
1433 timer = rb_entry(node, struct hrtimer, node);
1434 BUG_ON(hrtimer_callback_running(timer));
1435 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1436 timer->base = new_base;
1438 * Enqueue the timer. Allow reprogramming of the event device
1440 enqueue_hrtimer(timer, new_base, 1);
1444 static void migrate_hrtimers(int cpu)
1446 struct hrtimer_cpu_base *old_base, *new_base;
1447 int i;
1449 BUG_ON(cpu_online(cpu));
1450 old_base = &per_cpu(hrtimer_bases, cpu);
1451 new_base = &get_cpu_var(hrtimer_bases);
1453 tick_cancel_sched_timer(cpu);
1455 local_irq_disable();
1456 double_spin_lock(&new_base->lock, &old_base->lock,
1457 smp_processor_id() < cpu);
1459 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1460 migrate_hrtimer_list(&old_base->clock_base[i],
1461 &new_base->clock_base[i]);
1464 double_spin_unlock(&new_base->lock, &old_base->lock,
1465 smp_processor_id() < cpu);
1466 local_irq_enable();
1467 put_cpu_var(hrtimer_bases);
1469 #endif /* CONFIG_HOTPLUG_CPU */
1471 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1472 unsigned long action, void *hcpu)
1474 unsigned int cpu = (long)hcpu;
1476 switch (action) {
1478 case CPU_UP_PREPARE:
1479 case CPU_UP_PREPARE_FROZEN:
1480 init_hrtimers_cpu(cpu);
1481 break;
1483 #ifdef CONFIG_HOTPLUG_CPU
1484 case CPU_DEAD:
1485 case CPU_DEAD_FROZEN:
1486 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1487 migrate_hrtimers(cpu);
1488 break;
1489 #endif
1491 default:
1492 break;
1495 return NOTIFY_OK;
1498 static struct notifier_block __cpuinitdata hrtimers_nb = {
1499 .notifier_call = hrtimer_cpu_notify,
1502 void __init hrtimers_init(void)
1504 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1505 (void *)(long)smp_processor_id());
1506 register_cpu_notifier(&hrtimers_nb);
1507 #ifdef CONFIG_HIGH_RES_TIMERS
1508 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1509 #endif