cgroup: fix subsys bitops
[linux-2.6/kmemtrace.git] / kernel / cgroup.c
blob841259361724ffac71821cc9955783de76e008c4
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
48 #include <asm/atomic.h>
50 static DEFINE_MUTEX(cgroup_mutex);
52 /* Generate an array of cgroup subsystem pointers */
53 #define SUBSYS(_x) &_x ## _subsys,
55 static struct cgroup_subsys *subsys[] = {
56 #include <linux/cgroup_subsys.h>
60 * A cgroupfs_root represents the root of a cgroup hierarchy,
61 * and may be associated with a superblock to form an active
62 * hierarchy
64 struct cgroupfs_root {
65 struct super_block *sb;
68 * The bitmask of subsystems intended to be attached to this
69 * hierarchy
71 unsigned long subsys_bits;
73 /* The bitmask of subsystems currently attached to this hierarchy */
74 unsigned long actual_subsys_bits;
76 /* A list running through the attached subsystems */
77 struct list_head subsys_list;
79 /* The root cgroup for this hierarchy */
80 struct cgroup top_cgroup;
82 /* Tracks how many cgroups are currently defined in hierarchy.*/
83 int number_of_cgroups;
85 /* A list running through the mounted hierarchies */
86 struct list_head root_list;
88 /* Hierarchy-specific flags */
89 unsigned long flags;
91 /* The path to use for release notifications. No locking
92 * between setting and use - so if userspace updates this
93 * while child cgroups exist, you could miss a
94 * notification. We ensure that it's always a valid
95 * NUL-terminated string */
96 char release_agent_path[PATH_MAX];
101 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
102 * subsystems that are otherwise unattached - it never has more than a
103 * single cgroup, and all tasks are part of that cgroup.
105 static struct cgroupfs_root rootnode;
107 /* The list of hierarchy roots */
109 static LIST_HEAD(roots);
110 static int root_count;
112 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
113 #define dummytop (&rootnode.top_cgroup)
115 /* This flag indicates whether tasks in the fork and exit paths should
116 * check for fork/exit handlers to call. This avoids us having to do
117 * extra work in the fork/exit path if none of the subsystems need to
118 * be called.
120 static int need_forkexit_callback;
122 /* bits in struct cgroup flags field */
123 enum {
124 /* Control Group is dead */
125 CGRP_REMOVED,
126 /* Control Group has previously had a child cgroup or a task,
127 * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
128 CGRP_RELEASABLE,
129 /* Control Group requires release notifications to userspace */
130 CGRP_NOTIFY_ON_RELEASE,
133 /* convenient tests for these bits */
134 inline int cgroup_is_removed(const struct cgroup *cgrp)
136 return test_bit(CGRP_REMOVED, &cgrp->flags);
139 /* bits in struct cgroupfs_root flags field */
140 enum {
141 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
144 static int cgroup_is_releasable(const struct cgroup *cgrp)
146 const int bits =
147 (1 << CGRP_RELEASABLE) |
148 (1 << CGRP_NOTIFY_ON_RELEASE);
149 return (cgrp->flags & bits) == bits;
152 static int notify_on_release(const struct cgroup *cgrp)
154 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
158 * for_each_subsys() allows you to iterate on each subsystem attached to
159 * an active hierarchy
161 #define for_each_subsys(_root, _ss) \
162 list_for_each_entry(_ss, &_root->subsys_list, sibling)
164 /* for_each_root() allows you to iterate across the active hierarchies */
165 #define for_each_root(_root) \
166 list_for_each_entry(_root, &roots, root_list)
168 /* the list of cgroups eligible for automatic release. Protected by
169 * release_list_lock */
170 static LIST_HEAD(release_list);
171 static DEFINE_SPINLOCK(release_list_lock);
172 static void cgroup_release_agent(struct work_struct *work);
173 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
174 static void check_for_release(struct cgroup *cgrp);
176 /* Link structure for associating css_set objects with cgroups */
177 struct cg_cgroup_link {
179 * List running through cg_cgroup_links associated with a
180 * cgroup, anchored on cgroup->css_sets
182 struct list_head cgrp_link_list;
184 * List running through cg_cgroup_links pointing at a
185 * single css_set object, anchored on css_set->cg_links
187 struct list_head cg_link_list;
188 struct css_set *cg;
191 /* The default css_set - used by init and its children prior to any
192 * hierarchies being mounted. It contains a pointer to the root state
193 * for each subsystem. Also used to anchor the list of css_sets. Not
194 * reference-counted, to improve performance when child cgroups
195 * haven't been created.
198 static struct css_set init_css_set;
199 static struct cg_cgroup_link init_css_set_link;
201 /* css_set_lock protects the list of css_set objects, and the
202 * chain of tasks off each css_set. Nests outside task->alloc_lock
203 * due to cgroup_iter_start() */
204 static DEFINE_RWLOCK(css_set_lock);
205 static int css_set_count;
207 /* We don't maintain the lists running through each css_set to its
208 * task until after the first call to cgroup_iter_start(). This
209 * reduces the fork()/exit() overhead for people who have cgroups
210 * compiled into their kernel but not actually in use */
211 static int use_task_css_set_links;
213 /* When we create or destroy a css_set, the operation simply
214 * takes/releases a reference count on all the cgroups referenced
215 * by subsystems in this css_set. This can end up multiple-counting
216 * some cgroups, but that's OK - the ref-count is just a
217 * busy/not-busy indicator; ensuring that we only count each cgroup
218 * once would require taking a global lock to ensure that no
219 * subsystems moved between hierarchies while we were doing so.
221 * Possible TODO: decide at boot time based on the number of
222 * registered subsystems and the number of CPUs or NUMA nodes whether
223 * it's better for performance to ref-count every subsystem, or to
224 * take a global lock and only add one ref count to each hierarchy.
228 * unlink a css_set from the list and free it
230 static void unlink_css_set(struct css_set *cg)
232 write_lock(&css_set_lock);
233 list_del(&cg->list);
234 css_set_count--;
235 while (!list_empty(&cg->cg_links)) {
236 struct cg_cgroup_link *link;
237 link = list_entry(cg->cg_links.next,
238 struct cg_cgroup_link, cg_link_list);
239 list_del(&link->cg_link_list);
240 list_del(&link->cgrp_link_list);
241 kfree(link);
243 write_unlock(&css_set_lock);
246 static void __release_css_set(struct kref *k, int taskexit)
248 int i;
249 struct css_set *cg = container_of(k, struct css_set, ref);
251 unlink_css_set(cg);
253 rcu_read_lock();
254 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
255 struct cgroup *cgrp = cg->subsys[i]->cgroup;
256 if (atomic_dec_and_test(&cgrp->count) &&
257 notify_on_release(cgrp)) {
258 if (taskexit)
259 set_bit(CGRP_RELEASABLE, &cgrp->flags);
260 check_for_release(cgrp);
263 rcu_read_unlock();
264 kfree(cg);
267 static void release_css_set(struct kref *k)
269 __release_css_set(k, 0);
272 static void release_css_set_taskexit(struct kref *k)
274 __release_css_set(k, 1);
278 * refcounted get/put for css_set objects
280 static inline void get_css_set(struct css_set *cg)
282 kref_get(&cg->ref);
285 static inline void put_css_set(struct css_set *cg)
287 kref_put(&cg->ref, release_css_set);
290 static inline void put_css_set_taskexit(struct css_set *cg)
292 kref_put(&cg->ref, release_css_set_taskexit);
296 * find_existing_css_set() is a helper for
297 * find_css_set(), and checks to see whether an existing
298 * css_set is suitable. This currently walks a linked-list for
299 * simplicity; a later patch will use a hash table for better
300 * performance
302 * oldcg: the cgroup group that we're using before the cgroup
303 * transition
305 * cgrp: the cgroup that we're moving into
307 * template: location in which to build the desired set of subsystem
308 * state objects for the new cgroup group
310 static struct css_set *find_existing_css_set(
311 struct css_set *oldcg,
312 struct cgroup *cgrp,
313 struct cgroup_subsys_state *template[])
315 int i;
316 struct cgroupfs_root *root = cgrp->root;
317 struct list_head *l = &init_css_set.list;
319 /* Built the set of subsystem state objects that we want to
320 * see in the new css_set */
321 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
322 if (root->subsys_bits & (1UL << i)) {
323 /* Subsystem is in this hierarchy. So we want
324 * the subsystem state from the new
325 * cgroup */
326 template[i] = cgrp->subsys[i];
327 } else {
328 /* Subsystem is not in this hierarchy, so we
329 * don't want to change the subsystem state */
330 template[i] = oldcg->subsys[i];
334 /* Look through existing cgroup groups to find one to reuse */
335 do {
336 struct css_set *cg =
337 list_entry(l, struct css_set, list);
339 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
340 /* All subsystems matched */
341 return cg;
343 /* Try the next cgroup group */
344 l = l->next;
345 } while (l != &init_css_set.list);
347 /* No existing cgroup group matched */
348 return NULL;
352 * allocate_cg_links() allocates "count" cg_cgroup_link structures
353 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
354 * success or a negative error
356 static int allocate_cg_links(int count, struct list_head *tmp)
358 struct cg_cgroup_link *link;
359 int i;
360 INIT_LIST_HEAD(tmp);
361 for (i = 0; i < count; i++) {
362 link = kmalloc(sizeof(*link), GFP_KERNEL);
363 if (!link) {
364 while (!list_empty(tmp)) {
365 link = list_entry(tmp->next,
366 struct cg_cgroup_link,
367 cgrp_link_list);
368 list_del(&link->cgrp_link_list);
369 kfree(link);
371 return -ENOMEM;
373 list_add(&link->cgrp_link_list, tmp);
375 return 0;
378 static void free_cg_links(struct list_head *tmp)
380 while (!list_empty(tmp)) {
381 struct cg_cgroup_link *link;
382 link = list_entry(tmp->next,
383 struct cg_cgroup_link,
384 cgrp_link_list);
385 list_del(&link->cgrp_link_list);
386 kfree(link);
391 * find_css_set() takes an existing cgroup group and a
392 * cgroup object, and returns a css_set object that's
393 * equivalent to the old group, but with the given cgroup
394 * substituted into the appropriate hierarchy. Must be called with
395 * cgroup_mutex held
397 static struct css_set *find_css_set(
398 struct css_set *oldcg, struct cgroup *cgrp)
400 struct css_set *res;
401 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
402 int i;
404 struct list_head tmp_cg_links;
405 struct cg_cgroup_link *link;
407 /* First see if we already have a cgroup group that matches
408 * the desired set */
409 write_lock(&css_set_lock);
410 res = find_existing_css_set(oldcg, cgrp, template);
411 if (res)
412 get_css_set(res);
413 write_unlock(&css_set_lock);
415 if (res)
416 return res;
418 res = kmalloc(sizeof(*res), GFP_KERNEL);
419 if (!res)
420 return NULL;
422 /* Allocate all the cg_cgroup_link objects that we'll need */
423 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
424 kfree(res);
425 return NULL;
428 kref_init(&res->ref);
429 INIT_LIST_HEAD(&res->cg_links);
430 INIT_LIST_HEAD(&res->tasks);
432 /* Copy the set of subsystem state objects generated in
433 * find_existing_css_set() */
434 memcpy(res->subsys, template, sizeof(res->subsys));
436 write_lock(&css_set_lock);
437 /* Add reference counts and links from the new css_set. */
438 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
439 struct cgroup *cgrp = res->subsys[i]->cgroup;
440 struct cgroup_subsys *ss = subsys[i];
441 atomic_inc(&cgrp->count);
443 * We want to add a link once per cgroup, so we
444 * only do it for the first subsystem in each
445 * hierarchy
447 if (ss->root->subsys_list.next == &ss->sibling) {
448 BUG_ON(list_empty(&tmp_cg_links));
449 link = list_entry(tmp_cg_links.next,
450 struct cg_cgroup_link,
451 cgrp_link_list);
452 list_del(&link->cgrp_link_list);
453 list_add(&link->cgrp_link_list, &cgrp->css_sets);
454 link->cg = res;
455 list_add(&link->cg_link_list, &res->cg_links);
458 if (list_empty(&rootnode.subsys_list)) {
459 link = list_entry(tmp_cg_links.next,
460 struct cg_cgroup_link,
461 cgrp_link_list);
462 list_del(&link->cgrp_link_list);
463 list_add(&link->cgrp_link_list, &dummytop->css_sets);
464 link->cg = res;
465 list_add(&link->cg_link_list, &res->cg_links);
468 BUG_ON(!list_empty(&tmp_cg_links));
470 /* Link this cgroup group into the list */
471 list_add(&res->list, &init_css_set.list);
472 css_set_count++;
473 INIT_LIST_HEAD(&res->tasks);
474 write_unlock(&css_set_lock);
476 return res;
480 * There is one global cgroup mutex. We also require taking
481 * task_lock() when dereferencing a task's cgroup subsys pointers.
482 * See "The task_lock() exception", at the end of this comment.
484 * A task must hold cgroup_mutex to modify cgroups.
486 * Any task can increment and decrement the count field without lock.
487 * So in general, code holding cgroup_mutex can't rely on the count
488 * field not changing. However, if the count goes to zero, then only
489 * cgroup_attach_task() can increment it again. Because a count of zero
490 * means that no tasks are currently attached, therefore there is no
491 * way a task attached to that cgroup can fork (the other way to
492 * increment the count). So code holding cgroup_mutex can safely
493 * assume that if the count is zero, it will stay zero. Similarly, if
494 * a task holds cgroup_mutex on a cgroup with zero count, it
495 * knows that the cgroup won't be removed, as cgroup_rmdir()
496 * needs that mutex.
498 * The cgroup_common_file_write handler for operations that modify
499 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
500 * single threading all such cgroup modifications across the system.
502 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
503 * (usually) take cgroup_mutex. These are the two most performance
504 * critical pieces of code here. The exception occurs on cgroup_exit(),
505 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
506 * is taken, and if the cgroup count is zero, a usermode call made
507 * to the release agent with the name of the cgroup (path relative to
508 * the root of cgroup file system) as the argument.
510 * A cgroup can only be deleted if both its 'count' of using tasks
511 * is zero, and its list of 'children' cgroups is empty. Since all
512 * tasks in the system use _some_ cgroup, and since there is always at
513 * least one task in the system (init, pid == 1), therefore, top_cgroup
514 * always has either children cgroups and/or using tasks. So we don't
515 * need a special hack to ensure that top_cgroup cannot be deleted.
517 * The task_lock() exception
519 * The need for this exception arises from the action of
520 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
521 * another. It does so using cgroup_mutex, however there are
522 * several performance critical places that need to reference
523 * task->cgroup without the expense of grabbing a system global
524 * mutex. Therefore except as noted below, when dereferencing or, as
525 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
526 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
527 * the task_struct routinely used for such matters.
529 * P.S. One more locking exception. RCU is used to guard the
530 * update of a tasks cgroup pointer by cgroup_attach_task()
534 * cgroup_lock - lock out any changes to cgroup structures
537 void cgroup_lock(void)
539 mutex_lock(&cgroup_mutex);
543 * cgroup_unlock - release lock on cgroup changes
545 * Undo the lock taken in a previous cgroup_lock() call.
547 void cgroup_unlock(void)
549 mutex_unlock(&cgroup_mutex);
553 * A couple of forward declarations required, due to cyclic reference loop:
554 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
555 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
556 * -> cgroup_mkdir.
559 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
560 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
561 static int cgroup_populate_dir(struct cgroup *cgrp);
562 static struct inode_operations cgroup_dir_inode_operations;
563 static struct file_operations proc_cgroupstats_operations;
565 static struct backing_dev_info cgroup_backing_dev_info = {
566 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
569 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
571 struct inode *inode = new_inode(sb);
573 if (inode) {
574 inode->i_mode = mode;
575 inode->i_uid = current->fsuid;
576 inode->i_gid = current->fsgid;
577 inode->i_blocks = 0;
578 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
579 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
581 return inode;
585 * Call subsys's pre_destroy handler.
586 * This is called before css refcnt check.
588 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
590 struct cgroup_subsys *ss;
591 for_each_subsys(cgrp->root, ss)
592 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
593 ss->pre_destroy(ss, cgrp);
594 return;
597 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
599 /* is dentry a directory ? if so, kfree() associated cgroup */
600 if (S_ISDIR(inode->i_mode)) {
601 struct cgroup *cgrp = dentry->d_fsdata;
602 struct cgroup_subsys *ss;
603 BUG_ON(!(cgroup_is_removed(cgrp)));
604 /* It's possible for external users to be holding css
605 * reference counts on a cgroup; css_put() needs to
606 * be able to access the cgroup after decrementing
607 * the reference count in order to know if it needs to
608 * queue the cgroup to be handled by the release
609 * agent */
610 synchronize_rcu();
612 mutex_lock(&cgroup_mutex);
614 * Release the subsystem state objects.
616 for_each_subsys(cgrp->root, ss) {
617 if (cgrp->subsys[ss->subsys_id])
618 ss->destroy(ss, cgrp);
621 cgrp->root->number_of_cgroups--;
622 mutex_unlock(&cgroup_mutex);
624 /* Drop the active superblock reference that we took when we
625 * created the cgroup */
626 deactivate_super(cgrp->root->sb);
628 kfree(cgrp);
630 iput(inode);
633 static void remove_dir(struct dentry *d)
635 struct dentry *parent = dget(d->d_parent);
637 d_delete(d);
638 simple_rmdir(parent->d_inode, d);
639 dput(parent);
642 static void cgroup_clear_directory(struct dentry *dentry)
644 struct list_head *node;
646 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
647 spin_lock(&dcache_lock);
648 node = dentry->d_subdirs.next;
649 while (node != &dentry->d_subdirs) {
650 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
651 list_del_init(node);
652 if (d->d_inode) {
653 /* This should never be called on a cgroup
654 * directory with child cgroups */
655 BUG_ON(d->d_inode->i_mode & S_IFDIR);
656 d = dget_locked(d);
657 spin_unlock(&dcache_lock);
658 d_delete(d);
659 simple_unlink(dentry->d_inode, d);
660 dput(d);
661 spin_lock(&dcache_lock);
663 node = dentry->d_subdirs.next;
665 spin_unlock(&dcache_lock);
669 * NOTE : the dentry must have been dget()'ed
671 static void cgroup_d_remove_dir(struct dentry *dentry)
673 cgroup_clear_directory(dentry);
675 spin_lock(&dcache_lock);
676 list_del_init(&dentry->d_u.d_child);
677 spin_unlock(&dcache_lock);
678 remove_dir(dentry);
681 static int rebind_subsystems(struct cgroupfs_root *root,
682 unsigned long final_bits)
684 unsigned long added_bits, removed_bits;
685 struct cgroup *cgrp = &root->top_cgroup;
686 int i;
688 removed_bits = root->actual_subsys_bits & ~final_bits;
689 added_bits = final_bits & ~root->actual_subsys_bits;
690 /* Check that any added subsystems are currently free */
691 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
692 unsigned long bit = 1UL << i;
693 struct cgroup_subsys *ss = subsys[i];
694 if (!(bit & added_bits))
695 continue;
696 if (ss->root != &rootnode) {
697 /* Subsystem isn't free */
698 return -EBUSY;
702 /* Currently we don't handle adding/removing subsystems when
703 * any child cgroups exist. This is theoretically supportable
704 * but involves complex error handling, so it's being left until
705 * later */
706 if (!list_empty(&cgrp->children))
707 return -EBUSY;
709 /* Process each subsystem */
710 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
711 struct cgroup_subsys *ss = subsys[i];
712 unsigned long bit = 1UL << i;
713 if (bit & added_bits) {
714 /* We're binding this subsystem to this hierarchy */
715 BUG_ON(cgrp->subsys[i]);
716 BUG_ON(!dummytop->subsys[i]);
717 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
718 cgrp->subsys[i] = dummytop->subsys[i];
719 cgrp->subsys[i]->cgroup = cgrp;
720 list_add(&ss->sibling, &root->subsys_list);
721 rcu_assign_pointer(ss->root, root);
722 if (ss->bind)
723 ss->bind(ss, cgrp);
725 } else if (bit & removed_bits) {
726 /* We're removing this subsystem */
727 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
728 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
729 if (ss->bind)
730 ss->bind(ss, dummytop);
731 dummytop->subsys[i]->cgroup = dummytop;
732 cgrp->subsys[i] = NULL;
733 rcu_assign_pointer(subsys[i]->root, &rootnode);
734 list_del(&ss->sibling);
735 } else if (bit & final_bits) {
736 /* Subsystem state should already exist */
737 BUG_ON(!cgrp->subsys[i]);
738 } else {
739 /* Subsystem state shouldn't exist */
740 BUG_ON(cgrp->subsys[i]);
743 root->subsys_bits = root->actual_subsys_bits = final_bits;
744 synchronize_rcu();
746 return 0;
749 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
751 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
752 struct cgroup_subsys *ss;
754 mutex_lock(&cgroup_mutex);
755 for_each_subsys(root, ss)
756 seq_printf(seq, ",%s", ss->name);
757 if (test_bit(ROOT_NOPREFIX, &root->flags))
758 seq_puts(seq, ",noprefix");
759 if (strlen(root->release_agent_path))
760 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
761 mutex_unlock(&cgroup_mutex);
762 return 0;
765 struct cgroup_sb_opts {
766 unsigned long subsys_bits;
767 unsigned long flags;
768 char *release_agent;
771 /* Convert a hierarchy specifier into a bitmask of subsystems and
772 * flags. */
773 static int parse_cgroupfs_options(char *data,
774 struct cgroup_sb_opts *opts)
776 char *token, *o = data ?: "all";
778 opts->subsys_bits = 0;
779 opts->flags = 0;
780 opts->release_agent = NULL;
782 while ((token = strsep(&o, ",")) != NULL) {
783 if (!*token)
784 return -EINVAL;
785 if (!strcmp(token, "all")) {
786 opts->subsys_bits = (1 << CGROUP_SUBSYS_COUNT) - 1;
787 } else if (!strcmp(token, "noprefix")) {
788 set_bit(ROOT_NOPREFIX, &opts->flags);
789 } else if (!strncmp(token, "release_agent=", 14)) {
790 /* Specifying two release agents is forbidden */
791 if (opts->release_agent)
792 return -EINVAL;
793 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
794 if (!opts->release_agent)
795 return -ENOMEM;
796 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
797 opts->release_agent[PATH_MAX - 1] = 0;
798 } else {
799 struct cgroup_subsys *ss;
800 int i;
801 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
802 ss = subsys[i];
803 if (!strcmp(token, ss->name)) {
804 set_bit(i, &opts->subsys_bits);
805 break;
808 if (i == CGROUP_SUBSYS_COUNT)
809 return -ENOENT;
813 /* We can't have an empty hierarchy */
814 if (!opts->subsys_bits)
815 return -EINVAL;
817 return 0;
820 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
822 int ret = 0;
823 struct cgroupfs_root *root = sb->s_fs_info;
824 struct cgroup *cgrp = &root->top_cgroup;
825 struct cgroup_sb_opts opts;
827 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
828 mutex_lock(&cgroup_mutex);
830 /* See what subsystems are wanted */
831 ret = parse_cgroupfs_options(data, &opts);
832 if (ret)
833 goto out_unlock;
835 /* Don't allow flags to change at remount */
836 if (opts.flags != root->flags) {
837 ret = -EINVAL;
838 goto out_unlock;
841 ret = rebind_subsystems(root, opts.subsys_bits);
843 /* (re)populate subsystem files */
844 if (!ret)
845 cgroup_populate_dir(cgrp);
847 if (opts.release_agent)
848 strcpy(root->release_agent_path, opts.release_agent);
849 out_unlock:
850 if (opts.release_agent)
851 kfree(opts.release_agent);
852 mutex_unlock(&cgroup_mutex);
853 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
854 return ret;
857 static struct super_operations cgroup_ops = {
858 .statfs = simple_statfs,
859 .drop_inode = generic_delete_inode,
860 .show_options = cgroup_show_options,
861 .remount_fs = cgroup_remount,
864 static void init_cgroup_root(struct cgroupfs_root *root)
866 struct cgroup *cgrp = &root->top_cgroup;
867 INIT_LIST_HEAD(&root->subsys_list);
868 INIT_LIST_HEAD(&root->root_list);
869 root->number_of_cgroups = 1;
870 cgrp->root = root;
871 cgrp->top_cgroup = cgrp;
872 INIT_LIST_HEAD(&cgrp->sibling);
873 INIT_LIST_HEAD(&cgrp->children);
874 INIT_LIST_HEAD(&cgrp->css_sets);
875 INIT_LIST_HEAD(&cgrp->release_list);
878 static int cgroup_test_super(struct super_block *sb, void *data)
880 struct cgroupfs_root *new = data;
881 struct cgroupfs_root *root = sb->s_fs_info;
883 /* First check subsystems */
884 if (new->subsys_bits != root->subsys_bits)
885 return 0;
887 /* Next check flags */
888 if (new->flags != root->flags)
889 return 0;
891 return 1;
894 static int cgroup_set_super(struct super_block *sb, void *data)
896 int ret;
897 struct cgroupfs_root *root = data;
899 ret = set_anon_super(sb, NULL);
900 if (ret)
901 return ret;
903 sb->s_fs_info = root;
904 root->sb = sb;
906 sb->s_blocksize = PAGE_CACHE_SIZE;
907 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
908 sb->s_magic = CGROUP_SUPER_MAGIC;
909 sb->s_op = &cgroup_ops;
911 return 0;
914 static int cgroup_get_rootdir(struct super_block *sb)
916 struct inode *inode =
917 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
918 struct dentry *dentry;
920 if (!inode)
921 return -ENOMEM;
923 inode->i_op = &simple_dir_inode_operations;
924 inode->i_fop = &simple_dir_operations;
925 inode->i_op = &cgroup_dir_inode_operations;
926 /* directories start off with i_nlink == 2 (for "." entry) */
927 inc_nlink(inode);
928 dentry = d_alloc_root(inode);
929 if (!dentry) {
930 iput(inode);
931 return -ENOMEM;
933 sb->s_root = dentry;
934 return 0;
937 static int cgroup_get_sb(struct file_system_type *fs_type,
938 int flags, const char *unused_dev_name,
939 void *data, struct vfsmount *mnt)
941 struct cgroup_sb_opts opts;
942 int ret = 0;
943 struct super_block *sb;
944 struct cgroupfs_root *root;
945 struct list_head tmp_cg_links, *l;
946 INIT_LIST_HEAD(&tmp_cg_links);
948 /* First find the desired set of subsystems */
949 ret = parse_cgroupfs_options(data, &opts);
950 if (ret) {
951 if (opts.release_agent)
952 kfree(opts.release_agent);
953 return ret;
956 root = kzalloc(sizeof(*root), GFP_KERNEL);
957 if (!root) {
958 if (opts.release_agent)
959 kfree(opts.release_agent);
960 return -ENOMEM;
963 init_cgroup_root(root);
964 root->subsys_bits = opts.subsys_bits;
965 root->flags = opts.flags;
966 if (opts.release_agent) {
967 strcpy(root->release_agent_path, opts.release_agent);
968 kfree(opts.release_agent);
971 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
973 if (IS_ERR(sb)) {
974 kfree(root);
975 return PTR_ERR(sb);
978 if (sb->s_fs_info != root) {
979 /* Reusing an existing superblock */
980 BUG_ON(sb->s_root == NULL);
981 kfree(root);
982 root = NULL;
983 } else {
984 /* New superblock */
985 struct cgroup *cgrp = &root->top_cgroup;
986 struct inode *inode;
988 BUG_ON(sb->s_root != NULL);
990 ret = cgroup_get_rootdir(sb);
991 if (ret)
992 goto drop_new_super;
993 inode = sb->s_root->d_inode;
995 mutex_lock(&inode->i_mutex);
996 mutex_lock(&cgroup_mutex);
999 * We're accessing css_set_count without locking
1000 * css_set_lock here, but that's OK - it can only be
1001 * increased by someone holding cgroup_lock, and
1002 * that's us. The worst that can happen is that we
1003 * have some link structures left over
1005 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1006 if (ret) {
1007 mutex_unlock(&cgroup_mutex);
1008 mutex_unlock(&inode->i_mutex);
1009 goto drop_new_super;
1012 ret = rebind_subsystems(root, root->subsys_bits);
1013 if (ret == -EBUSY) {
1014 mutex_unlock(&cgroup_mutex);
1015 mutex_unlock(&inode->i_mutex);
1016 goto drop_new_super;
1019 /* EBUSY should be the only error here */
1020 BUG_ON(ret);
1022 list_add(&root->root_list, &roots);
1023 root_count++;
1025 sb->s_root->d_fsdata = &root->top_cgroup;
1026 root->top_cgroup.dentry = sb->s_root;
1028 /* Link the top cgroup in this hierarchy into all
1029 * the css_set objects */
1030 write_lock(&css_set_lock);
1031 l = &init_css_set.list;
1032 do {
1033 struct css_set *cg;
1034 struct cg_cgroup_link *link;
1035 cg = list_entry(l, struct css_set, list);
1036 BUG_ON(list_empty(&tmp_cg_links));
1037 link = list_entry(tmp_cg_links.next,
1038 struct cg_cgroup_link,
1039 cgrp_link_list);
1040 list_del(&link->cgrp_link_list);
1041 link->cg = cg;
1042 list_add(&link->cgrp_link_list,
1043 &root->top_cgroup.css_sets);
1044 list_add(&link->cg_link_list, &cg->cg_links);
1045 l = l->next;
1046 } while (l != &init_css_set.list);
1047 write_unlock(&css_set_lock);
1049 free_cg_links(&tmp_cg_links);
1051 BUG_ON(!list_empty(&cgrp->sibling));
1052 BUG_ON(!list_empty(&cgrp->children));
1053 BUG_ON(root->number_of_cgroups != 1);
1055 cgroup_populate_dir(cgrp);
1056 mutex_unlock(&inode->i_mutex);
1057 mutex_unlock(&cgroup_mutex);
1060 return simple_set_mnt(mnt, sb);
1062 drop_new_super:
1063 up_write(&sb->s_umount);
1064 deactivate_super(sb);
1065 free_cg_links(&tmp_cg_links);
1066 return ret;
1069 static void cgroup_kill_sb(struct super_block *sb) {
1070 struct cgroupfs_root *root = sb->s_fs_info;
1071 struct cgroup *cgrp = &root->top_cgroup;
1072 int ret;
1074 BUG_ON(!root);
1076 BUG_ON(root->number_of_cgroups != 1);
1077 BUG_ON(!list_empty(&cgrp->children));
1078 BUG_ON(!list_empty(&cgrp->sibling));
1080 mutex_lock(&cgroup_mutex);
1082 /* Rebind all subsystems back to the default hierarchy */
1083 ret = rebind_subsystems(root, 0);
1084 /* Shouldn't be able to fail ... */
1085 BUG_ON(ret);
1088 * Release all the links from css_sets to this hierarchy's
1089 * root cgroup
1091 write_lock(&css_set_lock);
1092 while (!list_empty(&cgrp->css_sets)) {
1093 struct cg_cgroup_link *link;
1094 link = list_entry(cgrp->css_sets.next,
1095 struct cg_cgroup_link, cgrp_link_list);
1096 list_del(&link->cg_link_list);
1097 list_del(&link->cgrp_link_list);
1098 kfree(link);
1100 write_unlock(&css_set_lock);
1102 if (!list_empty(&root->root_list)) {
1103 list_del(&root->root_list);
1104 root_count--;
1106 mutex_unlock(&cgroup_mutex);
1108 kfree(root);
1109 kill_litter_super(sb);
1112 static struct file_system_type cgroup_fs_type = {
1113 .name = "cgroup",
1114 .get_sb = cgroup_get_sb,
1115 .kill_sb = cgroup_kill_sb,
1118 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1120 return dentry->d_fsdata;
1123 static inline struct cftype *__d_cft(struct dentry *dentry)
1125 return dentry->d_fsdata;
1129 * cgroup_path - generate the path of a cgroup
1130 * @cgrp: the cgroup in question
1131 * @buf: the buffer to write the path into
1132 * @buflen: the length of the buffer
1134 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1135 * Returns 0 on success, -errno on error.
1137 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1139 char *start;
1141 if (cgrp == dummytop) {
1143 * Inactive subsystems have no dentry for their root
1144 * cgroup
1146 strcpy(buf, "/");
1147 return 0;
1150 start = buf + buflen;
1152 *--start = '\0';
1153 for (;;) {
1154 int len = cgrp->dentry->d_name.len;
1155 if ((start -= len) < buf)
1156 return -ENAMETOOLONG;
1157 memcpy(start, cgrp->dentry->d_name.name, len);
1158 cgrp = cgrp->parent;
1159 if (!cgrp)
1160 break;
1161 if (!cgrp->parent)
1162 continue;
1163 if (--start < buf)
1164 return -ENAMETOOLONG;
1165 *start = '/';
1167 memmove(buf, start, buf + buflen - start);
1168 return 0;
1172 * Return the first subsystem attached to a cgroup's hierarchy, and
1173 * its subsystem id.
1176 static void get_first_subsys(const struct cgroup *cgrp,
1177 struct cgroup_subsys_state **css, int *subsys_id)
1179 const struct cgroupfs_root *root = cgrp->root;
1180 const struct cgroup_subsys *test_ss;
1181 BUG_ON(list_empty(&root->subsys_list));
1182 test_ss = list_entry(root->subsys_list.next,
1183 struct cgroup_subsys, sibling);
1184 if (css) {
1185 *css = cgrp->subsys[test_ss->subsys_id];
1186 BUG_ON(!*css);
1188 if (subsys_id)
1189 *subsys_id = test_ss->subsys_id;
1193 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1194 * @cgrp: the cgroup the task is attaching to
1195 * @tsk: the task to be attached
1197 * Call holding cgroup_mutex. May take task_lock of
1198 * the task 'tsk' during call.
1200 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1202 int retval = 0;
1203 struct cgroup_subsys *ss;
1204 struct cgroup *oldcgrp;
1205 struct css_set *cg = tsk->cgroups;
1206 struct css_set *newcg;
1207 struct cgroupfs_root *root = cgrp->root;
1208 int subsys_id;
1210 get_first_subsys(cgrp, NULL, &subsys_id);
1212 /* Nothing to do if the task is already in that cgroup */
1213 oldcgrp = task_cgroup(tsk, subsys_id);
1214 if (cgrp == oldcgrp)
1215 return 0;
1217 for_each_subsys(root, ss) {
1218 if (ss->can_attach) {
1219 retval = ss->can_attach(ss, cgrp, tsk);
1220 if (retval)
1221 return retval;
1226 * Locate or allocate a new css_set for this task,
1227 * based on its final set of cgroups
1229 newcg = find_css_set(cg, cgrp);
1230 if (!newcg)
1231 return -ENOMEM;
1233 task_lock(tsk);
1234 if (tsk->flags & PF_EXITING) {
1235 task_unlock(tsk);
1236 put_css_set(newcg);
1237 return -ESRCH;
1239 rcu_assign_pointer(tsk->cgroups, newcg);
1240 task_unlock(tsk);
1242 /* Update the css_set linked lists if we're using them */
1243 write_lock(&css_set_lock);
1244 if (!list_empty(&tsk->cg_list)) {
1245 list_del(&tsk->cg_list);
1246 list_add(&tsk->cg_list, &newcg->tasks);
1248 write_unlock(&css_set_lock);
1250 for_each_subsys(root, ss) {
1251 if (ss->attach)
1252 ss->attach(ss, cgrp, oldcgrp, tsk);
1254 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1255 synchronize_rcu();
1256 put_css_set(cg);
1257 return 0;
1261 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1262 * cgroup_mutex, may take task_lock of task
1264 static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1266 pid_t pid;
1267 struct task_struct *tsk;
1268 int ret;
1270 if (sscanf(pidbuf, "%d", &pid) != 1)
1271 return -EIO;
1273 if (pid) {
1274 rcu_read_lock();
1275 tsk = find_task_by_vpid(pid);
1276 if (!tsk || tsk->flags & PF_EXITING) {
1277 rcu_read_unlock();
1278 return -ESRCH;
1280 get_task_struct(tsk);
1281 rcu_read_unlock();
1283 if ((current->euid) && (current->euid != tsk->uid)
1284 && (current->euid != tsk->suid)) {
1285 put_task_struct(tsk);
1286 return -EACCES;
1288 } else {
1289 tsk = current;
1290 get_task_struct(tsk);
1293 ret = cgroup_attach_task(cgrp, tsk);
1294 put_task_struct(tsk);
1295 return ret;
1298 /* The various types of files and directories in a cgroup file system */
1299 enum cgroup_filetype {
1300 FILE_ROOT,
1301 FILE_DIR,
1302 FILE_TASKLIST,
1303 FILE_NOTIFY_ON_RELEASE,
1304 FILE_RELEASABLE,
1305 FILE_RELEASE_AGENT,
1308 static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft,
1309 struct file *file,
1310 const char __user *userbuf,
1311 size_t nbytes, loff_t *unused_ppos)
1313 char buffer[64];
1314 int retval = 0;
1315 u64 val;
1316 char *end;
1318 if (!nbytes)
1319 return -EINVAL;
1320 if (nbytes >= sizeof(buffer))
1321 return -E2BIG;
1322 if (copy_from_user(buffer, userbuf, nbytes))
1323 return -EFAULT;
1325 buffer[nbytes] = 0; /* nul-terminate */
1327 /* strip newline if necessary */
1328 if (nbytes && (buffer[nbytes-1] == '\n'))
1329 buffer[nbytes-1] = 0;
1330 val = simple_strtoull(buffer, &end, 0);
1331 if (*end)
1332 return -EINVAL;
1334 /* Pass to subsystem */
1335 retval = cft->write_uint(cgrp, cft, val);
1336 if (!retval)
1337 retval = nbytes;
1338 return retval;
1341 static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1342 struct cftype *cft,
1343 struct file *file,
1344 const char __user *userbuf,
1345 size_t nbytes, loff_t *unused_ppos)
1347 enum cgroup_filetype type = cft->private;
1348 char *buffer;
1349 int retval = 0;
1351 if (nbytes >= PATH_MAX)
1352 return -E2BIG;
1354 /* +1 for nul-terminator */
1355 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1356 if (buffer == NULL)
1357 return -ENOMEM;
1359 if (copy_from_user(buffer, userbuf, nbytes)) {
1360 retval = -EFAULT;
1361 goto out1;
1363 buffer[nbytes] = 0; /* nul-terminate */
1364 strstrip(buffer); /* strip -just- trailing whitespace */
1366 mutex_lock(&cgroup_mutex);
1369 * This was already checked for in cgroup_file_write(), but
1370 * check again now we're holding cgroup_mutex.
1372 if (cgroup_is_removed(cgrp)) {
1373 retval = -ENODEV;
1374 goto out2;
1377 switch (type) {
1378 case FILE_TASKLIST:
1379 retval = attach_task_by_pid(cgrp, buffer);
1380 break;
1381 case FILE_NOTIFY_ON_RELEASE:
1382 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1383 if (simple_strtoul(buffer, NULL, 10) != 0)
1384 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1385 else
1386 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1387 break;
1388 case FILE_RELEASE_AGENT:
1389 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1390 strcpy(cgrp->root->release_agent_path, buffer);
1391 break;
1392 default:
1393 retval = -EINVAL;
1394 goto out2;
1397 if (retval == 0)
1398 retval = nbytes;
1399 out2:
1400 mutex_unlock(&cgroup_mutex);
1401 out1:
1402 kfree(buffer);
1403 return retval;
1406 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1407 size_t nbytes, loff_t *ppos)
1409 struct cftype *cft = __d_cft(file->f_dentry);
1410 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1412 if (!cft || cgroup_is_removed(cgrp))
1413 return -ENODEV;
1414 if (cft->write)
1415 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1416 if (cft->write_uint)
1417 return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos);
1418 return -EINVAL;
1421 static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft,
1422 struct file *file,
1423 char __user *buf, size_t nbytes,
1424 loff_t *ppos)
1426 char tmp[64];
1427 u64 val = cft->read_uint(cgrp, cft);
1428 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1430 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1433 static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1434 struct cftype *cft,
1435 struct file *file,
1436 char __user *buf,
1437 size_t nbytes, loff_t *ppos)
1439 enum cgroup_filetype type = cft->private;
1440 char *page;
1441 ssize_t retval = 0;
1442 char *s;
1444 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1445 return -ENOMEM;
1447 s = page;
1449 switch (type) {
1450 case FILE_RELEASE_AGENT:
1452 struct cgroupfs_root *root;
1453 size_t n;
1454 mutex_lock(&cgroup_mutex);
1455 root = cgrp->root;
1456 n = strnlen(root->release_agent_path,
1457 sizeof(root->release_agent_path));
1458 n = min(n, (size_t) PAGE_SIZE);
1459 strncpy(s, root->release_agent_path, n);
1460 mutex_unlock(&cgroup_mutex);
1461 s += n;
1462 break;
1464 default:
1465 retval = -EINVAL;
1466 goto out;
1468 *s++ = '\n';
1470 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1471 out:
1472 free_page((unsigned long)page);
1473 return retval;
1476 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1477 size_t nbytes, loff_t *ppos)
1479 struct cftype *cft = __d_cft(file->f_dentry);
1480 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1482 if (!cft || cgroup_is_removed(cgrp))
1483 return -ENODEV;
1485 if (cft->read)
1486 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1487 if (cft->read_uint)
1488 return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos);
1489 return -EINVAL;
1492 static int cgroup_file_open(struct inode *inode, struct file *file)
1494 int err;
1495 struct cftype *cft;
1497 err = generic_file_open(inode, file);
1498 if (err)
1499 return err;
1501 cft = __d_cft(file->f_dentry);
1502 if (!cft)
1503 return -ENODEV;
1504 if (cft->open)
1505 err = cft->open(inode, file);
1506 else
1507 err = 0;
1509 return err;
1512 static int cgroup_file_release(struct inode *inode, struct file *file)
1514 struct cftype *cft = __d_cft(file->f_dentry);
1515 if (cft->release)
1516 return cft->release(inode, file);
1517 return 0;
1521 * cgroup_rename - Only allow simple rename of directories in place.
1523 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1524 struct inode *new_dir, struct dentry *new_dentry)
1526 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1527 return -ENOTDIR;
1528 if (new_dentry->d_inode)
1529 return -EEXIST;
1530 if (old_dir != new_dir)
1531 return -EIO;
1532 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1535 static struct file_operations cgroup_file_operations = {
1536 .read = cgroup_file_read,
1537 .write = cgroup_file_write,
1538 .llseek = generic_file_llseek,
1539 .open = cgroup_file_open,
1540 .release = cgroup_file_release,
1543 static struct inode_operations cgroup_dir_inode_operations = {
1544 .lookup = simple_lookup,
1545 .mkdir = cgroup_mkdir,
1546 .rmdir = cgroup_rmdir,
1547 .rename = cgroup_rename,
1550 static int cgroup_create_file(struct dentry *dentry, int mode,
1551 struct super_block *sb)
1553 static struct dentry_operations cgroup_dops = {
1554 .d_iput = cgroup_diput,
1557 struct inode *inode;
1559 if (!dentry)
1560 return -ENOENT;
1561 if (dentry->d_inode)
1562 return -EEXIST;
1564 inode = cgroup_new_inode(mode, sb);
1565 if (!inode)
1566 return -ENOMEM;
1568 if (S_ISDIR(mode)) {
1569 inode->i_op = &cgroup_dir_inode_operations;
1570 inode->i_fop = &simple_dir_operations;
1572 /* start off with i_nlink == 2 (for "." entry) */
1573 inc_nlink(inode);
1575 /* start with the directory inode held, so that we can
1576 * populate it without racing with another mkdir */
1577 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1578 } else if (S_ISREG(mode)) {
1579 inode->i_size = 0;
1580 inode->i_fop = &cgroup_file_operations;
1582 dentry->d_op = &cgroup_dops;
1583 d_instantiate(dentry, inode);
1584 dget(dentry); /* Extra count - pin the dentry in core */
1585 return 0;
1589 * cgroup_create_dir - create a directory for an object.
1590 * @cgrp: the cgroup we create the directory for. It must have a valid
1591 * ->parent field. And we are going to fill its ->dentry field.
1592 * @dentry: dentry of the new cgroup
1593 * @mode: mode to set on new directory.
1595 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1596 int mode)
1598 struct dentry *parent;
1599 int error = 0;
1601 parent = cgrp->parent->dentry;
1602 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1603 if (!error) {
1604 dentry->d_fsdata = cgrp;
1605 inc_nlink(parent->d_inode);
1606 cgrp->dentry = dentry;
1607 dget(dentry);
1609 dput(dentry);
1611 return error;
1614 int cgroup_add_file(struct cgroup *cgrp,
1615 struct cgroup_subsys *subsys,
1616 const struct cftype *cft)
1618 struct dentry *dir = cgrp->dentry;
1619 struct dentry *dentry;
1620 int error;
1622 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1623 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1624 strcpy(name, subsys->name);
1625 strcat(name, ".");
1627 strcat(name, cft->name);
1628 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1629 dentry = lookup_one_len(name, dir, strlen(name));
1630 if (!IS_ERR(dentry)) {
1631 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1632 cgrp->root->sb);
1633 if (!error)
1634 dentry->d_fsdata = (void *)cft;
1635 dput(dentry);
1636 } else
1637 error = PTR_ERR(dentry);
1638 return error;
1641 int cgroup_add_files(struct cgroup *cgrp,
1642 struct cgroup_subsys *subsys,
1643 const struct cftype cft[],
1644 int count)
1646 int i, err;
1647 for (i = 0; i < count; i++) {
1648 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1649 if (err)
1650 return err;
1652 return 0;
1656 * cgroup_task_count - count the number of tasks in a cgroup.
1657 * @cgrp: the cgroup in question
1659 * Return the number of tasks in the cgroup.
1661 int cgroup_task_count(const struct cgroup *cgrp)
1663 int count = 0;
1664 struct list_head *l;
1666 read_lock(&css_set_lock);
1667 l = cgrp->css_sets.next;
1668 while (l != &cgrp->css_sets) {
1669 struct cg_cgroup_link *link =
1670 list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1671 count += atomic_read(&link->cg->ref.refcount);
1672 l = l->next;
1674 read_unlock(&css_set_lock);
1675 return count;
1679 * Advance a list_head iterator. The iterator should be positioned at
1680 * the start of a css_set
1682 static void cgroup_advance_iter(struct cgroup *cgrp,
1683 struct cgroup_iter *it)
1685 struct list_head *l = it->cg_link;
1686 struct cg_cgroup_link *link;
1687 struct css_set *cg;
1689 /* Advance to the next non-empty css_set */
1690 do {
1691 l = l->next;
1692 if (l == &cgrp->css_sets) {
1693 it->cg_link = NULL;
1694 return;
1696 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1697 cg = link->cg;
1698 } while (list_empty(&cg->tasks));
1699 it->cg_link = l;
1700 it->task = cg->tasks.next;
1704 * To reduce the fork() overhead for systems that are not actually
1705 * using their cgroups capability, we don't maintain the lists running
1706 * through each css_set to its tasks until we see the list actually
1707 * used - in other words after the first call to cgroup_iter_start().
1709 * The tasklist_lock is not held here, as do_each_thread() and
1710 * while_each_thread() are protected by RCU.
1712 void cgroup_enable_task_cg_lists(void)
1714 struct task_struct *p, *g;
1715 write_lock(&css_set_lock);
1716 use_task_css_set_links = 1;
1717 do_each_thread(g, p) {
1718 task_lock(p);
1719 if (list_empty(&p->cg_list))
1720 list_add(&p->cg_list, &p->cgroups->tasks);
1721 task_unlock(p);
1722 } while_each_thread(g, p);
1723 write_unlock(&css_set_lock);
1726 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1729 * The first time anyone tries to iterate across a cgroup,
1730 * we need to enable the list linking each css_set to its
1731 * tasks, and fix up all existing tasks.
1733 if (!use_task_css_set_links)
1734 cgroup_enable_task_cg_lists();
1736 read_lock(&css_set_lock);
1737 it->cg_link = &cgrp->css_sets;
1738 cgroup_advance_iter(cgrp, it);
1741 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1742 struct cgroup_iter *it)
1744 struct task_struct *res;
1745 struct list_head *l = it->task;
1747 /* If the iterator cg is NULL, we have no tasks */
1748 if (!it->cg_link)
1749 return NULL;
1750 res = list_entry(l, struct task_struct, cg_list);
1751 /* Advance iterator to find next entry */
1752 l = l->next;
1753 if (l == &res->cgroups->tasks) {
1754 /* We reached the end of this task list - move on to
1755 * the next cg_cgroup_link */
1756 cgroup_advance_iter(cgrp, it);
1757 } else {
1758 it->task = l;
1760 return res;
1763 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1765 read_unlock(&css_set_lock);
1768 static inline int started_after_time(struct task_struct *t1,
1769 struct timespec *time,
1770 struct task_struct *t2)
1772 int start_diff = timespec_compare(&t1->start_time, time);
1773 if (start_diff > 0) {
1774 return 1;
1775 } else if (start_diff < 0) {
1776 return 0;
1777 } else {
1779 * Arbitrarily, if two processes started at the same
1780 * time, we'll say that the lower pointer value
1781 * started first. Note that t2 may have exited by now
1782 * so this may not be a valid pointer any longer, but
1783 * that's fine - it still serves to distinguish
1784 * between two tasks started (effectively) simultaneously.
1786 return t1 > t2;
1791 * This function is a callback from heap_insert() and is used to order
1792 * the heap.
1793 * In this case we order the heap in descending task start time.
1795 static inline int started_after(void *p1, void *p2)
1797 struct task_struct *t1 = p1;
1798 struct task_struct *t2 = p2;
1799 return started_after_time(t1, &t2->start_time, t2);
1803 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1804 * @scan: struct cgroup_scanner containing arguments for the scan
1806 * Arguments include pointers to callback functions test_task() and
1807 * process_task().
1808 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1809 * and if it returns true, call process_task() for it also.
1810 * The test_task pointer may be NULL, meaning always true (select all tasks).
1811 * Effectively duplicates cgroup_iter_{start,next,end}()
1812 * but does not lock css_set_lock for the call to process_task().
1813 * The struct cgroup_scanner may be embedded in any structure of the caller's
1814 * creation.
1815 * It is guaranteed that process_task() will act on every task that
1816 * is a member of the cgroup for the duration of this call. This
1817 * function may or may not call process_task() for tasks that exit
1818 * or move to a different cgroup during the call, or are forked or
1819 * move into the cgroup during the call.
1821 * Note that test_task() may be called with locks held, and may in some
1822 * situations be called multiple times for the same task, so it should
1823 * be cheap.
1824 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1825 * pre-allocated and will be used for heap operations (and its "gt" member will
1826 * be overwritten), else a temporary heap will be used (allocation of which
1827 * may cause this function to fail).
1829 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1831 int retval, i;
1832 struct cgroup_iter it;
1833 struct task_struct *p, *dropped;
1834 /* Never dereference latest_task, since it's not refcounted */
1835 struct task_struct *latest_task = NULL;
1836 struct ptr_heap tmp_heap;
1837 struct ptr_heap *heap;
1838 struct timespec latest_time = { 0, 0 };
1840 if (scan->heap) {
1841 /* The caller supplied our heap and pre-allocated its memory */
1842 heap = scan->heap;
1843 heap->gt = &started_after;
1844 } else {
1845 /* We need to allocate our own heap memory */
1846 heap = &tmp_heap;
1847 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1848 if (retval)
1849 /* cannot allocate the heap */
1850 return retval;
1853 again:
1855 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1856 * to determine which are of interest, and using the scanner's
1857 * "process_task" callback to process any of them that need an update.
1858 * Since we don't want to hold any locks during the task updates,
1859 * gather tasks to be processed in a heap structure.
1860 * The heap is sorted by descending task start time.
1861 * If the statically-sized heap fills up, we overflow tasks that
1862 * started later, and in future iterations only consider tasks that
1863 * started after the latest task in the previous pass. This
1864 * guarantees forward progress and that we don't miss any tasks.
1866 heap->size = 0;
1867 cgroup_iter_start(scan->cg, &it);
1868 while ((p = cgroup_iter_next(scan->cg, &it))) {
1870 * Only affect tasks that qualify per the caller's callback,
1871 * if he provided one
1873 if (scan->test_task && !scan->test_task(p, scan))
1874 continue;
1876 * Only process tasks that started after the last task
1877 * we processed
1879 if (!started_after_time(p, &latest_time, latest_task))
1880 continue;
1881 dropped = heap_insert(heap, p);
1882 if (dropped == NULL) {
1884 * The new task was inserted; the heap wasn't
1885 * previously full
1887 get_task_struct(p);
1888 } else if (dropped != p) {
1890 * The new task was inserted, and pushed out a
1891 * different task
1893 get_task_struct(p);
1894 put_task_struct(dropped);
1897 * Else the new task was newer than anything already in
1898 * the heap and wasn't inserted
1901 cgroup_iter_end(scan->cg, &it);
1903 if (heap->size) {
1904 for (i = 0; i < heap->size; i++) {
1905 struct task_struct *p = heap->ptrs[i];
1906 if (i == 0) {
1907 latest_time = p->start_time;
1908 latest_task = p;
1910 /* Process the task per the caller's callback */
1911 scan->process_task(p, scan);
1912 put_task_struct(p);
1915 * If we had to process any tasks at all, scan again
1916 * in case some of them were in the middle of forking
1917 * children that didn't get processed.
1918 * Not the most efficient way to do it, but it avoids
1919 * having to take callback_mutex in the fork path
1921 goto again;
1923 if (heap == &tmp_heap)
1924 heap_free(&tmp_heap);
1925 return 0;
1929 * Stuff for reading the 'tasks' file.
1931 * Reading this file can return large amounts of data if a cgroup has
1932 * *lots* of attached tasks. So it may need several calls to read(),
1933 * but we cannot guarantee that the information we produce is correct
1934 * unless we produce it entirely atomically.
1936 * Upon tasks file open(), a struct ctr_struct is allocated, that
1937 * will have a pointer to an array (also allocated here). The struct
1938 * ctr_struct * is stored in file->private_data. Its resources will
1939 * be freed by release() when the file is closed. The array is used
1940 * to sprintf the PIDs and then used by read().
1942 struct ctr_struct {
1943 char *buf;
1944 int bufsz;
1948 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
1949 * 'cgrp'. Return actual number of pids loaded. No need to
1950 * task_lock(p) when reading out p->cgroup, since we're in an RCU
1951 * read section, so the css_set can't go away, and is
1952 * immutable after creation.
1954 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
1956 int n = 0;
1957 struct cgroup_iter it;
1958 struct task_struct *tsk;
1959 cgroup_iter_start(cgrp, &it);
1960 while ((tsk = cgroup_iter_next(cgrp, &it))) {
1961 if (unlikely(n == npids))
1962 break;
1963 pidarray[n++] = task_pid_vnr(tsk);
1965 cgroup_iter_end(cgrp, &it);
1966 return n;
1970 * cgroupstats_build - build and fill cgroupstats
1971 * @stats: cgroupstats to fill information into
1972 * @dentry: A dentry entry belonging to the cgroup for which stats have
1973 * been requested.
1975 * Build and fill cgroupstats so that taskstats can export it to user
1976 * space.
1978 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
1980 int ret = -EINVAL;
1981 struct cgroup *cgrp;
1982 struct cgroup_iter it;
1983 struct task_struct *tsk;
1985 * Validate dentry by checking the superblock operations
1987 if (dentry->d_sb->s_op != &cgroup_ops)
1988 goto err;
1990 ret = 0;
1991 cgrp = dentry->d_fsdata;
1992 rcu_read_lock();
1994 cgroup_iter_start(cgrp, &it);
1995 while ((tsk = cgroup_iter_next(cgrp, &it))) {
1996 switch (tsk->state) {
1997 case TASK_RUNNING:
1998 stats->nr_running++;
1999 break;
2000 case TASK_INTERRUPTIBLE:
2001 stats->nr_sleeping++;
2002 break;
2003 case TASK_UNINTERRUPTIBLE:
2004 stats->nr_uninterruptible++;
2005 break;
2006 case TASK_STOPPED:
2007 stats->nr_stopped++;
2008 break;
2009 default:
2010 if (delayacct_is_task_waiting_on_io(tsk))
2011 stats->nr_io_wait++;
2012 break;
2015 cgroup_iter_end(cgrp, &it);
2017 rcu_read_unlock();
2018 err:
2019 return ret;
2022 static int cmppid(const void *a, const void *b)
2024 return *(pid_t *)a - *(pid_t *)b;
2028 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2029 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2030 * count 'cnt' of how many chars would be written if buf were large enough.
2032 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2034 int cnt = 0;
2035 int i;
2037 for (i = 0; i < npids; i++)
2038 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2039 return cnt;
2043 * Handle an open on 'tasks' file. Prepare a buffer listing the
2044 * process id's of tasks currently attached to the cgroup being opened.
2046 * Does not require any specific cgroup mutexes, and does not take any.
2048 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2050 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2051 struct ctr_struct *ctr;
2052 pid_t *pidarray;
2053 int npids;
2054 char c;
2056 if (!(file->f_mode & FMODE_READ))
2057 return 0;
2059 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2060 if (!ctr)
2061 goto err0;
2064 * If cgroup gets more users after we read count, we won't have
2065 * enough space - tough. This race is indistinguishable to the
2066 * caller from the case that the additional cgroup users didn't
2067 * show up until sometime later on.
2069 npids = cgroup_task_count(cgrp);
2070 if (npids) {
2071 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2072 if (!pidarray)
2073 goto err1;
2075 npids = pid_array_load(pidarray, npids, cgrp);
2076 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2078 /* Call pid_array_to_buf() twice, first just to get bufsz */
2079 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2080 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2081 if (!ctr->buf)
2082 goto err2;
2083 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2085 kfree(pidarray);
2086 } else {
2087 ctr->buf = 0;
2088 ctr->bufsz = 0;
2090 file->private_data = ctr;
2091 return 0;
2093 err2:
2094 kfree(pidarray);
2095 err1:
2096 kfree(ctr);
2097 err0:
2098 return -ENOMEM;
2101 static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2102 struct cftype *cft,
2103 struct file *file, char __user *buf,
2104 size_t nbytes, loff_t *ppos)
2106 struct ctr_struct *ctr = file->private_data;
2108 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2111 static int cgroup_tasks_release(struct inode *unused_inode,
2112 struct file *file)
2114 struct ctr_struct *ctr;
2116 if (file->f_mode & FMODE_READ) {
2117 ctr = file->private_data;
2118 kfree(ctr->buf);
2119 kfree(ctr);
2121 return 0;
2124 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2125 struct cftype *cft)
2127 return notify_on_release(cgrp);
2130 static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
2132 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
2136 * for the common functions, 'private' gives the type of file
2138 static struct cftype files[] = {
2140 .name = "tasks",
2141 .open = cgroup_tasks_open,
2142 .read = cgroup_tasks_read,
2143 .write = cgroup_common_file_write,
2144 .release = cgroup_tasks_release,
2145 .private = FILE_TASKLIST,
2149 .name = "notify_on_release",
2150 .read_uint = cgroup_read_notify_on_release,
2151 .write = cgroup_common_file_write,
2152 .private = FILE_NOTIFY_ON_RELEASE,
2156 .name = "releasable",
2157 .read_uint = cgroup_read_releasable,
2158 .private = FILE_RELEASABLE,
2162 static struct cftype cft_release_agent = {
2163 .name = "release_agent",
2164 .read = cgroup_common_file_read,
2165 .write = cgroup_common_file_write,
2166 .private = FILE_RELEASE_AGENT,
2169 static int cgroup_populate_dir(struct cgroup *cgrp)
2171 int err;
2172 struct cgroup_subsys *ss;
2174 /* First clear out any existing files */
2175 cgroup_clear_directory(cgrp->dentry);
2177 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2178 if (err < 0)
2179 return err;
2181 if (cgrp == cgrp->top_cgroup) {
2182 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2183 return err;
2186 for_each_subsys(cgrp->root, ss) {
2187 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2188 return err;
2191 return 0;
2194 static void init_cgroup_css(struct cgroup_subsys_state *css,
2195 struct cgroup_subsys *ss,
2196 struct cgroup *cgrp)
2198 css->cgroup = cgrp;
2199 atomic_set(&css->refcnt, 0);
2200 css->flags = 0;
2201 if (cgrp == dummytop)
2202 set_bit(CSS_ROOT, &css->flags);
2203 BUG_ON(cgrp->subsys[ss->subsys_id]);
2204 cgrp->subsys[ss->subsys_id] = css;
2208 * cgroup_create - create a cgroup
2209 * @parent: cgroup that will be parent of the new cgroup
2210 * @dentry: dentry of the new cgroup
2211 * @mode: mode to set on new inode
2213 * Must be called with the mutex on the parent inode held
2215 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2216 int mode)
2218 struct cgroup *cgrp;
2219 struct cgroupfs_root *root = parent->root;
2220 int err = 0;
2221 struct cgroup_subsys *ss;
2222 struct super_block *sb = root->sb;
2224 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2225 if (!cgrp)
2226 return -ENOMEM;
2228 /* Grab a reference on the superblock so the hierarchy doesn't
2229 * get deleted on unmount if there are child cgroups. This
2230 * can be done outside cgroup_mutex, since the sb can't
2231 * disappear while someone has an open control file on the
2232 * fs */
2233 atomic_inc(&sb->s_active);
2235 mutex_lock(&cgroup_mutex);
2237 cgrp->flags = 0;
2238 INIT_LIST_HEAD(&cgrp->sibling);
2239 INIT_LIST_HEAD(&cgrp->children);
2240 INIT_LIST_HEAD(&cgrp->css_sets);
2241 INIT_LIST_HEAD(&cgrp->release_list);
2243 cgrp->parent = parent;
2244 cgrp->root = parent->root;
2245 cgrp->top_cgroup = parent->top_cgroup;
2247 for_each_subsys(root, ss) {
2248 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2249 if (IS_ERR(css)) {
2250 err = PTR_ERR(css);
2251 goto err_destroy;
2253 init_cgroup_css(css, ss, cgrp);
2256 list_add(&cgrp->sibling, &cgrp->parent->children);
2257 root->number_of_cgroups++;
2259 err = cgroup_create_dir(cgrp, dentry, mode);
2260 if (err < 0)
2261 goto err_remove;
2263 /* The cgroup directory was pre-locked for us */
2264 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2266 err = cgroup_populate_dir(cgrp);
2267 /* If err < 0, we have a half-filled directory - oh well ;) */
2269 mutex_unlock(&cgroup_mutex);
2270 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2272 return 0;
2274 err_remove:
2276 list_del(&cgrp->sibling);
2277 root->number_of_cgroups--;
2279 err_destroy:
2281 for_each_subsys(root, ss) {
2282 if (cgrp->subsys[ss->subsys_id])
2283 ss->destroy(ss, cgrp);
2286 mutex_unlock(&cgroup_mutex);
2288 /* Release the reference count that we took on the superblock */
2289 deactivate_super(sb);
2291 kfree(cgrp);
2292 return err;
2295 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2297 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2299 /* the vfs holds inode->i_mutex already */
2300 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2303 static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2305 /* Check the reference count on each subsystem. Since we
2306 * already established that there are no tasks in the
2307 * cgroup, if the css refcount is also 0, then there should
2308 * be no outstanding references, so the subsystem is safe to
2309 * destroy. We scan across all subsystems rather than using
2310 * the per-hierarchy linked list of mounted subsystems since
2311 * we can be called via check_for_release() with no
2312 * synchronization other than RCU, and the subsystem linked
2313 * list isn't RCU-safe */
2314 int i;
2315 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2316 struct cgroup_subsys *ss = subsys[i];
2317 struct cgroup_subsys_state *css;
2318 /* Skip subsystems not in this hierarchy */
2319 if (ss->root != cgrp->root)
2320 continue;
2321 css = cgrp->subsys[ss->subsys_id];
2322 /* When called from check_for_release() it's possible
2323 * that by this point the cgroup has been removed
2324 * and the css deleted. But a false-positive doesn't
2325 * matter, since it can only happen if the cgroup
2326 * has been deleted and hence no longer needs the
2327 * release agent to be called anyway. */
2328 if (css && atomic_read(&css->refcnt))
2329 return 1;
2331 return 0;
2334 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2336 struct cgroup *cgrp = dentry->d_fsdata;
2337 struct dentry *d;
2338 struct cgroup *parent;
2339 struct super_block *sb;
2340 struct cgroupfs_root *root;
2342 /* the vfs holds both inode->i_mutex already */
2344 mutex_lock(&cgroup_mutex);
2345 if (atomic_read(&cgrp->count) != 0) {
2346 mutex_unlock(&cgroup_mutex);
2347 return -EBUSY;
2349 if (!list_empty(&cgrp->children)) {
2350 mutex_unlock(&cgroup_mutex);
2351 return -EBUSY;
2354 parent = cgrp->parent;
2355 root = cgrp->root;
2356 sb = root->sb;
2359 * Call pre_destroy handlers of subsys. Notify subsystems
2360 * that rmdir() request comes.
2362 cgroup_call_pre_destroy(cgrp);
2364 if (cgroup_has_css_refs(cgrp)) {
2365 mutex_unlock(&cgroup_mutex);
2366 return -EBUSY;
2369 spin_lock(&release_list_lock);
2370 set_bit(CGRP_REMOVED, &cgrp->flags);
2371 if (!list_empty(&cgrp->release_list))
2372 list_del(&cgrp->release_list);
2373 spin_unlock(&release_list_lock);
2374 /* delete my sibling from parent->children */
2375 list_del(&cgrp->sibling);
2376 spin_lock(&cgrp->dentry->d_lock);
2377 d = dget(cgrp->dentry);
2378 cgrp->dentry = NULL;
2379 spin_unlock(&d->d_lock);
2381 cgroup_d_remove_dir(d);
2382 dput(d);
2384 set_bit(CGRP_RELEASABLE, &parent->flags);
2385 check_for_release(parent);
2387 mutex_unlock(&cgroup_mutex);
2388 return 0;
2391 static void cgroup_init_subsys(struct cgroup_subsys *ss)
2393 struct cgroup_subsys_state *css;
2394 struct list_head *l;
2396 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2398 /* Create the top cgroup state for this subsystem */
2399 ss->root = &rootnode;
2400 css = ss->create(ss, dummytop);
2401 /* We don't handle early failures gracefully */
2402 BUG_ON(IS_ERR(css));
2403 init_cgroup_css(css, ss, dummytop);
2405 /* Update all cgroup groups to contain a subsys
2406 * pointer to this state - since the subsystem is
2407 * newly registered, all tasks and hence all cgroup
2408 * groups are in the subsystem's top cgroup. */
2409 write_lock(&css_set_lock);
2410 l = &init_css_set.list;
2411 do {
2412 struct css_set *cg =
2413 list_entry(l, struct css_set, list);
2414 cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2415 l = l->next;
2416 } while (l != &init_css_set.list);
2417 write_unlock(&css_set_lock);
2419 /* If this subsystem requested that it be notified with fork
2420 * events, we should send it one now for every process in the
2421 * system */
2422 if (ss->fork) {
2423 struct task_struct *g, *p;
2425 read_lock(&tasklist_lock);
2426 do_each_thread(g, p) {
2427 ss->fork(ss, p);
2428 } while_each_thread(g, p);
2429 read_unlock(&tasklist_lock);
2432 need_forkexit_callback |= ss->fork || ss->exit;
2434 ss->active = 1;
2438 * cgroup_init_early - cgroup initialization at system boot
2440 * Initialize cgroups at system boot, and initialize any
2441 * subsystems that request early init.
2443 int __init cgroup_init_early(void)
2445 int i;
2446 kref_init(&init_css_set.ref);
2447 kref_get(&init_css_set.ref);
2448 INIT_LIST_HEAD(&init_css_set.list);
2449 INIT_LIST_HEAD(&init_css_set.cg_links);
2450 INIT_LIST_HEAD(&init_css_set.tasks);
2451 css_set_count = 1;
2452 init_cgroup_root(&rootnode);
2453 list_add(&rootnode.root_list, &roots);
2454 root_count = 1;
2455 init_task.cgroups = &init_css_set;
2457 init_css_set_link.cg = &init_css_set;
2458 list_add(&init_css_set_link.cgrp_link_list,
2459 &rootnode.top_cgroup.css_sets);
2460 list_add(&init_css_set_link.cg_link_list,
2461 &init_css_set.cg_links);
2463 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2464 struct cgroup_subsys *ss = subsys[i];
2466 BUG_ON(!ss->name);
2467 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2468 BUG_ON(!ss->create);
2469 BUG_ON(!ss->destroy);
2470 if (ss->subsys_id != i) {
2471 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2472 ss->name, ss->subsys_id);
2473 BUG();
2476 if (ss->early_init)
2477 cgroup_init_subsys(ss);
2479 return 0;
2483 * cgroup_init - cgroup initialization
2485 * Register cgroup filesystem and /proc file, and initialize
2486 * any subsystems that didn't request early init.
2488 int __init cgroup_init(void)
2490 int err;
2491 int i;
2492 struct proc_dir_entry *entry;
2494 err = bdi_init(&cgroup_backing_dev_info);
2495 if (err)
2496 return err;
2498 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2499 struct cgroup_subsys *ss = subsys[i];
2500 if (!ss->early_init)
2501 cgroup_init_subsys(ss);
2504 err = register_filesystem(&cgroup_fs_type);
2505 if (err < 0)
2506 goto out;
2508 entry = create_proc_entry("cgroups", 0, NULL);
2509 if (entry)
2510 entry->proc_fops = &proc_cgroupstats_operations;
2512 out:
2513 if (err)
2514 bdi_destroy(&cgroup_backing_dev_info);
2516 return err;
2520 * proc_cgroup_show()
2521 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2522 * - Used for /proc/<pid>/cgroup.
2523 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2524 * doesn't really matter if tsk->cgroup changes after we read it,
2525 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2526 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2527 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2528 * cgroup to top_cgroup.
2531 /* TODO: Use a proper seq_file iterator */
2532 static int proc_cgroup_show(struct seq_file *m, void *v)
2534 struct pid *pid;
2535 struct task_struct *tsk;
2536 char *buf;
2537 int retval;
2538 struct cgroupfs_root *root;
2540 retval = -ENOMEM;
2541 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2542 if (!buf)
2543 goto out;
2545 retval = -ESRCH;
2546 pid = m->private;
2547 tsk = get_pid_task(pid, PIDTYPE_PID);
2548 if (!tsk)
2549 goto out_free;
2551 retval = 0;
2553 mutex_lock(&cgroup_mutex);
2555 for_each_root(root) {
2556 struct cgroup_subsys *ss;
2557 struct cgroup *cgrp;
2558 int subsys_id;
2559 int count = 0;
2561 /* Skip this hierarchy if it has no active subsystems */
2562 if (!root->actual_subsys_bits)
2563 continue;
2564 for_each_subsys(root, ss)
2565 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2566 seq_putc(m, ':');
2567 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2568 cgrp = task_cgroup(tsk, subsys_id);
2569 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2570 if (retval < 0)
2571 goto out_unlock;
2572 seq_puts(m, buf);
2573 seq_putc(m, '\n');
2576 out_unlock:
2577 mutex_unlock(&cgroup_mutex);
2578 put_task_struct(tsk);
2579 out_free:
2580 kfree(buf);
2581 out:
2582 return retval;
2585 static int cgroup_open(struct inode *inode, struct file *file)
2587 struct pid *pid = PROC_I(inode)->pid;
2588 return single_open(file, proc_cgroup_show, pid);
2591 struct file_operations proc_cgroup_operations = {
2592 .open = cgroup_open,
2593 .read = seq_read,
2594 .llseek = seq_lseek,
2595 .release = single_release,
2598 /* Display information about each subsystem and each hierarchy */
2599 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2601 int i;
2603 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\n");
2604 mutex_lock(&cgroup_mutex);
2605 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2606 struct cgroup_subsys *ss = subsys[i];
2607 seq_printf(m, "%s\t%lu\t%d\n",
2608 ss->name, ss->root->subsys_bits,
2609 ss->root->number_of_cgroups);
2611 mutex_unlock(&cgroup_mutex);
2612 return 0;
2615 static int cgroupstats_open(struct inode *inode, struct file *file)
2617 return single_open(file, proc_cgroupstats_show, 0);
2620 static struct file_operations proc_cgroupstats_operations = {
2621 .open = cgroupstats_open,
2622 .read = seq_read,
2623 .llseek = seq_lseek,
2624 .release = single_release,
2628 * cgroup_fork - attach newly forked task to its parents cgroup.
2629 * @child: pointer to task_struct of forking parent process.
2631 * Description: A task inherits its parent's cgroup at fork().
2633 * A pointer to the shared css_set was automatically copied in
2634 * fork.c by dup_task_struct(). However, we ignore that copy, since
2635 * it was not made under the protection of RCU or cgroup_mutex, so
2636 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2637 * have already changed current->cgroups, allowing the previously
2638 * referenced cgroup group to be removed and freed.
2640 * At the point that cgroup_fork() is called, 'current' is the parent
2641 * task, and the passed argument 'child' points to the child task.
2643 void cgroup_fork(struct task_struct *child)
2645 task_lock(current);
2646 child->cgroups = current->cgroups;
2647 get_css_set(child->cgroups);
2648 task_unlock(current);
2649 INIT_LIST_HEAD(&child->cg_list);
2653 * cgroup_fork_callbacks - run fork callbacks
2654 * @child: the new task
2656 * Called on a new task very soon before adding it to the
2657 * tasklist. No need to take any locks since no-one can
2658 * be operating on this task.
2660 void cgroup_fork_callbacks(struct task_struct *child)
2662 if (need_forkexit_callback) {
2663 int i;
2664 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2665 struct cgroup_subsys *ss = subsys[i];
2666 if (ss->fork)
2667 ss->fork(ss, child);
2673 * cgroup_post_fork - called on a new task after adding it to the task list
2674 * @child: the task in question
2676 * Adds the task to the list running through its css_set if necessary.
2677 * Has to be after the task is visible on the task list in case we race
2678 * with the first call to cgroup_iter_start() - to guarantee that the
2679 * new task ends up on its list.
2681 void cgroup_post_fork(struct task_struct *child)
2683 if (use_task_css_set_links) {
2684 write_lock(&css_set_lock);
2685 if (list_empty(&child->cg_list))
2686 list_add(&child->cg_list, &child->cgroups->tasks);
2687 write_unlock(&css_set_lock);
2691 * cgroup_exit - detach cgroup from exiting task
2692 * @tsk: pointer to task_struct of exiting process
2693 * @run_callback: run exit callbacks?
2695 * Description: Detach cgroup from @tsk and release it.
2697 * Note that cgroups marked notify_on_release force every task in
2698 * them to take the global cgroup_mutex mutex when exiting.
2699 * This could impact scaling on very large systems. Be reluctant to
2700 * use notify_on_release cgroups where very high task exit scaling
2701 * is required on large systems.
2703 * the_top_cgroup_hack:
2705 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2707 * We call cgroup_exit() while the task is still competent to
2708 * handle notify_on_release(), then leave the task attached to the
2709 * root cgroup in each hierarchy for the remainder of its exit.
2711 * To do this properly, we would increment the reference count on
2712 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2713 * code we would add a second cgroup function call, to drop that
2714 * reference. This would just create an unnecessary hot spot on
2715 * the top_cgroup reference count, to no avail.
2717 * Normally, holding a reference to a cgroup without bumping its
2718 * count is unsafe. The cgroup could go away, or someone could
2719 * attach us to a different cgroup, decrementing the count on
2720 * the first cgroup that we never incremented. But in this case,
2721 * top_cgroup isn't going away, and either task has PF_EXITING set,
2722 * which wards off any cgroup_attach_task() attempts, or task is a failed
2723 * fork, never visible to cgroup_attach_task.
2725 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2727 int i;
2728 struct css_set *cg;
2730 if (run_callbacks && need_forkexit_callback) {
2731 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2732 struct cgroup_subsys *ss = subsys[i];
2733 if (ss->exit)
2734 ss->exit(ss, tsk);
2739 * Unlink from the css_set task list if necessary.
2740 * Optimistically check cg_list before taking
2741 * css_set_lock
2743 if (!list_empty(&tsk->cg_list)) {
2744 write_lock(&css_set_lock);
2745 if (!list_empty(&tsk->cg_list))
2746 list_del(&tsk->cg_list);
2747 write_unlock(&css_set_lock);
2750 /* Reassign the task to the init_css_set. */
2751 task_lock(tsk);
2752 cg = tsk->cgroups;
2753 tsk->cgroups = &init_css_set;
2754 task_unlock(tsk);
2755 if (cg)
2756 put_css_set_taskexit(cg);
2760 * cgroup_clone - clone the cgroup the given subsystem is attached to
2761 * @tsk: the task to be moved
2762 * @subsys: the given subsystem
2764 * Duplicate the current cgroup in the hierarchy that the given
2765 * subsystem is attached to, and move this task into the new
2766 * child.
2768 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2770 struct dentry *dentry;
2771 int ret = 0;
2772 char nodename[MAX_CGROUP_TYPE_NAMELEN];
2773 struct cgroup *parent, *child;
2774 struct inode *inode;
2775 struct css_set *cg;
2776 struct cgroupfs_root *root;
2777 struct cgroup_subsys *ss;
2779 /* We shouldn't be called by an unregistered subsystem */
2780 BUG_ON(!subsys->active);
2782 /* First figure out what hierarchy and cgroup we're dealing
2783 * with, and pin them so we can drop cgroup_mutex */
2784 mutex_lock(&cgroup_mutex);
2785 again:
2786 root = subsys->root;
2787 if (root == &rootnode) {
2788 printk(KERN_INFO
2789 "Not cloning cgroup for unused subsystem %s\n",
2790 subsys->name);
2791 mutex_unlock(&cgroup_mutex);
2792 return 0;
2794 cg = tsk->cgroups;
2795 parent = task_cgroup(tsk, subsys->subsys_id);
2797 snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
2799 /* Pin the hierarchy */
2800 atomic_inc(&parent->root->sb->s_active);
2802 /* Keep the cgroup alive */
2803 get_css_set(cg);
2804 mutex_unlock(&cgroup_mutex);
2806 /* Now do the VFS work to create a cgroup */
2807 inode = parent->dentry->d_inode;
2809 /* Hold the parent directory mutex across this operation to
2810 * stop anyone else deleting the new cgroup */
2811 mutex_lock(&inode->i_mutex);
2812 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2813 if (IS_ERR(dentry)) {
2814 printk(KERN_INFO
2815 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2816 PTR_ERR(dentry));
2817 ret = PTR_ERR(dentry);
2818 goto out_release;
2821 /* Create the cgroup directory, which also creates the cgroup */
2822 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2823 child = __d_cgrp(dentry);
2824 dput(dentry);
2825 if (ret) {
2826 printk(KERN_INFO
2827 "Failed to create cgroup %s: %d\n", nodename,
2828 ret);
2829 goto out_release;
2832 if (!child) {
2833 printk(KERN_INFO
2834 "Couldn't find new cgroup %s\n", nodename);
2835 ret = -ENOMEM;
2836 goto out_release;
2839 /* The cgroup now exists. Retake cgroup_mutex and check
2840 * that we're still in the same state that we thought we
2841 * were. */
2842 mutex_lock(&cgroup_mutex);
2843 if ((root != subsys->root) ||
2844 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2845 /* Aargh, we raced ... */
2846 mutex_unlock(&inode->i_mutex);
2847 put_css_set(cg);
2849 deactivate_super(parent->root->sb);
2850 /* The cgroup is still accessible in the VFS, but
2851 * we're not going to try to rmdir() it at this
2852 * point. */
2853 printk(KERN_INFO
2854 "Race in cgroup_clone() - leaking cgroup %s\n",
2855 nodename);
2856 goto again;
2859 /* do any required auto-setup */
2860 for_each_subsys(root, ss) {
2861 if (ss->post_clone)
2862 ss->post_clone(ss, child);
2865 /* All seems fine. Finish by moving the task into the new cgroup */
2866 ret = cgroup_attach_task(child, tsk);
2867 mutex_unlock(&cgroup_mutex);
2869 out_release:
2870 mutex_unlock(&inode->i_mutex);
2872 mutex_lock(&cgroup_mutex);
2873 put_css_set(cg);
2874 mutex_unlock(&cgroup_mutex);
2875 deactivate_super(parent->root->sb);
2876 return ret;
2880 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2881 * @cgrp: the cgroup in question
2883 * See if @cgrp is a descendant of the current task's cgroup in
2884 * the appropriate hierarchy.
2886 * If we are sending in dummytop, then presumably we are creating
2887 * the top cgroup in the subsystem.
2889 * Called only by the ns (nsproxy) cgroup.
2891 int cgroup_is_descendant(const struct cgroup *cgrp)
2893 int ret;
2894 struct cgroup *target;
2895 int subsys_id;
2897 if (cgrp == dummytop)
2898 return 1;
2900 get_first_subsys(cgrp, NULL, &subsys_id);
2901 target = task_cgroup(current, subsys_id);
2902 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2903 cgrp = cgrp->parent;
2904 ret = (cgrp == target);
2905 return ret;
2908 static void check_for_release(struct cgroup *cgrp)
2910 /* All of these checks rely on RCU to keep the cgroup
2911 * structure alive */
2912 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2913 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2914 /* Control Group is currently removeable. If it's not
2915 * already queued for a userspace notification, queue
2916 * it now */
2917 int need_schedule_work = 0;
2918 spin_lock(&release_list_lock);
2919 if (!cgroup_is_removed(cgrp) &&
2920 list_empty(&cgrp->release_list)) {
2921 list_add(&cgrp->release_list, &release_list);
2922 need_schedule_work = 1;
2924 spin_unlock(&release_list_lock);
2925 if (need_schedule_work)
2926 schedule_work(&release_agent_work);
2930 void __css_put(struct cgroup_subsys_state *css)
2932 struct cgroup *cgrp = css->cgroup;
2933 rcu_read_lock();
2934 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
2935 set_bit(CGRP_RELEASABLE, &cgrp->flags);
2936 check_for_release(cgrp);
2938 rcu_read_unlock();
2942 * Notify userspace when a cgroup is released, by running the
2943 * configured release agent with the name of the cgroup (path
2944 * relative to the root of cgroup file system) as the argument.
2946 * Most likely, this user command will try to rmdir this cgroup.
2948 * This races with the possibility that some other task will be
2949 * attached to this cgroup before it is removed, or that some other
2950 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
2951 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
2952 * unused, and this cgroup will be reprieved from its death sentence,
2953 * to continue to serve a useful existence. Next time it's released,
2954 * we will get notified again, if it still has 'notify_on_release' set.
2956 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
2957 * means only wait until the task is successfully execve()'d. The
2958 * separate release agent task is forked by call_usermodehelper(),
2959 * then control in this thread returns here, without waiting for the
2960 * release agent task. We don't bother to wait because the caller of
2961 * this routine has no use for the exit status of the release agent
2962 * task, so no sense holding our caller up for that.
2964 static void cgroup_release_agent(struct work_struct *work)
2966 BUG_ON(work != &release_agent_work);
2967 mutex_lock(&cgroup_mutex);
2968 spin_lock(&release_list_lock);
2969 while (!list_empty(&release_list)) {
2970 char *argv[3], *envp[3];
2971 int i;
2972 char *pathbuf;
2973 struct cgroup *cgrp = list_entry(release_list.next,
2974 struct cgroup,
2975 release_list);
2976 list_del_init(&cgrp->release_list);
2977 spin_unlock(&release_list_lock);
2978 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2979 if (!pathbuf) {
2980 spin_lock(&release_list_lock);
2981 continue;
2984 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
2985 kfree(pathbuf);
2986 spin_lock(&release_list_lock);
2987 continue;
2990 i = 0;
2991 argv[i++] = cgrp->root->release_agent_path;
2992 argv[i++] = (char *)pathbuf;
2993 argv[i] = NULL;
2995 i = 0;
2996 /* minimal command environment */
2997 envp[i++] = "HOME=/";
2998 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
2999 envp[i] = NULL;
3001 /* Drop the lock while we invoke the usermode helper,
3002 * since the exec could involve hitting disk and hence
3003 * be a slow process */
3004 mutex_unlock(&cgroup_mutex);
3005 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3006 kfree(pathbuf);
3007 mutex_lock(&cgroup_mutex);
3008 spin_lock(&release_list_lock);
3010 spin_unlock(&release_list_lock);
3011 mutex_unlock(&cgroup_mutex);