[ETHTOOL] Provide default behaviors for a few ethtool sub-ioctls
[linux-2.6/kmemtrace.git] / drivers / net / epic100.c
blob5ac56f20003df20ccb8d4fac224f0b81388d0684
1 /* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */
2 /*
3 Written/copyright 1997-2001 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 This driver is for the SMC83c170/175 "EPIC" series, as used on the
13 SMC EtherPower II 9432 PCI adapter, and several CardBus cards.
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Information and updates available at
21 http://www.scyld.com/network/epic100.html
22 [this link no longer provides anything useful -jgarzik]
24 ---------------------------------------------------------------------
28 #define DRV_NAME "epic100"
29 #define DRV_VERSION "2.1"
30 #define DRV_RELDATE "Sept 11, 2006"
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
37 /* Used to pass the full-duplex flag, etc. */
38 #define MAX_UNITS 8 /* More are supported, limit only on options */
39 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
40 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
42 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
43 Setting to > 1518 effectively disables this feature. */
44 static int rx_copybreak;
46 /* Operational parameters that are set at compile time. */
48 /* Keep the ring sizes a power of two for operational efficiency.
49 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
50 Making the Tx ring too large decreases the effectiveness of channel
51 bonding and packet priority.
52 There are no ill effects from too-large receive rings. */
53 #define TX_RING_SIZE 256
54 #define TX_QUEUE_LEN 240 /* Limit ring entries actually used. */
55 #define RX_RING_SIZE 256
56 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct epic_tx_desc)
57 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct epic_rx_desc)
59 /* Operational parameters that usually are not changed. */
60 /* Time in jiffies before concluding the transmitter is hung. */
61 #define TX_TIMEOUT (2*HZ)
63 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
65 /* Bytes transferred to chip before transmission starts. */
66 /* Initial threshold, increased on underflow, rounded down to 4 byte units. */
67 #define TX_FIFO_THRESH 256
68 #define RX_FIFO_THRESH 1 /* 0-3, 0==32, 64,96, or 3==128 bytes */
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/string.h>
73 #include <linux/timer.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/slab.h>
77 #include <linux/interrupt.h>
78 #include <linux/pci.h>
79 #include <linux/delay.h>
80 #include <linux/netdevice.h>
81 #include <linux/etherdevice.h>
82 #include <linux/skbuff.h>
83 #include <linux/init.h>
84 #include <linux/spinlock.h>
85 #include <linux/ethtool.h>
86 #include <linux/mii.h>
87 #include <linux/crc32.h>
88 #include <linux/bitops.h>
89 #include <asm/io.h>
90 #include <asm/uaccess.h>
92 /* These identify the driver base version and may not be removed. */
93 static char version[] __devinitdata =
94 DRV_NAME ".c:v1.11 1/7/2001 Written by Donald Becker <becker@scyld.com>\n";
95 static char version2[] __devinitdata =
96 " (unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
98 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
99 MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver");
100 MODULE_LICENSE("GPL");
102 module_param(debug, int, 0);
103 module_param(rx_copybreak, int, 0);
104 module_param_array(options, int, NULL, 0);
105 module_param_array(full_duplex, int, NULL, 0);
106 MODULE_PARM_DESC(debug, "EPIC/100 debug level (0-5)");
107 MODULE_PARM_DESC(options, "EPIC/100: Bits 0-3: media type, bit 4: full duplex");
108 MODULE_PARM_DESC(rx_copybreak, "EPIC/100 copy breakpoint for copy-only-tiny-frames");
109 MODULE_PARM_DESC(full_duplex, "EPIC/100 full duplex setting(s) (1)");
112 Theory of Operation
114 I. Board Compatibility
116 This device driver is designed for the SMC "EPIC/100", the SMC
117 single-chip Ethernet controllers for PCI. This chip is used on
118 the SMC EtherPower II boards.
120 II. Board-specific settings
122 PCI bus devices are configured by the system at boot time, so no jumpers
123 need to be set on the board. The system BIOS will assign the
124 PCI INTA signal to a (preferably otherwise unused) system IRQ line.
125 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
126 interrupt lines.
128 III. Driver operation
130 IIIa. Ring buffers
132 IVb. References
134 http://www.smsc.com/main/datasheets/83c171.pdf
135 http://www.smsc.com/main/datasheets/83c175.pdf
136 http://scyld.com/expert/NWay.html
137 http://www.national.com/pf/DP/DP83840A.html
139 IVc. Errata
144 enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 };
146 #define EPIC_TOTAL_SIZE 0x100
147 #define USE_IO_OPS 1
149 typedef enum {
150 SMSC_83C170_0,
151 SMSC_83C170,
152 SMSC_83C175,
153 } chip_t;
156 struct epic_chip_info {
157 const char *name;
158 int drv_flags; /* Driver use, intended as capability flags. */
162 /* indexed by chip_t */
163 static const struct epic_chip_info pci_id_tbl[] = {
164 { "SMSC EPIC/100 83c170", TYPE2_INTR | NO_MII | MII_PWRDWN },
165 { "SMSC EPIC/100 83c170", TYPE2_INTR },
166 { "SMSC EPIC/C 83c175", TYPE2_INTR | MII_PWRDWN },
170 static struct pci_device_id epic_pci_tbl[] = {
171 { 0x10B8, 0x0005, 0x1092, 0x0AB4, 0, 0, SMSC_83C170_0 },
172 { 0x10B8, 0x0005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMSC_83C170 },
173 { 0x10B8, 0x0006, PCI_ANY_ID, PCI_ANY_ID,
174 PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, SMSC_83C175 },
175 { 0,}
177 MODULE_DEVICE_TABLE (pci, epic_pci_tbl);
180 #ifndef USE_IO_OPS
181 #undef inb
182 #undef inw
183 #undef inl
184 #undef outb
185 #undef outw
186 #undef outl
187 #define inb readb
188 #define inw readw
189 #define inl readl
190 #define outb writeb
191 #define outw writew
192 #define outl writel
193 #endif
195 /* Offsets to registers, using the (ugh) SMC names. */
196 enum epic_registers {
197 COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14,
198 PCIBurstCnt=0x18,
199 TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28, /* Rx error counters. */
200 MIICtrl=0x30, MIIData=0x34, MIICfg=0x38,
201 LAN0=64, /* MAC address. */
202 MC0=80, /* Multicast filter table. */
203 RxCtrl=96, TxCtrl=112, TxSTAT=0x74,
204 PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC,
207 /* Interrupt register bits, using my own meaningful names. */
208 enum IntrStatus {
209 TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000,
210 PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000,
211 RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100,
212 TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010,
213 RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001,
215 enum CommandBits {
216 StopRx=1, StartRx=2, TxQueued=4, RxQueued=8,
217 StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80,
220 #define EpicRemoved 0xffffffff /* Chip failed or removed (CardBus) */
222 #define EpicNapiEvent (TxEmpty | TxDone | \
223 RxDone | RxStarted | RxEarlyWarn | RxOverflow | RxFull)
224 #define EpicNormalEvent (0x0000ffff & ~EpicNapiEvent)
226 static const u16 media2miictl[16] = {
227 0, 0x0C00, 0x0C00, 0x2000, 0x0100, 0x2100, 0, 0,
228 0, 0, 0, 0, 0, 0, 0, 0 };
230 /* The EPIC100 Rx and Tx buffer descriptors. */
232 struct epic_tx_desc {
233 u32 txstatus;
234 u32 bufaddr;
235 u32 buflength;
236 u32 next;
239 struct epic_rx_desc {
240 u32 rxstatus;
241 u32 bufaddr;
242 u32 buflength;
243 u32 next;
246 enum desc_status_bits {
247 DescOwn=0x8000,
250 #define PRIV_ALIGN 15 /* Required alignment mask */
251 struct epic_private {
252 struct epic_rx_desc *rx_ring;
253 struct epic_tx_desc *tx_ring;
254 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
255 struct sk_buff* tx_skbuff[TX_RING_SIZE];
256 /* The addresses of receive-in-place skbuffs. */
257 struct sk_buff* rx_skbuff[RX_RING_SIZE];
259 dma_addr_t tx_ring_dma;
260 dma_addr_t rx_ring_dma;
262 /* Ring pointers. */
263 spinlock_t lock; /* Group with Tx control cache line. */
264 spinlock_t napi_lock;
265 struct napi_struct napi;
266 unsigned int reschedule_in_poll;
267 unsigned int cur_tx, dirty_tx;
269 unsigned int cur_rx, dirty_rx;
270 u32 irq_mask;
271 unsigned int rx_buf_sz; /* Based on MTU+slack. */
273 struct pci_dev *pci_dev; /* PCI bus location. */
274 int chip_id, chip_flags;
276 struct net_device_stats stats;
277 struct timer_list timer; /* Media selection timer. */
278 int tx_threshold;
279 unsigned char mc_filter[8];
280 signed char phys[4]; /* MII device addresses. */
281 u16 advertising; /* NWay media advertisement */
282 int mii_phy_cnt;
283 struct mii_if_info mii;
284 unsigned int tx_full:1; /* The Tx queue is full. */
285 unsigned int default_port:4; /* Last dev->if_port value. */
288 static int epic_open(struct net_device *dev);
289 static int read_eeprom(long ioaddr, int location);
290 static int mdio_read(struct net_device *dev, int phy_id, int location);
291 static void mdio_write(struct net_device *dev, int phy_id, int loc, int val);
292 static void epic_restart(struct net_device *dev);
293 static void epic_timer(unsigned long data);
294 static void epic_tx_timeout(struct net_device *dev);
295 static void epic_init_ring(struct net_device *dev);
296 static int epic_start_xmit(struct sk_buff *skb, struct net_device *dev);
297 static int epic_rx(struct net_device *dev, int budget);
298 static int epic_poll(struct napi_struct *napi, int budget);
299 static irqreturn_t epic_interrupt(int irq, void *dev_instance);
300 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
301 static const struct ethtool_ops netdev_ethtool_ops;
302 static int epic_close(struct net_device *dev);
303 static struct net_device_stats *epic_get_stats(struct net_device *dev);
304 static void set_rx_mode(struct net_device *dev);
308 static int __devinit epic_init_one (struct pci_dev *pdev,
309 const struct pci_device_id *ent)
311 static int card_idx = -1;
312 long ioaddr;
313 int chip_idx = (int) ent->driver_data;
314 int irq;
315 struct net_device *dev;
316 struct epic_private *ep;
317 int i, ret, option = 0, duplex = 0;
318 void *ring_space;
319 dma_addr_t ring_dma;
321 /* when built into the kernel, we only print version if device is found */
322 #ifndef MODULE
323 static int printed_version;
324 if (!printed_version++)
325 printk (KERN_INFO "%s" KERN_INFO "%s",
326 version, version2);
327 #endif
329 card_idx++;
331 ret = pci_enable_device(pdev);
332 if (ret)
333 goto out;
334 irq = pdev->irq;
336 if (pci_resource_len(pdev, 0) < EPIC_TOTAL_SIZE) {
337 dev_err(&pdev->dev, "no PCI region space\n");
338 ret = -ENODEV;
339 goto err_out_disable;
342 pci_set_master(pdev);
344 ret = pci_request_regions(pdev, DRV_NAME);
345 if (ret < 0)
346 goto err_out_disable;
348 ret = -ENOMEM;
350 dev = alloc_etherdev(sizeof (*ep));
351 if (!dev) {
352 dev_err(&pdev->dev, "no memory for eth device\n");
353 goto err_out_free_res;
355 SET_NETDEV_DEV(dev, &pdev->dev);
357 #ifdef USE_IO_OPS
358 ioaddr = pci_resource_start (pdev, 0);
359 #else
360 ioaddr = pci_resource_start (pdev, 1);
361 ioaddr = (long) ioremap (ioaddr, pci_resource_len (pdev, 1));
362 if (!ioaddr) {
363 dev_err(&pdev->dev, "ioremap failed\n");
364 goto err_out_free_netdev;
366 #endif
368 pci_set_drvdata(pdev, dev);
369 ep = dev->priv;
370 ep->mii.dev = dev;
371 ep->mii.mdio_read = mdio_read;
372 ep->mii.mdio_write = mdio_write;
373 ep->mii.phy_id_mask = 0x1f;
374 ep->mii.reg_num_mask = 0x1f;
376 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
377 if (!ring_space)
378 goto err_out_iounmap;
379 ep->tx_ring = (struct epic_tx_desc *)ring_space;
380 ep->tx_ring_dma = ring_dma;
382 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
383 if (!ring_space)
384 goto err_out_unmap_tx;
385 ep->rx_ring = (struct epic_rx_desc *)ring_space;
386 ep->rx_ring_dma = ring_dma;
388 if (dev->mem_start) {
389 option = dev->mem_start;
390 duplex = (dev->mem_start & 16) ? 1 : 0;
391 } else if (card_idx >= 0 && card_idx < MAX_UNITS) {
392 if (options[card_idx] >= 0)
393 option = options[card_idx];
394 if (full_duplex[card_idx] >= 0)
395 duplex = full_duplex[card_idx];
398 dev->base_addr = ioaddr;
399 dev->irq = irq;
401 spin_lock_init(&ep->lock);
402 spin_lock_init(&ep->napi_lock);
403 ep->reschedule_in_poll = 0;
405 /* Bring the chip out of low-power mode. */
406 outl(0x4200, ioaddr + GENCTL);
407 /* Magic?! If we don't set this bit the MII interface won't work. */
408 /* This magic is documented in SMSC app note 7.15 */
409 for (i = 16; i > 0; i--)
410 outl(0x0008, ioaddr + TEST1);
412 /* Turn on the MII transceiver. */
413 outl(0x12, ioaddr + MIICfg);
414 if (chip_idx == 1)
415 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
416 outl(0x0200, ioaddr + GENCTL);
418 /* Note: the '175 does not have a serial EEPROM. */
419 for (i = 0; i < 3; i++)
420 ((u16 *)dev->dev_addr)[i] = le16_to_cpu(inw(ioaddr + LAN0 + i*4));
422 if (debug > 2) {
423 dev_printk(KERN_DEBUG, &pdev->dev, "EEPROM contents:\n");
424 for (i = 0; i < 64; i++)
425 printk(" %4.4x%s", read_eeprom(ioaddr, i),
426 i % 16 == 15 ? "\n" : "");
429 ep->pci_dev = pdev;
430 ep->chip_id = chip_idx;
431 ep->chip_flags = pci_id_tbl[chip_idx].drv_flags;
432 ep->irq_mask =
433 (ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
434 | CntFull | TxUnderrun | EpicNapiEvent;
436 /* Find the connected MII xcvrs.
437 Doing this in open() would allow detecting external xcvrs later, but
438 takes much time and no cards have external MII. */
440 int phy, phy_idx = 0;
441 for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) {
442 int mii_status = mdio_read(dev, phy, MII_BMSR);
443 if (mii_status != 0xffff && mii_status != 0x0000) {
444 ep->phys[phy_idx++] = phy;
445 dev_info(&pdev->dev,
446 "MII transceiver #%d control "
447 "%4.4x status %4.4x.\n",
448 phy, mdio_read(dev, phy, 0), mii_status);
451 ep->mii_phy_cnt = phy_idx;
452 if (phy_idx != 0) {
453 phy = ep->phys[0];
454 ep->mii.advertising = mdio_read(dev, phy, MII_ADVERTISE);
455 dev_info(&pdev->dev,
456 "Autonegotiation advertising %4.4x link "
457 "partner %4.4x.\n",
458 ep->mii.advertising, mdio_read(dev, phy, 5));
459 } else if ( ! (ep->chip_flags & NO_MII)) {
460 dev_warn(&pdev->dev,
461 "***WARNING***: No MII transceiver found!\n");
462 /* Use the known PHY address of the EPII. */
463 ep->phys[0] = 3;
465 ep->mii.phy_id = ep->phys[0];
468 /* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */
469 if (ep->chip_flags & MII_PWRDWN)
470 outl(inl(ioaddr + NVCTL) & ~0x483C, ioaddr + NVCTL);
471 outl(0x0008, ioaddr + GENCTL);
473 /* The lower four bits are the media type. */
474 if (duplex) {
475 ep->mii.force_media = ep->mii.full_duplex = 1;
476 dev_info(&pdev->dev, "Forced full duplex requested.\n");
478 dev->if_port = ep->default_port = option;
480 /* The Epic-specific entries in the device structure. */
481 dev->open = &epic_open;
482 dev->hard_start_xmit = &epic_start_xmit;
483 dev->stop = &epic_close;
484 dev->get_stats = &epic_get_stats;
485 dev->set_multicast_list = &set_rx_mode;
486 dev->do_ioctl = &netdev_ioctl;
487 dev->ethtool_ops = &netdev_ethtool_ops;
488 dev->watchdog_timeo = TX_TIMEOUT;
489 dev->tx_timeout = &epic_tx_timeout;
490 netif_napi_add(dev, &ep->napi, epic_poll, 64);
492 ret = register_netdev(dev);
493 if (ret < 0)
494 goto err_out_unmap_rx;
496 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, ",
497 dev->name, pci_id_tbl[chip_idx].name, ioaddr, dev->irq);
498 for (i = 0; i < 5; i++)
499 printk("%2.2x:", dev->dev_addr[i]);
500 printk("%2.2x.\n", dev->dev_addr[i]);
502 out:
503 return ret;
505 err_out_unmap_rx:
506 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
507 err_out_unmap_tx:
508 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
509 err_out_iounmap:
510 #ifndef USE_IO_OPS
511 iounmap(ioaddr);
512 err_out_free_netdev:
513 #endif
514 free_netdev(dev);
515 err_out_free_res:
516 pci_release_regions(pdev);
517 err_out_disable:
518 pci_disable_device(pdev);
519 goto out;
522 /* Serial EEPROM section. */
524 /* EEPROM_Ctrl bits. */
525 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
526 #define EE_CS 0x02 /* EEPROM chip select. */
527 #define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */
528 #define EE_WRITE_0 0x01
529 #define EE_WRITE_1 0x09
530 #define EE_DATA_READ 0x10 /* EEPROM chip data out. */
531 #define EE_ENB (0x0001 | EE_CS)
533 /* Delay between EEPROM clock transitions.
534 This serves to flush the operation to the PCI bus.
537 #define eeprom_delay() inl(ee_addr)
539 /* The EEPROM commands include the alway-set leading bit. */
540 #define EE_WRITE_CMD (5 << 6)
541 #define EE_READ64_CMD (6 << 6)
542 #define EE_READ256_CMD (6 << 8)
543 #define EE_ERASE_CMD (7 << 6)
545 static void epic_disable_int(struct net_device *dev, struct epic_private *ep)
547 long ioaddr = dev->base_addr;
549 outl(0x00000000, ioaddr + INTMASK);
552 static inline void __epic_pci_commit(long ioaddr)
554 #ifndef USE_IO_OPS
555 inl(ioaddr + INTMASK);
556 #endif
559 static inline void epic_napi_irq_off(struct net_device *dev,
560 struct epic_private *ep)
562 long ioaddr = dev->base_addr;
564 outl(ep->irq_mask & ~EpicNapiEvent, ioaddr + INTMASK);
565 __epic_pci_commit(ioaddr);
568 static inline void epic_napi_irq_on(struct net_device *dev,
569 struct epic_private *ep)
571 long ioaddr = dev->base_addr;
573 /* No need to commit possible posted write */
574 outl(ep->irq_mask | EpicNapiEvent, ioaddr + INTMASK);
577 static int __devinit read_eeprom(long ioaddr, int location)
579 int i;
580 int retval = 0;
581 long ee_addr = ioaddr + EECTL;
582 int read_cmd = location |
583 (inl(ee_addr) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD);
585 outl(EE_ENB & ~EE_CS, ee_addr);
586 outl(EE_ENB, ee_addr);
588 /* Shift the read command bits out. */
589 for (i = 12; i >= 0; i--) {
590 short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0;
591 outl(EE_ENB | dataval, ee_addr);
592 eeprom_delay();
593 outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
594 eeprom_delay();
596 outl(EE_ENB, ee_addr);
598 for (i = 16; i > 0; i--) {
599 outl(EE_ENB | EE_SHIFT_CLK, ee_addr);
600 eeprom_delay();
601 retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0);
602 outl(EE_ENB, ee_addr);
603 eeprom_delay();
606 /* Terminate the EEPROM access. */
607 outl(EE_ENB & ~EE_CS, ee_addr);
608 return retval;
611 #define MII_READOP 1
612 #define MII_WRITEOP 2
613 static int mdio_read(struct net_device *dev, int phy_id, int location)
615 long ioaddr = dev->base_addr;
616 int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP;
617 int i;
619 outl(read_cmd, ioaddr + MIICtrl);
620 /* Typical operation takes 25 loops. */
621 for (i = 400; i > 0; i--) {
622 barrier();
623 if ((inl(ioaddr + MIICtrl) & MII_READOP) == 0) {
624 /* Work around read failure bug. */
625 if (phy_id == 1 && location < 6
626 && inw(ioaddr + MIIData) == 0xffff) {
627 outl(read_cmd, ioaddr + MIICtrl);
628 continue;
630 return inw(ioaddr + MIIData);
633 return 0xffff;
636 static void mdio_write(struct net_device *dev, int phy_id, int loc, int value)
638 long ioaddr = dev->base_addr;
639 int i;
641 outw(value, ioaddr + MIIData);
642 outl((phy_id << 9) | (loc << 4) | MII_WRITEOP, ioaddr + MIICtrl);
643 for (i = 10000; i > 0; i--) {
644 barrier();
645 if ((inl(ioaddr + MIICtrl) & MII_WRITEOP) == 0)
646 break;
648 return;
652 static int epic_open(struct net_device *dev)
654 struct epic_private *ep = dev->priv;
655 long ioaddr = dev->base_addr;
656 int i;
657 int retval;
659 /* Soft reset the chip. */
660 outl(0x4001, ioaddr + GENCTL);
662 napi_enable(&ep->napi);
663 if ((retval = request_irq(dev->irq, &epic_interrupt, IRQF_SHARED, dev->name, dev))) {
664 napi_disable(&ep->napi);
665 return retval;
668 epic_init_ring(dev);
670 outl(0x4000, ioaddr + GENCTL);
671 /* This magic is documented in SMSC app note 7.15 */
672 for (i = 16; i > 0; i--)
673 outl(0x0008, ioaddr + TEST1);
675 /* Pull the chip out of low-power mode, enable interrupts, and set for
676 PCI read multiple. The MIIcfg setting and strange write order are
677 required by the details of which bits are reset and the transceiver
678 wiring on the Ositech CardBus card.
680 #if 0
681 outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
682 #endif
683 if (ep->chip_flags & MII_PWRDWN)
684 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
686 #if defined(__powerpc__) || defined(__sparc__) /* Big endian */
687 outl(0x4432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
688 inl(ioaddr + GENCTL);
689 outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
690 #else
691 outl(0x4412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
692 inl(ioaddr + GENCTL);
693 outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
694 #endif
696 udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */
698 for (i = 0; i < 3; i++)
699 outl(cpu_to_le16(((u16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
701 ep->tx_threshold = TX_FIFO_THRESH;
702 outl(ep->tx_threshold, ioaddr + TxThresh);
704 if (media2miictl[dev->if_port & 15]) {
705 if (ep->mii_phy_cnt)
706 mdio_write(dev, ep->phys[0], MII_BMCR, media2miictl[dev->if_port&15]);
707 if (dev->if_port == 1) {
708 if (debug > 1)
709 printk(KERN_INFO "%s: Using the 10base2 transceiver, MII "
710 "status %4.4x.\n",
711 dev->name, mdio_read(dev, ep->phys[0], MII_BMSR));
713 } else {
714 int mii_lpa = mdio_read(dev, ep->phys[0], MII_LPA);
715 if (mii_lpa != 0xffff) {
716 if ((mii_lpa & LPA_100FULL) || (mii_lpa & 0x01C0) == LPA_10FULL)
717 ep->mii.full_duplex = 1;
718 else if (! (mii_lpa & LPA_LPACK))
719 mdio_write(dev, ep->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
720 if (debug > 1)
721 printk(KERN_INFO "%s: Setting %s-duplex based on MII xcvr %d"
722 " register read of %4.4x.\n", dev->name,
723 ep->mii.full_duplex ? "full" : "half",
724 ep->phys[0], mii_lpa);
728 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
729 outl(ep->rx_ring_dma, ioaddr + PRxCDAR);
730 outl(ep->tx_ring_dma, ioaddr + PTxCDAR);
732 /* Start the chip's Rx process. */
733 set_rx_mode(dev);
734 outl(StartRx | RxQueued, ioaddr + COMMAND);
736 netif_start_queue(dev);
738 /* Enable interrupts by setting the interrupt mask. */
739 outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
740 | CntFull | TxUnderrun
741 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
743 if (debug > 1)
744 printk(KERN_DEBUG "%s: epic_open() ioaddr %lx IRQ %d status %4.4x "
745 "%s-duplex.\n",
746 dev->name, ioaddr, dev->irq, (int)inl(ioaddr + GENCTL),
747 ep->mii.full_duplex ? "full" : "half");
749 /* Set the timer to switch to check for link beat and perhaps switch
750 to an alternate media type. */
751 init_timer(&ep->timer);
752 ep->timer.expires = jiffies + 3*HZ;
753 ep->timer.data = (unsigned long)dev;
754 ep->timer.function = &epic_timer; /* timer handler */
755 add_timer(&ep->timer);
757 return 0;
760 /* Reset the chip to recover from a PCI transaction error.
761 This may occur at interrupt time. */
762 static void epic_pause(struct net_device *dev)
764 long ioaddr = dev->base_addr;
765 struct epic_private *ep = dev->priv;
767 netif_stop_queue (dev);
769 /* Disable interrupts by clearing the interrupt mask. */
770 outl(0x00000000, ioaddr + INTMASK);
771 /* Stop the chip's Tx and Rx DMA processes. */
772 outw(StopRx | StopTxDMA | StopRxDMA, ioaddr + COMMAND);
774 /* Update the error counts. */
775 if (inw(ioaddr + COMMAND) != 0xffff) {
776 ep->stats.rx_missed_errors += inb(ioaddr + MPCNT);
777 ep->stats.rx_frame_errors += inb(ioaddr + ALICNT);
778 ep->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
781 /* Remove the packets on the Rx queue. */
782 epic_rx(dev, RX_RING_SIZE);
785 static void epic_restart(struct net_device *dev)
787 long ioaddr = dev->base_addr;
788 struct epic_private *ep = dev->priv;
789 int i;
791 /* Soft reset the chip. */
792 outl(0x4001, ioaddr + GENCTL);
794 printk(KERN_DEBUG "%s: Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n",
795 dev->name, ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx);
796 udelay(1);
798 /* This magic is documented in SMSC app note 7.15 */
799 for (i = 16; i > 0; i--)
800 outl(0x0008, ioaddr + TEST1);
802 #if defined(__powerpc__) || defined(__sparc__) /* Big endian */
803 outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
804 #else
805 outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
806 #endif
807 outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
808 if (ep->chip_flags & MII_PWRDWN)
809 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
811 for (i = 0; i < 3; i++)
812 outl(cpu_to_le16(((u16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
814 ep->tx_threshold = TX_FIFO_THRESH;
815 outl(ep->tx_threshold, ioaddr + TxThresh);
816 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
817 outl(ep->rx_ring_dma + (ep->cur_rx%RX_RING_SIZE)*
818 sizeof(struct epic_rx_desc), ioaddr + PRxCDAR);
819 outl(ep->tx_ring_dma + (ep->dirty_tx%TX_RING_SIZE)*
820 sizeof(struct epic_tx_desc), ioaddr + PTxCDAR);
822 /* Start the chip's Rx process. */
823 set_rx_mode(dev);
824 outl(StartRx | RxQueued, ioaddr + COMMAND);
826 /* Enable interrupts by setting the interrupt mask. */
827 outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
828 | CntFull | TxUnderrun
829 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
831 printk(KERN_DEBUG "%s: epic_restart() done, cmd status %4.4x, ctl %4.4x"
832 " interrupt %4.4x.\n",
833 dev->name, (int)inl(ioaddr + COMMAND), (int)inl(ioaddr + GENCTL),
834 (int)inl(ioaddr + INTSTAT));
835 return;
838 static void check_media(struct net_device *dev)
840 struct epic_private *ep = dev->priv;
841 long ioaddr = dev->base_addr;
842 int mii_lpa = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], MII_LPA) : 0;
843 int negotiated = mii_lpa & ep->mii.advertising;
844 int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
846 if (ep->mii.force_media)
847 return;
848 if (mii_lpa == 0xffff) /* Bogus read */
849 return;
850 if (ep->mii.full_duplex != duplex) {
851 ep->mii.full_duplex = duplex;
852 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d link"
853 " partner capability of %4.4x.\n", dev->name,
854 ep->mii.full_duplex ? "full" : "half", ep->phys[0], mii_lpa);
855 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
859 static void epic_timer(unsigned long data)
861 struct net_device *dev = (struct net_device *)data;
862 struct epic_private *ep = dev->priv;
863 long ioaddr = dev->base_addr;
864 int next_tick = 5*HZ;
866 if (debug > 3) {
867 printk(KERN_DEBUG "%s: Media monitor tick, Tx status %8.8x.\n",
868 dev->name, (int)inl(ioaddr + TxSTAT));
869 printk(KERN_DEBUG "%s: Other registers are IntMask %4.4x "
870 "IntStatus %4.4x RxStatus %4.4x.\n",
871 dev->name, (int)inl(ioaddr + INTMASK),
872 (int)inl(ioaddr + INTSTAT), (int)inl(ioaddr + RxSTAT));
875 check_media(dev);
877 ep->timer.expires = jiffies + next_tick;
878 add_timer(&ep->timer);
881 static void epic_tx_timeout(struct net_device *dev)
883 struct epic_private *ep = dev->priv;
884 long ioaddr = dev->base_addr;
886 if (debug > 0) {
887 printk(KERN_WARNING "%s: Transmit timeout using MII device, "
888 "Tx status %4.4x.\n",
889 dev->name, (int)inw(ioaddr + TxSTAT));
890 if (debug > 1) {
891 printk(KERN_DEBUG "%s: Tx indices: dirty_tx %d, cur_tx %d.\n",
892 dev->name, ep->dirty_tx, ep->cur_tx);
895 if (inw(ioaddr + TxSTAT) & 0x10) { /* Tx FIFO underflow. */
896 ep->stats.tx_fifo_errors++;
897 outl(RestartTx, ioaddr + COMMAND);
898 } else {
899 epic_restart(dev);
900 outl(TxQueued, dev->base_addr + COMMAND);
903 dev->trans_start = jiffies;
904 ep->stats.tx_errors++;
905 if (!ep->tx_full)
906 netif_wake_queue(dev);
909 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
910 static void epic_init_ring(struct net_device *dev)
912 struct epic_private *ep = dev->priv;
913 int i;
915 ep->tx_full = 0;
916 ep->dirty_tx = ep->cur_tx = 0;
917 ep->cur_rx = ep->dirty_rx = 0;
918 ep->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
920 /* Initialize all Rx descriptors. */
921 for (i = 0; i < RX_RING_SIZE; i++) {
922 ep->rx_ring[i].rxstatus = 0;
923 ep->rx_ring[i].buflength = cpu_to_le32(ep->rx_buf_sz);
924 ep->rx_ring[i].next = ep->rx_ring_dma +
925 (i+1)*sizeof(struct epic_rx_desc);
926 ep->rx_skbuff[i] = NULL;
928 /* Mark the last entry as wrapping the ring. */
929 ep->rx_ring[i-1].next = ep->rx_ring_dma;
931 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
932 for (i = 0; i < RX_RING_SIZE; i++) {
933 struct sk_buff *skb = dev_alloc_skb(ep->rx_buf_sz);
934 ep->rx_skbuff[i] = skb;
935 if (skb == NULL)
936 break;
937 skb_reserve(skb, 2); /* 16 byte align the IP header. */
938 ep->rx_ring[i].bufaddr = pci_map_single(ep->pci_dev,
939 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
940 ep->rx_ring[i].rxstatus = cpu_to_le32(DescOwn);
942 ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
944 /* The Tx buffer descriptor is filled in as needed, but we
945 do need to clear the ownership bit. */
946 for (i = 0; i < TX_RING_SIZE; i++) {
947 ep->tx_skbuff[i] = NULL;
948 ep->tx_ring[i].txstatus = 0x0000;
949 ep->tx_ring[i].next = ep->tx_ring_dma +
950 (i+1)*sizeof(struct epic_tx_desc);
952 ep->tx_ring[i-1].next = ep->tx_ring_dma;
953 return;
956 static int epic_start_xmit(struct sk_buff *skb, struct net_device *dev)
958 struct epic_private *ep = dev->priv;
959 int entry, free_count;
960 u32 ctrl_word;
961 unsigned long flags;
963 if (skb_padto(skb, ETH_ZLEN))
964 return 0;
966 /* Caution: the write order is important here, set the field with the
967 "ownership" bit last. */
969 /* Calculate the next Tx descriptor entry. */
970 spin_lock_irqsave(&ep->lock, flags);
971 free_count = ep->cur_tx - ep->dirty_tx;
972 entry = ep->cur_tx % TX_RING_SIZE;
974 ep->tx_skbuff[entry] = skb;
975 ep->tx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, skb->data,
976 skb->len, PCI_DMA_TODEVICE);
977 if (free_count < TX_QUEUE_LEN/2) {/* Typical path */
978 ctrl_word = cpu_to_le32(0x100000); /* No interrupt */
979 } else if (free_count == TX_QUEUE_LEN/2) {
980 ctrl_word = cpu_to_le32(0x140000); /* Tx-done intr. */
981 } else if (free_count < TX_QUEUE_LEN - 1) {
982 ctrl_word = cpu_to_le32(0x100000); /* No Tx-done intr. */
983 } else {
984 /* Leave room for an additional entry. */
985 ctrl_word = cpu_to_le32(0x140000); /* Tx-done intr. */
986 ep->tx_full = 1;
988 ep->tx_ring[entry].buflength = ctrl_word | cpu_to_le32(skb->len);
989 ep->tx_ring[entry].txstatus =
990 ((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16)
991 | cpu_to_le32(DescOwn);
993 ep->cur_tx++;
994 if (ep->tx_full)
995 netif_stop_queue(dev);
997 spin_unlock_irqrestore(&ep->lock, flags);
998 /* Trigger an immediate transmit demand. */
999 outl(TxQueued, dev->base_addr + COMMAND);
1001 dev->trans_start = jiffies;
1002 if (debug > 4)
1003 printk(KERN_DEBUG "%s: Queued Tx packet size %d to slot %d, "
1004 "flag %2.2x Tx status %8.8x.\n",
1005 dev->name, (int)skb->len, entry, ctrl_word,
1006 (int)inl(dev->base_addr + TxSTAT));
1008 return 0;
1011 static void epic_tx_error(struct net_device *dev, struct epic_private *ep,
1012 int status)
1014 struct net_device_stats *stats = &ep->stats;
1016 #ifndef final_version
1017 /* There was an major error, log it. */
1018 if (debug > 1)
1019 printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
1020 dev->name, status);
1021 #endif
1022 stats->tx_errors++;
1023 if (status & 0x1050)
1024 stats->tx_aborted_errors++;
1025 if (status & 0x0008)
1026 stats->tx_carrier_errors++;
1027 if (status & 0x0040)
1028 stats->tx_window_errors++;
1029 if (status & 0x0010)
1030 stats->tx_fifo_errors++;
1033 static void epic_tx(struct net_device *dev, struct epic_private *ep)
1035 unsigned int dirty_tx, cur_tx;
1038 * Note: if this lock becomes a problem we can narrow the locked
1039 * region at the cost of occasionally grabbing the lock more times.
1041 cur_tx = ep->cur_tx;
1042 for (dirty_tx = ep->dirty_tx; cur_tx - dirty_tx > 0; dirty_tx++) {
1043 struct sk_buff *skb;
1044 int entry = dirty_tx % TX_RING_SIZE;
1045 int txstatus = le32_to_cpu(ep->tx_ring[entry].txstatus);
1047 if (txstatus & DescOwn)
1048 break; /* It still hasn't been Txed */
1050 if (likely(txstatus & 0x0001)) {
1051 ep->stats.collisions += (txstatus >> 8) & 15;
1052 ep->stats.tx_packets++;
1053 ep->stats.tx_bytes += ep->tx_skbuff[entry]->len;
1054 } else
1055 epic_tx_error(dev, ep, txstatus);
1057 /* Free the original skb. */
1058 skb = ep->tx_skbuff[entry];
1059 pci_unmap_single(ep->pci_dev, ep->tx_ring[entry].bufaddr,
1060 skb->len, PCI_DMA_TODEVICE);
1061 dev_kfree_skb_irq(skb);
1062 ep->tx_skbuff[entry] = NULL;
1065 #ifndef final_version
1066 if (cur_tx - dirty_tx > TX_RING_SIZE) {
1067 printk(KERN_WARNING
1068 "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1069 dev->name, dirty_tx, cur_tx, ep->tx_full);
1070 dirty_tx += TX_RING_SIZE;
1072 #endif
1073 ep->dirty_tx = dirty_tx;
1074 if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) {
1075 /* The ring is no longer full, allow new TX entries. */
1076 ep->tx_full = 0;
1077 netif_wake_queue(dev);
1081 /* The interrupt handler does all of the Rx thread work and cleans up
1082 after the Tx thread. */
1083 static irqreturn_t epic_interrupt(int irq, void *dev_instance)
1085 struct net_device *dev = dev_instance;
1086 struct epic_private *ep = dev->priv;
1087 long ioaddr = dev->base_addr;
1088 unsigned int handled = 0;
1089 int status;
1091 status = inl(ioaddr + INTSTAT);
1092 /* Acknowledge all of the current interrupt sources ASAP. */
1093 outl(status & EpicNormalEvent, ioaddr + INTSTAT);
1095 if (debug > 4) {
1096 printk(KERN_DEBUG "%s: Interrupt, status=%#8.8x new "
1097 "intstat=%#8.8x.\n", dev->name, status,
1098 (int)inl(ioaddr + INTSTAT));
1101 if ((status & IntrSummary) == 0)
1102 goto out;
1104 handled = 1;
1106 if ((status & EpicNapiEvent) && !ep->reschedule_in_poll) {
1107 spin_lock(&ep->napi_lock);
1108 if (netif_rx_schedule_prep(dev, &ep->napi)) {
1109 epic_napi_irq_off(dev, ep);
1110 __netif_rx_schedule(dev, &ep->napi);
1111 } else
1112 ep->reschedule_in_poll++;
1113 spin_unlock(&ep->napi_lock);
1115 status &= ~EpicNapiEvent;
1117 /* Check uncommon events all at once. */
1118 if (status & (CntFull | TxUnderrun | PCIBusErr170 | PCIBusErr175)) {
1119 if (status == EpicRemoved)
1120 goto out;
1122 /* Always update the error counts to avoid overhead later. */
1123 ep->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1124 ep->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1125 ep->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1127 if (status & TxUnderrun) { /* Tx FIFO underflow. */
1128 ep->stats.tx_fifo_errors++;
1129 outl(ep->tx_threshold += 128, ioaddr + TxThresh);
1130 /* Restart the transmit process. */
1131 outl(RestartTx, ioaddr + COMMAND);
1133 if (status & PCIBusErr170) {
1134 printk(KERN_ERR "%s: PCI Bus Error! status %4.4x.\n",
1135 dev->name, status);
1136 epic_pause(dev);
1137 epic_restart(dev);
1139 /* Clear all error sources. */
1140 outl(status & 0x7f18, ioaddr + INTSTAT);
1143 out:
1144 if (debug > 3) {
1145 printk(KERN_DEBUG "%s: exit interrupt, intr_status=%#4.4x.\n",
1146 dev->name, status);
1149 return IRQ_RETVAL(handled);
1152 static int epic_rx(struct net_device *dev, int budget)
1154 struct epic_private *ep = dev->priv;
1155 int entry = ep->cur_rx % RX_RING_SIZE;
1156 int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx;
1157 int work_done = 0;
1159 if (debug > 4)
1160 printk(KERN_DEBUG " In epic_rx(), entry %d %8.8x.\n", entry,
1161 ep->rx_ring[entry].rxstatus);
1163 if (rx_work_limit > budget)
1164 rx_work_limit = budget;
1166 /* If we own the next entry, it's a new packet. Send it up. */
1167 while ((ep->rx_ring[entry].rxstatus & cpu_to_le32(DescOwn)) == 0) {
1168 int status = le32_to_cpu(ep->rx_ring[entry].rxstatus);
1170 if (debug > 4)
1171 printk(KERN_DEBUG " epic_rx() status was %8.8x.\n", status);
1172 if (--rx_work_limit < 0)
1173 break;
1174 if (status & 0x2006) {
1175 if (debug > 2)
1176 printk(KERN_DEBUG "%s: epic_rx() error status was %8.8x.\n",
1177 dev->name, status);
1178 if (status & 0x2000) {
1179 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned "
1180 "multiple buffers, status %4.4x!\n", dev->name, status);
1181 ep->stats.rx_length_errors++;
1182 } else if (status & 0x0006)
1183 /* Rx Frame errors are counted in hardware. */
1184 ep->stats.rx_errors++;
1185 } else {
1186 /* Malloc up new buffer, compatible with net-2e. */
1187 /* Omit the four octet CRC from the length. */
1188 short pkt_len = (status >> 16) - 4;
1189 struct sk_buff *skb;
1191 if (pkt_len > PKT_BUF_SZ - 4) {
1192 printk(KERN_ERR "%s: Oversized Ethernet frame, status %x "
1193 "%d bytes.\n",
1194 dev->name, status, pkt_len);
1195 pkt_len = 1514;
1197 /* Check if the packet is long enough to accept without copying
1198 to a minimally-sized skbuff. */
1199 if (pkt_len < rx_copybreak
1200 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1201 skb_reserve(skb, 2); /* 16 byte align the IP header */
1202 pci_dma_sync_single_for_cpu(ep->pci_dev,
1203 ep->rx_ring[entry].bufaddr,
1204 ep->rx_buf_sz,
1205 PCI_DMA_FROMDEVICE);
1206 skb_copy_to_linear_data(skb, ep->rx_skbuff[entry]->data, pkt_len);
1207 skb_put(skb, pkt_len);
1208 pci_dma_sync_single_for_device(ep->pci_dev,
1209 ep->rx_ring[entry].bufaddr,
1210 ep->rx_buf_sz,
1211 PCI_DMA_FROMDEVICE);
1212 } else {
1213 pci_unmap_single(ep->pci_dev,
1214 ep->rx_ring[entry].bufaddr,
1215 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1216 skb_put(skb = ep->rx_skbuff[entry], pkt_len);
1217 ep->rx_skbuff[entry] = NULL;
1219 skb->protocol = eth_type_trans(skb, dev);
1220 netif_receive_skb(skb);
1221 dev->last_rx = jiffies;
1222 ep->stats.rx_packets++;
1223 ep->stats.rx_bytes += pkt_len;
1225 work_done++;
1226 entry = (++ep->cur_rx) % RX_RING_SIZE;
1229 /* Refill the Rx ring buffers. */
1230 for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) {
1231 entry = ep->dirty_rx % RX_RING_SIZE;
1232 if (ep->rx_skbuff[entry] == NULL) {
1233 struct sk_buff *skb;
1234 skb = ep->rx_skbuff[entry] = dev_alloc_skb(ep->rx_buf_sz);
1235 if (skb == NULL)
1236 break;
1237 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1238 ep->rx_ring[entry].bufaddr = pci_map_single(ep->pci_dev,
1239 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1240 work_done++;
1242 ep->rx_ring[entry].rxstatus = cpu_to_le32(DescOwn);
1244 return work_done;
1247 static void epic_rx_err(struct net_device *dev, struct epic_private *ep)
1249 long ioaddr = dev->base_addr;
1250 int status;
1252 status = inl(ioaddr + INTSTAT);
1254 if (status == EpicRemoved)
1255 return;
1256 if (status & RxOverflow) /* Missed a Rx frame. */
1257 ep->stats.rx_errors++;
1258 if (status & (RxOverflow | RxFull))
1259 outw(RxQueued, ioaddr + COMMAND);
1262 static int epic_poll(struct napi_struct *napi, int budget)
1264 struct epic_private *ep = container_of(napi, struct epic_private, napi);
1265 struct net_device *dev = ep->mii.dev;
1266 int work_done = 0;
1267 long ioaddr = dev->base_addr;
1269 rx_action:
1271 epic_tx(dev, ep);
1273 work_done += epic_rx(dev, budget);
1275 epic_rx_err(dev, ep);
1277 if (netif_running(dev) && (work_done < budget)) {
1278 unsigned long flags;
1279 int more;
1281 /* A bit baroque but it avoids a (space hungry) spin_unlock */
1283 spin_lock_irqsave(&ep->napi_lock, flags);
1285 more = ep->reschedule_in_poll;
1286 if (!more) {
1287 __netif_rx_complete(dev, napi);
1288 outl(EpicNapiEvent, ioaddr + INTSTAT);
1289 epic_napi_irq_on(dev, ep);
1290 } else
1291 ep->reschedule_in_poll--;
1293 spin_unlock_irqrestore(&ep->napi_lock, flags);
1295 if (more)
1296 goto rx_action;
1299 return work_done;
1302 static int epic_close(struct net_device *dev)
1304 long ioaddr = dev->base_addr;
1305 struct epic_private *ep = dev->priv;
1306 struct sk_buff *skb;
1307 int i;
1309 netif_stop_queue(dev);
1310 napi_disable(&ep->napi);
1312 if (debug > 1)
1313 printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
1314 dev->name, (int)inl(ioaddr + INTSTAT));
1316 del_timer_sync(&ep->timer);
1318 epic_disable_int(dev, ep);
1320 free_irq(dev->irq, dev);
1322 epic_pause(dev);
1324 /* Free all the skbuffs in the Rx queue. */
1325 for (i = 0; i < RX_RING_SIZE; i++) {
1326 skb = ep->rx_skbuff[i];
1327 ep->rx_skbuff[i] = NULL;
1328 ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */
1329 ep->rx_ring[i].buflength = 0;
1330 if (skb) {
1331 pci_unmap_single(ep->pci_dev, ep->rx_ring[i].bufaddr,
1332 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1333 dev_kfree_skb(skb);
1335 ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */
1337 for (i = 0; i < TX_RING_SIZE; i++) {
1338 skb = ep->tx_skbuff[i];
1339 ep->tx_skbuff[i] = NULL;
1340 if (!skb)
1341 continue;
1342 pci_unmap_single(ep->pci_dev, ep->tx_ring[i].bufaddr,
1343 skb->len, PCI_DMA_TODEVICE);
1344 dev_kfree_skb(skb);
1347 /* Green! Leave the chip in low-power mode. */
1348 outl(0x0008, ioaddr + GENCTL);
1350 return 0;
1353 static struct net_device_stats *epic_get_stats(struct net_device *dev)
1355 struct epic_private *ep = dev->priv;
1356 long ioaddr = dev->base_addr;
1358 if (netif_running(dev)) {
1359 /* Update the error counts. */
1360 ep->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1361 ep->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1362 ep->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1365 return &ep->stats;
1368 /* Set or clear the multicast filter for this adaptor.
1369 Note that we only use exclusion around actually queueing the
1370 new frame, not around filling ep->setup_frame. This is non-deterministic
1371 when re-entered but still correct. */
1373 static void set_rx_mode(struct net_device *dev)
1375 long ioaddr = dev->base_addr;
1376 struct epic_private *ep = dev->priv;
1377 unsigned char mc_filter[8]; /* Multicast hash filter */
1378 int i;
1380 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1381 outl(0x002C, ioaddr + RxCtrl);
1382 /* Unconditionally log net taps. */
1383 memset(mc_filter, 0xff, sizeof(mc_filter));
1384 } else if ((dev->mc_count > 0) || (dev->flags & IFF_ALLMULTI)) {
1385 /* There is apparently a chip bug, so the multicast filter
1386 is never enabled. */
1387 /* Too many to filter perfectly -- accept all multicasts. */
1388 memset(mc_filter, 0xff, sizeof(mc_filter));
1389 outl(0x000C, ioaddr + RxCtrl);
1390 } else if (dev->mc_count == 0) {
1391 outl(0x0004, ioaddr + RxCtrl);
1392 return;
1393 } else { /* Never executed, for now. */
1394 struct dev_mc_list *mclist;
1396 memset(mc_filter, 0, sizeof(mc_filter));
1397 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1398 i++, mclist = mclist->next) {
1399 unsigned int bit_nr =
1400 ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x3f;
1401 mc_filter[bit_nr >> 3] |= (1 << bit_nr);
1404 /* ToDo: perhaps we need to stop the Tx and Rx process here? */
1405 if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) {
1406 for (i = 0; i < 4; i++)
1407 outw(((u16 *)mc_filter)[i], ioaddr + MC0 + i*4);
1408 memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter));
1410 return;
1413 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1415 struct epic_private *np = dev->priv;
1417 strcpy (info->driver, DRV_NAME);
1418 strcpy (info->version, DRV_VERSION);
1419 strcpy (info->bus_info, pci_name(np->pci_dev));
1422 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1424 struct epic_private *np = dev->priv;
1425 int rc;
1427 spin_lock_irq(&np->lock);
1428 rc = mii_ethtool_gset(&np->mii, cmd);
1429 spin_unlock_irq(&np->lock);
1431 return rc;
1434 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1436 struct epic_private *np = dev->priv;
1437 int rc;
1439 spin_lock_irq(&np->lock);
1440 rc = mii_ethtool_sset(&np->mii, cmd);
1441 spin_unlock_irq(&np->lock);
1443 return rc;
1446 static int netdev_nway_reset(struct net_device *dev)
1448 struct epic_private *np = dev->priv;
1449 return mii_nway_restart(&np->mii);
1452 static u32 netdev_get_link(struct net_device *dev)
1454 struct epic_private *np = dev->priv;
1455 return mii_link_ok(&np->mii);
1458 static u32 netdev_get_msglevel(struct net_device *dev)
1460 return debug;
1463 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1465 debug = value;
1468 static int ethtool_begin(struct net_device *dev)
1470 unsigned long ioaddr = dev->base_addr;
1471 /* power-up, if interface is down */
1472 if (! netif_running(dev)) {
1473 outl(0x0200, ioaddr + GENCTL);
1474 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1476 return 0;
1479 static void ethtool_complete(struct net_device *dev)
1481 unsigned long ioaddr = dev->base_addr;
1482 /* power-down, if interface is down */
1483 if (! netif_running(dev)) {
1484 outl(0x0008, ioaddr + GENCTL);
1485 outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1489 static const struct ethtool_ops netdev_ethtool_ops = {
1490 .get_drvinfo = netdev_get_drvinfo,
1491 .get_settings = netdev_get_settings,
1492 .set_settings = netdev_set_settings,
1493 .nway_reset = netdev_nway_reset,
1494 .get_link = netdev_get_link,
1495 .get_msglevel = netdev_get_msglevel,
1496 .set_msglevel = netdev_set_msglevel,
1497 .begin = ethtool_begin,
1498 .complete = ethtool_complete
1501 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1503 struct epic_private *np = dev->priv;
1504 long ioaddr = dev->base_addr;
1505 struct mii_ioctl_data *data = if_mii(rq);
1506 int rc;
1508 /* power-up, if interface is down */
1509 if (! netif_running(dev)) {
1510 outl(0x0200, ioaddr + GENCTL);
1511 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1514 /* all non-ethtool ioctls (the SIOC[GS]MIIxxx ioctls) */
1515 spin_lock_irq(&np->lock);
1516 rc = generic_mii_ioctl(&np->mii, data, cmd, NULL);
1517 spin_unlock_irq(&np->lock);
1519 /* power-down, if interface is down */
1520 if (! netif_running(dev)) {
1521 outl(0x0008, ioaddr + GENCTL);
1522 outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1524 return rc;
1528 static void __devexit epic_remove_one (struct pci_dev *pdev)
1530 struct net_device *dev = pci_get_drvdata(pdev);
1531 struct epic_private *ep = dev->priv;
1533 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
1534 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
1535 unregister_netdev(dev);
1536 #ifndef USE_IO_OPS
1537 iounmap((void*) dev->base_addr);
1538 #endif
1539 pci_release_regions(pdev);
1540 free_netdev(dev);
1541 pci_disable_device(pdev);
1542 pci_set_drvdata(pdev, NULL);
1543 /* pci_power_off(pdev, -1); */
1547 #ifdef CONFIG_PM
1549 static int epic_suspend (struct pci_dev *pdev, pm_message_t state)
1551 struct net_device *dev = pci_get_drvdata(pdev);
1552 long ioaddr = dev->base_addr;
1554 if (!netif_running(dev))
1555 return 0;
1556 epic_pause(dev);
1557 /* Put the chip into low-power mode. */
1558 outl(0x0008, ioaddr + GENCTL);
1559 /* pci_power_off(pdev, -1); */
1560 return 0;
1564 static int epic_resume (struct pci_dev *pdev)
1566 struct net_device *dev = pci_get_drvdata(pdev);
1568 if (!netif_running(dev))
1569 return 0;
1570 epic_restart(dev);
1571 /* pci_power_on(pdev); */
1572 return 0;
1575 #endif /* CONFIG_PM */
1578 static struct pci_driver epic_driver = {
1579 .name = DRV_NAME,
1580 .id_table = epic_pci_tbl,
1581 .probe = epic_init_one,
1582 .remove = __devexit_p(epic_remove_one),
1583 #ifdef CONFIG_PM
1584 .suspend = epic_suspend,
1585 .resume = epic_resume,
1586 #endif /* CONFIG_PM */
1590 static int __init epic_init (void)
1592 /* when a module, this is printed whether or not devices are found in probe */
1593 #ifdef MODULE
1594 printk (KERN_INFO "%s" KERN_INFO "%s",
1595 version, version2);
1596 #endif
1598 return pci_register_driver(&epic_driver);
1602 static void __exit epic_cleanup (void)
1604 pci_unregister_driver (&epic_driver);
1608 module_init(epic_init);
1609 module_exit(epic_cleanup);