2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
111 static inline int SlabFrozen(struct page
*page
)
113 return page
->flags
& FROZEN
;
116 static inline void SetSlabFrozen(struct page
*page
)
118 page
->flags
|= FROZEN
;
121 static inline void ClearSlabFrozen(struct page
*page
)
123 page
->flags
&= ~FROZEN
;
126 static inline int SlabDebug(struct page
*page
)
128 return page
->flags
& SLABDEBUG
;
131 static inline void SetSlabDebug(struct page
*page
)
133 page
->flags
|= SLABDEBUG
;
136 static inline void ClearSlabDebug(struct page
*page
)
138 page
->flags
&= ~SLABDEBUG
;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
155 * Small page size. Make sure that we do not fragment memory
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
163 * Large page machines are customarily able to handle larger
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
175 #define MIN_PARTIAL 5
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
182 #define MAX_PARTIAL 10
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
188 * Set of flags that will prevent slab merging
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
207 #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208 #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
210 static int kmem_size
= sizeof(struct kmem_cache
);
213 static struct notifier_block slab_notifier
;
217 DOWN
, /* No slab functionality available */
218 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
219 UP
, /* Everything works but does not show up in sysfs */
223 /* A list of all slab caches on the system */
224 static DECLARE_RWSEM(slub_lock
);
225 static LIST_HEAD(slab_caches
);
228 * Tracking user of a slab.
231 void *addr
; /* Called from address */
232 int cpu
; /* Was running on cpu */
233 int pid
; /* Pid context */
234 unsigned long when
; /* When did the operation occur */
237 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
239 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
240 static int sysfs_slab_add(struct kmem_cache
*);
241 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
242 static void sysfs_slab_remove(struct kmem_cache
*);
245 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
246 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
248 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
255 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
257 #ifdef CONFIG_SLUB_STATS
262 /********************************************************************
263 * Core slab cache functions
264 *******************************************************************/
266 int slab_is_available(void)
268 return slab_state
>= UP
;
271 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
274 return s
->node
[node
];
276 return &s
->local_node
;
280 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
283 return s
->cpu_slab
[cpu
];
289 /* Verify that a pointer has an address that is valid within a slab page */
290 static inline int check_valid_pointer(struct kmem_cache
*s
,
291 struct page
*page
, const void *object
)
298 base
= page_address(page
);
299 if (object
< base
|| object
>= base
+ s
->objects
* s
->size
||
300 (object
- base
) % s
->size
) {
308 * Slow version of get and set free pointer.
310 * This version requires touching the cache lines of kmem_cache which
311 * we avoid to do in the fast alloc free paths. There we obtain the offset
312 * from the page struct.
314 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
316 return *(void **)(object
+ s
->offset
);
319 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
321 *(void **)(object
+ s
->offset
) = fp
;
324 /* Loop over all objects in a slab */
325 #define for_each_object(__p, __s, __addr) \
326 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
330 #define for_each_free_object(__p, __s, __free) \
331 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
333 /* Determine object index from a given position */
334 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
336 return (p
- addr
) / s
->size
;
339 #ifdef CONFIG_SLUB_DEBUG
343 #ifdef CONFIG_SLUB_DEBUG_ON
344 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
346 static int slub_debug
;
349 static char *slub_debug_slabs
;
354 static void print_section(char *text
, u8
*addr
, unsigned int length
)
362 for (i
= 0; i
< length
; i
++) {
364 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
367 printk(KERN_CONT
" %02x", addr
[i
]);
369 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
371 printk(KERN_CONT
" %s\n", ascii
);
378 printk(KERN_CONT
" ");
382 printk(KERN_CONT
" %s\n", ascii
);
386 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
387 enum track_item alloc
)
392 p
= object
+ s
->offset
+ sizeof(void *);
394 p
= object
+ s
->inuse
;
399 static void set_track(struct kmem_cache
*s
, void *object
,
400 enum track_item alloc
, void *addr
)
405 p
= object
+ s
->offset
+ sizeof(void *);
407 p
= object
+ s
->inuse
;
412 p
->cpu
= smp_processor_id();
413 p
->pid
= current
? current
->pid
: -1;
416 memset(p
, 0, sizeof(struct track
));
419 static void init_tracking(struct kmem_cache
*s
, void *object
)
421 if (!(s
->flags
& SLAB_STORE_USER
))
424 set_track(s
, object
, TRACK_FREE
, NULL
);
425 set_track(s
, object
, TRACK_ALLOC
, NULL
);
428 static void print_track(const char *s
, struct track
*t
)
433 printk(KERN_ERR
"INFO: %s in ", s
);
434 __print_symbol("%s", (unsigned long)t
->addr
);
435 printk(" age=%lu cpu=%u pid=%d\n", jiffies
- t
->when
, t
->cpu
, t
->pid
);
438 static void print_tracking(struct kmem_cache
*s
, void *object
)
440 if (!(s
->flags
& SLAB_STORE_USER
))
443 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
444 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
447 static void print_page_info(struct page
*page
)
449 printk(KERN_ERR
"INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
450 page
, page
->inuse
, page
->freelist
, page
->flags
);
454 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
460 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
462 printk(KERN_ERR
"========================================"
463 "=====================================\n");
464 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
465 printk(KERN_ERR
"----------------------------------------"
466 "-------------------------------------\n\n");
469 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
475 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
477 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
480 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
482 unsigned int off
; /* Offset of last byte */
483 u8
*addr
= page_address(page
);
485 print_tracking(s
, p
);
487 print_page_info(page
);
489 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
490 p
, p
- addr
, get_freepointer(s
, p
));
493 print_section("Bytes b4", p
- 16, 16);
495 print_section("Object", p
, min(s
->objsize
, 128));
497 if (s
->flags
& SLAB_RED_ZONE
)
498 print_section("Redzone", p
+ s
->objsize
,
499 s
->inuse
- s
->objsize
);
502 off
= s
->offset
+ sizeof(void *);
506 if (s
->flags
& SLAB_STORE_USER
)
507 off
+= 2 * sizeof(struct track
);
510 /* Beginning of the filler is the free pointer */
511 print_section("Padding", p
+ off
, s
->size
- off
);
516 static void object_err(struct kmem_cache
*s
, struct page
*page
,
517 u8
*object
, char *reason
)
519 slab_bug(s
, "%s", reason
);
520 print_trailer(s
, page
, object
);
523 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
529 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
531 slab_bug(s
, "%s", buf
);
532 print_page_info(page
);
536 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
540 if (s
->flags
& __OBJECT_POISON
) {
541 memset(p
, POISON_FREE
, s
->objsize
- 1);
542 p
[s
->objsize
- 1] = POISON_END
;
545 if (s
->flags
& SLAB_RED_ZONE
)
546 memset(p
+ s
->objsize
,
547 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
548 s
->inuse
- s
->objsize
);
551 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
554 if (*start
!= (u8
)value
)
562 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
563 void *from
, void *to
)
565 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
566 memset(from
, data
, to
- from
);
569 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
570 u8
*object
, char *what
,
571 u8
*start
, unsigned int value
, unsigned int bytes
)
576 fault
= check_bytes(start
, value
, bytes
);
581 while (end
> fault
&& end
[-1] == value
)
584 slab_bug(s
, "%s overwritten", what
);
585 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
586 fault
, end
- 1, fault
[0], value
);
587 print_trailer(s
, page
, object
);
589 restore_bytes(s
, what
, value
, fault
, end
);
597 * Bytes of the object to be managed.
598 * If the freepointer may overlay the object then the free
599 * pointer is the first word of the object.
601 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
604 * object + s->objsize
605 * Padding to reach word boundary. This is also used for Redzoning.
606 * Padding is extended by another word if Redzoning is enabled and
609 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
610 * 0xcc (RED_ACTIVE) for objects in use.
613 * Meta data starts here.
615 * A. Free pointer (if we cannot overwrite object on free)
616 * B. Tracking data for SLAB_STORE_USER
617 * C. Padding to reach required alignment boundary or at mininum
618 * one word if debugging is on to be able to detect writes
619 * before the word boundary.
621 * Padding is done using 0x5a (POISON_INUSE)
624 * Nothing is used beyond s->size.
626 * If slabcaches are merged then the objsize and inuse boundaries are mostly
627 * ignored. And therefore no slab options that rely on these boundaries
628 * may be used with merged slabcaches.
631 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
633 unsigned long off
= s
->inuse
; /* The end of info */
636 /* Freepointer is placed after the object. */
637 off
+= sizeof(void *);
639 if (s
->flags
& SLAB_STORE_USER
)
640 /* We also have user information there */
641 off
+= 2 * sizeof(struct track
);
646 return check_bytes_and_report(s
, page
, p
, "Object padding",
647 p
+ off
, POISON_INUSE
, s
->size
- off
);
650 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
658 if (!(s
->flags
& SLAB_POISON
))
661 start
= page_address(page
);
662 end
= start
+ (PAGE_SIZE
<< s
->order
);
663 length
= s
->objects
* s
->size
;
664 remainder
= end
- (start
+ length
);
668 fault
= check_bytes(start
+ length
, POISON_INUSE
, remainder
);
671 while (end
> fault
&& end
[-1] == POISON_INUSE
)
674 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
675 print_section("Padding", start
, length
);
677 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
681 static int check_object(struct kmem_cache
*s
, struct page
*page
,
682 void *object
, int active
)
685 u8
*endobject
= object
+ s
->objsize
;
687 if (s
->flags
& SLAB_RED_ZONE
) {
689 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
691 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
692 endobject
, red
, s
->inuse
- s
->objsize
))
695 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
696 check_bytes_and_report(s
, page
, p
, "Alignment padding",
697 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
701 if (s
->flags
& SLAB_POISON
) {
702 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
703 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
704 POISON_FREE
, s
->objsize
- 1) ||
705 !check_bytes_and_report(s
, page
, p
, "Poison",
706 p
+ s
->objsize
- 1, POISON_END
, 1)))
709 * check_pad_bytes cleans up on its own.
711 check_pad_bytes(s
, page
, p
);
714 if (!s
->offset
&& active
)
716 * Object and freepointer overlap. Cannot check
717 * freepointer while object is allocated.
721 /* Check free pointer validity */
722 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
723 object_err(s
, page
, p
, "Freepointer corrupt");
725 * No choice but to zap it and thus loose the remainder
726 * of the free objects in this slab. May cause
727 * another error because the object count is now wrong.
729 set_freepointer(s
, p
, NULL
);
735 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
737 VM_BUG_ON(!irqs_disabled());
739 if (!PageSlab(page
)) {
740 slab_err(s
, page
, "Not a valid slab page");
743 if (page
->inuse
> s
->objects
) {
744 slab_err(s
, page
, "inuse %u > max %u",
745 s
->name
, page
->inuse
, s
->objects
);
748 /* Slab_pad_check fixes things up after itself */
749 slab_pad_check(s
, page
);
754 * Determine if a certain object on a page is on the freelist. Must hold the
755 * slab lock to guarantee that the chains are in a consistent state.
757 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
760 void *fp
= page
->freelist
;
763 while (fp
&& nr
<= s
->objects
) {
766 if (!check_valid_pointer(s
, page
, fp
)) {
768 object_err(s
, page
, object
,
769 "Freechain corrupt");
770 set_freepointer(s
, object
, NULL
);
773 slab_err(s
, page
, "Freepointer corrupt");
774 page
->freelist
= NULL
;
775 page
->inuse
= s
->objects
;
776 slab_fix(s
, "Freelist cleared");
782 fp
= get_freepointer(s
, object
);
786 if (page
->inuse
!= s
->objects
- nr
) {
787 slab_err(s
, page
, "Wrong object count. Counter is %d but "
788 "counted were %d", page
->inuse
, s
->objects
- nr
);
789 page
->inuse
= s
->objects
- nr
;
790 slab_fix(s
, "Object count adjusted.");
792 return search
== NULL
;
795 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
, int alloc
)
797 if (s
->flags
& SLAB_TRACE
) {
798 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
800 alloc
? "alloc" : "free",
805 print_section("Object", (void *)object
, s
->objsize
);
812 * Tracking of fully allocated slabs for debugging purposes.
814 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
816 spin_lock(&n
->list_lock
);
817 list_add(&page
->lru
, &n
->full
);
818 spin_unlock(&n
->list_lock
);
821 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
823 struct kmem_cache_node
*n
;
825 if (!(s
->flags
& SLAB_STORE_USER
))
828 n
= get_node(s
, page_to_nid(page
));
830 spin_lock(&n
->list_lock
);
831 list_del(&page
->lru
);
832 spin_unlock(&n
->list_lock
);
835 /* Tracking of the number of slabs for debugging purposes */
836 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
838 struct kmem_cache_node
*n
= get_node(s
, node
);
840 return atomic_long_read(&n
->nr_slabs
);
843 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
)
845 struct kmem_cache_node
*n
= get_node(s
, node
);
848 * May be called early in order to allocate a slab for the
849 * kmem_cache_node structure. Solve the chicken-egg
850 * dilemma by deferring the increment of the count during
851 * bootstrap (see early_kmem_cache_node_alloc).
853 if (!NUMA_BUILD
|| n
)
854 atomic_long_inc(&n
->nr_slabs
);
856 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
)
858 struct kmem_cache_node
*n
= get_node(s
, node
);
860 atomic_long_dec(&n
->nr_slabs
);
863 /* Object debug checks for alloc/free paths */
864 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
867 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
870 init_object(s
, object
, 0);
871 init_tracking(s
, object
);
874 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
875 void *object
, void *addr
)
877 if (!check_slab(s
, page
))
880 if (!on_freelist(s
, page
, object
)) {
881 object_err(s
, page
, object
, "Object already allocated");
885 if (!check_valid_pointer(s
, page
, object
)) {
886 object_err(s
, page
, object
, "Freelist Pointer check fails");
890 if (!check_object(s
, page
, object
, 0))
893 /* Success perform special debug activities for allocs */
894 if (s
->flags
& SLAB_STORE_USER
)
895 set_track(s
, object
, TRACK_ALLOC
, addr
);
896 trace(s
, page
, object
, 1);
897 init_object(s
, object
, 1);
901 if (PageSlab(page
)) {
903 * If this is a slab page then lets do the best we can
904 * to avoid issues in the future. Marking all objects
905 * as used avoids touching the remaining objects.
907 slab_fix(s
, "Marking all objects used");
908 page
->inuse
= s
->objects
;
909 page
->freelist
= NULL
;
914 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
915 void *object
, void *addr
)
917 if (!check_slab(s
, page
))
920 if (!check_valid_pointer(s
, page
, object
)) {
921 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
925 if (on_freelist(s
, page
, object
)) {
926 object_err(s
, page
, object
, "Object already free");
930 if (!check_object(s
, page
, object
, 1))
933 if (unlikely(s
!= page
->slab
)) {
934 if (!PageSlab(page
)) {
935 slab_err(s
, page
, "Attempt to free object(0x%p) "
936 "outside of slab", object
);
937 } else if (!page
->slab
) {
939 "SLUB <none>: no slab for object 0x%p.\n",
943 object_err(s
, page
, object
,
944 "page slab pointer corrupt.");
948 /* Special debug activities for freeing objects */
949 if (!SlabFrozen(page
) && !page
->freelist
)
950 remove_full(s
, page
);
951 if (s
->flags
& SLAB_STORE_USER
)
952 set_track(s
, object
, TRACK_FREE
, addr
);
953 trace(s
, page
, object
, 0);
954 init_object(s
, object
, 0);
958 slab_fix(s
, "Object at 0x%p not freed", object
);
962 static int __init
setup_slub_debug(char *str
)
964 slub_debug
= DEBUG_DEFAULT_FLAGS
;
965 if (*str
++ != '=' || !*str
)
967 * No options specified. Switch on full debugging.
973 * No options but restriction on slabs. This means full
974 * debugging for slabs matching a pattern.
981 * Switch off all debugging measures.
986 * Determine which debug features should be switched on
988 for (; *str
&& *str
!= ','; str
++) {
989 switch (tolower(*str
)) {
991 slub_debug
|= SLAB_DEBUG_FREE
;
994 slub_debug
|= SLAB_RED_ZONE
;
997 slub_debug
|= SLAB_POISON
;
1000 slub_debug
|= SLAB_STORE_USER
;
1003 slub_debug
|= SLAB_TRACE
;
1006 printk(KERN_ERR
"slub_debug option '%c' "
1007 "unknown. skipped\n", *str
);
1013 slub_debug_slabs
= str
+ 1;
1018 __setup("slub_debug", setup_slub_debug
);
1020 static unsigned long kmem_cache_flags(unsigned long objsize
,
1021 unsigned long flags
, const char *name
,
1022 void (*ctor
)(struct kmem_cache
*, void *))
1025 * Enable debugging if selected on the kernel commandline.
1027 if (slub_debug
&& (!slub_debug_slabs
||
1028 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1029 flags
|= slub_debug
;
1034 static inline void setup_object_debug(struct kmem_cache
*s
,
1035 struct page
*page
, void *object
) {}
1037 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1038 struct page
*page
, void *object
, void *addr
) { return 0; }
1040 static inline int free_debug_processing(struct kmem_cache
*s
,
1041 struct page
*page
, void *object
, void *addr
) { return 0; }
1043 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1045 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1046 void *object
, int active
) { return 1; }
1047 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1048 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1049 unsigned long flags
, const char *name
,
1050 void (*ctor
)(struct kmem_cache
*, void *))
1054 #define slub_debug 0
1056 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1058 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
) {}
1059 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
) {}
1062 * Slab allocation and freeing
1064 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1067 int pages
= 1 << s
->order
;
1069 flags
|= s
->allocflags
;
1072 page
= alloc_pages(flags
, s
->order
);
1074 page
= alloc_pages_node(node
, flags
, s
->order
);
1079 mod_zone_page_state(page_zone(page
),
1080 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1081 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1087 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1090 setup_object_debug(s
, page
, object
);
1091 if (unlikely(s
->ctor
))
1095 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1102 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1104 page
= allocate_slab(s
,
1105 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1109 inc_slabs_node(s
, page_to_nid(page
));
1111 page
->flags
|= 1 << PG_slab
;
1112 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1113 SLAB_STORE_USER
| SLAB_TRACE
))
1116 start
= page_address(page
);
1118 if (unlikely(s
->flags
& SLAB_POISON
))
1119 memset(start
, POISON_INUSE
, PAGE_SIZE
<< s
->order
);
1122 for_each_object(p
, s
, start
) {
1123 setup_object(s
, page
, last
);
1124 set_freepointer(s
, last
, p
);
1127 setup_object(s
, page
, last
);
1128 set_freepointer(s
, last
, NULL
);
1130 page
->freelist
= start
;
1136 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1138 int pages
= 1 << s
->order
;
1140 if (unlikely(SlabDebug(page
))) {
1143 slab_pad_check(s
, page
);
1144 for_each_object(p
, s
, page_address(page
))
1145 check_object(s
, page
, p
, 0);
1146 ClearSlabDebug(page
);
1149 mod_zone_page_state(page_zone(page
),
1150 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1151 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1154 __ClearPageSlab(page
);
1155 reset_page_mapcount(page
);
1156 __free_pages(page
, s
->order
);
1159 static void rcu_free_slab(struct rcu_head
*h
)
1163 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1164 __free_slab(page
->slab
, page
);
1167 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1169 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1171 * RCU free overloads the RCU head over the LRU
1173 struct rcu_head
*head
= (void *)&page
->lru
;
1175 call_rcu(head
, rcu_free_slab
);
1177 __free_slab(s
, page
);
1180 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1182 dec_slabs_node(s
, page_to_nid(page
));
1187 * Per slab locking using the pagelock
1189 static __always_inline
void slab_lock(struct page
*page
)
1191 bit_spin_lock(PG_locked
, &page
->flags
);
1194 static __always_inline
void slab_unlock(struct page
*page
)
1196 __bit_spin_unlock(PG_locked
, &page
->flags
);
1199 static __always_inline
int slab_trylock(struct page
*page
)
1203 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1208 * Management of partially allocated slabs
1210 static void add_partial(struct kmem_cache_node
*n
,
1211 struct page
*page
, int tail
)
1213 spin_lock(&n
->list_lock
);
1216 list_add_tail(&page
->lru
, &n
->partial
);
1218 list_add(&page
->lru
, &n
->partial
);
1219 spin_unlock(&n
->list_lock
);
1222 static void remove_partial(struct kmem_cache
*s
,
1225 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1227 spin_lock(&n
->list_lock
);
1228 list_del(&page
->lru
);
1230 spin_unlock(&n
->list_lock
);
1234 * Lock slab and remove from the partial list.
1236 * Must hold list_lock.
1238 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
, struct page
*page
)
1240 if (slab_trylock(page
)) {
1241 list_del(&page
->lru
);
1243 SetSlabFrozen(page
);
1250 * Try to allocate a partial slab from a specific node.
1252 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1257 * Racy check. If we mistakenly see no partial slabs then we
1258 * just allocate an empty slab. If we mistakenly try to get a
1259 * partial slab and there is none available then get_partials()
1262 if (!n
|| !n
->nr_partial
)
1265 spin_lock(&n
->list_lock
);
1266 list_for_each_entry(page
, &n
->partial
, lru
)
1267 if (lock_and_freeze_slab(n
, page
))
1271 spin_unlock(&n
->list_lock
);
1276 * Get a page from somewhere. Search in increasing NUMA distances.
1278 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1281 struct zonelist
*zonelist
;
1284 enum zone_type high_zoneidx
= gfp_zone(flags
);
1288 * The defrag ratio allows a configuration of the tradeoffs between
1289 * inter node defragmentation and node local allocations. A lower
1290 * defrag_ratio increases the tendency to do local allocations
1291 * instead of attempting to obtain partial slabs from other nodes.
1293 * If the defrag_ratio is set to 0 then kmalloc() always
1294 * returns node local objects. If the ratio is higher then kmalloc()
1295 * may return off node objects because partial slabs are obtained
1296 * from other nodes and filled up.
1298 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1299 * defrag_ratio = 1000) then every (well almost) allocation will
1300 * first attempt to defrag slab caches on other nodes. This means
1301 * scanning over all nodes to look for partial slabs which may be
1302 * expensive if we do it every time we are trying to find a slab
1303 * with available objects.
1305 if (!s
->remote_node_defrag_ratio
||
1306 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1309 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1310 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1311 struct kmem_cache_node
*n
;
1313 n
= get_node(s
, zone_to_nid(zone
));
1315 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1316 n
->nr_partial
> MIN_PARTIAL
) {
1317 page
= get_partial_node(n
);
1327 * Get a partial page, lock it and return it.
1329 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1332 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1334 page
= get_partial_node(get_node(s
, searchnode
));
1335 if (page
|| (flags
& __GFP_THISNODE
))
1338 return get_any_partial(s
, flags
);
1342 * Move a page back to the lists.
1344 * Must be called with the slab lock held.
1346 * On exit the slab lock will have been dropped.
1348 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1350 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1351 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1353 ClearSlabFrozen(page
);
1356 if (page
->freelist
) {
1357 add_partial(n
, page
, tail
);
1358 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1360 stat(c
, DEACTIVATE_FULL
);
1361 if (SlabDebug(page
) && (s
->flags
& SLAB_STORE_USER
))
1366 stat(c
, DEACTIVATE_EMPTY
);
1367 if (n
->nr_partial
< MIN_PARTIAL
) {
1369 * Adding an empty slab to the partial slabs in order
1370 * to avoid page allocator overhead. This slab needs
1371 * to come after the other slabs with objects in
1372 * so that the others get filled first. That way the
1373 * size of the partial list stays small.
1375 * kmem_cache_shrink can reclaim any empty slabs from the
1378 add_partial(n
, page
, 1);
1382 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1383 discard_slab(s
, page
);
1389 * Remove the cpu slab
1391 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1393 struct page
*page
= c
->page
;
1397 stat(c
, DEACTIVATE_REMOTE_FREES
);
1399 * Merge cpu freelist into slab freelist. Typically we get here
1400 * because both freelists are empty. So this is unlikely
1403 while (unlikely(c
->freelist
)) {
1406 tail
= 0; /* Hot objects. Put the slab first */
1408 /* Retrieve object from cpu_freelist */
1409 object
= c
->freelist
;
1410 c
->freelist
= c
->freelist
[c
->offset
];
1412 /* And put onto the regular freelist */
1413 object
[c
->offset
] = page
->freelist
;
1414 page
->freelist
= object
;
1418 unfreeze_slab(s
, page
, tail
);
1421 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1423 stat(c
, CPUSLAB_FLUSH
);
1425 deactivate_slab(s
, c
);
1431 * Called from IPI handler with interrupts disabled.
1433 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1435 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1437 if (likely(c
&& c
->page
))
1441 static void flush_cpu_slab(void *d
)
1443 struct kmem_cache
*s
= d
;
1445 __flush_cpu_slab(s
, smp_processor_id());
1448 static void flush_all(struct kmem_cache
*s
)
1451 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1453 unsigned long flags
;
1455 local_irq_save(flags
);
1457 local_irq_restore(flags
);
1462 * Check if the objects in a per cpu structure fit numa
1463 * locality expectations.
1465 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1468 if (node
!= -1 && c
->node
!= node
)
1475 * Slow path. The lockless freelist is empty or we need to perform
1478 * Interrupts are disabled.
1480 * Processing is still very fast if new objects have been freed to the
1481 * regular freelist. In that case we simply take over the regular freelist
1482 * as the lockless freelist and zap the regular freelist.
1484 * If that is not working then we fall back to the partial lists. We take the
1485 * first element of the freelist as the object to allocate now and move the
1486 * rest of the freelist to the lockless freelist.
1488 * And if we were unable to get a new slab from the partial slab lists then
1489 * we need to allocate a new slab. This is the slowest path since it involves
1490 * a call to the page allocator and the setup of a new slab.
1492 static void *__slab_alloc(struct kmem_cache
*s
,
1493 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1498 /* We handle __GFP_ZERO in the caller */
1499 gfpflags
&= ~__GFP_ZERO
;
1505 if (unlikely(!node_match(c
, node
)))
1508 stat(c
, ALLOC_REFILL
);
1511 object
= c
->page
->freelist
;
1512 if (unlikely(!object
))
1514 if (unlikely(SlabDebug(c
->page
)))
1517 c
->freelist
= object
[c
->offset
];
1518 c
->page
->inuse
= s
->objects
;
1519 c
->page
->freelist
= NULL
;
1520 c
->node
= page_to_nid(c
->page
);
1522 slab_unlock(c
->page
);
1523 stat(c
, ALLOC_SLOWPATH
);
1527 deactivate_slab(s
, c
);
1530 new = get_partial(s
, gfpflags
, node
);
1533 stat(c
, ALLOC_FROM_PARTIAL
);
1537 if (gfpflags
& __GFP_WAIT
)
1540 new = new_slab(s
, gfpflags
, node
);
1542 if (gfpflags
& __GFP_WAIT
)
1543 local_irq_disable();
1546 c
= get_cpu_slab(s
, smp_processor_id());
1547 stat(c
, ALLOC_SLAB
);
1557 * No memory available.
1559 * If the slab uses higher order allocs but the object is
1560 * smaller than a page size then we can fallback in emergencies
1561 * to the page allocator via kmalloc_large. The page allocator may
1562 * have failed to obtain a higher order page and we can try to
1563 * allocate a single page if the object fits into a single page.
1564 * That is only possible if certain conditions are met that are being
1565 * checked when a slab is created.
1567 if (!(gfpflags
& __GFP_NORETRY
) &&
1568 (s
->flags
& __PAGE_ALLOC_FALLBACK
)) {
1569 if (gfpflags
& __GFP_WAIT
)
1571 object
= kmalloc_large(s
->objsize
, gfpflags
);
1572 if (gfpflags
& __GFP_WAIT
)
1573 local_irq_disable();
1578 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1582 c
->page
->freelist
= object
[c
->offset
];
1588 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1589 * have the fastpath folded into their functions. So no function call
1590 * overhead for requests that can be satisfied on the fastpath.
1592 * The fastpath works by first checking if the lockless freelist can be used.
1593 * If not then __slab_alloc is called for slow processing.
1595 * Otherwise we can simply pick the next object from the lockless free list.
1597 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1598 gfp_t gfpflags
, int node
, void *addr
)
1601 struct kmem_cache_cpu
*c
;
1602 unsigned long flags
;
1604 local_irq_save(flags
);
1605 c
= get_cpu_slab(s
, smp_processor_id());
1606 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1608 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1611 object
= c
->freelist
;
1612 c
->freelist
= object
[c
->offset
];
1613 stat(c
, ALLOC_FASTPATH
);
1615 local_irq_restore(flags
);
1617 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1618 memset(object
, 0, c
->objsize
);
1623 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1625 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1627 EXPORT_SYMBOL(kmem_cache_alloc
);
1630 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1632 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1634 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1638 * Slow patch handling. This may still be called frequently since objects
1639 * have a longer lifetime than the cpu slabs in most processing loads.
1641 * So we still attempt to reduce cache line usage. Just take the slab
1642 * lock and free the item. If there is no additional partial page
1643 * handling required then we can return immediately.
1645 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1646 void *x
, void *addr
, unsigned int offset
)
1649 void **object
= (void *)x
;
1650 struct kmem_cache_cpu
*c
;
1652 c
= get_cpu_slab(s
, raw_smp_processor_id());
1653 stat(c
, FREE_SLOWPATH
);
1656 if (unlikely(SlabDebug(page
)))
1660 prior
= object
[offset
] = page
->freelist
;
1661 page
->freelist
= object
;
1664 if (unlikely(SlabFrozen(page
))) {
1665 stat(c
, FREE_FROZEN
);
1669 if (unlikely(!page
->inuse
))
1673 * Objects left in the slab. If it was not on the partial list before
1676 if (unlikely(!prior
)) {
1677 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1678 stat(c
, FREE_ADD_PARTIAL
);
1688 * Slab still on the partial list.
1690 remove_partial(s
, page
);
1691 stat(c
, FREE_REMOVE_PARTIAL
);
1695 discard_slab(s
, page
);
1699 if (!free_debug_processing(s
, page
, x
, addr
))
1705 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1706 * can perform fastpath freeing without additional function calls.
1708 * The fastpath is only possible if we are freeing to the current cpu slab
1709 * of this processor. This typically the case if we have just allocated
1712 * If fastpath is not possible then fall back to __slab_free where we deal
1713 * with all sorts of special processing.
1715 static __always_inline
void slab_free(struct kmem_cache
*s
,
1716 struct page
*page
, void *x
, void *addr
)
1718 void **object
= (void *)x
;
1719 struct kmem_cache_cpu
*c
;
1720 unsigned long flags
;
1722 local_irq_save(flags
);
1723 c
= get_cpu_slab(s
, smp_processor_id());
1724 debug_check_no_locks_freed(object
, c
->objsize
);
1725 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1726 object
[c
->offset
] = c
->freelist
;
1727 c
->freelist
= object
;
1728 stat(c
, FREE_FASTPATH
);
1730 __slab_free(s
, page
, x
, addr
, c
->offset
);
1732 local_irq_restore(flags
);
1735 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1739 page
= virt_to_head_page(x
);
1741 slab_free(s
, page
, x
, __builtin_return_address(0));
1743 EXPORT_SYMBOL(kmem_cache_free
);
1745 /* Figure out on which slab object the object resides */
1746 static struct page
*get_object_page(const void *x
)
1748 struct page
*page
= virt_to_head_page(x
);
1750 if (!PageSlab(page
))
1757 * Object placement in a slab is made very easy because we always start at
1758 * offset 0. If we tune the size of the object to the alignment then we can
1759 * get the required alignment by putting one properly sized object after
1762 * Notice that the allocation order determines the sizes of the per cpu
1763 * caches. Each processor has always one slab available for allocations.
1764 * Increasing the allocation order reduces the number of times that slabs
1765 * must be moved on and off the partial lists and is therefore a factor in
1770 * Mininum / Maximum order of slab pages. This influences locking overhead
1771 * and slab fragmentation. A higher order reduces the number of partial slabs
1772 * and increases the number of allocations possible without having to
1773 * take the list_lock.
1775 static int slub_min_order
;
1776 static int slub_max_order
= DEFAULT_MAX_ORDER
;
1777 static int slub_min_objects
= DEFAULT_MIN_OBJECTS
;
1780 * Merge control. If this is set then no merging of slab caches will occur.
1781 * (Could be removed. This was introduced to pacify the merge skeptics.)
1783 static int slub_nomerge
;
1786 * Calculate the order of allocation given an slab object size.
1788 * The order of allocation has significant impact on performance and other
1789 * system components. Generally order 0 allocations should be preferred since
1790 * order 0 does not cause fragmentation in the page allocator. Larger objects
1791 * be problematic to put into order 0 slabs because there may be too much
1792 * unused space left. We go to a higher order if more than 1/8th of the slab
1795 * In order to reach satisfactory performance we must ensure that a minimum
1796 * number of objects is in one slab. Otherwise we may generate too much
1797 * activity on the partial lists which requires taking the list_lock. This is
1798 * less a concern for large slabs though which are rarely used.
1800 * slub_max_order specifies the order where we begin to stop considering the
1801 * number of objects in a slab as critical. If we reach slub_max_order then
1802 * we try to keep the page order as low as possible. So we accept more waste
1803 * of space in favor of a small page order.
1805 * Higher order allocations also allow the placement of more objects in a
1806 * slab and thereby reduce object handling overhead. If the user has
1807 * requested a higher mininum order then we start with that one instead of
1808 * the smallest order which will fit the object.
1810 static inline int slab_order(int size
, int min_objects
,
1811 int max_order
, int fract_leftover
)
1815 int min_order
= slub_min_order
;
1817 for (order
= max(min_order
,
1818 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1819 order
<= max_order
; order
++) {
1821 unsigned long slab_size
= PAGE_SIZE
<< order
;
1823 if (slab_size
< min_objects
* size
)
1826 rem
= slab_size
% size
;
1828 if (rem
<= slab_size
/ fract_leftover
)
1836 static inline int calculate_order(int size
)
1843 * Attempt to find best configuration for a slab. This
1844 * works by first attempting to generate a layout with
1845 * the best configuration and backing off gradually.
1847 * First we reduce the acceptable waste in a slab. Then
1848 * we reduce the minimum objects required in a slab.
1850 min_objects
= slub_min_objects
;
1851 while (min_objects
> 1) {
1853 while (fraction
>= 4) {
1854 order
= slab_order(size
, min_objects
,
1855 slub_max_order
, fraction
);
1856 if (order
<= slub_max_order
)
1864 * We were unable to place multiple objects in a slab. Now
1865 * lets see if we can place a single object there.
1867 order
= slab_order(size
, 1, slub_max_order
, 1);
1868 if (order
<= slub_max_order
)
1872 * Doh this slab cannot be placed using slub_max_order.
1874 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1875 if (order
<= MAX_ORDER
)
1881 * Figure out what the alignment of the objects will be.
1883 static unsigned long calculate_alignment(unsigned long flags
,
1884 unsigned long align
, unsigned long size
)
1887 * If the user wants hardware cache aligned objects then follow that
1888 * suggestion if the object is sufficiently large.
1890 * The hardware cache alignment cannot override the specified
1891 * alignment though. If that is greater then use it.
1893 if (flags
& SLAB_HWCACHE_ALIGN
) {
1894 unsigned long ralign
= cache_line_size();
1895 while (size
<= ralign
/ 2)
1897 align
= max(align
, ralign
);
1900 if (align
< ARCH_SLAB_MINALIGN
)
1901 align
= ARCH_SLAB_MINALIGN
;
1903 return ALIGN(align
, sizeof(void *));
1906 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1907 struct kmem_cache_cpu
*c
)
1912 c
->offset
= s
->offset
/ sizeof(void *);
1913 c
->objsize
= s
->objsize
;
1914 #ifdef CONFIG_SLUB_STATS
1915 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1919 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
1922 spin_lock_init(&n
->list_lock
);
1923 INIT_LIST_HEAD(&n
->partial
);
1924 #ifdef CONFIG_SLUB_DEBUG
1925 atomic_long_set(&n
->nr_slabs
, 0);
1926 INIT_LIST_HEAD(&n
->full
);
1932 * Per cpu array for per cpu structures.
1934 * The per cpu array places all kmem_cache_cpu structures from one processor
1935 * close together meaning that it becomes possible that multiple per cpu
1936 * structures are contained in one cacheline. This may be particularly
1937 * beneficial for the kmalloc caches.
1939 * A desktop system typically has around 60-80 slabs. With 100 here we are
1940 * likely able to get per cpu structures for all caches from the array defined
1941 * here. We must be able to cover all kmalloc caches during bootstrap.
1943 * If the per cpu array is exhausted then fall back to kmalloc
1944 * of individual cachelines. No sharing is possible then.
1946 #define NR_KMEM_CACHE_CPU 100
1948 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1949 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1951 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1952 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
1954 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1955 int cpu
, gfp_t flags
)
1957 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1960 per_cpu(kmem_cache_cpu_free
, cpu
) =
1961 (void *)c
->freelist
;
1963 /* Table overflow: So allocate ourselves */
1965 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
1966 flags
, cpu_to_node(cpu
));
1971 init_kmem_cache_cpu(s
, c
);
1975 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
1977 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
1978 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
1982 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
1983 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
1986 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
1990 for_each_online_cpu(cpu
) {
1991 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1994 s
->cpu_slab
[cpu
] = NULL
;
1995 free_kmem_cache_cpu(c
, cpu
);
2000 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2004 for_each_online_cpu(cpu
) {
2005 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2010 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2012 free_kmem_cache_cpus(s
);
2015 s
->cpu_slab
[cpu
] = c
;
2021 * Initialize the per cpu array.
2023 static void init_alloc_cpu_cpu(int cpu
)
2027 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
2030 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2031 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2033 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
2036 static void __init
init_alloc_cpu(void)
2040 for_each_online_cpu(cpu
)
2041 init_alloc_cpu_cpu(cpu
);
2045 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2046 static inline void init_alloc_cpu(void) {}
2048 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2050 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2057 * No kmalloc_node yet so do it by hand. We know that this is the first
2058 * slab on the node for this slabcache. There are no concurrent accesses
2061 * Note that this function only works on the kmalloc_node_cache
2062 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2063 * memory on a fresh node that has no slab structures yet.
2065 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2069 struct kmem_cache_node
*n
;
2070 unsigned long flags
;
2072 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2074 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2077 if (page_to_nid(page
) != node
) {
2078 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2080 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2081 "in order to be able to continue\n");
2086 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2088 kmalloc_caches
->node
[node
] = n
;
2089 #ifdef CONFIG_SLUB_DEBUG
2090 init_object(kmalloc_caches
, n
, 1);
2091 init_tracking(kmalloc_caches
, n
);
2093 init_kmem_cache_node(n
);
2094 inc_slabs_node(kmalloc_caches
, node
);
2097 * lockdep requires consistent irq usage for each lock
2098 * so even though there cannot be a race this early in
2099 * the boot sequence, we still disable irqs.
2101 local_irq_save(flags
);
2102 add_partial(n
, page
, 0);
2103 local_irq_restore(flags
);
2107 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2111 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2112 struct kmem_cache_node
*n
= s
->node
[node
];
2113 if (n
&& n
!= &s
->local_node
)
2114 kmem_cache_free(kmalloc_caches
, n
);
2115 s
->node
[node
] = NULL
;
2119 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2124 if (slab_state
>= UP
)
2125 local_node
= page_to_nid(virt_to_page(s
));
2129 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2130 struct kmem_cache_node
*n
;
2132 if (local_node
== node
)
2135 if (slab_state
== DOWN
) {
2136 n
= early_kmem_cache_node_alloc(gfpflags
,
2140 n
= kmem_cache_alloc_node(kmalloc_caches
,
2144 free_kmem_cache_nodes(s
);
2150 init_kmem_cache_node(n
);
2155 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2159 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2161 init_kmem_cache_node(&s
->local_node
);
2167 * calculate_sizes() determines the order and the distribution of data within
2170 static int calculate_sizes(struct kmem_cache
*s
)
2172 unsigned long flags
= s
->flags
;
2173 unsigned long size
= s
->objsize
;
2174 unsigned long align
= s
->align
;
2177 * Round up object size to the next word boundary. We can only
2178 * place the free pointer at word boundaries and this determines
2179 * the possible location of the free pointer.
2181 size
= ALIGN(size
, sizeof(void *));
2183 #ifdef CONFIG_SLUB_DEBUG
2185 * Determine if we can poison the object itself. If the user of
2186 * the slab may touch the object after free or before allocation
2187 * then we should never poison the object itself.
2189 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2191 s
->flags
|= __OBJECT_POISON
;
2193 s
->flags
&= ~__OBJECT_POISON
;
2197 * If we are Redzoning then check if there is some space between the
2198 * end of the object and the free pointer. If not then add an
2199 * additional word to have some bytes to store Redzone information.
2201 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2202 size
+= sizeof(void *);
2206 * With that we have determined the number of bytes in actual use
2207 * by the object. This is the potential offset to the free pointer.
2211 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2214 * Relocate free pointer after the object if it is not
2215 * permitted to overwrite the first word of the object on
2218 * This is the case if we do RCU, have a constructor or
2219 * destructor or are poisoning the objects.
2222 size
+= sizeof(void *);
2225 #ifdef CONFIG_SLUB_DEBUG
2226 if (flags
& SLAB_STORE_USER
)
2228 * Need to store information about allocs and frees after
2231 size
+= 2 * sizeof(struct track
);
2233 if (flags
& SLAB_RED_ZONE
)
2235 * Add some empty padding so that we can catch
2236 * overwrites from earlier objects rather than let
2237 * tracking information or the free pointer be
2238 * corrupted if an user writes before the start
2241 size
+= sizeof(void *);
2245 * Determine the alignment based on various parameters that the
2246 * user specified and the dynamic determination of cache line size
2249 align
= calculate_alignment(flags
, align
, s
->objsize
);
2252 * SLUB stores one object immediately after another beginning from
2253 * offset 0. In order to align the objects we have to simply size
2254 * each object to conform to the alignment.
2256 size
= ALIGN(size
, align
);
2259 if ((flags
& __KMALLOC_CACHE
) &&
2260 PAGE_SIZE
/ size
< slub_min_objects
) {
2262 * Kmalloc cache that would not have enough objects in
2263 * an order 0 page. Kmalloc slabs can fallback to
2264 * page allocator order 0 allocs so take a reasonably large
2265 * order that will allows us a good number of objects.
2267 s
->order
= max(slub_max_order
, PAGE_ALLOC_COSTLY_ORDER
);
2268 s
->flags
|= __PAGE_ALLOC_FALLBACK
;
2269 s
->allocflags
|= __GFP_NOWARN
;
2271 s
->order
= calculate_order(size
);
2278 s
->allocflags
|= __GFP_COMP
;
2280 if (s
->flags
& SLAB_CACHE_DMA
)
2281 s
->allocflags
|= SLUB_DMA
;
2283 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2284 s
->allocflags
|= __GFP_RECLAIMABLE
;
2287 * Determine the number of objects per slab
2289 s
->objects
= (PAGE_SIZE
<< s
->order
) / size
;
2291 return !!s
->objects
;
2295 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2296 const char *name
, size_t size
,
2297 size_t align
, unsigned long flags
,
2298 void (*ctor
)(struct kmem_cache
*, void *))
2300 memset(s
, 0, kmem_size
);
2305 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2307 if (!calculate_sizes(s
))
2312 s
->remote_node_defrag_ratio
= 100;
2314 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2317 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2319 free_kmem_cache_nodes(s
);
2321 if (flags
& SLAB_PANIC
)
2322 panic("Cannot create slab %s size=%lu realsize=%u "
2323 "order=%u offset=%u flags=%lx\n",
2324 s
->name
, (unsigned long)size
, s
->size
, s
->order
,
2330 * Check if a given pointer is valid
2332 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2336 page
= get_object_page(object
);
2338 if (!page
|| s
!= page
->slab
)
2339 /* No slab or wrong slab */
2342 if (!check_valid_pointer(s
, page
, object
))
2346 * We could also check if the object is on the slabs freelist.
2347 * But this would be too expensive and it seems that the main
2348 * purpose of kmem_ptr_valid() is to check if the object belongs
2349 * to a certain slab.
2353 EXPORT_SYMBOL(kmem_ptr_validate
);
2356 * Determine the size of a slab object
2358 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2362 EXPORT_SYMBOL(kmem_cache_size
);
2364 const char *kmem_cache_name(struct kmem_cache
*s
)
2368 EXPORT_SYMBOL(kmem_cache_name
);
2371 * Attempt to free all slabs on a node. Return the number of slabs we
2372 * were unable to free.
2374 static int free_list(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
2375 struct list_head
*list
)
2377 int slabs_inuse
= 0;
2378 unsigned long flags
;
2379 struct page
*page
, *h
;
2381 spin_lock_irqsave(&n
->list_lock
, flags
);
2382 list_for_each_entry_safe(page
, h
, list
, lru
)
2384 list_del(&page
->lru
);
2385 discard_slab(s
, page
);
2388 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2393 * Release all resources used by a slab cache.
2395 static inline int kmem_cache_close(struct kmem_cache
*s
)
2401 /* Attempt to free all objects */
2402 free_kmem_cache_cpus(s
);
2403 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2404 struct kmem_cache_node
*n
= get_node(s
, node
);
2406 n
->nr_partial
-= free_list(s
, n
, &n
->partial
);
2407 if (slabs_node(s
, node
))
2410 free_kmem_cache_nodes(s
);
2415 * Close a cache and release the kmem_cache structure
2416 * (must be used for caches created using kmem_cache_create)
2418 void kmem_cache_destroy(struct kmem_cache
*s
)
2420 down_write(&slub_lock
);
2424 up_write(&slub_lock
);
2425 if (kmem_cache_close(s
))
2427 sysfs_slab_remove(s
);
2429 up_write(&slub_lock
);
2431 EXPORT_SYMBOL(kmem_cache_destroy
);
2433 /********************************************************************
2435 *******************************************************************/
2437 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
+ 1] __cacheline_aligned
;
2438 EXPORT_SYMBOL(kmalloc_caches
);
2440 static int __init
setup_slub_min_order(char *str
)
2442 get_option(&str
, &slub_min_order
);
2447 __setup("slub_min_order=", setup_slub_min_order
);
2449 static int __init
setup_slub_max_order(char *str
)
2451 get_option(&str
, &slub_max_order
);
2456 __setup("slub_max_order=", setup_slub_max_order
);
2458 static int __init
setup_slub_min_objects(char *str
)
2460 get_option(&str
, &slub_min_objects
);
2465 __setup("slub_min_objects=", setup_slub_min_objects
);
2467 static int __init
setup_slub_nomerge(char *str
)
2473 __setup("slub_nomerge", setup_slub_nomerge
);
2475 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2476 const char *name
, int size
, gfp_t gfp_flags
)
2478 unsigned int flags
= 0;
2480 if (gfp_flags
& SLUB_DMA
)
2481 flags
= SLAB_CACHE_DMA
;
2483 down_write(&slub_lock
);
2484 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2485 flags
| __KMALLOC_CACHE
, NULL
))
2488 list_add(&s
->list
, &slab_caches
);
2489 up_write(&slub_lock
);
2490 if (sysfs_slab_add(s
))
2495 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2498 #ifdef CONFIG_ZONE_DMA
2499 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
+ 1];
2501 static void sysfs_add_func(struct work_struct
*w
)
2503 struct kmem_cache
*s
;
2505 down_write(&slub_lock
);
2506 list_for_each_entry(s
, &slab_caches
, list
) {
2507 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2508 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2512 up_write(&slub_lock
);
2515 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2517 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2519 struct kmem_cache
*s
;
2523 s
= kmalloc_caches_dma
[index
];
2527 /* Dynamically create dma cache */
2528 if (flags
& __GFP_WAIT
)
2529 down_write(&slub_lock
);
2531 if (!down_write_trylock(&slub_lock
))
2535 if (kmalloc_caches_dma
[index
])
2538 realsize
= kmalloc_caches
[index
].objsize
;
2539 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2540 (unsigned int)realsize
);
2541 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2543 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2544 realsize
, ARCH_KMALLOC_MINALIGN
,
2545 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2551 list_add(&s
->list
, &slab_caches
);
2552 kmalloc_caches_dma
[index
] = s
;
2554 schedule_work(&sysfs_add_work
);
2557 up_write(&slub_lock
);
2559 return kmalloc_caches_dma
[index
];
2564 * Conversion table for small slabs sizes / 8 to the index in the
2565 * kmalloc array. This is necessary for slabs < 192 since we have non power
2566 * of two cache sizes there. The size of larger slabs can be determined using
2569 static s8 size_index
[24] = {
2596 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2602 return ZERO_SIZE_PTR
;
2604 index
= size_index
[(size
- 1) / 8];
2606 index
= fls(size
- 1);
2608 #ifdef CONFIG_ZONE_DMA
2609 if (unlikely((flags
& SLUB_DMA
)))
2610 return dma_kmalloc_cache(index
, flags
);
2613 return &kmalloc_caches
[index
];
2616 void *__kmalloc(size_t size
, gfp_t flags
)
2618 struct kmem_cache
*s
;
2620 if (unlikely(size
> PAGE_SIZE
))
2621 return kmalloc_large(size
, flags
);
2623 s
= get_slab(size
, flags
);
2625 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2628 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2630 EXPORT_SYMBOL(__kmalloc
);
2632 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2634 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2638 return page_address(page
);
2644 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2646 struct kmem_cache
*s
;
2648 if (unlikely(size
> PAGE_SIZE
))
2649 return kmalloc_large_node(size
, flags
, node
);
2651 s
= get_slab(size
, flags
);
2653 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2656 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2658 EXPORT_SYMBOL(__kmalloc_node
);
2661 size_t ksize(const void *object
)
2664 struct kmem_cache
*s
;
2666 if (unlikely(object
== ZERO_SIZE_PTR
))
2669 page
= virt_to_head_page(object
);
2671 if (unlikely(!PageSlab(page
)))
2672 return PAGE_SIZE
<< compound_order(page
);
2676 #ifdef CONFIG_SLUB_DEBUG
2678 * Debugging requires use of the padding between object
2679 * and whatever may come after it.
2681 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2686 * If we have the need to store the freelist pointer
2687 * back there or track user information then we can
2688 * only use the space before that information.
2690 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2693 * Else we can use all the padding etc for the allocation
2697 EXPORT_SYMBOL(ksize
);
2699 void kfree(const void *x
)
2702 void *object
= (void *)x
;
2704 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2707 page
= virt_to_head_page(x
);
2708 if (unlikely(!PageSlab(page
))) {
2712 slab_free(page
->slab
, page
, object
, __builtin_return_address(0));
2714 EXPORT_SYMBOL(kfree
);
2717 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2718 * the remaining slabs by the number of items in use. The slabs with the
2719 * most items in use come first. New allocations will then fill those up
2720 * and thus they can be removed from the partial lists.
2722 * The slabs with the least items are placed last. This results in them
2723 * being allocated from last increasing the chance that the last objects
2724 * are freed in them.
2726 int kmem_cache_shrink(struct kmem_cache
*s
)
2730 struct kmem_cache_node
*n
;
2733 struct list_head
*slabs_by_inuse
=
2734 kmalloc(sizeof(struct list_head
) * s
->objects
, GFP_KERNEL
);
2735 unsigned long flags
;
2737 if (!slabs_by_inuse
)
2741 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2742 n
= get_node(s
, node
);
2747 for (i
= 0; i
< s
->objects
; i
++)
2748 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2750 spin_lock_irqsave(&n
->list_lock
, flags
);
2753 * Build lists indexed by the items in use in each slab.
2755 * Note that concurrent frees may occur while we hold the
2756 * list_lock. page->inuse here is the upper limit.
2758 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2759 if (!page
->inuse
&& slab_trylock(page
)) {
2761 * Must hold slab lock here because slab_free
2762 * may have freed the last object and be
2763 * waiting to release the slab.
2765 list_del(&page
->lru
);
2768 discard_slab(s
, page
);
2770 list_move(&page
->lru
,
2771 slabs_by_inuse
+ page
->inuse
);
2776 * Rebuild the partial list with the slabs filled up most
2777 * first and the least used slabs at the end.
2779 for (i
= s
->objects
- 1; i
>= 0; i
--)
2780 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2782 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2785 kfree(slabs_by_inuse
);
2788 EXPORT_SYMBOL(kmem_cache_shrink
);
2790 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2791 static int slab_mem_going_offline_callback(void *arg
)
2793 struct kmem_cache
*s
;
2795 down_read(&slub_lock
);
2796 list_for_each_entry(s
, &slab_caches
, list
)
2797 kmem_cache_shrink(s
);
2798 up_read(&slub_lock
);
2803 static void slab_mem_offline_callback(void *arg
)
2805 struct kmem_cache_node
*n
;
2806 struct kmem_cache
*s
;
2807 struct memory_notify
*marg
= arg
;
2810 offline_node
= marg
->status_change_nid
;
2813 * If the node still has available memory. we need kmem_cache_node
2816 if (offline_node
< 0)
2819 down_read(&slub_lock
);
2820 list_for_each_entry(s
, &slab_caches
, list
) {
2821 n
= get_node(s
, offline_node
);
2824 * if n->nr_slabs > 0, slabs still exist on the node
2825 * that is going down. We were unable to free them,
2826 * and offline_pages() function shoudn't call this
2827 * callback. So, we must fail.
2829 BUG_ON(slabs_node(s
, offline_node
));
2831 s
->node
[offline_node
] = NULL
;
2832 kmem_cache_free(kmalloc_caches
, n
);
2835 up_read(&slub_lock
);
2838 static int slab_mem_going_online_callback(void *arg
)
2840 struct kmem_cache_node
*n
;
2841 struct kmem_cache
*s
;
2842 struct memory_notify
*marg
= arg
;
2843 int nid
= marg
->status_change_nid
;
2847 * If the node's memory is already available, then kmem_cache_node is
2848 * already created. Nothing to do.
2854 * We are bringing a node online. No memory is availabe yet. We must
2855 * allocate a kmem_cache_node structure in order to bring the node
2858 down_read(&slub_lock
);
2859 list_for_each_entry(s
, &slab_caches
, list
) {
2861 * XXX: kmem_cache_alloc_node will fallback to other nodes
2862 * since memory is not yet available from the node that
2865 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2870 init_kmem_cache_node(n
);
2874 up_read(&slub_lock
);
2878 static int slab_memory_callback(struct notifier_block
*self
,
2879 unsigned long action
, void *arg
)
2884 case MEM_GOING_ONLINE
:
2885 ret
= slab_mem_going_online_callback(arg
);
2887 case MEM_GOING_OFFLINE
:
2888 ret
= slab_mem_going_offline_callback(arg
);
2891 case MEM_CANCEL_ONLINE
:
2892 slab_mem_offline_callback(arg
);
2895 case MEM_CANCEL_OFFLINE
:
2899 ret
= notifier_from_errno(ret
);
2903 #endif /* CONFIG_MEMORY_HOTPLUG */
2905 /********************************************************************
2906 * Basic setup of slabs
2907 *******************************************************************/
2909 void __init
kmem_cache_init(void)
2918 * Must first have the slab cache available for the allocations of the
2919 * struct kmem_cache_node's. There is special bootstrap code in
2920 * kmem_cache_open for slab_state == DOWN.
2922 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2923 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2924 kmalloc_caches
[0].refcount
= -1;
2927 hotplug_memory_notifier(slab_memory_callback
, 1);
2930 /* Able to allocate the per node structures */
2931 slab_state
= PARTIAL
;
2933 /* Caches that are not of the two-to-the-power-of size */
2934 if (KMALLOC_MIN_SIZE
<= 64) {
2935 create_kmalloc_cache(&kmalloc_caches
[1],
2936 "kmalloc-96", 96, GFP_KERNEL
);
2939 if (KMALLOC_MIN_SIZE
<= 128) {
2940 create_kmalloc_cache(&kmalloc_caches
[2],
2941 "kmalloc-192", 192, GFP_KERNEL
);
2945 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++) {
2946 create_kmalloc_cache(&kmalloc_caches
[i
],
2947 "kmalloc", 1 << i
, GFP_KERNEL
);
2953 * Patch up the size_index table if we have strange large alignment
2954 * requirements for the kmalloc array. This is only the case for
2955 * MIPS it seems. The standard arches will not generate any code here.
2957 * Largest permitted alignment is 256 bytes due to the way we
2958 * handle the index determination for the smaller caches.
2960 * Make sure that nothing crazy happens if someone starts tinkering
2961 * around with ARCH_KMALLOC_MINALIGN
2963 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
2964 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
2966 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
2967 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
2971 /* Provide the correct kmalloc names now that the caches are up */
2972 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++)
2973 kmalloc_caches
[i
]. name
=
2974 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
2977 register_cpu_notifier(&slab_notifier
);
2978 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
2979 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
2981 kmem_size
= sizeof(struct kmem_cache
);
2985 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2986 " CPUs=%d, Nodes=%d\n",
2987 caches
, cache_line_size(),
2988 slub_min_order
, slub_max_order
, slub_min_objects
,
2989 nr_cpu_ids
, nr_node_ids
);
2993 * Find a mergeable slab cache
2995 static int slab_unmergeable(struct kmem_cache
*s
)
2997 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3000 if ((s
->flags
& __PAGE_ALLOC_FALLBACK
))
3007 * We may have set a slab to be unmergeable during bootstrap.
3009 if (s
->refcount
< 0)
3015 static struct kmem_cache
*find_mergeable(size_t size
,
3016 size_t align
, unsigned long flags
, const char *name
,
3017 void (*ctor
)(struct kmem_cache
*, void *))
3019 struct kmem_cache
*s
;
3021 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3027 size
= ALIGN(size
, sizeof(void *));
3028 align
= calculate_alignment(flags
, align
, size
);
3029 size
= ALIGN(size
, align
);
3030 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3032 list_for_each_entry(s
, &slab_caches
, list
) {
3033 if (slab_unmergeable(s
))
3039 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3042 * Check if alignment is compatible.
3043 * Courtesy of Adrian Drzewiecki
3045 if ((s
->size
& ~(align
- 1)) != s
->size
)
3048 if (s
->size
- size
>= sizeof(void *))
3056 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3057 size_t align
, unsigned long flags
,
3058 void (*ctor
)(struct kmem_cache
*, void *))
3060 struct kmem_cache
*s
;
3062 down_write(&slub_lock
);
3063 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3069 * Adjust the object sizes so that we clear
3070 * the complete object on kzalloc.
3072 s
->objsize
= max(s
->objsize
, (int)size
);
3075 * And then we need to update the object size in the
3076 * per cpu structures
3078 for_each_online_cpu(cpu
)
3079 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3081 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3082 up_write(&slub_lock
);
3084 if (sysfs_slab_alias(s
, name
))
3089 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3091 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3092 size
, align
, flags
, ctor
)) {
3093 list_add(&s
->list
, &slab_caches
);
3094 up_write(&slub_lock
);
3095 if (sysfs_slab_add(s
))
3101 up_write(&slub_lock
);
3104 if (flags
& SLAB_PANIC
)
3105 panic("Cannot create slabcache %s\n", name
);
3110 EXPORT_SYMBOL(kmem_cache_create
);
3114 * Use the cpu notifier to insure that the cpu slabs are flushed when
3117 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3118 unsigned long action
, void *hcpu
)
3120 long cpu
= (long)hcpu
;
3121 struct kmem_cache
*s
;
3122 unsigned long flags
;
3125 case CPU_UP_PREPARE
:
3126 case CPU_UP_PREPARE_FROZEN
:
3127 init_alloc_cpu_cpu(cpu
);
3128 down_read(&slub_lock
);
3129 list_for_each_entry(s
, &slab_caches
, list
)
3130 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3132 up_read(&slub_lock
);
3135 case CPU_UP_CANCELED
:
3136 case CPU_UP_CANCELED_FROZEN
:
3138 case CPU_DEAD_FROZEN
:
3139 down_read(&slub_lock
);
3140 list_for_each_entry(s
, &slab_caches
, list
) {
3141 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3143 local_irq_save(flags
);
3144 __flush_cpu_slab(s
, cpu
);
3145 local_irq_restore(flags
);
3146 free_kmem_cache_cpu(c
, cpu
);
3147 s
->cpu_slab
[cpu
] = NULL
;
3149 up_read(&slub_lock
);
3157 static struct notifier_block __cpuinitdata slab_notifier
= {
3158 .notifier_call
= slab_cpuup_callback
3163 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
3165 struct kmem_cache
*s
;
3167 if (unlikely(size
> PAGE_SIZE
))
3168 return kmalloc_large(size
, gfpflags
);
3170 s
= get_slab(size
, gfpflags
);
3172 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3175 return slab_alloc(s
, gfpflags
, -1, caller
);
3178 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3179 int node
, void *caller
)
3181 struct kmem_cache
*s
;
3183 if (unlikely(size
> PAGE_SIZE
))
3184 return kmalloc_large_node(size
, gfpflags
, node
);
3186 s
= get_slab(size
, gfpflags
);
3188 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3191 return slab_alloc(s
, gfpflags
, node
, caller
);
3194 #if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
3195 static unsigned long count_partial(struct kmem_cache_node
*n
)
3197 unsigned long flags
;
3198 unsigned long x
= 0;
3201 spin_lock_irqsave(&n
->list_lock
, flags
);
3202 list_for_each_entry(page
, &n
->partial
, lru
)
3204 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3209 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3210 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3214 void *addr
= page_address(page
);
3216 if (!check_slab(s
, page
) ||
3217 !on_freelist(s
, page
, NULL
))
3220 /* Now we know that a valid freelist exists */
3221 bitmap_zero(map
, s
->objects
);
3223 for_each_free_object(p
, s
, page
->freelist
) {
3224 set_bit(slab_index(p
, s
, addr
), map
);
3225 if (!check_object(s
, page
, p
, 0))
3229 for_each_object(p
, s
, addr
)
3230 if (!test_bit(slab_index(p
, s
, addr
), map
))
3231 if (!check_object(s
, page
, p
, 1))
3236 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3239 if (slab_trylock(page
)) {
3240 validate_slab(s
, page
, map
);
3243 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3246 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3247 if (!SlabDebug(page
))
3248 printk(KERN_ERR
"SLUB %s: SlabDebug not set "
3249 "on slab 0x%p\n", s
->name
, page
);
3251 if (SlabDebug(page
))
3252 printk(KERN_ERR
"SLUB %s: SlabDebug set on "
3253 "slab 0x%p\n", s
->name
, page
);
3257 static int validate_slab_node(struct kmem_cache
*s
,
3258 struct kmem_cache_node
*n
, unsigned long *map
)
3260 unsigned long count
= 0;
3262 unsigned long flags
;
3264 spin_lock_irqsave(&n
->list_lock
, flags
);
3266 list_for_each_entry(page
, &n
->partial
, lru
) {
3267 validate_slab_slab(s
, page
, map
);
3270 if (count
!= n
->nr_partial
)
3271 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3272 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3274 if (!(s
->flags
& SLAB_STORE_USER
))
3277 list_for_each_entry(page
, &n
->full
, lru
) {
3278 validate_slab_slab(s
, page
, map
);
3281 if (count
!= atomic_long_read(&n
->nr_slabs
))
3282 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3283 "counter=%ld\n", s
->name
, count
,
3284 atomic_long_read(&n
->nr_slabs
));
3287 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3291 static long validate_slab_cache(struct kmem_cache
*s
)
3294 unsigned long count
= 0;
3295 unsigned long *map
= kmalloc(BITS_TO_LONGS(s
->objects
) *
3296 sizeof(unsigned long), GFP_KERNEL
);
3302 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3303 struct kmem_cache_node
*n
= get_node(s
, node
);
3305 count
+= validate_slab_node(s
, n
, map
);
3311 #ifdef SLUB_RESILIENCY_TEST
3312 static void resiliency_test(void)
3316 printk(KERN_ERR
"SLUB resiliency testing\n");
3317 printk(KERN_ERR
"-----------------------\n");
3318 printk(KERN_ERR
"A. Corruption after allocation\n");
3320 p
= kzalloc(16, GFP_KERNEL
);
3322 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3323 " 0x12->0x%p\n\n", p
+ 16);
3325 validate_slab_cache(kmalloc_caches
+ 4);
3327 /* Hmmm... The next two are dangerous */
3328 p
= kzalloc(32, GFP_KERNEL
);
3329 p
[32 + sizeof(void *)] = 0x34;
3330 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3331 " 0x34 -> -0x%p\n", p
);
3333 "If allocated object is overwritten then not detectable\n\n");
3335 validate_slab_cache(kmalloc_caches
+ 5);
3336 p
= kzalloc(64, GFP_KERNEL
);
3337 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3339 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3342 "If allocated object is overwritten then not detectable\n\n");
3343 validate_slab_cache(kmalloc_caches
+ 6);
3345 printk(KERN_ERR
"\nB. Corruption after free\n");
3346 p
= kzalloc(128, GFP_KERNEL
);
3349 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3350 validate_slab_cache(kmalloc_caches
+ 7);
3352 p
= kzalloc(256, GFP_KERNEL
);
3355 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3357 validate_slab_cache(kmalloc_caches
+ 8);
3359 p
= kzalloc(512, GFP_KERNEL
);
3362 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3363 validate_slab_cache(kmalloc_caches
+ 9);
3366 static void resiliency_test(void) {};
3370 * Generate lists of code addresses where slabcache objects are allocated
3375 unsigned long count
;
3388 unsigned long count
;
3389 struct location
*loc
;
3392 static void free_loc_track(struct loc_track
*t
)
3395 free_pages((unsigned long)t
->loc
,
3396 get_order(sizeof(struct location
) * t
->max
));
3399 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3404 order
= get_order(sizeof(struct location
) * max
);
3406 l
= (void *)__get_free_pages(flags
, order
);
3411 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3419 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3420 const struct track
*track
)
3422 long start
, end
, pos
;
3425 unsigned long age
= jiffies
- track
->when
;
3431 pos
= start
+ (end
- start
+ 1) / 2;
3434 * There is nothing at "end". If we end up there
3435 * we need to add something to before end.
3440 caddr
= t
->loc
[pos
].addr
;
3441 if (track
->addr
== caddr
) {
3447 if (age
< l
->min_time
)
3449 if (age
> l
->max_time
)
3452 if (track
->pid
< l
->min_pid
)
3453 l
->min_pid
= track
->pid
;
3454 if (track
->pid
> l
->max_pid
)
3455 l
->max_pid
= track
->pid
;
3457 cpu_set(track
->cpu
, l
->cpus
);
3459 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3463 if (track
->addr
< caddr
)
3470 * Not found. Insert new tracking element.
3472 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3478 (t
->count
- pos
) * sizeof(struct location
));
3481 l
->addr
= track
->addr
;
3485 l
->min_pid
= track
->pid
;
3486 l
->max_pid
= track
->pid
;
3487 cpus_clear(l
->cpus
);
3488 cpu_set(track
->cpu
, l
->cpus
);
3489 nodes_clear(l
->nodes
);
3490 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3494 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3495 struct page
*page
, enum track_item alloc
)
3497 void *addr
= page_address(page
);
3498 DECLARE_BITMAP(map
, s
->objects
);
3501 bitmap_zero(map
, s
->objects
);
3502 for_each_free_object(p
, s
, page
->freelist
)
3503 set_bit(slab_index(p
, s
, addr
), map
);
3505 for_each_object(p
, s
, addr
)
3506 if (!test_bit(slab_index(p
, s
, addr
), map
))
3507 add_location(t
, s
, get_track(s
, p
, alloc
));
3510 static int list_locations(struct kmem_cache
*s
, char *buf
,
3511 enum track_item alloc
)
3515 struct loc_track t
= { 0, 0, NULL
};
3518 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3520 return sprintf(buf
, "Out of memory\n");
3522 /* Push back cpu slabs */
3525 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3526 struct kmem_cache_node
*n
= get_node(s
, node
);
3527 unsigned long flags
;
3530 if (!atomic_long_read(&n
->nr_slabs
))
3533 spin_lock_irqsave(&n
->list_lock
, flags
);
3534 list_for_each_entry(page
, &n
->partial
, lru
)
3535 process_slab(&t
, s
, page
, alloc
);
3536 list_for_each_entry(page
, &n
->full
, lru
)
3537 process_slab(&t
, s
, page
, alloc
);
3538 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3541 for (i
= 0; i
< t
.count
; i
++) {
3542 struct location
*l
= &t
.loc
[i
];
3544 if (len
> PAGE_SIZE
- 100)
3546 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3549 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3551 len
+= sprintf(buf
+ len
, "<not-available>");
3553 if (l
->sum_time
!= l
->min_time
) {
3554 unsigned long remainder
;
3556 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3558 div_long_long_rem(l
->sum_time
, l
->count
, &remainder
),
3561 len
+= sprintf(buf
+ len
, " age=%ld",
3564 if (l
->min_pid
!= l
->max_pid
)
3565 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3566 l
->min_pid
, l
->max_pid
);
3568 len
+= sprintf(buf
+ len
, " pid=%ld",
3571 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3572 len
< PAGE_SIZE
- 60) {
3573 len
+= sprintf(buf
+ len
, " cpus=");
3574 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3578 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3579 len
< PAGE_SIZE
- 60) {
3580 len
+= sprintf(buf
+ len
, " nodes=");
3581 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3585 len
+= sprintf(buf
+ len
, "\n");
3590 len
+= sprintf(buf
, "No data\n");
3594 enum slab_stat_type
{
3601 #define SO_FULL (1 << SL_FULL)
3602 #define SO_PARTIAL (1 << SL_PARTIAL)
3603 #define SO_CPU (1 << SL_CPU)
3604 #define SO_OBJECTS (1 << SL_OBJECTS)
3606 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3607 char *buf
, unsigned long flags
)
3609 unsigned long total
= 0;
3613 unsigned long *nodes
;
3614 unsigned long *per_cpu
;
3616 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3619 per_cpu
= nodes
+ nr_node_ids
;
3621 for_each_possible_cpu(cpu
) {
3623 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3633 if (flags
& SO_CPU
) {
3634 if (flags
& SO_OBJECTS
)
3645 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3646 struct kmem_cache_node
*n
= get_node(s
, node
);
3648 if (flags
& SO_PARTIAL
) {
3649 if (flags
& SO_OBJECTS
)
3650 x
= count_partial(n
);
3657 if (flags
& SO_FULL
) {
3658 int full_slabs
= atomic_long_read(&n
->nr_slabs
)
3662 if (flags
& SO_OBJECTS
)
3663 x
= full_slabs
* s
->objects
;
3671 x
= sprintf(buf
, "%lu", total
);
3673 for_each_node_state(node
, N_NORMAL_MEMORY
)
3675 x
+= sprintf(buf
+ x
, " N%d=%lu",
3679 return x
+ sprintf(buf
+ x
, "\n");
3682 static int any_slab_objects(struct kmem_cache
*s
)
3687 for_each_possible_cpu(cpu
) {
3688 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3694 for_each_online_node(node
) {
3695 struct kmem_cache_node
*n
= get_node(s
, node
);
3700 if (n
->nr_partial
|| atomic_long_read(&n
->nr_slabs
))
3706 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3707 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3709 struct slab_attribute
{
3710 struct attribute attr
;
3711 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3712 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3715 #define SLAB_ATTR_RO(_name) \
3716 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3718 #define SLAB_ATTR(_name) \
3719 static struct slab_attribute _name##_attr = \
3720 __ATTR(_name, 0644, _name##_show, _name##_store)
3722 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3724 return sprintf(buf
, "%d\n", s
->size
);
3726 SLAB_ATTR_RO(slab_size
);
3728 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3730 return sprintf(buf
, "%d\n", s
->align
);
3732 SLAB_ATTR_RO(align
);
3734 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3736 return sprintf(buf
, "%d\n", s
->objsize
);
3738 SLAB_ATTR_RO(object_size
);
3740 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3742 return sprintf(buf
, "%d\n", s
->objects
);
3744 SLAB_ATTR_RO(objs_per_slab
);
3746 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3748 return sprintf(buf
, "%d\n", s
->order
);
3750 SLAB_ATTR_RO(order
);
3752 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3755 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3757 return n
+ sprintf(buf
+ n
, "\n");
3763 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3765 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3767 SLAB_ATTR_RO(aliases
);
3769 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3771 return show_slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
);
3773 SLAB_ATTR_RO(slabs
);
3775 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3777 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3779 SLAB_ATTR_RO(partial
);
3781 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3783 return show_slab_objects(s
, buf
, SO_CPU
);
3785 SLAB_ATTR_RO(cpu_slabs
);
3787 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3789 return show_slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
|SO_OBJECTS
);
3791 SLAB_ATTR_RO(objects
);
3793 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3795 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3798 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3799 const char *buf
, size_t length
)
3801 s
->flags
&= ~SLAB_DEBUG_FREE
;
3803 s
->flags
|= SLAB_DEBUG_FREE
;
3806 SLAB_ATTR(sanity_checks
);
3808 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3810 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3813 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3816 s
->flags
&= ~SLAB_TRACE
;
3818 s
->flags
|= SLAB_TRACE
;
3823 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3825 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3828 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3829 const char *buf
, size_t length
)
3831 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3833 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3836 SLAB_ATTR(reclaim_account
);
3838 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3840 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3842 SLAB_ATTR_RO(hwcache_align
);
3844 #ifdef CONFIG_ZONE_DMA
3845 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3847 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3849 SLAB_ATTR_RO(cache_dma
);
3852 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3854 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3856 SLAB_ATTR_RO(destroy_by_rcu
);
3858 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3860 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3863 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3864 const char *buf
, size_t length
)
3866 if (any_slab_objects(s
))
3869 s
->flags
&= ~SLAB_RED_ZONE
;
3871 s
->flags
|= SLAB_RED_ZONE
;
3875 SLAB_ATTR(red_zone
);
3877 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3879 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3882 static ssize_t
poison_store(struct kmem_cache
*s
,
3883 const char *buf
, size_t length
)
3885 if (any_slab_objects(s
))
3888 s
->flags
&= ~SLAB_POISON
;
3890 s
->flags
|= SLAB_POISON
;
3896 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3898 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3901 static ssize_t
store_user_store(struct kmem_cache
*s
,
3902 const char *buf
, size_t length
)
3904 if (any_slab_objects(s
))
3907 s
->flags
&= ~SLAB_STORE_USER
;
3909 s
->flags
|= SLAB_STORE_USER
;
3913 SLAB_ATTR(store_user
);
3915 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
3920 static ssize_t
validate_store(struct kmem_cache
*s
,
3921 const char *buf
, size_t length
)
3925 if (buf
[0] == '1') {
3926 ret
= validate_slab_cache(s
);
3932 SLAB_ATTR(validate
);
3934 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
3939 static ssize_t
shrink_store(struct kmem_cache
*s
,
3940 const char *buf
, size_t length
)
3942 if (buf
[0] == '1') {
3943 int rc
= kmem_cache_shrink(s
);
3953 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
3955 if (!(s
->flags
& SLAB_STORE_USER
))
3957 return list_locations(s
, buf
, TRACK_ALLOC
);
3959 SLAB_ATTR_RO(alloc_calls
);
3961 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
3963 if (!(s
->flags
& SLAB_STORE_USER
))
3965 return list_locations(s
, buf
, TRACK_FREE
);
3967 SLAB_ATTR_RO(free_calls
);
3970 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
3972 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
3975 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
3976 const char *buf
, size_t length
)
3978 int n
= simple_strtoul(buf
, NULL
, 10);
3981 s
->remote_node_defrag_ratio
= n
* 10;
3984 SLAB_ATTR(remote_node_defrag_ratio
);
3987 #ifdef CONFIG_SLUB_STATS
3988 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
3990 unsigned long sum
= 0;
3993 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
3998 for_each_online_cpu(cpu
) {
3999 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4005 len
= sprintf(buf
, "%lu", sum
);
4008 for_each_online_cpu(cpu
) {
4009 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4010 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4014 return len
+ sprintf(buf
+ len
, "\n");
4017 #define STAT_ATTR(si, text) \
4018 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4020 return show_stat(s, buf, si); \
4022 SLAB_ATTR_RO(text); \
4024 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4025 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4026 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4027 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4028 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4029 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4030 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4031 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4032 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4033 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4034 STAT_ATTR(FREE_SLAB
, free_slab
);
4035 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4036 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4037 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4038 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4039 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4040 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4044 static struct attribute
*slab_attrs
[] = {
4045 &slab_size_attr
.attr
,
4046 &object_size_attr
.attr
,
4047 &objs_per_slab_attr
.attr
,
4052 &cpu_slabs_attr
.attr
,
4056 &sanity_checks_attr
.attr
,
4058 &hwcache_align_attr
.attr
,
4059 &reclaim_account_attr
.attr
,
4060 &destroy_by_rcu_attr
.attr
,
4061 &red_zone_attr
.attr
,
4063 &store_user_attr
.attr
,
4064 &validate_attr
.attr
,
4066 &alloc_calls_attr
.attr
,
4067 &free_calls_attr
.attr
,
4068 #ifdef CONFIG_ZONE_DMA
4069 &cache_dma_attr
.attr
,
4072 &remote_node_defrag_ratio_attr
.attr
,
4074 #ifdef CONFIG_SLUB_STATS
4075 &alloc_fastpath_attr
.attr
,
4076 &alloc_slowpath_attr
.attr
,
4077 &free_fastpath_attr
.attr
,
4078 &free_slowpath_attr
.attr
,
4079 &free_frozen_attr
.attr
,
4080 &free_add_partial_attr
.attr
,
4081 &free_remove_partial_attr
.attr
,
4082 &alloc_from_partial_attr
.attr
,
4083 &alloc_slab_attr
.attr
,
4084 &alloc_refill_attr
.attr
,
4085 &free_slab_attr
.attr
,
4086 &cpuslab_flush_attr
.attr
,
4087 &deactivate_full_attr
.attr
,
4088 &deactivate_empty_attr
.attr
,
4089 &deactivate_to_head_attr
.attr
,
4090 &deactivate_to_tail_attr
.attr
,
4091 &deactivate_remote_frees_attr
.attr
,
4096 static struct attribute_group slab_attr_group
= {
4097 .attrs
= slab_attrs
,
4100 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4101 struct attribute
*attr
,
4104 struct slab_attribute
*attribute
;
4105 struct kmem_cache
*s
;
4108 attribute
= to_slab_attr(attr
);
4111 if (!attribute
->show
)
4114 err
= attribute
->show(s
, buf
);
4119 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4120 struct attribute
*attr
,
4121 const char *buf
, size_t len
)
4123 struct slab_attribute
*attribute
;
4124 struct kmem_cache
*s
;
4127 attribute
= to_slab_attr(attr
);
4130 if (!attribute
->store
)
4133 err
= attribute
->store(s
, buf
, len
);
4138 static void kmem_cache_release(struct kobject
*kobj
)
4140 struct kmem_cache
*s
= to_slab(kobj
);
4145 static struct sysfs_ops slab_sysfs_ops
= {
4146 .show
= slab_attr_show
,
4147 .store
= slab_attr_store
,
4150 static struct kobj_type slab_ktype
= {
4151 .sysfs_ops
= &slab_sysfs_ops
,
4152 .release
= kmem_cache_release
4155 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4157 struct kobj_type
*ktype
= get_ktype(kobj
);
4159 if (ktype
== &slab_ktype
)
4164 static struct kset_uevent_ops slab_uevent_ops
= {
4165 .filter
= uevent_filter
,
4168 static struct kset
*slab_kset
;
4170 #define ID_STR_LENGTH 64
4172 /* Create a unique string id for a slab cache:
4174 * Format :[flags-]size
4176 static char *create_unique_id(struct kmem_cache
*s
)
4178 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4185 * First flags affecting slabcache operations. We will only
4186 * get here for aliasable slabs so we do not need to support
4187 * too many flags. The flags here must cover all flags that
4188 * are matched during merging to guarantee that the id is
4191 if (s
->flags
& SLAB_CACHE_DMA
)
4193 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4195 if (s
->flags
& SLAB_DEBUG_FREE
)
4199 p
+= sprintf(p
, "%07d", s
->size
);
4200 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4204 static int sysfs_slab_add(struct kmem_cache
*s
)
4210 if (slab_state
< SYSFS
)
4211 /* Defer until later */
4214 unmergeable
= slab_unmergeable(s
);
4217 * Slabcache can never be merged so we can use the name proper.
4218 * This is typically the case for debug situations. In that
4219 * case we can catch duplicate names easily.
4221 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4225 * Create a unique name for the slab as a target
4228 name
= create_unique_id(s
);
4231 s
->kobj
.kset
= slab_kset
;
4232 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4234 kobject_put(&s
->kobj
);
4238 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4241 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4243 /* Setup first alias */
4244 sysfs_slab_alias(s
, s
->name
);
4250 static void sysfs_slab_remove(struct kmem_cache
*s
)
4252 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4253 kobject_del(&s
->kobj
);
4254 kobject_put(&s
->kobj
);
4258 * Need to buffer aliases during bootup until sysfs becomes
4259 * available lest we loose that information.
4261 struct saved_alias
{
4262 struct kmem_cache
*s
;
4264 struct saved_alias
*next
;
4267 static struct saved_alias
*alias_list
;
4269 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4271 struct saved_alias
*al
;
4273 if (slab_state
== SYSFS
) {
4275 * If we have a leftover link then remove it.
4277 sysfs_remove_link(&slab_kset
->kobj
, name
);
4278 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4281 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4287 al
->next
= alias_list
;
4292 static int __init
slab_sysfs_init(void)
4294 struct kmem_cache
*s
;
4297 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4299 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4305 list_for_each_entry(s
, &slab_caches
, list
) {
4306 err
= sysfs_slab_add(s
);
4308 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4309 " to sysfs\n", s
->name
);
4312 while (alias_list
) {
4313 struct saved_alias
*al
= alias_list
;
4315 alias_list
= alias_list
->next
;
4316 err
= sysfs_slab_alias(al
->s
, al
->name
);
4318 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4319 " %s to sysfs\n", s
->name
);
4327 __initcall(slab_sysfs_init
);
4331 * The /proc/slabinfo ABI
4333 #ifdef CONFIG_SLABINFO
4335 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4336 size_t count
, loff_t
*ppos
)
4342 static void print_slabinfo_header(struct seq_file
*m
)
4344 seq_puts(m
, "slabinfo - version: 2.1\n");
4345 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4346 "<objperslab> <pagesperslab>");
4347 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4348 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4352 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4356 down_read(&slub_lock
);
4358 print_slabinfo_header(m
);
4360 return seq_list_start(&slab_caches
, *pos
);
4363 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4365 return seq_list_next(p
, &slab_caches
, pos
);
4368 static void s_stop(struct seq_file
*m
, void *p
)
4370 up_read(&slub_lock
);
4373 static int s_show(struct seq_file
*m
, void *p
)
4375 unsigned long nr_partials
= 0;
4376 unsigned long nr_slabs
= 0;
4377 unsigned long nr_inuse
= 0;
4378 unsigned long nr_objs
;
4379 struct kmem_cache
*s
;
4382 s
= list_entry(p
, struct kmem_cache
, list
);
4384 for_each_online_node(node
) {
4385 struct kmem_cache_node
*n
= get_node(s
, node
);
4390 nr_partials
+= n
->nr_partial
;
4391 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4392 nr_inuse
+= count_partial(n
);
4395 nr_objs
= nr_slabs
* s
->objects
;
4396 nr_inuse
+= (nr_slabs
- nr_partials
) * s
->objects
;
4398 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4399 nr_objs
, s
->size
, s
->objects
, (1 << s
->order
));
4400 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4401 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4407 const struct seq_operations slabinfo_op
= {
4414 #endif /* CONFIG_SLABINFO */