1 #ifndef _LINUX_JIFFIES_H
2 #define _LINUX_JIFFIES_H
4 #include <linux/calc64.h>
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/time.h>
8 #include <linux/timex.h>
9 #include <asm/param.h> /* for HZ */
12 * The following defines establish the engineering parameters of the PLL
13 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
14 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
15 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
16 * nearest power of two in order to avoid hardware multiply operations.
18 #if HZ >= 12 && HZ < 24
20 #elif HZ >= 24 && HZ < 48
22 #elif HZ >= 48 && HZ < 96
24 #elif HZ >= 96 && HZ < 192
26 #elif HZ >= 192 && HZ < 384
28 #elif HZ >= 384 && HZ < 768
30 #elif HZ >= 768 && HZ < 1536
36 /* LATCH is used in the interval timer and ftape setup. */
37 #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
39 #define LATCH_HPET ((HPET_TICK_RATE + HZ/2) / HZ)
41 /* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, the we can
42 * improve accuracy by shifting LSH bits, hence calculating:
44 * This however means trouble for large NOM, because (NOM << LSH) may no
45 * longer fit in 32 bits. The following way of calculating this gives us
46 * some slack, under the following conditions:
47 * - (NOM / DEN) fits in (32 - LSH) bits.
48 * - (NOM % DEN) fits in (32 - LSH) bits.
50 #define SH_DIV(NOM,DEN,LSH) ( ((NOM / DEN) << LSH) \
51 + (((NOM % DEN) << LSH) + DEN / 2) / DEN)
53 /* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */
54 #define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8))
56 #define ACTHZ_HPET (SH_DIV (HPET_TICK_RATE, LATCH_HPET, 8))
58 /* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */
59 #define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8))
61 #define TICK_NSEC_HPET (SH_DIV(1000000UL * 1000, ACTHZ_HPET, 8))
63 /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
64 #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
66 /* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and */
67 /* a value TUSEC for TICK_USEC (can be set bij adjtimex) */
68 #define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8))
70 /* some arch's have a small-data section that can be accessed register-relative
71 * but that can only take up to, say, 4-byte variables. jiffies being part of
72 * an 8-byte variable may not be correctly accessed unless we force the issue
74 #define __jiffy_data __attribute__((section(".data")))
77 * The 64-bit value is not volatile - you MUST NOT read it
78 * without sampling the sequence number in xtime_lock.
79 * get_jiffies_64() will do this for you as appropriate.
81 extern u64 __jiffy_data jiffies_64
;
82 extern unsigned long volatile __jiffy_data jiffies
;
84 #if (BITS_PER_LONG < 64)
85 u64
get_jiffies_64(void);
87 static inline u64
get_jiffies_64(void)
94 * These inlines deal with timer wrapping correctly. You are
95 * strongly encouraged to use them
96 * 1. Because people otherwise forget
97 * 2. Because if the timer wrap changes in future you won't have to
98 * alter your driver code.
100 * time_after(a,b) returns true if the time a is after time b.
102 * Do this with "<0" and ">=0" to only test the sign of the result. A
103 * good compiler would generate better code (and a really good compiler
104 * wouldn't care). Gcc is currently neither.
106 #define time_after(a,b) \
107 (typecheck(unsigned long, a) && \
108 typecheck(unsigned long, b) && \
109 ((long)(b) - (long)(a) < 0))
110 #define time_before(a,b) time_after(b,a)
112 #define time_after_eq(a,b) \
113 (typecheck(unsigned long, a) && \
114 typecheck(unsigned long, b) && \
115 ((long)(a) - (long)(b) >= 0))
116 #define time_before_eq(a,b) time_after_eq(b,a)
119 * Have the 32 bit jiffies value wrap 5 minutes after boot
120 * so jiffies wrap bugs show up earlier.
122 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
125 * Change timeval to jiffies, trying to avoid the
126 * most obvious overflows..
128 * And some not so obvious.
130 * Note that we don't want to return MAX_LONG, because
131 * for various timeout reasons we often end up having
132 * to wait "jiffies+1" in order to guarantee that we wait
133 * at _least_ "jiffies" - so "jiffies+1" had better still
136 #define MAX_JIFFY_OFFSET ((~0UL >> 1)-1)
139 * We want to do realistic conversions of time so we need to use the same
140 * values the update wall clock code uses as the jiffies size. This value
141 * is: TICK_NSEC (which is defined in timex.h). This
142 * is a constant and is in nanoseconds. We will used scaled math
143 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
144 * NSEC_JIFFIE_SC. Note that these defines contain nothing but
145 * constants and so are computed at compile time. SHIFT_HZ (computed in
146 * timex.h) adjusts the scaling for different HZ values.
148 * Scaled math??? What is that?
150 * Scaled math is a way to do integer math on values that would,
151 * otherwise, either overflow, underflow, or cause undesired div
152 * instructions to appear in the execution path. In short, we "scale"
153 * up the operands so they take more bits (more precision, less
154 * underflow), do the desired operation and then "scale" the result back
155 * by the same amount. If we do the scaling by shifting we avoid the
156 * costly mpy and the dastardly div instructions.
158 * Suppose, for example, we want to convert from seconds to jiffies
159 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
160 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
161 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
162 * might calculate at compile time, however, the result will only have
163 * about 3-4 bits of precision (less for smaller values of HZ).
165 * So, we scale as follows:
166 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
167 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
168 * Then we make SCALE a power of two so:
169 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
171 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
172 * jiff = (sec * SEC_CONV) >> SCALE;
174 * Often the math we use will expand beyond 32-bits so we tell C how to
175 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
176 * which should take the result back to 32-bits. We want this expansion
177 * to capture as much precision as possible. At the same time we don't
178 * want to overflow so we pick the SCALE to avoid this. In this file,
179 * that means using a different scale for each range of HZ values (as
180 * defined in timex.h).
182 * For those who want to know, gcc will give a 64-bit result from a "*"
183 * operator if the result is a long long AND at least one of the
184 * operands is cast to long long (usually just prior to the "*" so as
185 * not to confuse it into thinking it really has a 64-bit operand,
186 * which, buy the way, it can do, but it take more code and at least 2
189 * We also need to be aware that one second in nanoseconds is only a
190 * couple of bits away from overflowing a 32-bit word, so we MUST use
191 * 64-bits to get the full range time in nanoseconds.
196 * Here are the scales we will use. One for seconds, nanoseconds and
199 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
200 * check if the sign bit is set. If not, we bump the shift count by 1.
201 * (Gets an extra bit of precision where we can use it.)
202 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
203 * Haven't tested others.
205 * Limits of cpp (for #if expressions) only long (no long long), but
206 * then we only need the most signicant bit.
209 #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
210 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
212 #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
214 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
215 #define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
216 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
217 TICK_NSEC -1) / (u64)TICK_NSEC))
219 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
220 TICK_NSEC -1) / (u64)TICK_NSEC))
221 #define USEC_CONVERSION \
222 ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
223 TICK_NSEC -1) / (u64)TICK_NSEC))
225 * USEC_ROUND is used in the timeval to jiffie conversion. See there
226 * for more details. It is the scaled resolution rounding value. Note
227 * that it is a 64-bit value. Since, when it is applied, we are already
228 * in jiffies (albit scaled), it is nothing but the bits we will shift
231 #define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
233 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
234 * into seconds. The 64-bit case will overflow if we are not careful,
235 * so use the messy SH_DIV macro to do it. Still all constants.
237 #if BITS_PER_LONG < 64
238 # define MAX_SEC_IN_JIFFIES \
239 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
240 #else /* take care of overflow on 64 bits machines */
241 # define MAX_SEC_IN_JIFFIES \
242 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
247 * Convert jiffies to milliseconds and back.
249 * Avoid unnecessary multiplications/divisions in the
250 * two most common HZ cases:
252 static inline unsigned int jiffies_to_msecs(const unsigned long j
)
254 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
255 return (MSEC_PER_SEC
/ HZ
) * j
;
256 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
257 return (j
+ (HZ
/ MSEC_PER_SEC
) - 1)/(HZ
/ MSEC_PER_SEC
);
259 return (j
* MSEC_PER_SEC
) / HZ
;
263 static inline unsigned int jiffies_to_usecs(const unsigned long j
)
265 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
266 return (USEC_PER_SEC
/ HZ
) * j
;
267 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
268 return (j
+ (HZ
/ USEC_PER_SEC
) - 1)/(HZ
/ USEC_PER_SEC
);
270 return (j
* USEC_PER_SEC
) / HZ
;
274 static inline unsigned long msecs_to_jiffies(const unsigned int m
)
276 if (m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
277 return MAX_JIFFY_OFFSET
;
278 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
279 return (m
+ (MSEC_PER_SEC
/ HZ
) - 1) / (MSEC_PER_SEC
/ HZ
);
280 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
281 return m
* (HZ
/ MSEC_PER_SEC
);
283 return (m
* HZ
+ MSEC_PER_SEC
- 1) / MSEC_PER_SEC
;
287 static inline unsigned long usecs_to_jiffies(const unsigned int u
)
289 if (u
> jiffies_to_usecs(MAX_JIFFY_OFFSET
))
290 return MAX_JIFFY_OFFSET
;
291 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
292 return (u
+ (USEC_PER_SEC
/ HZ
) - 1) / (USEC_PER_SEC
/ HZ
);
293 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
294 return u
* (HZ
/ USEC_PER_SEC
);
296 return (u
* HZ
+ USEC_PER_SEC
- 1) / USEC_PER_SEC
;
301 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
302 * that a remainder subtract here would not do the right thing as the
303 * resolution values don't fall on second boundries. I.e. the line:
304 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
306 * Rather, we just shift the bits off the right.
308 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
309 * value to a scaled second value.
311 static __inline__
unsigned long
312 timespec_to_jiffies(const struct timespec
*value
)
314 unsigned long sec
= value
->tv_sec
;
315 long nsec
= value
->tv_nsec
+ TICK_NSEC
- 1;
317 if (sec
>= MAX_SEC_IN_JIFFIES
){
318 sec
= MAX_SEC_IN_JIFFIES
;
321 return (((u64
)sec
* SEC_CONVERSION
) +
322 (((u64
)nsec
* NSEC_CONVERSION
) >>
323 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
327 static __inline__
void
328 jiffies_to_timespec(const unsigned long jiffies
, struct timespec
*value
)
331 * Convert jiffies to nanoseconds and separate with
334 u64 nsec
= (u64
)jiffies
* TICK_NSEC
;
335 value
->tv_sec
= div_long_long_rem(nsec
, NSEC_PER_SEC
, &value
->tv_nsec
);
338 /* Same for "timeval"
340 * Well, almost. The problem here is that the real system resolution is
341 * in nanoseconds and the value being converted is in micro seconds.
342 * Also for some machines (those that use HZ = 1024, in-particular),
343 * there is a LARGE error in the tick size in microseconds.
345 * The solution we use is to do the rounding AFTER we convert the
346 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
347 * Instruction wise, this should cost only an additional add with carry
348 * instruction above the way it was done above.
350 static __inline__
unsigned long
351 timeval_to_jiffies(const struct timeval
*value
)
353 unsigned long sec
= value
->tv_sec
;
354 long usec
= value
->tv_usec
;
356 if (sec
>= MAX_SEC_IN_JIFFIES
){
357 sec
= MAX_SEC_IN_JIFFIES
;
360 return (((u64
)sec
* SEC_CONVERSION
) +
361 (((u64
)usec
* USEC_CONVERSION
+ USEC_ROUND
) >>
362 (USEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
365 static __inline__
void
366 jiffies_to_timeval(const unsigned long jiffies
, struct timeval
*value
)
369 * Convert jiffies to nanoseconds and separate with
372 u64 nsec
= (u64
)jiffies
* TICK_NSEC
;
375 value
->tv_sec
= div_long_long_rem(nsec
, NSEC_PER_SEC
, &tv_usec
);
376 tv_usec
/= NSEC_PER_USEC
;
377 value
->tv_usec
= tv_usec
;
381 * Convert jiffies/jiffies_64 to clock_t and back.
383 static inline clock_t jiffies_to_clock_t(long x
)
385 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
386 return x
/ (HZ
/ USER_HZ
);
388 u64 tmp
= (u64
)x
* TICK_NSEC
;
389 do_div(tmp
, (NSEC_PER_SEC
/ USER_HZ
));
394 static inline unsigned long clock_t_to_jiffies(unsigned long x
)
396 #if (HZ % USER_HZ)==0
397 if (x
>= ~0UL / (HZ
/ USER_HZ
))
399 return x
* (HZ
/ USER_HZ
);
403 /* Don't worry about loss of precision here .. */
404 if (x
>= ~0UL / HZ
* USER_HZ
)
407 /* .. but do try to contain it here */
409 do_div(jif
, USER_HZ
);
414 static inline u64
jiffies_64_to_clock_t(u64 x
)
416 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
417 do_div(x
, HZ
/ USER_HZ
);
420 * There are better ways that don't overflow early,
421 * but even this doesn't overflow in hundreds of years
425 do_div(x
, (NSEC_PER_SEC
/ USER_HZ
));
430 static inline u64
nsec_to_clock_t(u64 x
)
432 #if (NSEC_PER_SEC % USER_HZ) == 0
433 do_div(x
, (NSEC_PER_SEC
/ USER_HZ
));
434 #elif (USER_HZ % 512) == 0
436 do_div(x
, (NSEC_PER_SEC
/ 512));
439 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
440 * overflow after 64.99 years.
441 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
444 do_div(x
, (unsigned long)((9ull * NSEC_PER_SEC
+ (USER_HZ
/2))