sched: remove the 'u64 now' parameter from enqueue_task()
[linux-2.6/kmemtrace.git] / kernel / sched.c
blob0ecfdd134f7740c94090f74c0c1bac7712ac2f89
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
65 #include <asm/tlb.h>
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
72 unsigned long long __attribute__((weak)) sched_clock(void)
74 return (unsigned long long)jiffies * (1000000000 / HZ);
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Some helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105 * These are the 'tuning knobs' of the scheduler:
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
114 #ifdef CONFIG_SMP
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
128 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 #endif
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
142 static unsigned int static_prio_timeslice(int static_prio)
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
153 static inline int rt_policy(int policy)
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
160 static inline int task_has_rt_policy(struct task_struct *p)
162 return rt_policy(p->policy);
166 * This is the priority-queue data structure of the RT scheduling class:
168 struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
173 struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
179 /* CFS-related fields in a runqueue */
180 struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
219 * This is the main, per-CPU runqueue data structure.
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
255 unsigned long nr_uninterruptible;
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
267 atomic_t nr_iowait;
269 #ifdef CONFIG_SMP
270 struct sched_domain *sd;
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
275 int cpu; /* cpu of this runqueue */
277 struct task_struct *migration_thread;
278 struct list_head migration_queue;
279 #endif
281 #ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299 #endif
300 struct lock_class_key rq_lock_key;
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304 static DEFINE_MUTEX(sched_hotcpu_mutex);
306 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
308 rq->curr->sched_class->check_preempt_curr(rq, p);
311 static inline int cpu_of(struct rq *rq)
313 #ifdef CONFIG_SMP
314 return rq->cpu;
315 #else
316 return 0;
317 #endif
321 * Update the per-runqueue clock, as finegrained as the platform can give
322 * us, but without assuming monotonicity, etc.:
324 static void __update_rq_clock(struct rq *rq)
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
331 #ifdef CONFIG_SCHED_DEBUG
332 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
333 #endif
335 * Protect against sched_clock() occasionally going backwards:
337 if (unlikely(delta < 0)) {
338 clock++;
339 rq->clock_warps++;
340 } else {
342 * Catch too large forward jumps too:
344 if (unlikely(delta > 2*TICK_NSEC)) {
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
358 static void update_rq_clock(struct rq *rq)
360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
365 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
366 * See detach_destroy_domains: synchronize_sched for details.
368 * The domain tree of any CPU may only be accessed from within
369 * preempt-disabled sections.
371 #define for_each_domain(cpu, __sd) \
372 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
374 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
375 #define this_rq() (&__get_cpu_var(runqueues))
376 #define task_rq(p) cpu_rq(task_cpu(p))
377 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
380 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
381 * clock constructed from sched_clock():
383 unsigned long long cpu_clock(int cpu)
385 unsigned long long now;
386 unsigned long flags;
387 struct rq *rq;
389 local_irq_save(flags);
390 rq = cpu_rq(cpu);
391 update_rq_clock(rq);
392 now = rq->clock;
393 local_irq_restore(flags);
395 return now;
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 /* Change a task's ->cfs_rq if it moves across CPUs */
400 static inline void set_task_cfs_rq(struct task_struct *p)
402 p->se.cfs_rq = &task_rq(p)->cfs;
404 #else
405 static inline void set_task_cfs_rq(struct task_struct *p)
408 #endif
410 #ifndef prepare_arch_switch
411 # define prepare_arch_switch(next) do { } while (0)
412 #endif
413 #ifndef finish_arch_switch
414 # define finish_arch_switch(prev) do { } while (0)
415 #endif
417 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
418 static inline int task_running(struct rq *rq, struct task_struct *p)
420 return rq->curr == p;
423 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
427 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
429 #ifdef CONFIG_DEBUG_SPINLOCK
430 /* this is a valid case when another task releases the spinlock */
431 rq->lock.owner = current;
432 #endif
434 * If we are tracking spinlock dependencies then we have to
435 * fix up the runqueue lock - which gets 'carried over' from
436 * prev into current:
438 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
440 spin_unlock_irq(&rq->lock);
443 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
444 static inline int task_running(struct rq *rq, struct task_struct *p)
446 #ifdef CONFIG_SMP
447 return p->oncpu;
448 #else
449 return rq->curr == p;
450 #endif
453 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
455 #ifdef CONFIG_SMP
457 * We can optimise this out completely for !SMP, because the
458 * SMP rebalancing from interrupt is the only thing that cares
459 * here.
461 next->oncpu = 1;
462 #endif
463 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
464 spin_unlock_irq(&rq->lock);
465 #else
466 spin_unlock(&rq->lock);
467 #endif
470 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
472 #ifdef CONFIG_SMP
474 * After ->oncpu is cleared, the task can be moved to a different CPU.
475 * We must ensure this doesn't happen until the switch is completely
476 * finished.
478 smp_wmb();
479 prev->oncpu = 0;
480 #endif
481 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
482 local_irq_enable();
483 #endif
485 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
488 * __task_rq_lock - lock the runqueue a given task resides on.
489 * Must be called interrupts disabled.
491 static inline struct rq *__task_rq_lock(struct task_struct *p)
492 __acquires(rq->lock)
494 struct rq *rq;
496 repeat_lock_task:
497 rq = task_rq(p);
498 spin_lock(&rq->lock);
499 if (unlikely(rq != task_rq(p))) {
500 spin_unlock(&rq->lock);
501 goto repeat_lock_task;
503 return rq;
507 * task_rq_lock - lock the runqueue a given task resides on and disable
508 * interrupts. Note the ordering: we can safely lookup the task_rq without
509 * explicitly disabling preemption.
511 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
512 __acquires(rq->lock)
514 struct rq *rq;
516 repeat_lock_task:
517 local_irq_save(*flags);
518 rq = task_rq(p);
519 spin_lock(&rq->lock);
520 if (unlikely(rq != task_rq(p))) {
521 spin_unlock_irqrestore(&rq->lock, *flags);
522 goto repeat_lock_task;
524 return rq;
527 static inline void __task_rq_unlock(struct rq *rq)
528 __releases(rq->lock)
530 spin_unlock(&rq->lock);
533 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
534 __releases(rq->lock)
536 spin_unlock_irqrestore(&rq->lock, *flags);
540 * this_rq_lock - lock this runqueue and disable interrupts.
542 static inline struct rq *this_rq_lock(void)
543 __acquires(rq->lock)
545 struct rq *rq;
547 local_irq_disable();
548 rq = this_rq();
549 spin_lock(&rq->lock);
551 return rq;
555 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
557 void sched_clock_unstable_event(void)
559 unsigned long flags;
560 struct rq *rq;
562 rq = task_rq_lock(current, &flags);
563 rq->prev_clock_raw = sched_clock();
564 rq->clock_unstable_events++;
565 task_rq_unlock(rq, &flags);
569 * resched_task - mark a task 'to be rescheduled now'.
571 * On UP this means the setting of the need_resched flag, on SMP it
572 * might also involve a cross-CPU call to trigger the scheduler on
573 * the target CPU.
575 #ifdef CONFIG_SMP
577 #ifndef tsk_is_polling
578 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
579 #endif
581 static void resched_task(struct task_struct *p)
583 int cpu;
585 assert_spin_locked(&task_rq(p)->lock);
587 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
588 return;
590 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
592 cpu = task_cpu(p);
593 if (cpu == smp_processor_id())
594 return;
596 /* NEED_RESCHED must be visible before we test polling */
597 smp_mb();
598 if (!tsk_is_polling(p))
599 smp_send_reschedule(cpu);
602 static void resched_cpu(int cpu)
604 struct rq *rq = cpu_rq(cpu);
605 unsigned long flags;
607 if (!spin_trylock_irqsave(&rq->lock, flags))
608 return;
609 resched_task(cpu_curr(cpu));
610 spin_unlock_irqrestore(&rq->lock, flags);
612 #else
613 static inline void resched_task(struct task_struct *p)
615 assert_spin_locked(&task_rq(p)->lock);
616 set_tsk_need_resched(p);
618 #endif
620 static u64 div64_likely32(u64 divident, unsigned long divisor)
622 #if BITS_PER_LONG == 32
623 if (likely(divident <= 0xffffffffULL))
624 return (u32)divident / divisor;
625 do_div(divident, divisor);
627 return divident;
628 #else
629 return divident / divisor;
630 #endif
633 #if BITS_PER_LONG == 32
634 # define WMULT_CONST (~0UL)
635 #else
636 # define WMULT_CONST (1UL << 32)
637 #endif
639 #define WMULT_SHIFT 32
641 static unsigned long
642 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
643 struct load_weight *lw)
645 u64 tmp;
647 if (unlikely(!lw->inv_weight))
648 lw->inv_weight = WMULT_CONST / lw->weight;
650 tmp = (u64)delta_exec * weight;
652 * Check whether we'd overflow the 64-bit multiplication:
654 if (unlikely(tmp > WMULT_CONST)) {
655 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
656 >> (WMULT_SHIFT/2);
657 } else {
658 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
661 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
664 static inline unsigned long
665 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
667 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
670 static void update_load_add(struct load_weight *lw, unsigned long inc)
672 lw->weight += inc;
673 lw->inv_weight = 0;
676 static void update_load_sub(struct load_weight *lw, unsigned long dec)
678 lw->weight -= dec;
679 lw->inv_weight = 0;
683 * To aid in avoiding the subversion of "niceness" due to uneven distribution
684 * of tasks with abnormal "nice" values across CPUs the contribution that
685 * each task makes to its run queue's load is weighted according to its
686 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
687 * scaled version of the new time slice allocation that they receive on time
688 * slice expiry etc.
691 #define WEIGHT_IDLEPRIO 2
692 #define WMULT_IDLEPRIO (1 << 31)
695 * Nice levels are multiplicative, with a gentle 10% change for every
696 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
697 * nice 1, it will get ~10% less CPU time than another CPU-bound task
698 * that remained on nice 0.
700 * The "10% effect" is relative and cumulative: from _any_ nice level,
701 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
702 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
703 * If a task goes up by ~10% and another task goes down by ~10% then
704 * the relative distance between them is ~25%.)
706 static const int prio_to_weight[40] = {
707 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
708 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
709 /* 0 */ NICE_0_LOAD /* 1024 */,
710 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
711 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
715 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
717 * In cases where the weight does not change often, we can use the
718 * precalculated inverse to speed up arithmetics by turning divisions
719 * into multiplications:
721 static const u32 prio_to_wmult[40] = {
722 /* -20 */ 48356, 60446, 75558, 94446, 118058,
723 /* -15 */ 147573, 184467, 230589, 288233, 360285,
724 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
725 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
726 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
727 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
728 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
729 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
732 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
735 * runqueue iterator, to support SMP load-balancing between different
736 * scheduling classes, without having to expose their internal data
737 * structures to the load-balancing proper:
739 struct rq_iterator {
740 void *arg;
741 struct task_struct *(*start)(void *);
742 struct task_struct *(*next)(void *);
745 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
746 unsigned long max_nr_move, unsigned long max_load_move,
747 struct sched_domain *sd, enum cpu_idle_type idle,
748 int *all_pinned, unsigned long *load_moved,
749 int *this_best_prio, struct rq_iterator *iterator);
751 #include "sched_stats.h"
752 #include "sched_rt.c"
753 #include "sched_fair.c"
754 #include "sched_idletask.c"
755 #ifdef CONFIG_SCHED_DEBUG
756 # include "sched_debug.c"
757 #endif
759 #define sched_class_highest (&rt_sched_class)
761 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
763 if (rq->curr != rq->idle && ls->load.weight) {
764 ls->delta_exec += ls->delta_stat;
765 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
766 ls->delta_stat = 0;
771 * Update delta_exec, delta_fair fields for rq.
773 * delta_fair clock advances at a rate inversely proportional to
774 * total load (rq->ls.load.weight) on the runqueue, while
775 * delta_exec advances at the same rate as wall-clock (provided
776 * cpu is not idle).
778 * delta_exec / delta_fair is a measure of the (smoothened) load on this
779 * runqueue over any given interval. This (smoothened) load is used
780 * during load balance.
782 * This function is called /before/ updating rq->ls.load
783 * and when switching tasks.
785 static void update_curr_load(struct rq *rq)
787 struct load_stat *ls = &rq->ls;
788 u64 start;
790 start = ls->load_update_start;
791 ls->load_update_start = rq->clock;
792 ls->delta_stat += rq->clock - start;
794 * Stagger updates to ls->delta_fair. Very frequent updates
795 * can be expensive.
797 if (ls->delta_stat >= sysctl_sched_stat_granularity)
798 __update_curr_load(rq, ls);
801 static inline void inc_load(struct rq *rq, const struct task_struct *p)
803 update_curr_load(rq);
804 update_load_add(&rq->ls.load, p->se.load.weight);
807 static inline void dec_load(struct rq *rq, const struct task_struct *p)
809 update_curr_load(rq);
810 update_load_sub(&rq->ls.load, p->se.load.weight);
813 static void inc_nr_running(struct task_struct *p, struct rq *rq)
815 rq->nr_running++;
816 inc_load(rq, p);
819 static void dec_nr_running(struct task_struct *p, struct rq *rq)
821 rq->nr_running--;
822 dec_load(rq, p);
825 static void set_load_weight(struct task_struct *p)
827 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
828 p->se.wait_runtime = 0;
830 if (task_has_rt_policy(p)) {
831 p->se.load.weight = prio_to_weight[0] * 2;
832 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
833 return;
837 * SCHED_IDLE tasks get minimal weight:
839 if (p->policy == SCHED_IDLE) {
840 p->se.load.weight = WEIGHT_IDLEPRIO;
841 p->se.load.inv_weight = WMULT_IDLEPRIO;
842 return;
845 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
846 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
849 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
851 sched_info_queued(p);
852 p->sched_class->enqueue_task(rq, p, wakeup);
853 p->se.on_rq = 1;
856 static void
857 dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
859 p->sched_class->dequeue_task(rq, p, sleep);
860 p->se.on_rq = 0;
864 * __normal_prio - return the priority that is based on the static prio
866 static inline int __normal_prio(struct task_struct *p)
868 return p->static_prio;
872 * Calculate the expected normal priority: i.e. priority
873 * without taking RT-inheritance into account. Might be
874 * boosted by interactivity modifiers. Changes upon fork,
875 * setprio syscalls, and whenever the interactivity
876 * estimator recalculates.
878 static inline int normal_prio(struct task_struct *p)
880 int prio;
882 if (task_has_rt_policy(p))
883 prio = MAX_RT_PRIO-1 - p->rt_priority;
884 else
885 prio = __normal_prio(p);
886 return prio;
890 * Calculate the current priority, i.e. the priority
891 * taken into account by the scheduler. This value might
892 * be boosted by RT tasks, or might be boosted by
893 * interactivity modifiers. Will be RT if the task got
894 * RT-boosted. If not then it returns p->normal_prio.
896 static int effective_prio(struct task_struct *p)
898 p->normal_prio = normal_prio(p);
900 * If we are RT tasks or we were boosted to RT priority,
901 * keep the priority unchanged. Otherwise, update priority
902 * to the normal priority:
904 if (!rt_prio(p->prio))
905 return p->normal_prio;
906 return p->prio;
910 * activate_task - move a task to the runqueue.
912 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
914 u64 now;
916 update_rq_clock(rq);
917 now = rq->clock;
919 if (p->state == TASK_UNINTERRUPTIBLE)
920 rq->nr_uninterruptible--;
922 enqueue_task(rq, p, wakeup);
923 inc_nr_running(p, rq);
927 * activate_idle_task - move idle task to the _front_ of runqueue.
929 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
931 u64 now;
933 update_rq_clock(rq);
934 now = rq->clock;
936 if (p->state == TASK_UNINTERRUPTIBLE)
937 rq->nr_uninterruptible--;
939 enqueue_task(rq, p, 0);
940 inc_nr_running(p, rq);
944 * deactivate_task - remove a task from the runqueue.
946 static void
947 deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
949 if (p->state == TASK_UNINTERRUPTIBLE)
950 rq->nr_uninterruptible++;
952 dequeue_task(rq, p, sleep, now);
953 dec_nr_running(p, rq);
957 * task_curr - is this task currently executing on a CPU?
958 * @p: the task in question.
960 inline int task_curr(const struct task_struct *p)
962 return cpu_curr(task_cpu(p)) == p;
965 /* Used instead of source_load when we know the type == 0 */
966 unsigned long weighted_cpuload(const int cpu)
968 return cpu_rq(cpu)->ls.load.weight;
971 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
973 #ifdef CONFIG_SMP
974 task_thread_info(p)->cpu = cpu;
975 set_task_cfs_rq(p);
976 #endif
979 #ifdef CONFIG_SMP
981 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
983 int old_cpu = task_cpu(p);
984 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
985 u64 clock_offset, fair_clock_offset;
987 clock_offset = old_rq->clock - new_rq->clock;
988 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
990 if (p->se.wait_start_fair)
991 p->se.wait_start_fair -= fair_clock_offset;
992 if (p->se.sleep_start_fair)
993 p->se.sleep_start_fair -= fair_clock_offset;
995 #ifdef CONFIG_SCHEDSTATS
996 if (p->se.wait_start)
997 p->se.wait_start -= clock_offset;
998 if (p->se.sleep_start)
999 p->se.sleep_start -= clock_offset;
1000 if (p->se.block_start)
1001 p->se.block_start -= clock_offset;
1002 #endif
1004 __set_task_cpu(p, new_cpu);
1007 struct migration_req {
1008 struct list_head list;
1010 struct task_struct *task;
1011 int dest_cpu;
1013 struct completion done;
1017 * The task's runqueue lock must be held.
1018 * Returns true if you have to wait for migration thread.
1020 static int
1021 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1023 struct rq *rq = task_rq(p);
1026 * If the task is not on a runqueue (and not running), then
1027 * it is sufficient to simply update the task's cpu field.
1029 if (!p->se.on_rq && !task_running(rq, p)) {
1030 set_task_cpu(p, dest_cpu);
1031 return 0;
1034 init_completion(&req->done);
1035 req->task = p;
1036 req->dest_cpu = dest_cpu;
1037 list_add(&req->list, &rq->migration_queue);
1039 return 1;
1043 * wait_task_inactive - wait for a thread to unschedule.
1045 * The caller must ensure that the task *will* unschedule sometime soon,
1046 * else this function might spin for a *long* time. This function can't
1047 * be called with interrupts off, or it may introduce deadlock with
1048 * smp_call_function() if an IPI is sent by the same process we are
1049 * waiting to become inactive.
1051 void wait_task_inactive(struct task_struct *p)
1053 unsigned long flags;
1054 int running, on_rq;
1055 struct rq *rq;
1057 repeat:
1059 * We do the initial early heuristics without holding
1060 * any task-queue locks at all. We'll only try to get
1061 * the runqueue lock when things look like they will
1062 * work out!
1064 rq = task_rq(p);
1067 * If the task is actively running on another CPU
1068 * still, just relax and busy-wait without holding
1069 * any locks.
1071 * NOTE! Since we don't hold any locks, it's not
1072 * even sure that "rq" stays as the right runqueue!
1073 * But we don't care, since "task_running()" will
1074 * return false if the runqueue has changed and p
1075 * is actually now running somewhere else!
1077 while (task_running(rq, p))
1078 cpu_relax();
1081 * Ok, time to look more closely! We need the rq
1082 * lock now, to be *sure*. If we're wrong, we'll
1083 * just go back and repeat.
1085 rq = task_rq_lock(p, &flags);
1086 running = task_running(rq, p);
1087 on_rq = p->se.on_rq;
1088 task_rq_unlock(rq, &flags);
1091 * Was it really running after all now that we
1092 * checked with the proper locks actually held?
1094 * Oops. Go back and try again..
1096 if (unlikely(running)) {
1097 cpu_relax();
1098 goto repeat;
1102 * It's not enough that it's not actively running,
1103 * it must be off the runqueue _entirely_, and not
1104 * preempted!
1106 * So if it wa still runnable (but just not actively
1107 * running right now), it's preempted, and we should
1108 * yield - it could be a while.
1110 if (unlikely(on_rq)) {
1111 yield();
1112 goto repeat;
1116 * Ahh, all good. It wasn't running, and it wasn't
1117 * runnable, which means that it will never become
1118 * running in the future either. We're all done!
1122 /***
1123 * kick_process - kick a running thread to enter/exit the kernel
1124 * @p: the to-be-kicked thread
1126 * Cause a process which is running on another CPU to enter
1127 * kernel-mode, without any delay. (to get signals handled.)
1129 * NOTE: this function doesnt have to take the runqueue lock,
1130 * because all it wants to ensure is that the remote task enters
1131 * the kernel. If the IPI races and the task has been migrated
1132 * to another CPU then no harm is done and the purpose has been
1133 * achieved as well.
1135 void kick_process(struct task_struct *p)
1137 int cpu;
1139 preempt_disable();
1140 cpu = task_cpu(p);
1141 if ((cpu != smp_processor_id()) && task_curr(p))
1142 smp_send_reschedule(cpu);
1143 preempt_enable();
1147 * Return a low guess at the load of a migration-source cpu weighted
1148 * according to the scheduling class and "nice" value.
1150 * We want to under-estimate the load of migration sources, to
1151 * balance conservatively.
1153 static inline unsigned long source_load(int cpu, int type)
1155 struct rq *rq = cpu_rq(cpu);
1156 unsigned long total = weighted_cpuload(cpu);
1158 if (type == 0)
1159 return total;
1161 return min(rq->cpu_load[type-1], total);
1165 * Return a high guess at the load of a migration-target cpu weighted
1166 * according to the scheduling class and "nice" value.
1168 static inline unsigned long target_load(int cpu, int type)
1170 struct rq *rq = cpu_rq(cpu);
1171 unsigned long total = weighted_cpuload(cpu);
1173 if (type == 0)
1174 return total;
1176 return max(rq->cpu_load[type-1], total);
1180 * Return the average load per task on the cpu's run queue
1182 static inline unsigned long cpu_avg_load_per_task(int cpu)
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long total = weighted_cpuload(cpu);
1186 unsigned long n = rq->nr_running;
1188 return n ? total / n : SCHED_LOAD_SCALE;
1192 * find_idlest_group finds and returns the least busy CPU group within the
1193 * domain.
1195 static struct sched_group *
1196 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1198 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1199 unsigned long min_load = ULONG_MAX, this_load = 0;
1200 int load_idx = sd->forkexec_idx;
1201 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1203 do {
1204 unsigned long load, avg_load;
1205 int local_group;
1206 int i;
1208 /* Skip over this group if it has no CPUs allowed */
1209 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1210 goto nextgroup;
1212 local_group = cpu_isset(this_cpu, group->cpumask);
1214 /* Tally up the load of all CPUs in the group */
1215 avg_load = 0;
1217 for_each_cpu_mask(i, group->cpumask) {
1218 /* Bias balancing toward cpus of our domain */
1219 if (local_group)
1220 load = source_load(i, load_idx);
1221 else
1222 load = target_load(i, load_idx);
1224 avg_load += load;
1227 /* Adjust by relative CPU power of the group */
1228 avg_load = sg_div_cpu_power(group,
1229 avg_load * SCHED_LOAD_SCALE);
1231 if (local_group) {
1232 this_load = avg_load;
1233 this = group;
1234 } else if (avg_load < min_load) {
1235 min_load = avg_load;
1236 idlest = group;
1238 nextgroup:
1239 group = group->next;
1240 } while (group != sd->groups);
1242 if (!idlest || 100*this_load < imbalance*min_load)
1243 return NULL;
1244 return idlest;
1248 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1250 static int
1251 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1253 cpumask_t tmp;
1254 unsigned long load, min_load = ULONG_MAX;
1255 int idlest = -1;
1256 int i;
1258 /* Traverse only the allowed CPUs */
1259 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1261 for_each_cpu_mask(i, tmp) {
1262 load = weighted_cpuload(i);
1264 if (load < min_load || (load == min_load && i == this_cpu)) {
1265 min_load = load;
1266 idlest = i;
1270 return idlest;
1274 * sched_balance_self: balance the current task (running on cpu) in domains
1275 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1276 * SD_BALANCE_EXEC.
1278 * Balance, ie. select the least loaded group.
1280 * Returns the target CPU number, or the same CPU if no balancing is needed.
1282 * preempt must be disabled.
1284 static int sched_balance_self(int cpu, int flag)
1286 struct task_struct *t = current;
1287 struct sched_domain *tmp, *sd = NULL;
1289 for_each_domain(cpu, tmp) {
1291 * If power savings logic is enabled for a domain, stop there.
1293 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1294 break;
1295 if (tmp->flags & flag)
1296 sd = tmp;
1299 while (sd) {
1300 cpumask_t span;
1301 struct sched_group *group;
1302 int new_cpu, weight;
1304 if (!(sd->flags & flag)) {
1305 sd = sd->child;
1306 continue;
1309 span = sd->span;
1310 group = find_idlest_group(sd, t, cpu);
1311 if (!group) {
1312 sd = sd->child;
1313 continue;
1316 new_cpu = find_idlest_cpu(group, t, cpu);
1317 if (new_cpu == -1 || new_cpu == cpu) {
1318 /* Now try balancing at a lower domain level of cpu */
1319 sd = sd->child;
1320 continue;
1323 /* Now try balancing at a lower domain level of new_cpu */
1324 cpu = new_cpu;
1325 sd = NULL;
1326 weight = cpus_weight(span);
1327 for_each_domain(cpu, tmp) {
1328 if (weight <= cpus_weight(tmp->span))
1329 break;
1330 if (tmp->flags & flag)
1331 sd = tmp;
1333 /* while loop will break here if sd == NULL */
1336 return cpu;
1339 #endif /* CONFIG_SMP */
1342 * wake_idle() will wake a task on an idle cpu if task->cpu is
1343 * not idle and an idle cpu is available. The span of cpus to
1344 * search starts with cpus closest then further out as needed,
1345 * so we always favor a closer, idle cpu.
1347 * Returns the CPU we should wake onto.
1349 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1350 static int wake_idle(int cpu, struct task_struct *p)
1352 cpumask_t tmp;
1353 struct sched_domain *sd;
1354 int i;
1357 * If it is idle, then it is the best cpu to run this task.
1359 * This cpu is also the best, if it has more than one task already.
1360 * Siblings must be also busy(in most cases) as they didn't already
1361 * pickup the extra load from this cpu and hence we need not check
1362 * sibling runqueue info. This will avoid the checks and cache miss
1363 * penalities associated with that.
1365 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1366 return cpu;
1368 for_each_domain(cpu, sd) {
1369 if (sd->flags & SD_WAKE_IDLE) {
1370 cpus_and(tmp, sd->span, p->cpus_allowed);
1371 for_each_cpu_mask(i, tmp) {
1372 if (idle_cpu(i))
1373 return i;
1375 } else {
1376 break;
1379 return cpu;
1381 #else
1382 static inline int wake_idle(int cpu, struct task_struct *p)
1384 return cpu;
1386 #endif
1388 /***
1389 * try_to_wake_up - wake up a thread
1390 * @p: the to-be-woken-up thread
1391 * @state: the mask of task states that can be woken
1392 * @sync: do a synchronous wakeup?
1394 * Put it on the run-queue if it's not already there. The "current"
1395 * thread is always on the run-queue (except when the actual
1396 * re-schedule is in progress), and as such you're allowed to do
1397 * the simpler "current->state = TASK_RUNNING" to mark yourself
1398 * runnable without the overhead of this.
1400 * returns failure only if the task is already active.
1402 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1404 int cpu, this_cpu, success = 0;
1405 unsigned long flags;
1406 long old_state;
1407 struct rq *rq;
1408 #ifdef CONFIG_SMP
1409 struct sched_domain *sd, *this_sd = NULL;
1410 unsigned long load, this_load;
1411 int new_cpu;
1412 #endif
1414 rq = task_rq_lock(p, &flags);
1415 old_state = p->state;
1416 if (!(old_state & state))
1417 goto out;
1419 if (p->se.on_rq)
1420 goto out_running;
1422 cpu = task_cpu(p);
1423 this_cpu = smp_processor_id();
1425 #ifdef CONFIG_SMP
1426 if (unlikely(task_running(rq, p)))
1427 goto out_activate;
1429 new_cpu = cpu;
1431 schedstat_inc(rq, ttwu_cnt);
1432 if (cpu == this_cpu) {
1433 schedstat_inc(rq, ttwu_local);
1434 goto out_set_cpu;
1437 for_each_domain(this_cpu, sd) {
1438 if (cpu_isset(cpu, sd->span)) {
1439 schedstat_inc(sd, ttwu_wake_remote);
1440 this_sd = sd;
1441 break;
1445 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1446 goto out_set_cpu;
1449 * Check for affine wakeup and passive balancing possibilities.
1451 if (this_sd) {
1452 int idx = this_sd->wake_idx;
1453 unsigned int imbalance;
1455 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1457 load = source_load(cpu, idx);
1458 this_load = target_load(this_cpu, idx);
1460 new_cpu = this_cpu; /* Wake to this CPU if we can */
1462 if (this_sd->flags & SD_WAKE_AFFINE) {
1463 unsigned long tl = this_load;
1464 unsigned long tl_per_task;
1466 tl_per_task = cpu_avg_load_per_task(this_cpu);
1469 * If sync wakeup then subtract the (maximum possible)
1470 * effect of the currently running task from the load
1471 * of the current CPU:
1473 if (sync)
1474 tl -= current->se.load.weight;
1476 if ((tl <= load &&
1477 tl + target_load(cpu, idx) <= tl_per_task) ||
1478 100*(tl + p->se.load.weight) <= imbalance*load) {
1480 * This domain has SD_WAKE_AFFINE and
1481 * p is cache cold in this domain, and
1482 * there is no bad imbalance.
1484 schedstat_inc(this_sd, ttwu_move_affine);
1485 goto out_set_cpu;
1490 * Start passive balancing when half the imbalance_pct
1491 * limit is reached.
1493 if (this_sd->flags & SD_WAKE_BALANCE) {
1494 if (imbalance*this_load <= 100*load) {
1495 schedstat_inc(this_sd, ttwu_move_balance);
1496 goto out_set_cpu;
1501 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1502 out_set_cpu:
1503 new_cpu = wake_idle(new_cpu, p);
1504 if (new_cpu != cpu) {
1505 set_task_cpu(p, new_cpu);
1506 task_rq_unlock(rq, &flags);
1507 /* might preempt at this point */
1508 rq = task_rq_lock(p, &flags);
1509 old_state = p->state;
1510 if (!(old_state & state))
1511 goto out;
1512 if (p->se.on_rq)
1513 goto out_running;
1515 this_cpu = smp_processor_id();
1516 cpu = task_cpu(p);
1519 out_activate:
1520 #endif /* CONFIG_SMP */
1521 activate_task(rq, p, 1);
1523 * Sync wakeups (i.e. those types of wakeups where the waker
1524 * has indicated that it will leave the CPU in short order)
1525 * don't trigger a preemption, if the woken up task will run on
1526 * this cpu. (in this case the 'I will reschedule' promise of
1527 * the waker guarantees that the freshly woken up task is going
1528 * to be considered on this CPU.)
1530 if (!sync || cpu != this_cpu)
1531 check_preempt_curr(rq, p);
1532 success = 1;
1534 out_running:
1535 p->state = TASK_RUNNING;
1536 out:
1537 task_rq_unlock(rq, &flags);
1539 return success;
1542 int fastcall wake_up_process(struct task_struct *p)
1544 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1545 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1547 EXPORT_SYMBOL(wake_up_process);
1549 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1551 return try_to_wake_up(p, state, 0);
1555 * Perform scheduler related setup for a newly forked process p.
1556 * p is forked by current.
1558 * __sched_fork() is basic setup used by init_idle() too:
1560 static void __sched_fork(struct task_struct *p)
1562 p->se.wait_start_fair = 0;
1563 p->se.exec_start = 0;
1564 p->se.sum_exec_runtime = 0;
1565 p->se.delta_exec = 0;
1566 p->se.delta_fair_run = 0;
1567 p->se.delta_fair_sleep = 0;
1568 p->se.wait_runtime = 0;
1569 p->se.sleep_start_fair = 0;
1571 #ifdef CONFIG_SCHEDSTATS
1572 p->se.wait_start = 0;
1573 p->se.sum_wait_runtime = 0;
1574 p->se.sum_sleep_runtime = 0;
1575 p->se.sleep_start = 0;
1576 p->se.block_start = 0;
1577 p->se.sleep_max = 0;
1578 p->se.block_max = 0;
1579 p->se.exec_max = 0;
1580 p->se.wait_max = 0;
1581 p->se.wait_runtime_overruns = 0;
1582 p->se.wait_runtime_underruns = 0;
1583 #endif
1585 INIT_LIST_HEAD(&p->run_list);
1586 p->se.on_rq = 0;
1588 #ifdef CONFIG_PREEMPT_NOTIFIERS
1589 INIT_HLIST_HEAD(&p->preempt_notifiers);
1590 #endif
1593 * We mark the process as running here, but have not actually
1594 * inserted it onto the runqueue yet. This guarantees that
1595 * nobody will actually run it, and a signal or other external
1596 * event cannot wake it up and insert it on the runqueue either.
1598 p->state = TASK_RUNNING;
1602 * fork()/clone()-time setup:
1604 void sched_fork(struct task_struct *p, int clone_flags)
1606 int cpu = get_cpu();
1608 __sched_fork(p);
1610 #ifdef CONFIG_SMP
1611 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1612 #endif
1613 __set_task_cpu(p, cpu);
1616 * Make sure we do not leak PI boosting priority to the child:
1618 p->prio = current->normal_prio;
1620 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1621 if (likely(sched_info_on()))
1622 memset(&p->sched_info, 0, sizeof(p->sched_info));
1623 #endif
1624 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1625 p->oncpu = 0;
1626 #endif
1627 #ifdef CONFIG_PREEMPT
1628 /* Want to start with kernel preemption disabled. */
1629 task_thread_info(p)->preempt_count = 1;
1630 #endif
1631 put_cpu();
1635 * After fork, child runs first. (default) If set to 0 then
1636 * parent will (try to) run first.
1638 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1641 * wake_up_new_task - wake up a newly created task for the first time.
1643 * This function will do some initial scheduler statistics housekeeping
1644 * that must be done for every newly created context, then puts the task
1645 * on the runqueue and wakes it.
1647 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1649 unsigned long flags;
1650 struct rq *rq;
1651 int this_cpu;
1652 u64 now;
1654 rq = task_rq_lock(p, &flags);
1655 BUG_ON(p->state != TASK_RUNNING);
1656 this_cpu = smp_processor_id(); /* parent's CPU */
1657 update_rq_clock(rq);
1658 now = rq->clock;
1660 p->prio = effective_prio(p);
1662 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1663 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1664 !current->se.on_rq) {
1666 activate_task(rq, p, 0);
1667 } else {
1669 * Let the scheduling class do new task startup
1670 * management (if any):
1672 p->sched_class->task_new(rq, p);
1673 inc_nr_running(p, rq);
1675 check_preempt_curr(rq, p);
1676 task_rq_unlock(rq, &flags);
1679 #ifdef CONFIG_PREEMPT_NOTIFIERS
1682 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1683 * @notifier: notifier struct to register
1685 void preempt_notifier_register(struct preempt_notifier *notifier)
1687 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1689 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1692 * preempt_notifier_unregister - no longer interested in preemption notifications
1693 * @notifier: notifier struct to unregister
1695 * This is safe to call from within a preemption notifier.
1697 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1699 hlist_del(&notifier->link);
1701 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1703 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1705 struct preempt_notifier *notifier;
1706 struct hlist_node *node;
1708 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1709 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1712 static void
1713 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1714 struct task_struct *next)
1716 struct preempt_notifier *notifier;
1717 struct hlist_node *node;
1719 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1720 notifier->ops->sched_out(notifier, next);
1723 #else
1725 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1729 static void
1730 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1731 struct task_struct *next)
1735 #endif
1738 * prepare_task_switch - prepare to switch tasks
1739 * @rq: the runqueue preparing to switch
1740 * @prev: the current task that is being switched out
1741 * @next: the task we are going to switch to.
1743 * This is called with the rq lock held and interrupts off. It must
1744 * be paired with a subsequent finish_task_switch after the context
1745 * switch.
1747 * prepare_task_switch sets up locking and calls architecture specific
1748 * hooks.
1750 static inline void
1751 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1752 struct task_struct *next)
1754 fire_sched_out_preempt_notifiers(prev, next);
1755 prepare_lock_switch(rq, next);
1756 prepare_arch_switch(next);
1760 * finish_task_switch - clean up after a task-switch
1761 * @rq: runqueue associated with task-switch
1762 * @prev: the thread we just switched away from.
1764 * finish_task_switch must be called after the context switch, paired
1765 * with a prepare_task_switch call before the context switch.
1766 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1767 * and do any other architecture-specific cleanup actions.
1769 * Note that we may have delayed dropping an mm in context_switch(). If
1770 * so, we finish that here outside of the runqueue lock. (Doing it
1771 * with the lock held can cause deadlocks; see schedule() for
1772 * details.)
1774 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1775 __releases(rq->lock)
1777 struct mm_struct *mm = rq->prev_mm;
1778 long prev_state;
1780 rq->prev_mm = NULL;
1783 * A task struct has one reference for the use as "current".
1784 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1785 * schedule one last time. The schedule call will never return, and
1786 * the scheduled task must drop that reference.
1787 * The test for TASK_DEAD must occur while the runqueue locks are
1788 * still held, otherwise prev could be scheduled on another cpu, die
1789 * there before we look at prev->state, and then the reference would
1790 * be dropped twice.
1791 * Manfred Spraul <manfred@colorfullife.com>
1793 prev_state = prev->state;
1794 finish_arch_switch(prev);
1795 finish_lock_switch(rq, prev);
1796 fire_sched_in_preempt_notifiers(current);
1797 if (mm)
1798 mmdrop(mm);
1799 if (unlikely(prev_state == TASK_DEAD)) {
1801 * Remove function-return probe instances associated with this
1802 * task and put them back on the free list.
1804 kprobe_flush_task(prev);
1805 put_task_struct(prev);
1810 * schedule_tail - first thing a freshly forked thread must call.
1811 * @prev: the thread we just switched away from.
1813 asmlinkage void schedule_tail(struct task_struct *prev)
1814 __releases(rq->lock)
1816 struct rq *rq = this_rq();
1818 finish_task_switch(rq, prev);
1819 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1820 /* In this case, finish_task_switch does not reenable preemption */
1821 preempt_enable();
1822 #endif
1823 if (current->set_child_tid)
1824 put_user(current->pid, current->set_child_tid);
1828 * context_switch - switch to the new MM and the new
1829 * thread's register state.
1831 static inline void
1832 context_switch(struct rq *rq, struct task_struct *prev,
1833 struct task_struct *next)
1835 struct mm_struct *mm, *oldmm;
1837 prepare_task_switch(rq, prev, next);
1838 mm = next->mm;
1839 oldmm = prev->active_mm;
1841 * For paravirt, this is coupled with an exit in switch_to to
1842 * combine the page table reload and the switch backend into
1843 * one hypercall.
1845 arch_enter_lazy_cpu_mode();
1847 if (unlikely(!mm)) {
1848 next->active_mm = oldmm;
1849 atomic_inc(&oldmm->mm_count);
1850 enter_lazy_tlb(oldmm, next);
1851 } else
1852 switch_mm(oldmm, mm, next);
1854 if (unlikely(!prev->mm)) {
1855 prev->active_mm = NULL;
1856 rq->prev_mm = oldmm;
1859 * Since the runqueue lock will be released by the next
1860 * task (which is an invalid locking op but in the case
1861 * of the scheduler it's an obvious special-case), so we
1862 * do an early lockdep release here:
1864 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1865 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1866 #endif
1868 /* Here we just switch the register state and the stack. */
1869 switch_to(prev, next, prev);
1871 barrier();
1873 * this_rq must be evaluated again because prev may have moved
1874 * CPUs since it called schedule(), thus the 'rq' on its stack
1875 * frame will be invalid.
1877 finish_task_switch(this_rq(), prev);
1881 * nr_running, nr_uninterruptible and nr_context_switches:
1883 * externally visible scheduler statistics: current number of runnable
1884 * threads, current number of uninterruptible-sleeping threads, total
1885 * number of context switches performed since bootup.
1887 unsigned long nr_running(void)
1889 unsigned long i, sum = 0;
1891 for_each_online_cpu(i)
1892 sum += cpu_rq(i)->nr_running;
1894 return sum;
1897 unsigned long nr_uninterruptible(void)
1899 unsigned long i, sum = 0;
1901 for_each_possible_cpu(i)
1902 sum += cpu_rq(i)->nr_uninterruptible;
1905 * Since we read the counters lockless, it might be slightly
1906 * inaccurate. Do not allow it to go below zero though:
1908 if (unlikely((long)sum < 0))
1909 sum = 0;
1911 return sum;
1914 unsigned long long nr_context_switches(void)
1916 int i;
1917 unsigned long long sum = 0;
1919 for_each_possible_cpu(i)
1920 sum += cpu_rq(i)->nr_switches;
1922 return sum;
1925 unsigned long nr_iowait(void)
1927 unsigned long i, sum = 0;
1929 for_each_possible_cpu(i)
1930 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1932 return sum;
1935 unsigned long nr_active(void)
1937 unsigned long i, running = 0, uninterruptible = 0;
1939 for_each_online_cpu(i) {
1940 running += cpu_rq(i)->nr_running;
1941 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1944 if (unlikely((long)uninterruptible < 0))
1945 uninterruptible = 0;
1947 return running + uninterruptible;
1951 * Update rq->cpu_load[] statistics. This function is usually called every
1952 * scheduler tick (TICK_NSEC).
1954 static void update_cpu_load(struct rq *this_rq)
1956 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1957 unsigned long total_load = this_rq->ls.load.weight;
1958 unsigned long this_load = total_load;
1959 struct load_stat *ls = &this_rq->ls;
1960 u64 now;
1961 int i, scale;
1963 __update_rq_clock(this_rq);
1964 now = this_rq->clock;
1966 this_rq->nr_load_updates++;
1967 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1968 goto do_avg;
1970 /* Update delta_fair/delta_exec fields first */
1971 update_curr_load(this_rq);
1973 fair_delta64 = ls->delta_fair + 1;
1974 ls->delta_fair = 0;
1976 exec_delta64 = ls->delta_exec + 1;
1977 ls->delta_exec = 0;
1979 sample_interval64 = this_rq->clock - ls->load_update_last;
1980 ls->load_update_last = this_rq->clock;
1982 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1983 sample_interval64 = TICK_NSEC;
1985 if (exec_delta64 > sample_interval64)
1986 exec_delta64 = sample_interval64;
1988 idle_delta64 = sample_interval64 - exec_delta64;
1990 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1991 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1993 this_load = (unsigned long)tmp64;
1995 do_avg:
1997 /* Update our load: */
1998 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1999 unsigned long old_load, new_load;
2001 /* scale is effectively 1 << i now, and >> i divides by scale */
2003 old_load = this_rq->cpu_load[i];
2004 new_load = this_load;
2006 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2010 #ifdef CONFIG_SMP
2013 * double_rq_lock - safely lock two runqueues
2015 * Note this does not disable interrupts like task_rq_lock,
2016 * you need to do so manually before calling.
2018 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2019 __acquires(rq1->lock)
2020 __acquires(rq2->lock)
2022 BUG_ON(!irqs_disabled());
2023 if (rq1 == rq2) {
2024 spin_lock(&rq1->lock);
2025 __acquire(rq2->lock); /* Fake it out ;) */
2026 } else {
2027 if (rq1 < rq2) {
2028 spin_lock(&rq1->lock);
2029 spin_lock(&rq2->lock);
2030 } else {
2031 spin_lock(&rq2->lock);
2032 spin_lock(&rq1->lock);
2038 * double_rq_unlock - safely unlock two runqueues
2040 * Note this does not restore interrupts like task_rq_unlock,
2041 * you need to do so manually after calling.
2043 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2044 __releases(rq1->lock)
2045 __releases(rq2->lock)
2047 spin_unlock(&rq1->lock);
2048 if (rq1 != rq2)
2049 spin_unlock(&rq2->lock);
2050 else
2051 __release(rq2->lock);
2055 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2057 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2058 __releases(this_rq->lock)
2059 __acquires(busiest->lock)
2060 __acquires(this_rq->lock)
2062 if (unlikely(!irqs_disabled())) {
2063 /* printk() doesn't work good under rq->lock */
2064 spin_unlock(&this_rq->lock);
2065 BUG_ON(1);
2067 if (unlikely(!spin_trylock(&busiest->lock))) {
2068 if (busiest < this_rq) {
2069 spin_unlock(&this_rq->lock);
2070 spin_lock(&busiest->lock);
2071 spin_lock(&this_rq->lock);
2072 } else
2073 spin_lock(&busiest->lock);
2078 * If dest_cpu is allowed for this process, migrate the task to it.
2079 * This is accomplished by forcing the cpu_allowed mask to only
2080 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2081 * the cpu_allowed mask is restored.
2083 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2085 struct migration_req req;
2086 unsigned long flags;
2087 struct rq *rq;
2089 rq = task_rq_lock(p, &flags);
2090 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2091 || unlikely(cpu_is_offline(dest_cpu)))
2092 goto out;
2094 /* force the process onto the specified CPU */
2095 if (migrate_task(p, dest_cpu, &req)) {
2096 /* Need to wait for migration thread (might exit: take ref). */
2097 struct task_struct *mt = rq->migration_thread;
2099 get_task_struct(mt);
2100 task_rq_unlock(rq, &flags);
2101 wake_up_process(mt);
2102 put_task_struct(mt);
2103 wait_for_completion(&req.done);
2105 return;
2107 out:
2108 task_rq_unlock(rq, &flags);
2112 * sched_exec - execve() is a valuable balancing opportunity, because at
2113 * this point the task has the smallest effective memory and cache footprint.
2115 void sched_exec(void)
2117 int new_cpu, this_cpu = get_cpu();
2118 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2119 put_cpu();
2120 if (new_cpu != this_cpu)
2121 sched_migrate_task(current, new_cpu);
2125 * pull_task - move a task from a remote runqueue to the local runqueue.
2126 * Both runqueues must be locked.
2128 static void pull_task(struct rq *src_rq, struct task_struct *p,
2129 struct rq *this_rq, int this_cpu)
2131 update_rq_clock(src_rq);
2132 deactivate_task(src_rq, p, 0, src_rq->clock);
2133 set_task_cpu(p, this_cpu);
2134 activate_task(this_rq, p, 0);
2136 * Note that idle threads have a prio of MAX_PRIO, for this test
2137 * to be always true for them.
2139 check_preempt_curr(this_rq, p);
2143 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2145 static
2146 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2147 struct sched_domain *sd, enum cpu_idle_type idle,
2148 int *all_pinned)
2151 * We do not migrate tasks that are:
2152 * 1) running (obviously), or
2153 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2154 * 3) are cache-hot on their current CPU.
2156 if (!cpu_isset(this_cpu, p->cpus_allowed))
2157 return 0;
2158 *all_pinned = 0;
2160 if (task_running(rq, p))
2161 return 0;
2164 * Aggressive migration if too many balance attempts have failed:
2166 if (sd->nr_balance_failed > sd->cache_nice_tries)
2167 return 1;
2169 return 1;
2172 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2173 unsigned long max_nr_move, unsigned long max_load_move,
2174 struct sched_domain *sd, enum cpu_idle_type idle,
2175 int *all_pinned, unsigned long *load_moved,
2176 int *this_best_prio, struct rq_iterator *iterator)
2178 int pulled = 0, pinned = 0, skip_for_load;
2179 struct task_struct *p;
2180 long rem_load_move = max_load_move;
2182 if (max_nr_move == 0 || max_load_move == 0)
2183 goto out;
2185 pinned = 1;
2188 * Start the load-balancing iterator:
2190 p = iterator->start(iterator->arg);
2191 next:
2192 if (!p)
2193 goto out;
2195 * To help distribute high priority tasks accross CPUs we don't
2196 * skip a task if it will be the highest priority task (i.e. smallest
2197 * prio value) on its new queue regardless of its load weight
2199 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2200 SCHED_LOAD_SCALE_FUZZ;
2201 if ((skip_for_load && p->prio >= *this_best_prio) ||
2202 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2203 p = iterator->next(iterator->arg);
2204 goto next;
2207 pull_task(busiest, p, this_rq, this_cpu);
2208 pulled++;
2209 rem_load_move -= p->se.load.weight;
2212 * We only want to steal up to the prescribed number of tasks
2213 * and the prescribed amount of weighted load.
2215 if (pulled < max_nr_move && rem_load_move > 0) {
2216 if (p->prio < *this_best_prio)
2217 *this_best_prio = p->prio;
2218 p = iterator->next(iterator->arg);
2219 goto next;
2221 out:
2223 * Right now, this is the only place pull_task() is called,
2224 * so we can safely collect pull_task() stats here rather than
2225 * inside pull_task().
2227 schedstat_add(sd, lb_gained[idle], pulled);
2229 if (all_pinned)
2230 *all_pinned = pinned;
2231 *load_moved = max_load_move - rem_load_move;
2232 return pulled;
2236 * move_tasks tries to move up to max_load_move weighted load from busiest to
2237 * this_rq, as part of a balancing operation within domain "sd".
2238 * Returns 1 if successful and 0 otherwise.
2240 * Called with both runqueues locked.
2242 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2243 unsigned long max_load_move,
2244 struct sched_domain *sd, enum cpu_idle_type idle,
2245 int *all_pinned)
2247 struct sched_class *class = sched_class_highest;
2248 unsigned long total_load_moved = 0;
2249 int this_best_prio = this_rq->curr->prio;
2251 do {
2252 total_load_moved +=
2253 class->load_balance(this_rq, this_cpu, busiest,
2254 ULONG_MAX, max_load_move - total_load_moved,
2255 sd, idle, all_pinned, &this_best_prio);
2256 class = class->next;
2257 } while (class && max_load_move > total_load_moved);
2259 return total_load_moved > 0;
2263 * move_one_task tries to move exactly one task from busiest to this_rq, as
2264 * part of active balancing operations within "domain".
2265 * Returns 1 if successful and 0 otherwise.
2267 * Called with both runqueues locked.
2269 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2270 struct sched_domain *sd, enum cpu_idle_type idle)
2272 struct sched_class *class;
2273 int this_best_prio = MAX_PRIO;
2275 for (class = sched_class_highest; class; class = class->next)
2276 if (class->load_balance(this_rq, this_cpu, busiest,
2277 1, ULONG_MAX, sd, idle, NULL,
2278 &this_best_prio))
2279 return 1;
2281 return 0;
2285 * find_busiest_group finds and returns the busiest CPU group within the
2286 * domain. It calculates and returns the amount of weighted load which
2287 * should be moved to restore balance via the imbalance parameter.
2289 static struct sched_group *
2290 find_busiest_group(struct sched_domain *sd, int this_cpu,
2291 unsigned long *imbalance, enum cpu_idle_type idle,
2292 int *sd_idle, cpumask_t *cpus, int *balance)
2294 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2295 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2296 unsigned long max_pull;
2297 unsigned long busiest_load_per_task, busiest_nr_running;
2298 unsigned long this_load_per_task, this_nr_running;
2299 int load_idx;
2300 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2301 int power_savings_balance = 1;
2302 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2303 unsigned long min_nr_running = ULONG_MAX;
2304 struct sched_group *group_min = NULL, *group_leader = NULL;
2305 #endif
2307 max_load = this_load = total_load = total_pwr = 0;
2308 busiest_load_per_task = busiest_nr_running = 0;
2309 this_load_per_task = this_nr_running = 0;
2310 if (idle == CPU_NOT_IDLE)
2311 load_idx = sd->busy_idx;
2312 else if (idle == CPU_NEWLY_IDLE)
2313 load_idx = sd->newidle_idx;
2314 else
2315 load_idx = sd->idle_idx;
2317 do {
2318 unsigned long load, group_capacity;
2319 int local_group;
2320 int i;
2321 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2322 unsigned long sum_nr_running, sum_weighted_load;
2324 local_group = cpu_isset(this_cpu, group->cpumask);
2326 if (local_group)
2327 balance_cpu = first_cpu(group->cpumask);
2329 /* Tally up the load of all CPUs in the group */
2330 sum_weighted_load = sum_nr_running = avg_load = 0;
2332 for_each_cpu_mask(i, group->cpumask) {
2333 struct rq *rq;
2335 if (!cpu_isset(i, *cpus))
2336 continue;
2338 rq = cpu_rq(i);
2340 if (*sd_idle && rq->nr_running)
2341 *sd_idle = 0;
2343 /* Bias balancing toward cpus of our domain */
2344 if (local_group) {
2345 if (idle_cpu(i) && !first_idle_cpu) {
2346 first_idle_cpu = 1;
2347 balance_cpu = i;
2350 load = target_load(i, load_idx);
2351 } else
2352 load = source_load(i, load_idx);
2354 avg_load += load;
2355 sum_nr_running += rq->nr_running;
2356 sum_weighted_load += weighted_cpuload(i);
2360 * First idle cpu or the first cpu(busiest) in this sched group
2361 * is eligible for doing load balancing at this and above
2362 * domains. In the newly idle case, we will allow all the cpu's
2363 * to do the newly idle load balance.
2365 if (idle != CPU_NEWLY_IDLE && local_group &&
2366 balance_cpu != this_cpu && balance) {
2367 *balance = 0;
2368 goto ret;
2371 total_load += avg_load;
2372 total_pwr += group->__cpu_power;
2374 /* Adjust by relative CPU power of the group */
2375 avg_load = sg_div_cpu_power(group,
2376 avg_load * SCHED_LOAD_SCALE);
2378 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2380 if (local_group) {
2381 this_load = avg_load;
2382 this = group;
2383 this_nr_running = sum_nr_running;
2384 this_load_per_task = sum_weighted_load;
2385 } else if (avg_load > max_load &&
2386 sum_nr_running > group_capacity) {
2387 max_load = avg_load;
2388 busiest = group;
2389 busiest_nr_running = sum_nr_running;
2390 busiest_load_per_task = sum_weighted_load;
2393 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2395 * Busy processors will not participate in power savings
2396 * balance.
2398 if (idle == CPU_NOT_IDLE ||
2399 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2400 goto group_next;
2403 * If the local group is idle or completely loaded
2404 * no need to do power savings balance at this domain
2406 if (local_group && (this_nr_running >= group_capacity ||
2407 !this_nr_running))
2408 power_savings_balance = 0;
2411 * If a group is already running at full capacity or idle,
2412 * don't include that group in power savings calculations
2414 if (!power_savings_balance || sum_nr_running >= group_capacity
2415 || !sum_nr_running)
2416 goto group_next;
2419 * Calculate the group which has the least non-idle load.
2420 * This is the group from where we need to pick up the load
2421 * for saving power
2423 if ((sum_nr_running < min_nr_running) ||
2424 (sum_nr_running == min_nr_running &&
2425 first_cpu(group->cpumask) <
2426 first_cpu(group_min->cpumask))) {
2427 group_min = group;
2428 min_nr_running = sum_nr_running;
2429 min_load_per_task = sum_weighted_load /
2430 sum_nr_running;
2434 * Calculate the group which is almost near its
2435 * capacity but still has some space to pick up some load
2436 * from other group and save more power
2438 if (sum_nr_running <= group_capacity - 1) {
2439 if (sum_nr_running > leader_nr_running ||
2440 (sum_nr_running == leader_nr_running &&
2441 first_cpu(group->cpumask) >
2442 first_cpu(group_leader->cpumask))) {
2443 group_leader = group;
2444 leader_nr_running = sum_nr_running;
2447 group_next:
2448 #endif
2449 group = group->next;
2450 } while (group != sd->groups);
2452 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2453 goto out_balanced;
2455 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2457 if (this_load >= avg_load ||
2458 100*max_load <= sd->imbalance_pct*this_load)
2459 goto out_balanced;
2461 busiest_load_per_task /= busiest_nr_running;
2463 * We're trying to get all the cpus to the average_load, so we don't
2464 * want to push ourselves above the average load, nor do we wish to
2465 * reduce the max loaded cpu below the average load, as either of these
2466 * actions would just result in more rebalancing later, and ping-pong
2467 * tasks around. Thus we look for the minimum possible imbalance.
2468 * Negative imbalances (*we* are more loaded than anyone else) will
2469 * be counted as no imbalance for these purposes -- we can't fix that
2470 * by pulling tasks to us. Be careful of negative numbers as they'll
2471 * appear as very large values with unsigned longs.
2473 if (max_load <= busiest_load_per_task)
2474 goto out_balanced;
2477 * In the presence of smp nice balancing, certain scenarios can have
2478 * max load less than avg load(as we skip the groups at or below
2479 * its cpu_power, while calculating max_load..)
2481 if (max_load < avg_load) {
2482 *imbalance = 0;
2483 goto small_imbalance;
2486 /* Don't want to pull so many tasks that a group would go idle */
2487 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2489 /* How much load to actually move to equalise the imbalance */
2490 *imbalance = min(max_pull * busiest->__cpu_power,
2491 (avg_load - this_load) * this->__cpu_power)
2492 / SCHED_LOAD_SCALE;
2495 * if *imbalance is less than the average load per runnable task
2496 * there is no gaurantee that any tasks will be moved so we'll have
2497 * a think about bumping its value to force at least one task to be
2498 * moved
2500 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2501 unsigned long tmp, pwr_now, pwr_move;
2502 unsigned int imbn;
2504 small_imbalance:
2505 pwr_move = pwr_now = 0;
2506 imbn = 2;
2507 if (this_nr_running) {
2508 this_load_per_task /= this_nr_running;
2509 if (busiest_load_per_task > this_load_per_task)
2510 imbn = 1;
2511 } else
2512 this_load_per_task = SCHED_LOAD_SCALE;
2514 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2515 busiest_load_per_task * imbn) {
2516 *imbalance = busiest_load_per_task;
2517 return busiest;
2521 * OK, we don't have enough imbalance to justify moving tasks,
2522 * however we may be able to increase total CPU power used by
2523 * moving them.
2526 pwr_now += busiest->__cpu_power *
2527 min(busiest_load_per_task, max_load);
2528 pwr_now += this->__cpu_power *
2529 min(this_load_per_task, this_load);
2530 pwr_now /= SCHED_LOAD_SCALE;
2532 /* Amount of load we'd subtract */
2533 tmp = sg_div_cpu_power(busiest,
2534 busiest_load_per_task * SCHED_LOAD_SCALE);
2535 if (max_load > tmp)
2536 pwr_move += busiest->__cpu_power *
2537 min(busiest_load_per_task, max_load - tmp);
2539 /* Amount of load we'd add */
2540 if (max_load * busiest->__cpu_power <
2541 busiest_load_per_task * SCHED_LOAD_SCALE)
2542 tmp = sg_div_cpu_power(this,
2543 max_load * busiest->__cpu_power);
2544 else
2545 tmp = sg_div_cpu_power(this,
2546 busiest_load_per_task * SCHED_LOAD_SCALE);
2547 pwr_move += this->__cpu_power *
2548 min(this_load_per_task, this_load + tmp);
2549 pwr_move /= SCHED_LOAD_SCALE;
2551 /* Move if we gain throughput */
2552 if (pwr_move <= pwr_now)
2553 goto out_balanced;
2555 *imbalance = busiest_load_per_task;
2558 return busiest;
2560 out_balanced:
2561 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2562 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2563 goto ret;
2565 if (this == group_leader && group_leader != group_min) {
2566 *imbalance = min_load_per_task;
2567 return group_min;
2569 #endif
2570 ret:
2571 *imbalance = 0;
2572 return NULL;
2576 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2578 static struct rq *
2579 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2580 unsigned long imbalance, cpumask_t *cpus)
2582 struct rq *busiest = NULL, *rq;
2583 unsigned long max_load = 0;
2584 int i;
2586 for_each_cpu_mask(i, group->cpumask) {
2587 unsigned long wl;
2589 if (!cpu_isset(i, *cpus))
2590 continue;
2592 rq = cpu_rq(i);
2593 wl = weighted_cpuload(i);
2595 if (rq->nr_running == 1 && wl > imbalance)
2596 continue;
2598 if (wl > max_load) {
2599 max_load = wl;
2600 busiest = rq;
2604 return busiest;
2608 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2609 * so long as it is large enough.
2611 #define MAX_PINNED_INTERVAL 512
2614 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2615 * tasks if there is an imbalance.
2617 static int load_balance(int this_cpu, struct rq *this_rq,
2618 struct sched_domain *sd, enum cpu_idle_type idle,
2619 int *balance)
2621 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2622 struct sched_group *group;
2623 unsigned long imbalance;
2624 struct rq *busiest;
2625 cpumask_t cpus = CPU_MASK_ALL;
2626 unsigned long flags;
2629 * When power savings policy is enabled for the parent domain, idle
2630 * sibling can pick up load irrespective of busy siblings. In this case,
2631 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2632 * portraying it as CPU_NOT_IDLE.
2634 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2635 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2636 sd_idle = 1;
2638 schedstat_inc(sd, lb_cnt[idle]);
2640 redo:
2641 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2642 &cpus, balance);
2644 if (*balance == 0)
2645 goto out_balanced;
2647 if (!group) {
2648 schedstat_inc(sd, lb_nobusyg[idle]);
2649 goto out_balanced;
2652 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2653 if (!busiest) {
2654 schedstat_inc(sd, lb_nobusyq[idle]);
2655 goto out_balanced;
2658 BUG_ON(busiest == this_rq);
2660 schedstat_add(sd, lb_imbalance[idle], imbalance);
2662 ld_moved = 0;
2663 if (busiest->nr_running > 1) {
2665 * Attempt to move tasks. If find_busiest_group has found
2666 * an imbalance but busiest->nr_running <= 1, the group is
2667 * still unbalanced. ld_moved simply stays zero, so it is
2668 * correctly treated as an imbalance.
2670 local_irq_save(flags);
2671 double_rq_lock(this_rq, busiest);
2672 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2673 imbalance, sd, idle, &all_pinned);
2674 double_rq_unlock(this_rq, busiest);
2675 local_irq_restore(flags);
2678 * some other cpu did the load balance for us.
2680 if (ld_moved && this_cpu != smp_processor_id())
2681 resched_cpu(this_cpu);
2683 /* All tasks on this runqueue were pinned by CPU affinity */
2684 if (unlikely(all_pinned)) {
2685 cpu_clear(cpu_of(busiest), cpus);
2686 if (!cpus_empty(cpus))
2687 goto redo;
2688 goto out_balanced;
2692 if (!ld_moved) {
2693 schedstat_inc(sd, lb_failed[idle]);
2694 sd->nr_balance_failed++;
2696 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2698 spin_lock_irqsave(&busiest->lock, flags);
2700 /* don't kick the migration_thread, if the curr
2701 * task on busiest cpu can't be moved to this_cpu
2703 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2704 spin_unlock_irqrestore(&busiest->lock, flags);
2705 all_pinned = 1;
2706 goto out_one_pinned;
2709 if (!busiest->active_balance) {
2710 busiest->active_balance = 1;
2711 busiest->push_cpu = this_cpu;
2712 active_balance = 1;
2714 spin_unlock_irqrestore(&busiest->lock, flags);
2715 if (active_balance)
2716 wake_up_process(busiest->migration_thread);
2719 * We've kicked active balancing, reset the failure
2720 * counter.
2722 sd->nr_balance_failed = sd->cache_nice_tries+1;
2724 } else
2725 sd->nr_balance_failed = 0;
2727 if (likely(!active_balance)) {
2728 /* We were unbalanced, so reset the balancing interval */
2729 sd->balance_interval = sd->min_interval;
2730 } else {
2732 * If we've begun active balancing, start to back off. This
2733 * case may not be covered by the all_pinned logic if there
2734 * is only 1 task on the busy runqueue (because we don't call
2735 * move_tasks).
2737 if (sd->balance_interval < sd->max_interval)
2738 sd->balance_interval *= 2;
2741 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2742 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2743 return -1;
2744 return ld_moved;
2746 out_balanced:
2747 schedstat_inc(sd, lb_balanced[idle]);
2749 sd->nr_balance_failed = 0;
2751 out_one_pinned:
2752 /* tune up the balancing interval */
2753 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2754 (sd->balance_interval < sd->max_interval))
2755 sd->balance_interval *= 2;
2757 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2758 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2759 return -1;
2760 return 0;
2764 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2765 * tasks if there is an imbalance.
2767 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2768 * this_rq is locked.
2770 static int
2771 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2773 struct sched_group *group;
2774 struct rq *busiest = NULL;
2775 unsigned long imbalance;
2776 int ld_moved = 0;
2777 int sd_idle = 0;
2778 int all_pinned = 0;
2779 cpumask_t cpus = CPU_MASK_ALL;
2782 * When power savings policy is enabled for the parent domain, idle
2783 * sibling can pick up load irrespective of busy siblings. In this case,
2784 * let the state of idle sibling percolate up as IDLE, instead of
2785 * portraying it as CPU_NOT_IDLE.
2787 if (sd->flags & SD_SHARE_CPUPOWER &&
2788 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2789 sd_idle = 1;
2791 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2792 redo:
2793 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2794 &sd_idle, &cpus, NULL);
2795 if (!group) {
2796 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2797 goto out_balanced;
2800 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2801 &cpus);
2802 if (!busiest) {
2803 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2804 goto out_balanced;
2807 BUG_ON(busiest == this_rq);
2809 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2811 ld_moved = 0;
2812 if (busiest->nr_running > 1) {
2813 /* Attempt to move tasks */
2814 double_lock_balance(this_rq, busiest);
2815 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2816 imbalance, sd, CPU_NEWLY_IDLE,
2817 &all_pinned);
2818 spin_unlock(&busiest->lock);
2820 if (unlikely(all_pinned)) {
2821 cpu_clear(cpu_of(busiest), cpus);
2822 if (!cpus_empty(cpus))
2823 goto redo;
2827 if (!ld_moved) {
2828 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2829 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2830 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2831 return -1;
2832 } else
2833 sd->nr_balance_failed = 0;
2835 return ld_moved;
2837 out_balanced:
2838 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2839 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2840 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2841 return -1;
2842 sd->nr_balance_failed = 0;
2844 return 0;
2848 * idle_balance is called by schedule() if this_cpu is about to become
2849 * idle. Attempts to pull tasks from other CPUs.
2851 static void idle_balance(int this_cpu, struct rq *this_rq)
2853 struct sched_domain *sd;
2854 int pulled_task = -1;
2855 unsigned long next_balance = jiffies + HZ;
2857 for_each_domain(this_cpu, sd) {
2858 unsigned long interval;
2860 if (!(sd->flags & SD_LOAD_BALANCE))
2861 continue;
2863 if (sd->flags & SD_BALANCE_NEWIDLE)
2864 /* If we've pulled tasks over stop searching: */
2865 pulled_task = load_balance_newidle(this_cpu,
2866 this_rq, sd);
2868 interval = msecs_to_jiffies(sd->balance_interval);
2869 if (time_after(next_balance, sd->last_balance + interval))
2870 next_balance = sd->last_balance + interval;
2871 if (pulled_task)
2872 break;
2874 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2876 * We are going idle. next_balance may be set based on
2877 * a busy processor. So reset next_balance.
2879 this_rq->next_balance = next_balance;
2884 * active_load_balance is run by migration threads. It pushes running tasks
2885 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2886 * running on each physical CPU where possible, and avoids physical /
2887 * logical imbalances.
2889 * Called with busiest_rq locked.
2891 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2893 int target_cpu = busiest_rq->push_cpu;
2894 struct sched_domain *sd;
2895 struct rq *target_rq;
2897 /* Is there any task to move? */
2898 if (busiest_rq->nr_running <= 1)
2899 return;
2901 target_rq = cpu_rq(target_cpu);
2904 * This condition is "impossible", if it occurs
2905 * we need to fix it. Originally reported by
2906 * Bjorn Helgaas on a 128-cpu setup.
2908 BUG_ON(busiest_rq == target_rq);
2910 /* move a task from busiest_rq to target_rq */
2911 double_lock_balance(busiest_rq, target_rq);
2913 /* Search for an sd spanning us and the target CPU. */
2914 for_each_domain(target_cpu, sd) {
2915 if ((sd->flags & SD_LOAD_BALANCE) &&
2916 cpu_isset(busiest_cpu, sd->span))
2917 break;
2920 if (likely(sd)) {
2921 schedstat_inc(sd, alb_cnt);
2923 if (move_one_task(target_rq, target_cpu, busiest_rq,
2924 sd, CPU_IDLE))
2925 schedstat_inc(sd, alb_pushed);
2926 else
2927 schedstat_inc(sd, alb_failed);
2929 spin_unlock(&target_rq->lock);
2932 #ifdef CONFIG_NO_HZ
2933 static struct {
2934 atomic_t load_balancer;
2935 cpumask_t cpu_mask;
2936 } nohz ____cacheline_aligned = {
2937 .load_balancer = ATOMIC_INIT(-1),
2938 .cpu_mask = CPU_MASK_NONE,
2942 * This routine will try to nominate the ilb (idle load balancing)
2943 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2944 * load balancing on behalf of all those cpus. If all the cpus in the system
2945 * go into this tickless mode, then there will be no ilb owner (as there is
2946 * no need for one) and all the cpus will sleep till the next wakeup event
2947 * arrives...
2949 * For the ilb owner, tick is not stopped. And this tick will be used
2950 * for idle load balancing. ilb owner will still be part of
2951 * nohz.cpu_mask..
2953 * While stopping the tick, this cpu will become the ilb owner if there
2954 * is no other owner. And will be the owner till that cpu becomes busy
2955 * or if all cpus in the system stop their ticks at which point
2956 * there is no need for ilb owner.
2958 * When the ilb owner becomes busy, it nominates another owner, during the
2959 * next busy scheduler_tick()
2961 int select_nohz_load_balancer(int stop_tick)
2963 int cpu = smp_processor_id();
2965 if (stop_tick) {
2966 cpu_set(cpu, nohz.cpu_mask);
2967 cpu_rq(cpu)->in_nohz_recently = 1;
2970 * If we are going offline and still the leader, give up!
2972 if (cpu_is_offline(cpu) &&
2973 atomic_read(&nohz.load_balancer) == cpu) {
2974 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2975 BUG();
2976 return 0;
2979 /* time for ilb owner also to sleep */
2980 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2981 if (atomic_read(&nohz.load_balancer) == cpu)
2982 atomic_set(&nohz.load_balancer, -1);
2983 return 0;
2986 if (atomic_read(&nohz.load_balancer) == -1) {
2987 /* make me the ilb owner */
2988 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2989 return 1;
2990 } else if (atomic_read(&nohz.load_balancer) == cpu)
2991 return 1;
2992 } else {
2993 if (!cpu_isset(cpu, nohz.cpu_mask))
2994 return 0;
2996 cpu_clear(cpu, nohz.cpu_mask);
2998 if (atomic_read(&nohz.load_balancer) == cpu)
2999 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3000 BUG();
3002 return 0;
3004 #endif
3006 static DEFINE_SPINLOCK(balancing);
3009 * It checks each scheduling domain to see if it is due to be balanced,
3010 * and initiates a balancing operation if so.
3012 * Balancing parameters are set up in arch_init_sched_domains.
3014 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3016 int balance = 1;
3017 struct rq *rq = cpu_rq(cpu);
3018 unsigned long interval;
3019 struct sched_domain *sd;
3020 /* Earliest time when we have to do rebalance again */
3021 unsigned long next_balance = jiffies + 60*HZ;
3023 for_each_domain(cpu, sd) {
3024 if (!(sd->flags & SD_LOAD_BALANCE))
3025 continue;
3027 interval = sd->balance_interval;
3028 if (idle != CPU_IDLE)
3029 interval *= sd->busy_factor;
3031 /* scale ms to jiffies */
3032 interval = msecs_to_jiffies(interval);
3033 if (unlikely(!interval))
3034 interval = 1;
3035 if (interval > HZ*NR_CPUS/10)
3036 interval = HZ*NR_CPUS/10;
3039 if (sd->flags & SD_SERIALIZE) {
3040 if (!spin_trylock(&balancing))
3041 goto out;
3044 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3045 if (load_balance(cpu, rq, sd, idle, &balance)) {
3047 * We've pulled tasks over so either we're no
3048 * longer idle, or one of our SMT siblings is
3049 * not idle.
3051 idle = CPU_NOT_IDLE;
3053 sd->last_balance = jiffies;
3055 if (sd->flags & SD_SERIALIZE)
3056 spin_unlock(&balancing);
3057 out:
3058 if (time_after(next_balance, sd->last_balance + interval))
3059 next_balance = sd->last_balance + interval;
3062 * Stop the load balance at this level. There is another
3063 * CPU in our sched group which is doing load balancing more
3064 * actively.
3066 if (!balance)
3067 break;
3069 rq->next_balance = next_balance;
3073 * run_rebalance_domains is triggered when needed from the scheduler tick.
3074 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3075 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3077 static void run_rebalance_domains(struct softirq_action *h)
3079 int this_cpu = smp_processor_id();
3080 struct rq *this_rq = cpu_rq(this_cpu);
3081 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3082 CPU_IDLE : CPU_NOT_IDLE;
3084 rebalance_domains(this_cpu, idle);
3086 #ifdef CONFIG_NO_HZ
3088 * If this cpu is the owner for idle load balancing, then do the
3089 * balancing on behalf of the other idle cpus whose ticks are
3090 * stopped.
3092 if (this_rq->idle_at_tick &&
3093 atomic_read(&nohz.load_balancer) == this_cpu) {
3094 cpumask_t cpus = nohz.cpu_mask;
3095 struct rq *rq;
3096 int balance_cpu;
3098 cpu_clear(this_cpu, cpus);
3099 for_each_cpu_mask(balance_cpu, cpus) {
3101 * If this cpu gets work to do, stop the load balancing
3102 * work being done for other cpus. Next load
3103 * balancing owner will pick it up.
3105 if (need_resched())
3106 break;
3108 rebalance_domains(balance_cpu, SCHED_IDLE);
3110 rq = cpu_rq(balance_cpu);
3111 if (time_after(this_rq->next_balance, rq->next_balance))
3112 this_rq->next_balance = rq->next_balance;
3115 #endif
3119 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3121 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3122 * idle load balancing owner or decide to stop the periodic load balancing,
3123 * if the whole system is idle.
3125 static inline void trigger_load_balance(struct rq *rq, int cpu)
3127 #ifdef CONFIG_NO_HZ
3129 * If we were in the nohz mode recently and busy at the current
3130 * scheduler tick, then check if we need to nominate new idle
3131 * load balancer.
3133 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3134 rq->in_nohz_recently = 0;
3136 if (atomic_read(&nohz.load_balancer) == cpu) {
3137 cpu_clear(cpu, nohz.cpu_mask);
3138 atomic_set(&nohz.load_balancer, -1);
3141 if (atomic_read(&nohz.load_balancer) == -1) {
3143 * simple selection for now: Nominate the
3144 * first cpu in the nohz list to be the next
3145 * ilb owner.
3147 * TBD: Traverse the sched domains and nominate
3148 * the nearest cpu in the nohz.cpu_mask.
3150 int ilb = first_cpu(nohz.cpu_mask);
3152 if (ilb != NR_CPUS)
3153 resched_cpu(ilb);
3158 * If this cpu is idle and doing idle load balancing for all the
3159 * cpus with ticks stopped, is it time for that to stop?
3161 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3162 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3163 resched_cpu(cpu);
3164 return;
3168 * If this cpu is idle and the idle load balancing is done by
3169 * someone else, then no need raise the SCHED_SOFTIRQ
3171 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3172 cpu_isset(cpu, nohz.cpu_mask))
3173 return;
3174 #endif
3175 if (time_after_eq(jiffies, rq->next_balance))
3176 raise_softirq(SCHED_SOFTIRQ);
3179 #else /* CONFIG_SMP */
3182 * on UP we do not need to balance between CPUs:
3184 static inline void idle_balance(int cpu, struct rq *rq)
3188 /* Avoid "used but not defined" warning on UP */
3189 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3190 unsigned long max_nr_move, unsigned long max_load_move,
3191 struct sched_domain *sd, enum cpu_idle_type idle,
3192 int *all_pinned, unsigned long *load_moved,
3193 int *this_best_prio, struct rq_iterator *iterator)
3195 *load_moved = 0;
3197 return 0;
3200 #endif
3202 DEFINE_PER_CPU(struct kernel_stat, kstat);
3204 EXPORT_PER_CPU_SYMBOL(kstat);
3207 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3208 * that have not yet been banked in case the task is currently running.
3210 unsigned long long task_sched_runtime(struct task_struct *p)
3212 unsigned long flags;
3213 u64 ns, delta_exec;
3214 struct rq *rq;
3216 rq = task_rq_lock(p, &flags);
3217 ns = p->se.sum_exec_runtime;
3218 if (rq->curr == p) {
3219 update_rq_clock(rq);
3220 delta_exec = rq->clock - p->se.exec_start;
3221 if ((s64)delta_exec > 0)
3222 ns += delta_exec;
3224 task_rq_unlock(rq, &flags);
3226 return ns;
3230 * Account user cpu time to a process.
3231 * @p: the process that the cpu time gets accounted to
3232 * @hardirq_offset: the offset to subtract from hardirq_count()
3233 * @cputime: the cpu time spent in user space since the last update
3235 void account_user_time(struct task_struct *p, cputime_t cputime)
3237 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3238 cputime64_t tmp;
3240 p->utime = cputime_add(p->utime, cputime);
3242 /* Add user time to cpustat. */
3243 tmp = cputime_to_cputime64(cputime);
3244 if (TASK_NICE(p) > 0)
3245 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3246 else
3247 cpustat->user = cputime64_add(cpustat->user, tmp);
3251 * Account system cpu time to a process.
3252 * @p: the process that the cpu time gets accounted to
3253 * @hardirq_offset: the offset to subtract from hardirq_count()
3254 * @cputime: the cpu time spent in kernel space since the last update
3256 void account_system_time(struct task_struct *p, int hardirq_offset,
3257 cputime_t cputime)
3259 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3260 struct rq *rq = this_rq();
3261 cputime64_t tmp;
3263 p->stime = cputime_add(p->stime, cputime);
3265 /* Add system time to cpustat. */
3266 tmp = cputime_to_cputime64(cputime);
3267 if (hardirq_count() - hardirq_offset)
3268 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3269 else if (softirq_count())
3270 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3271 else if (p != rq->idle)
3272 cpustat->system = cputime64_add(cpustat->system, tmp);
3273 else if (atomic_read(&rq->nr_iowait) > 0)
3274 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3275 else
3276 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3277 /* Account for system time used */
3278 acct_update_integrals(p);
3282 * Account for involuntary wait time.
3283 * @p: the process from which the cpu time has been stolen
3284 * @steal: the cpu time spent in involuntary wait
3286 void account_steal_time(struct task_struct *p, cputime_t steal)
3288 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3289 cputime64_t tmp = cputime_to_cputime64(steal);
3290 struct rq *rq = this_rq();
3292 if (p == rq->idle) {
3293 p->stime = cputime_add(p->stime, steal);
3294 if (atomic_read(&rq->nr_iowait) > 0)
3295 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3296 else
3297 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3298 } else
3299 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3303 * This function gets called by the timer code, with HZ frequency.
3304 * We call it with interrupts disabled.
3306 * It also gets called by the fork code, when changing the parent's
3307 * timeslices.
3309 void scheduler_tick(void)
3311 int cpu = smp_processor_id();
3312 struct rq *rq = cpu_rq(cpu);
3313 struct task_struct *curr = rq->curr;
3315 spin_lock(&rq->lock);
3316 update_cpu_load(rq);
3317 if (curr != rq->idle) /* FIXME: needed? */
3318 curr->sched_class->task_tick(rq, curr);
3319 spin_unlock(&rq->lock);
3321 #ifdef CONFIG_SMP
3322 rq->idle_at_tick = idle_cpu(cpu);
3323 trigger_load_balance(rq, cpu);
3324 #endif
3327 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3329 void fastcall add_preempt_count(int val)
3332 * Underflow?
3334 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3335 return;
3336 preempt_count() += val;
3338 * Spinlock count overflowing soon?
3340 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3341 PREEMPT_MASK - 10);
3343 EXPORT_SYMBOL(add_preempt_count);
3345 void fastcall sub_preempt_count(int val)
3348 * Underflow?
3350 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3351 return;
3353 * Is the spinlock portion underflowing?
3355 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3356 !(preempt_count() & PREEMPT_MASK)))
3357 return;
3359 preempt_count() -= val;
3361 EXPORT_SYMBOL(sub_preempt_count);
3363 #endif
3366 * Print scheduling while atomic bug:
3368 static noinline void __schedule_bug(struct task_struct *prev)
3370 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3371 prev->comm, preempt_count(), prev->pid);
3372 debug_show_held_locks(prev);
3373 if (irqs_disabled())
3374 print_irqtrace_events(prev);
3375 dump_stack();
3379 * Various schedule()-time debugging checks and statistics:
3381 static inline void schedule_debug(struct task_struct *prev)
3384 * Test if we are atomic. Since do_exit() needs to call into
3385 * schedule() atomically, we ignore that path for now.
3386 * Otherwise, whine if we are scheduling when we should not be.
3388 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3389 __schedule_bug(prev);
3391 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3393 schedstat_inc(this_rq(), sched_cnt);
3397 * Pick up the highest-prio task:
3399 static inline struct task_struct *
3400 pick_next_task(struct rq *rq, struct task_struct *prev)
3402 struct sched_class *class;
3403 struct task_struct *p;
3406 * Optimization: we know that if all tasks are in
3407 * the fair class we can call that function directly:
3409 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3410 p = fair_sched_class.pick_next_task(rq);
3411 if (likely(p))
3412 return p;
3415 class = sched_class_highest;
3416 for ( ; ; ) {
3417 p = class->pick_next_task(rq);
3418 if (p)
3419 return p;
3421 * Will never be NULL as the idle class always
3422 * returns a non-NULL p:
3424 class = class->next;
3429 * schedule() is the main scheduler function.
3431 asmlinkage void __sched schedule(void)
3433 struct task_struct *prev, *next;
3434 long *switch_count;
3435 struct rq *rq;
3436 u64 now;
3437 int cpu;
3439 need_resched:
3440 preempt_disable();
3441 cpu = smp_processor_id();
3442 rq = cpu_rq(cpu);
3443 rcu_qsctr_inc(cpu);
3444 prev = rq->curr;
3445 switch_count = &prev->nivcsw;
3447 release_kernel_lock(prev);
3448 need_resched_nonpreemptible:
3450 schedule_debug(prev);
3452 spin_lock_irq(&rq->lock);
3453 clear_tsk_need_resched(prev);
3454 __update_rq_clock(rq);
3455 now = rq->clock;
3457 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3458 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3459 unlikely(signal_pending(prev)))) {
3460 prev->state = TASK_RUNNING;
3461 } else {
3462 deactivate_task(rq, prev, 1, now);
3464 switch_count = &prev->nvcsw;
3467 if (unlikely(!rq->nr_running))
3468 idle_balance(cpu, rq);
3470 prev->sched_class->put_prev_task(rq, prev);
3471 next = pick_next_task(rq, prev);
3473 sched_info_switch(prev, next);
3475 if (likely(prev != next)) {
3476 rq->nr_switches++;
3477 rq->curr = next;
3478 ++*switch_count;
3480 context_switch(rq, prev, next); /* unlocks the rq */
3481 } else
3482 spin_unlock_irq(&rq->lock);
3484 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3485 cpu = smp_processor_id();
3486 rq = cpu_rq(cpu);
3487 goto need_resched_nonpreemptible;
3489 preempt_enable_no_resched();
3490 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3491 goto need_resched;
3493 EXPORT_SYMBOL(schedule);
3495 #ifdef CONFIG_PREEMPT
3497 * this is the entry point to schedule() from in-kernel preemption
3498 * off of preempt_enable. Kernel preemptions off return from interrupt
3499 * occur there and call schedule directly.
3501 asmlinkage void __sched preempt_schedule(void)
3503 struct thread_info *ti = current_thread_info();
3504 #ifdef CONFIG_PREEMPT_BKL
3505 struct task_struct *task = current;
3506 int saved_lock_depth;
3507 #endif
3509 * If there is a non-zero preempt_count or interrupts are disabled,
3510 * we do not want to preempt the current task. Just return..
3512 if (likely(ti->preempt_count || irqs_disabled()))
3513 return;
3515 need_resched:
3516 add_preempt_count(PREEMPT_ACTIVE);
3518 * We keep the big kernel semaphore locked, but we
3519 * clear ->lock_depth so that schedule() doesnt
3520 * auto-release the semaphore:
3522 #ifdef CONFIG_PREEMPT_BKL
3523 saved_lock_depth = task->lock_depth;
3524 task->lock_depth = -1;
3525 #endif
3526 schedule();
3527 #ifdef CONFIG_PREEMPT_BKL
3528 task->lock_depth = saved_lock_depth;
3529 #endif
3530 sub_preempt_count(PREEMPT_ACTIVE);
3532 /* we could miss a preemption opportunity between schedule and now */
3533 barrier();
3534 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3535 goto need_resched;
3537 EXPORT_SYMBOL(preempt_schedule);
3540 * this is the entry point to schedule() from kernel preemption
3541 * off of irq context.
3542 * Note, that this is called and return with irqs disabled. This will
3543 * protect us against recursive calling from irq.
3545 asmlinkage void __sched preempt_schedule_irq(void)
3547 struct thread_info *ti = current_thread_info();
3548 #ifdef CONFIG_PREEMPT_BKL
3549 struct task_struct *task = current;
3550 int saved_lock_depth;
3551 #endif
3552 /* Catch callers which need to be fixed */
3553 BUG_ON(ti->preempt_count || !irqs_disabled());
3555 need_resched:
3556 add_preempt_count(PREEMPT_ACTIVE);
3558 * We keep the big kernel semaphore locked, but we
3559 * clear ->lock_depth so that schedule() doesnt
3560 * auto-release the semaphore:
3562 #ifdef CONFIG_PREEMPT_BKL
3563 saved_lock_depth = task->lock_depth;
3564 task->lock_depth = -1;
3565 #endif
3566 local_irq_enable();
3567 schedule();
3568 local_irq_disable();
3569 #ifdef CONFIG_PREEMPT_BKL
3570 task->lock_depth = saved_lock_depth;
3571 #endif
3572 sub_preempt_count(PREEMPT_ACTIVE);
3574 /* we could miss a preemption opportunity between schedule and now */
3575 barrier();
3576 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3577 goto need_resched;
3580 #endif /* CONFIG_PREEMPT */
3582 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3583 void *key)
3585 return try_to_wake_up(curr->private, mode, sync);
3587 EXPORT_SYMBOL(default_wake_function);
3590 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3591 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3592 * number) then we wake all the non-exclusive tasks and one exclusive task.
3594 * There are circumstances in which we can try to wake a task which has already
3595 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3596 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3598 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3599 int nr_exclusive, int sync, void *key)
3601 struct list_head *tmp, *next;
3603 list_for_each_safe(tmp, next, &q->task_list) {
3604 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3605 unsigned flags = curr->flags;
3607 if (curr->func(curr, mode, sync, key) &&
3608 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3609 break;
3614 * __wake_up - wake up threads blocked on a waitqueue.
3615 * @q: the waitqueue
3616 * @mode: which threads
3617 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3618 * @key: is directly passed to the wakeup function
3620 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3621 int nr_exclusive, void *key)
3623 unsigned long flags;
3625 spin_lock_irqsave(&q->lock, flags);
3626 __wake_up_common(q, mode, nr_exclusive, 0, key);
3627 spin_unlock_irqrestore(&q->lock, flags);
3629 EXPORT_SYMBOL(__wake_up);
3632 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3634 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3636 __wake_up_common(q, mode, 1, 0, NULL);
3640 * __wake_up_sync - wake up threads blocked on a waitqueue.
3641 * @q: the waitqueue
3642 * @mode: which threads
3643 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3645 * The sync wakeup differs that the waker knows that it will schedule
3646 * away soon, so while the target thread will be woken up, it will not
3647 * be migrated to another CPU - ie. the two threads are 'synchronized'
3648 * with each other. This can prevent needless bouncing between CPUs.
3650 * On UP it can prevent extra preemption.
3652 void fastcall
3653 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3655 unsigned long flags;
3656 int sync = 1;
3658 if (unlikely(!q))
3659 return;
3661 if (unlikely(!nr_exclusive))
3662 sync = 0;
3664 spin_lock_irqsave(&q->lock, flags);
3665 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3666 spin_unlock_irqrestore(&q->lock, flags);
3668 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3670 void fastcall complete(struct completion *x)
3672 unsigned long flags;
3674 spin_lock_irqsave(&x->wait.lock, flags);
3675 x->done++;
3676 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3677 1, 0, NULL);
3678 spin_unlock_irqrestore(&x->wait.lock, flags);
3680 EXPORT_SYMBOL(complete);
3682 void fastcall complete_all(struct completion *x)
3684 unsigned long flags;
3686 spin_lock_irqsave(&x->wait.lock, flags);
3687 x->done += UINT_MAX/2;
3688 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3689 0, 0, NULL);
3690 spin_unlock_irqrestore(&x->wait.lock, flags);
3692 EXPORT_SYMBOL(complete_all);
3694 void fastcall __sched wait_for_completion(struct completion *x)
3696 might_sleep();
3698 spin_lock_irq(&x->wait.lock);
3699 if (!x->done) {
3700 DECLARE_WAITQUEUE(wait, current);
3702 wait.flags |= WQ_FLAG_EXCLUSIVE;
3703 __add_wait_queue_tail(&x->wait, &wait);
3704 do {
3705 __set_current_state(TASK_UNINTERRUPTIBLE);
3706 spin_unlock_irq(&x->wait.lock);
3707 schedule();
3708 spin_lock_irq(&x->wait.lock);
3709 } while (!x->done);
3710 __remove_wait_queue(&x->wait, &wait);
3712 x->done--;
3713 spin_unlock_irq(&x->wait.lock);
3715 EXPORT_SYMBOL(wait_for_completion);
3717 unsigned long fastcall __sched
3718 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3720 might_sleep();
3722 spin_lock_irq(&x->wait.lock);
3723 if (!x->done) {
3724 DECLARE_WAITQUEUE(wait, current);
3726 wait.flags |= WQ_FLAG_EXCLUSIVE;
3727 __add_wait_queue_tail(&x->wait, &wait);
3728 do {
3729 __set_current_state(TASK_UNINTERRUPTIBLE);
3730 spin_unlock_irq(&x->wait.lock);
3731 timeout = schedule_timeout(timeout);
3732 spin_lock_irq(&x->wait.lock);
3733 if (!timeout) {
3734 __remove_wait_queue(&x->wait, &wait);
3735 goto out;
3737 } while (!x->done);
3738 __remove_wait_queue(&x->wait, &wait);
3740 x->done--;
3741 out:
3742 spin_unlock_irq(&x->wait.lock);
3743 return timeout;
3745 EXPORT_SYMBOL(wait_for_completion_timeout);
3747 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3749 int ret = 0;
3751 might_sleep();
3753 spin_lock_irq(&x->wait.lock);
3754 if (!x->done) {
3755 DECLARE_WAITQUEUE(wait, current);
3757 wait.flags |= WQ_FLAG_EXCLUSIVE;
3758 __add_wait_queue_tail(&x->wait, &wait);
3759 do {
3760 if (signal_pending(current)) {
3761 ret = -ERESTARTSYS;
3762 __remove_wait_queue(&x->wait, &wait);
3763 goto out;
3765 __set_current_state(TASK_INTERRUPTIBLE);
3766 spin_unlock_irq(&x->wait.lock);
3767 schedule();
3768 spin_lock_irq(&x->wait.lock);
3769 } while (!x->done);
3770 __remove_wait_queue(&x->wait, &wait);
3772 x->done--;
3773 out:
3774 spin_unlock_irq(&x->wait.lock);
3776 return ret;
3778 EXPORT_SYMBOL(wait_for_completion_interruptible);
3780 unsigned long fastcall __sched
3781 wait_for_completion_interruptible_timeout(struct completion *x,
3782 unsigned long timeout)
3784 might_sleep();
3786 spin_lock_irq(&x->wait.lock);
3787 if (!x->done) {
3788 DECLARE_WAITQUEUE(wait, current);
3790 wait.flags |= WQ_FLAG_EXCLUSIVE;
3791 __add_wait_queue_tail(&x->wait, &wait);
3792 do {
3793 if (signal_pending(current)) {
3794 timeout = -ERESTARTSYS;
3795 __remove_wait_queue(&x->wait, &wait);
3796 goto out;
3798 __set_current_state(TASK_INTERRUPTIBLE);
3799 spin_unlock_irq(&x->wait.lock);
3800 timeout = schedule_timeout(timeout);
3801 spin_lock_irq(&x->wait.lock);
3802 if (!timeout) {
3803 __remove_wait_queue(&x->wait, &wait);
3804 goto out;
3806 } while (!x->done);
3807 __remove_wait_queue(&x->wait, &wait);
3809 x->done--;
3810 out:
3811 spin_unlock_irq(&x->wait.lock);
3812 return timeout;
3814 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3816 static inline void
3817 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3819 spin_lock_irqsave(&q->lock, *flags);
3820 __add_wait_queue(q, wait);
3821 spin_unlock(&q->lock);
3824 static inline void
3825 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3827 spin_lock_irq(&q->lock);
3828 __remove_wait_queue(q, wait);
3829 spin_unlock_irqrestore(&q->lock, *flags);
3832 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3834 unsigned long flags;
3835 wait_queue_t wait;
3837 init_waitqueue_entry(&wait, current);
3839 current->state = TASK_INTERRUPTIBLE;
3841 sleep_on_head(q, &wait, &flags);
3842 schedule();
3843 sleep_on_tail(q, &wait, &flags);
3845 EXPORT_SYMBOL(interruptible_sleep_on);
3847 long __sched
3848 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3850 unsigned long flags;
3851 wait_queue_t wait;
3853 init_waitqueue_entry(&wait, current);
3855 current->state = TASK_INTERRUPTIBLE;
3857 sleep_on_head(q, &wait, &flags);
3858 timeout = schedule_timeout(timeout);
3859 sleep_on_tail(q, &wait, &flags);
3861 return timeout;
3863 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3865 void __sched sleep_on(wait_queue_head_t *q)
3867 unsigned long flags;
3868 wait_queue_t wait;
3870 init_waitqueue_entry(&wait, current);
3872 current->state = TASK_UNINTERRUPTIBLE;
3874 sleep_on_head(q, &wait, &flags);
3875 schedule();
3876 sleep_on_tail(q, &wait, &flags);
3878 EXPORT_SYMBOL(sleep_on);
3880 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3882 unsigned long flags;
3883 wait_queue_t wait;
3885 init_waitqueue_entry(&wait, current);
3887 current->state = TASK_UNINTERRUPTIBLE;
3889 sleep_on_head(q, &wait, &flags);
3890 timeout = schedule_timeout(timeout);
3891 sleep_on_tail(q, &wait, &flags);
3893 return timeout;
3895 EXPORT_SYMBOL(sleep_on_timeout);
3897 #ifdef CONFIG_RT_MUTEXES
3900 * rt_mutex_setprio - set the current priority of a task
3901 * @p: task
3902 * @prio: prio value (kernel-internal form)
3904 * This function changes the 'effective' priority of a task. It does
3905 * not touch ->normal_prio like __setscheduler().
3907 * Used by the rt_mutex code to implement priority inheritance logic.
3909 void rt_mutex_setprio(struct task_struct *p, int prio)
3911 unsigned long flags;
3912 int oldprio, on_rq;
3913 struct rq *rq;
3914 u64 now;
3916 BUG_ON(prio < 0 || prio > MAX_PRIO);
3918 rq = task_rq_lock(p, &flags);
3919 update_rq_clock(rq);
3920 now = rq->clock;
3922 oldprio = p->prio;
3923 on_rq = p->se.on_rq;
3924 if (on_rq)
3925 dequeue_task(rq, p, 0, now);
3927 if (rt_prio(prio))
3928 p->sched_class = &rt_sched_class;
3929 else
3930 p->sched_class = &fair_sched_class;
3932 p->prio = prio;
3934 if (on_rq) {
3935 enqueue_task(rq, p, 0);
3937 * Reschedule if we are currently running on this runqueue and
3938 * our priority decreased, or if we are not currently running on
3939 * this runqueue and our priority is higher than the current's
3941 if (task_running(rq, p)) {
3942 if (p->prio > oldprio)
3943 resched_task(rq->curr);
3944 } else {
3945 check_preempt_curr(rq, p);
3948 task_rq_unlock(rq, &flags);
3951 #endif
3953 void set_user_nice(struct task_struct *p, long nice)
3955 int old_prio, delta, on_rq;
3956 unsigned long flags;
3957 struct rq *rq;
3958 u64 now;
3960 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3961 return;
3963 * We have to be careful, if called from sys_setpriority(),
3964 * the task might be in the middle of scheduling on another CPU.
3966 rq = task_rq_lock(p, &flags);
3967 update_rq_clock(rq);
3968 now = rq->clock;
3970 * The RT priorities are set via sched_setscheduler(), but we still
3971 * allow the 'normal' nice value to be set - but as expected
3972 * it wont have any effect on scheduling until the task is
3973 * SCHED_FIFO/SCHED_RR:
3975 if (task_has_rt_policy(p)) {
3976 p->static_prio = NICE_TO_PRIO(nice);
3977 goto out_unlock;
3979 on_rq = p->se.on_rq;
3980 if (on_rq) {
3981 dequeue_task(rq, p, 0, now);
3982 dec_load(rq, p);
3985 p->static_prio = NICE_TO_PRIO(nice);
3986 set_load_weight(p);
3987 old_prio = p->prio;
3988 p->prio = effective_prio(p);
3989 delta = p->prio - old_prio;
3991 if (on_rq) {
3992 enqueue_task(rq, p, 0);
3993 inc_load(rq, p);
3995 * If the task increased its priority or is running and
3996 * lowered its priority, then reschedule its CPU:
3998 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3999 resched_task(rq->curr);
4001 out_unlock:
4002 task_rq_unlock(rq, &flags);
4004 EXPORT_SYMBOL(set_user_nice);
4007 * can_nice - check if a task can reduce its nice value
4008 * @p: task
4009 * @nice: nice value
4011 int can_nice(const struct task_struct *p, const int nice)
4013 /* convert nice value [19,-20] to rlimit style value [1,40] */
4014 int nice_rlim = 20 - nice;
4016 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4017 capable(CAP_SYS_NICE));
4020 #ifdef __ARCH_WANT_SYS_NICE
4023 * sys_nice - change the priority of the current process.
4024 * @increment: priority increment
4026 * sys_setpriority is a more generic, but much slower function that
4027 * does similar things.
4029 asmlinkage long sys_nice(int increment)
4031 long nice, retval;
4034 * Setpriority might change our priority at the same moment.
4035 * We don't have to worry. Conceptually one call occurs first
4036 * and we have a single winner.
4038 if (increment < -40)
4039 increment = -40;
4040 if (increment > 40)
4041 increment = 40;
4043 nice = PRIO_TO_NICE(current->static_prio) + increment;
4044 if (nice < -20)
4045 nice = -20;
4046 if (nice > 19)
4047 nice = 19;
4049 if (increment < 0 && !can_nice(current, nice))
4050 return -EPERM;
4052 retval = security_task_setnice(current, nice);
4053 if (retval)
4054 return retval;
4056 set_user_nice(current, nice);
4057 return 0;
4060 #endif
4063 * task_prio - return the priority value of a given task.
4064 * @p: the task in question.
4066 * This is the priority value as seen by users in /proc.
4067 * RT tasks are offset by -200. Normal tasks are centered
4068 * around 0, value goes from -16 to +15.
4070 int task_prio(const struct task_struct *p)
4072 return p->prio - MAX_RT_PRIO;
4076 * task_nice - return the nice value of a given task.
4077 * @p: the task in question.
4079 int task_nice(const struct task_struct *p)
4081 return TASK_NICE(p);
4083 EXPORT_SYMBOL_GPL(task_nice);
4086 * idle_cpu - is a given cpu idle currently?
4087 * @cpu: the processor in question.
4089 int idle_cpu(int cpu)
4091 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4095 * idle_task - return the idle task for a given cpu.
4096 * @cpu: the processor in question.
4098 struct task_struct *idle_task(int cpu)
4100 return cpu_rq(cpu)->idle;
4104 * find_process_by_pid - find a process with a matching PID value.
4105 * @pid: the pid in question.
4107 static inline struct task_struct *find_process_by_pid(pid_t pid)
4109 return pid ? find_task_by_pid(pid) : current;
4112 /* Actually do priority change: must hold rq lock. */
4113 static void
4114 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4116 BUG_ON(p->se.on_rq);
4118 p->policy = policy;
4119 switch (p->policy) {
4120 case SCHED_NORMAL:
4121 case SCHED_BATCH:
4122 case SCHED_IDLE:
4123 p->sched_class = &fair_sched_class;
4124 break;
4125 case SCHED_FIFO:
4126 case SCHED_RR:
4127 p->sched_class = &rt_sched_class;
4128 break;
4131 p->rt_priority = prio;
4132 p->normal_prio = normal_prio(p);
4133 /* we are holding p->pi_lock already */
4134 p->prio = rt_mutex_getprio(p);
4135 set_load_weight(p);
4139 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4140 * @p: the task in question.
4141 * @policy: new policy.
4142 * @param: structure containing the new RT priority.
4144 * NOTE that the task may be already dead.
4146 int sched_setscheduler(struct task_struct *p, int policy,
4147 struct sched_param *param)
4149 int retval, oldprio, oldpolicy = -1, on_rq;
4150 unsigned long flags;
4151 struct rq *rq;
4153 /* may grab non-irq protected spin_locks */
4154 BUG_ON(in_interrupt());
4155 recheck:
4156 /* double check policy once rq lock held */
4157 if (policy < 0)
4158 policy = oldpolicy = p->policy;
4159 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4160 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4161 policy != SCHED_IDLE)
4162 return -EINVAL;
4164 * Valid priorities for SCHED_FIFO and SCHED_RR are
4165 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4166 * SCHED_BATCH and SCHED_IDLE is 0.
4168 if (param->sched_priority < 0 ||
4169 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4170 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4171 return -EINVAL;
4172 if (rt_policy(policy) != (param->sched_priority != 0))
4173 return -EINVAL;
4176 * Allow unprivileged RT tasks to decrease priority:
4178 if (!capable(CAP_SYS_NICE)) {
4179 if (rt_policy(policy)) {
4180 unsigned long rlim_rtprio;
4182 if (!lock_task_sighand(p, &flags))
4183 return -ESRCH;
4184 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4185 unlock_task_sighand(p, &flags);
4187 /* can't set/change the rt policy */
4188 if (policy != p->policy && !rlim_rtprio)
4189 return -EPERM;
4191 /* can't increase priority */
4192 if (param->sched_priority > p->rt_priority &&
4193 param->sched_priority > rlim_rtprio)
4194 return -EPERM;
4197 * Like positive nice levels, dont allow tasks to
4198 * move out of SCHED_IDLE either:
4200 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4201 return -EPERM;
4203 /* can't change other user's priorities */
4204 if ((current->euid != p->euid) &&
4205 (current->euid != p->uid))
4206 return -EPERM;
4209 retval = security_task_setscheduler(p, policy, param);
4210 if (retval)
4211 return retval;
4213 * make sure no PI-waiters arrive (or leave) while we are
4214 * changing the priority of the task:
4216 spin_lock_irqsave(&p->pi_lock, flags);
4218 * To be able to change p->policy safely, the apropriate
4219 * runqueue lock must be held.
4221 rq = __task_rq_lock(p);
4222 /* recheck policy now with rq lock held */
4223 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4224 policy = oldpolicy = -1;
4225 __task_rq_unlock(rq);
4226 spin_unlock_irqrestore(&p->pi_lock, flags);
4227 goto recheck;
4229 on_rq = p->se.on_rq;
4230 if (on_rq) {
4231 update_rq_clock(rq);
4232 deactivate_task(rq, p, 0, rq->clock);
4234 oldprio = p->prio;
4235 __setscheduler(rq, p, policy, param->sched_priority);
4236 if (on_rq) {
4237 activate_task(rq, p, 0);
4239 * Reschedule if we are currently running on this runqueue and
4240 * our priority decreased, or if we are not currently running on
4241 * this runqueue and our priority is higher than the current's
4243 if (task_running(rq, p)) {
4244 if (p->prio > oldprio)
4245 resched_task(rq->curr);
4246 } else {
4247 check_preempt_curr(rq, p);
4250 __task_rq_unlock(rq);
4251 spin_unlock_irqrestore(&p->pi_lock, flags);
4253 rt_mutex_adjust_pi(p);
4255 return 0;
4257 EXPORT_SYMBOL_GPL(sched_setscheduler);
4259 static int
4260 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4262 struct sched_param lparam;
4263 struct task_struct *p;
4264 int retval;
4266 if (!param || pid < 0)
4267 return -EINVAL;
4268 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4269 return -EFAULT;
4271 rcu_read_lock();
4272 retval = -ESRCH;
4273 p = find_process_by_pid(pid);
4274 if (p != NULL)
4275 retval = sched_setscheduler(p, policy, &lparam);
4276 rcu_read_unlock();
4278 return retval;
4282 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4283 * @pid: the pid in question.
4284 * @policy: new policy.
4285 * @param: structure containing the new RT priority.
4287 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4288 struct sched_param __user *param)
4290 /* negative values for policy are not valid */
4291 if (policy < 0)
4292 return -EINVAL;
4294 return do_sched_setscheduler(pid, policy, param);
4298 * sys_sched_setparam - set/change the RT priority of a thread
4299 * @pid: the pid in question.
4300 * @param: structure containing the new RT priority.
4302 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4304 return do_sched_setscheduler(pid, -1, param);
4308 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4309 * @pid: the pid in question.
4311 asmlinkage long sys_sched_getscheduler(pid_t pid)
4313 struct task_struct *p;
4314 int retval = -EINVAL;
4316 if (pid < 0)
4317 goto out_nounlock;
4319 retval = -ESRCH;
4320 read_lock(&tasklist_lock);
4321 p = find_process_by_pid(pid);
4322 if (p) {
4323 retval = security_task_getscheduler(p);
4324 if (!retval)
4325 retval = p->policy;
4327 read_unlock(&tasklist_lock);
4329 out_nounlock:
4330 return retval;
4334 * sys_sched_getscheduler - get the RT priority of a thread
4335 * @pid: the pid in question.
4336 * @param: structure containing the RT priority.
4338 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4340 struct sched_param lp;
4341 struct task_struct *p;
4342 int retval = -EINVAL;
4344 if (!param || pid < 0)
4345 goto out_nounlock;
4347 read_lock(&tasklist_lock);
4348 p = find_process_by_pid(pid);
4349 retval = -ESRCH;
4350 if (!p)
4351 goto out_unlock;
4353 retval = security_task_getscheduler(p);
4354 if (retval)
4355 goto out_unlock;
4357 lp.sched_priority = p->rt_priority;
4358 read_unlock(&tasklist_lock);
4361 * This one might sleep, we cannot do it with a spinlock held ...
4363 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4365 out_nounlock:
4366 return retval;
4368 out_unlock:
4369 read_unlock(&tasklist_lock);
4370 return retval;
4373 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4375 cpumask_t cpus_allowed;
4376 struct task_struct *p;
4377 int retval;
4379 mutex_lock(&sched_hotcpu_mutex);
4380 read_lock(&tasklist_lock);
4382 p = find_process_by_pid(pid);
4383 if (!p) {
4384 read_unlock(&tasklist_lock);
4385 mutex_unlock(&sched_hotcpu_mutex);
4386 return -ESRCH;
4390 * It is not safe to call set_cpus_allowed with the
4391 * tasklist_lock held. We will bump the task_struct's
4392 * usage count and then drop tasklist_lock.
4394 get_task_struct(p);
4395 read_unlock(&tasklist_lock);
4397 retval = -EPERM;
4398 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4399 !capable(CAP_SYS_NICE))
4400 goto out_unlock;
4402 retval = security_task_setscheduler(p, 0, NULL);
4403 if (retval)
4404 goto out_unlock;
4406 cpus_allowed = cpuset_cpus_allowed(p);
4407 cpus_and(new_mask, new_mask, cpus_allowed);
4408 retval = set_cpus_allowed(p, new_mask);
4410 out_unlock:
4411 put_task_struct(p);
4412 mutex_unlock(&sched_hotcpu_mutex);
4413 return retval;
4416 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4417 cpumask_t *new_mask)
4419 if (len < sizeof(cpumask_t)) {
4420 memset(new_mask, 0, sizeof(cpumask_t));
4421 } else if (len > sizeof(cpumask_t)) {
4422 len = sizeof(cpumask_t);
4424 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4428 * sys_sched_setaffinity - set the cpu affinity of a process
4429 * @pid: pid of the process
4430 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4431 * @user_mask_ptr: user-space pointer to the new cpu mask
4433 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4434 unsigned long __user *user_mask_ptr)
4436 cpumask_t new_mask;
4437 int retval;
4439 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4440 if (retval)
4441 return retval;
4443 return sched_setaffinity(pid, new_mask);
4447 * Represents all cpu's present in the system
4448 * In systems capable of hotplug, this map could dynamically grow
4449 * as new cpu's are detected in the system via any platform specific
4450 * method, such as ACPI for e.g.
4453 cpumask_t cpu_present_map __read_mostly;
4454 EXPORT_SYMBOL(cpu_present_map);
4456 #ifndef CONFIG_SMP
4457 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4458 EXPORT_SYMBOL(cpu_online_map);
4460 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4461 EXPORT_SYMBOL(cpu_possible_map);
4462 #endif
4464 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4466 struct task_struct *p;
4467 int retval;
4469 mutex_lock(&sched_hotcpu_mutex);
4470 read_lock(&tasklist_lock);
4472 retval = -ESRCH;
4473 p = find_process_by_pid(pid);
4474 if (!p)
4475 goto out_unlock;
4477 retval = security_task_getscheduler(p);
4478 if (retval)
4479 goto out_unlock;
4481 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4483 out_unlock:
4484 read_unlock(&tasklist_lock);
4485 mutex_unlock(&sched_hotcpu_mutex);
4487 return retval;
4491 * sys_sched_getaffinity - get the cpu affinity of a process
4492 * @pid: pid of the process
4493 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4494 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4496 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4497 unsigned long __user *user_mask_ptr)
4499 int ret;
4500 cpumask_t mask;
4502 if (len < sizeof(cpumask_t))
4503 return -EINVAL;
4505 ret = sched_getaffinity(pid, &mask);
4506 if (ret < 0)
4507 return ret;
4509 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4510 return -EFAULT;
4512 return sizeof(cpumask_t);
4516 * sys_sched_yield - yield the current processor to other threads.
4518 * This function yields the current CPU to other tasks. If there are no
4519 * other threads running on this CPU then this function will return.
4521 asmlinkage long sys_sched_yield(void)
4523 struct rq *rq = this_rq_lock();
4525 schedstat_inc(rq, yld_cnt);
4526 if (unlikely(rq->nr_running == 1))
4527 schedstat_inc(rq, yld_act_empty);
4528 else
4529 current->sched_class->yield_task(rq, current);
4532 * Since we are going to call schedule() anyway, there's
4533 * no need to preempt or enable interrupts:
4535 __release(rq->lock);
4536 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4537 _raw_spin_unlock(&rq->lock);
4538 preempt_enable_no_resched();
4540 schedule();
4542 return 0;
4545 static void __cond_resched(void)
4547 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4548 __might_sleep(__FILE__, __LINE__);
4549 #endif
4551 * The BKS might be reacquired before we have dropped
4552 * PREEMPT_ACTIVE, which could trigger a second
4553 * cond_resched() call.
4555 do {
4556 add_preempt_count(PREEMPT_ACTIVE);
4557 schedule();
4558 sub_preempt_count(PREEMPT_ACTIVE);
4559 } while (need_resched());
4562 int __sched cond_resched(void)
4564 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4565 system_state == SYSTEM_RUNNING) {
4566 __cond_resched();
4567 return 1;
4569 return 0;
4571 EXPORT_SYMBOL(cond_resched);
4574 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4575 * call schedule, and on return reacquire the lock.
4577 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4578 * operations here to prevent schedule() from being called twice (once via
4579 * spin_unlock(), once by hand).
4581 int cond_resched_lock(spinlock_t *lock)
4583 int ret = 0;
4585 if (need_lockbreak(lock)) {
4586 spin_unlock(lock);
4587 cpu_relax();
4588 ret = 1;
4589 spin_lock(lock);
4591 if (need_resched() && system_state == SYSTEM_RUNNING) {
4592 spin_release(&lock->dep_map, 1, _THIS_IP_);
4593 _raw_spin_unlock(lock);
4594 preempt_enable_no_resched();
4595 __cond_resched();
4596 ret = 1;
4597 spin_lock(lock);
4599 return ret;
4601 EXPORT_SYMBOL(cond_resched_lock);
4603 int __sched cond_resched_softirq(void)
4605 BUG_ON(!in_softirq());
4607 if (need_resched() && system_state == SYSTEM_RUNNING) {
4608 local_bh_enable();
4609 __cond_resched();
4610 local_bh_disable();
4611 return 1;
4613 return 0;
4615 EXPORT_SYMBOL(cond_resched_softirq);
4618 * yield - yield the current processor to other threads.
4620 * This is a shortcut for kernel-space yielding - it marks the
4621 * thread runnable and calls sys_sched_yield().
4623 void __sched yield(void)
4625 set_current_state(TASK_RUNNING);
4626 sys_sched_yield();
4628 EXPORT_SYMBOL(yield);
4631 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4632 * that process accounting knows that this is a task in IO wait state.
4634 * But don't do that if it is a deliberate, throttling IO wait (this task
4635 * has set its backing_dev_info: the queue against which it should throttle)
4637 void __sched io_schedule(void)
4639 struct rq *rq = &__raw_get_cpu_var(runqueues);
4641 delayacct_blkio_start();
4642 atomic_inc(&rq->nr_iowait);
4643 schedule();
4644 atomic_dec(&rq->nr_iowait);
4645 delayacct_blkio_end();
4647 EXPORT_SYMBOL(io_schedule);
4649 long __sched io_schedule_timeout(long timeout)
4651 struct rq *rq = &__raw_get_cpu_var(runqueues);
4652 long ret;
4654 delayacct_blkio_start();
4655 atomic_inc(&rq->nr_iowait);
4656 ret = schedule_timeout(timeout);
4657 atomic_dec(&rq->nr_iowait);
4658 delayacct_blkio_end();
4659 return ret;
4663 * sys_sched_get_priority_max - return maximum RT priority.
4664 * @policy: scheduling class.
4666 * this syscall returns the maximum rt_priority that can be used
4667 * by a given scheduling class.
4669 asmlinkage long sys_sched_get_priority_max(int policy)
4671 int ret = -EINVAL;
4673 switch (policy) {
4674 case SCHED_FIFO:
4675 case SCHED_RR:
4676 ret = MAX_USER_RT_PRIO-1;
4677 break;
4678 case SCHED_NORMAL:
4679 case SCHED_BATCH:
4680 case SCHED_IDLE:
4681 ret = 0;
4682 break;
4684 return ret;
4688 * sys_sched_get_priority_min - return minimum RT priority.
4689 * @policy: scheduling class.
4691 * this syscall returns the minimum rt_priority that can be used
4692 * by a given scheduling class.
4694 asmlinkage long sys_sched_get_priority_min(int policy)
4696 int ret = -EINVAL;
4698 switch (policy) {
4699 case SCHED_FIFO:
4700 case SCHED_RR:
4701 ret = 1;
4702 break;
4703 case SCHED_NORMAL:
4704 case SCHED_BATCH:
4705 case SCHED_IDLE:
4706 ret = 0;
4708 return ret;
4712 * sys_sched_rr_get_interval - return the default timeslice of a process.
4713 * @pid: pid of the process.
4714 * @interval: userspace pointer to the timeslice value.
4716 * this syscall writes the default timeslice value of a given process
4717 * into the user-space timespec buffer. A value of '0' means infinity.
4719 asmlinkage
4720 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4722 struct task_struct *p;
4723 int retval = -EINVAL;
4724 struct timespec t;
4726 if (pid < 0)
4727 goto out_nounlock;
4729 retval = -ESRCH;
4730 read_lock(&tasklist_lock);
4731 p = find_process_by_pid(pid);
4732 if (!p)
4733 goto out_unlock;
4735 retval = security_task_getscheduler(p);
4736 if (retval)
4737 goto out_unlock;
4739 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4740 0 : static_prio_timeslice(p->static_prio), &t);
4741 read_unlock(&tasklist_lock);
4742 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4743 out_nounlock:
4744 return retval;
4745 out_unlock:
4746 read_unlock(&tasklist_lock);
4747 return retval;
4750 static const char stat_nam[] = "RSDTtZX";
4752 static void show_task(struct task_struct *p)
4754 unsigned long free = 0;
4755 unsigned state;
4757 state = p->state ? __ffs(p->state) + 1 : 0;
4758 printk("%-13.13s %c", p->comm,
4759 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4760 #if BITS_PER_LONG == 32
4761 if (state == TASK_RUNNING)
4762 printk(" running ");
4763 else
4764 printk(" %08lx ", thread_saved_pc(p));
4765 #else
4766 if (state == TASK_RUNNING)
4767 printk(" running task ");
4768 else
4769 printk(" %016lx ", thread_saved_pc(p));
4770 #endif
4771 #ifdef CONFIG_DEBUG_STACK_USAGE
4773 unsigned long *n = end_of_stack(p);
4774 while (!*n)
4775 n++;
4776 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4778 #endif
4779 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4781 if (state != TASK_RUNNING)
4782 show_stack(p, NULL);
4785 void show_state_filter(unsigned long state_filter)
4787 struct task_struct *g, *p;
4789 #if BITS_PER_LONG == 32
4790 printk(KERN_INFO
4791 " task PC stack pid father\n");
4792 #else
4793 printk(KERN_INFO
4794 " task PC stack pid father\n");
4795 #endif
4796 read_lock(&tasklist_lock);
4797 do_each_thread(g, p) {
4799 * reset the NMI-timeout, listing all files on a slow
4800 * console might take alot of time:
4802 touch_nmi_watchdog();
4803 if (!state_filter || (p->state & state_filter))
4804 show_task(p);
4805 } while_each_thread(g, p);
4807 touch_all_softlockup_watchdogs();
4809 #ifdef CONFIG_SCHED_DEBUG
4810 sysrq_sched_debug_show();
4811 #endif
4812 read_unlock(&tasklist_lock);
4814 * Only show locks if all tasks are dumped:
4816 if (state_filter == -1)
4817 debug_show_all_locks();
4820 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4822 idle->sched_class = &idle_sched_class;
4826 * init_idle - set up an idle thread for a given CPU
4827 * @idle: task in question
4828 * @cpu: cpu the idle task belongs to
4830 * NOTE: this function does not set the idle thread's NEED_RESCHED
4831 * flag, to make booting more robust.
4833 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4835 struct rq *rq = cpu_rq(cpu);
4836 unsigned long flags;
4838 __sched_fork(idle);
4839 idle->se.exec_start = sched_clock();
4841 idle->prio = idle->normal_prio = MAX_PRIO;
4842 idle->cpus_allowed = cpumask_of_cpu(cpu);
4843 __set_task_cpu(idle, cpu);
4845 spin_lock_irqsave(&rq->lock, flags);
4846 rq->curr = rq->idle = idle;
4847 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4848 idle->oncpu = 1;
4849 #endif
4850 spin_unlock_irqrestore(&rq->lock, flags);
4852 /* Set the preempt count _outside_ the spinlocks! */
4853 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4854 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4855 #else
4856 task_thread_info(idle)->preempt_count = 0;
4857 #endif
4859 * The idle tasks have their own, simple scheduling class:
4861 idle->sched_class = &idle_sched_class;
4865 * In a system that switches off the HZ timer nohz_cpu_mask
4866 * indicates which cpus entered this state. This is used
4867 * in the rcu update to wait only for active cpus. For system
4868 * which do not switch off the HZ timer nohz_cpu_mask should
4869 * always be CPU_MASK_NONE.
4871 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4874 * Increase the granularity value when there are more CPUs,
4875 * because with more CPUs the 'effective latency' as visible
4876 * to users decreases. But the relationship is not linear,
4877 * so pick a second-best guess by going with the log2 of the
4878 * number of CPUs.
4880 * This idea comes from the SD scheduler of Con Kolivas:
4882 static inline void sched_init_granularity(void)
4884 unsigned int factor = 1 + ilog2(num_online_cpus());
4885 const unsigned long gran_limit = 100000000;
4887 sysctl_sched_granularity *= factor;
4888 if (sysctl_sched_granularity > gran_limit)
4889 sysctl_sched_granularity = gran_limit;
4891 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4892 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4895 #ifdef CONFIG_SMP
4897 * This is how migration works:
4899 * 1) we queue a struct migration_req structure in the source CPU's
4900 * runqueue and wake up that CPU's migration thread.
4901 * 2) we down() the locked semaphore => thread blocks.
4902 * 3) migration thread wakes up (implicitly it forces the migrated
4903 * thread off the CPU)
4904 * 4) it gets the migration request and checks whether the migrated
4905 * task is still in the wrong runqueue.
4906 * 5) if it's in the wrong runqueue then the migration thread removes
4907 * it and puts it into the right queue.
4908 * 6) migration thread up()s the semaphore.
4909 * 7) we wake up and the migration is done.
4913 * Change a given task's CPU affinity. Migrate the thread to a
4914 * proper CPU and schedule it away if the CPU it's executing on
4915 * is removed from the allowed bitmask.
4917 * NOTE: the caller must have a valid reference to the task, the
4918 * task must not exit() & deallocate itself prematurely. The
4919 * call is not atomic; no spinlocks may be held.
4921 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4923 struct migration_req req;
4924 unsigned long flags;
4925 struct rq *rq;
4926 int ret = 0;
4928 rq = task_rq_lock(p, &flags);
4929 if (!cpus_intersects(new_mask, cpu_online_map)) {
4930 ret = -EINVAL;
4931 goto out;
4934 p->cpus_allowed = new_mask;
4935 /* Can the task run on the task's current CPU? If so, we're done */
4936 if (cpu_isset(task_cpu(p), new_mask))
4937 goto out;
4939 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4940 /* Need help from migration thread: drop lock and wait. */
4941 task_rq_unlock(rq, &flags);
4942 wake_up_process(rq->migration_thread);
4943 wait_for_completion(&req.done);
4944 tlb_migrate_finish(p->mm);
4945 return 0;
4947 out:
4948 task_rq_unlock(rq, &flags);
4950 return ret;
4952 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4955 * Move (not current) task off this cpu, onto dest cpu. We're doing
4956 * this because either it can't run here any more (set_cpus_allowed()
4957 * away from this CPU, or CPU going down), or because we're
4958 * attempting to rebalance this task on exec (sched_exec).
4960 * So we race with normal scheduler movements, but that's OK, as long
4961 * as the task is no longer on this CPU.
4963 * Returns non-zero if task was successfully migrated.
4965 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4967 struct rq *rq_dest, *rq_src;
4968 int ret = 0, on_rq;
4970 if (unlikely(cpu_is_offline(dest_cpu)))
4971 return ret;
4973 rq_src = cpu_rq(src_cpu);
4974 rq_dest = cpu_rq(dest_cpu);
4976 double_rq_lock(rq_src, rq_dest);
4977 /* Already moved. */
4978 if (task_cpu(p) != src_cpu)
4979 goto out;
4980 /* Affinity changed (again). */
4981 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4982 goto out;
4984 on_rq = p->se.on_rq;
4985 if (on_rq) {
4986 update_rq_clock(rq_src);
4987 deactivate_task(rq_src, p, 0, rq_src->clock);
4989 set_task_cpu(p, dest_cpu);
4990 if (on_rq) {
4991 activate_task(rq_dest, p, 0);
4992 check_preempt_curr(rq_dest, p);
4994 ret = 1;
4995 out:
4996 double_rq_unlock(rq_src, rq_dest);
4997 return ret;
5001 * migration_thread - this is a highprio system thread that performs
5002 * thread migration by bumping thread off CPU then 'pushing' onto
5003 * another runqueue.
5005 static int migration_thread(void *data)
5007 int cpu = (long)data;
5008 struct rq *rq;
5010 rq = cpu_rq(cpu);
5011 BUG_ON(rq->migration_thread != current);
5013 set_current_state(TASK_INTERRUPTIBLE);
5014 while (!kthread_should_stop()) {
5015 struct migration_req *req;
5016 struct list_head *head;
5018 spin_lock_irq(&rq->lock);
5020 if (cpu_is_offline(cpu)) {
5021 spin_unlock_irq(&rq->lock);
5022 goto wait_to_die;
5025 if (rq->active_balance) {
5026 active_load_balance(rq, cpu);
5027 rq->active_balance = 0;
5030 head = &rq->migration_queue;
5032 if (list_empty(head)) {
5033 spin_unlock_irq(&rq->lock);
5034 schedule();
5035 set_current_state(TASK_INTERRUPTIBLE);
5036 continue;
5038 req = list_entry(head->next, struct migration_req, list);
5039 list_del_init(head->next);
5041 spin_unlock(&rq->lock);
5042 __migrate_task(req->task, cpu, req->dest_cpu);
5043 local_irq_enable();
5045 complete(&req->done);
5047 __set_current_state(TASK_RUNNING);
5048 return 0;
5050 wait_to_die:
5051 /* Wait for kthread_stop */
5052 set_current_state(TASK_INTERRUPTIBLE);
5053 while (!kthread_should_stop()) {
5054 schedule();
5055 set_current_state(TASK_INTERRUPTIBLE);
5057 __set_current_state(TASK_RUNNING);
5058 return 0;
5061 #ifdef CONFIG_HOTPLUG_CPU
5063 * Figure out where task on dead CPU should go, use force if neccessary.
5064 * NOTE: interrupts should be disabled by the caller
5066 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5068 unsigned long flags;
5069 cpumask_t mask;
5070 struct rq *rq;
5071 int dest_cpu;
5073 restart:
5074 /* On same node? */
5075 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5076 cpus_and(mask, mask, p->cpus_allowed);
5077 dest_cpu = any_online_cpu(mask);
5079 /* On any allowed CPU? */
5080 if (dest_cpu == NR_CPUS)
5081 dest_cpu = any_online_cpu(p->cpus_allowed);
5083 /* No more Mr. Nice Guy. */
5084 if (dest_cpu == NR_CPUS) {
5085 rq = task_rq_lock(p, &flags);
5086 cpus_setall(p->cpus_allowed);
5087 dest_cpu = any_online_cpu(p->cpus_allowed);
5088 task_rq_unlock(rq, &flags);
5091 * Don't tell them about moving exiting tasks or
5092 * kernel threads (both mm NULL), since they never
5093 * leave kernel.
5095 if (p->mm && printk_ratelimit())
5096 printk(KERN_INFO "process %d (%s) no "
5097 "longer affine to cpu%d\n",
5098 p->pid, p->comm, dead_cpu);
5100 if (!__migrate_task(p, dead_cpu, dest_cpu))
5101 goto restart;
5105 * While a dead CPU has no uninterruptible tasks queued at this point,
5106 * it might still have a nonzero ->nr_uninterruptible counter, because
5107 * for performance reasons the counter is not stricly tracking tasks to
5108 * their home CPUs. So we just add the counter to another CPU's counter,
5109 * to keep the global sum constant after CPU-down:
5111 static void migrate_nr_uninterruptible(struct rq *rq_src)
5113 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5114 unsigned long flags;
5116 local_irq_save(flags);
5117 double_rq_lock(rq_src, rq_dest);
5118 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5119 rq_src->nr_uninterruptible = 0;
5120 double_rq_unlock(rq_src, rq_dest);
5121 local_irq_restore(flags);
5124 /* Run through task list and migrate tasks from the dead cpu. */
5125 static void migrate_live_tasks(int src_cpu)
5127 struct task_struct *p, *t;
5129 write_lock_irq(&tasklist_lock);
5131 do_each_thread(t, p) {
5132 if (p == current)
5133 continue;
5135 if (task_cpu(p) == src_cpu)
5136 move_task_off_dead_cpu(src_cpu, p);
5137 } while_each_thread(t, p);
5139 write_unlock_irq(&tasklist_lock);
5143 * Schedules idle task to be the next runnable task on current CPU.
5144 * It does so by boosting its priority to highest possible and adding it to
5145 * the _front_ of the runqueue. Used by CPU offline code.
5147 void sched_idle_next(void)
5149 int this_cpu = smp_processor_id();
5150 struct rq *rq = cpu_rq(this_cpu);
5151 struct task_struct *p = rq->idle;
5152 unsigned long flags;
5154 /* cpu has to be offline */
5155 BUG_ON(cpu_online(this_cpu));
5158 * Strictly not necessary since rest of the CPUs are stopped by now
5159 * and interrupts disabled on the current cpu.
5161 spin_lock_irqsave(&rq->lock, flags);
5163 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5165 /* Add idle task to the _front_ of its priority queue: */
5166 activate_idle_task(p, rq);
5168 spin_unlock_irqrestore(&rq->lock, flags);
5172 * Ensures that the idle task is using init_mm right before its cpu goes
5173 * offline.
5175 void idle_task_exit(void)
5177 struct mm_struct *mm = current->active_mm;
5179 BUG_ON(cpu_online(smp_processor_id()));
5181 if (mm != &init_mm)
5182 switch_mm(mm, &init_mm, current);
5183 mmdrop(mm);
5186 /* called under rq->lock with disabled interrupts */
5187 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5189 struct rq *rq = cpu_rq(dead_cpu);
5191 /* Must be exiting, otherwise would be on tasklist. */
5192 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5194 /* Cannot have done final schedule yet: would have vanished. */
5195 BUG_ON(p->state == TASK_DEAD);
5197 get_task_struct(p);
5200 * Drop lock around migration; if someone else moves it,
5201 * that's OK. No task can be added to this CPU, so iteration is
5202 * fine.
5203 * NOTE: interrupts should be left disabled --dev@
5205 spin_unlock(&rq->lock);
5206 move_task_off_dead_cpu(dead_cpu, p);
5207 spin_lock(&rq->lock);
5209 put_task_struct(p);
5212 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5213 static void migrate_dead_tasks(unsigned int dead_cpu)
5215 struct rq *rq = cpu_rq(dead_cpu);
5216 struct task_struct *next;
5218 for ( ; ; ) {
5219 if (!rq->nr_running)
5220 break;
5221 update_rq_clock(rq);
5222 next = pick_next_task(rq, rq->curr);
5223 if (!next)
5224 break;
5225 migrate_dead(dead_cpu, next);
5229 #endif /* CONFIG_HOTPLUG_CPU */
5231 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5233 static struct ctl_table sd_ctl_dir[] = {
5235 .procname = "sched_domain",
5236 .mode = 0755,
5238 {0,},
5241 static struct ctl_table sd_ctl_root[] = {
5243 .procname = "kernel",
5244 .mode = 0755,
5245 .child = sd_ctl_dir,
5247 {0,},
5250 static struct ctl_table *sd_alloc_ctl_entry(int n)
5252 struct ctl_table *entry =
5253 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5255 BUG_ON(!entry);
5256 memset(entry, 0, n * sizeof(struct ctl_table));
5258 return entry;
5261 static void
5262 set_table_entry(struct ctl_table *entry,
5263 const char *procname, void *data, int maxlen,
5264 mode_t mode, proc_handler *proc_handler)
5266 entry->procname = procname;
5267 entry->data = data;
5268 entry->maxlen = maxlen;
5269 entry->mode = mode;
5270 entry->proc_handler = proc_handler;
5273 static struct ctl_table *
5274 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5276 struct ctl_table *table = sd_alloc_ctl_entry(14);
5278 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5279 sizeof(long), 0644, proc_doulongvec_minmax);
5280 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5281 sizeof(long), 0644, proc_doulongvec_minmax);
5282 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5283 sizeof(int), 0644, proc_dointvec_minmax);
5284 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5285 sizeof(int), 0644, proc_dointvec_minmax);
5286 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5287 sizeof(int), 0644, proc_dointvec_minmax);
5288 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5289 sizeof(int), 0644, proc_dointvec_minmax);
5290 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5291 sizeof(int), 0644, proc_dointvec_minmax);
5292 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5293 sizeof(int), 0644, proc_dointvec_minmax);
5294 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5295 sizeof(int), 0644, proc_dointvec_minmax);
5296 set_table_entry(&table[10], "cache_nice_tries",
5297 &sd->cache_nice_tries,
5298 sizeof(int), 0644, proc_dointvec_minmax);
5299 set_table_entry(&table[12], "flags", &sd->flags,
5300 sizeof(int), 0644, proc_dointvec_minmax);
5302 return table;
5305 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5307 struct ctl_table *entry, *table;
5308 struct sched_domain *sd;
5309 int domain_num = 0, i;
5310 char buf[32];
5312 for_each_domain(cpu, sd)
5313 domain_num++;
5314 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5316 i = 0;
5317 for_each_domain(cpu, sd) {
5318 snprintf(buf, 32, "domain%d", i);
5319 entry->procname = kstrdup(buf, GFP_KERNEL);
5320 entry->mode = 0755;
5321 entry->child = sd_alloc_ctl_domain_table(sd);
5322 entry++;
5323 i++;
5325 return table;
5328 static struct ctl_table_header *sd_sysctl_header;
5329 static void init_sched_domain_sysctl(void)
5331 int i, cpu_num = num_online_cpus();
5332 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5333 char buf[32];
5335 sd_ctl_dir[0].child = entry;
5337 for (i = 0; i < cpu_num; i++, entry++) {
5338 snprintf(buf, 32, "cpu%d", i);
5339 entry->procname = kstrdup(buf, GFP_KERNEL);
5340 entry->mode = 0755;
5341 entry->child = sd_alloc_ctl_cpu_table(i);
5343 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5345 #else
5346 static void init_sched_domain_sysctl(void)
5349 #endif
5352 * migration_call - callback that gets triggered when a CPU is added.
5353 * Here we can start up the necessary migration thread for the new CPU.
5355 static int __cpuinit
5356 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5358 struct task_struct *p;
5359 int cpu = (long)hcpu;
5360 unsigned long flags;
5361 struct rq *rq;
5363 switch (action) {
5364 case CPU_LOCK_ACQUIRE:
5365 mutex_lock(&sched_hotcpu_mutex);
5366 break;
5368 case CPU_UP_PREPARE:
5369 case CPU_UP_PREPARE_FROZEN:
5370 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5371 if (IS_ERR(p))
5372 return NOTIFY_BAD;
5373 kthread_bind(p, cpu);
5374 /* Must be high prio: stop_machine expects to yield to it. */
5375 rq = task_rq_lock(p, &flags);
5376 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5377 task_rq_unlock(rq, &flags);
5378 cpu_rq(cpu)->migration_thread = p;
5379 break;
5381 case CPU_ONLINE:
5382 case CPU_ONLINE_FROZEN:
5383 /* Strictly unneccessary, as first user will wake it. */
5384 wake_up_process(cpu_rq(cpu)->migration_thread);
5385 break;
5387 #ifdef CONFIG_HOTPLUG_CPU
5388 case CPU_UP_CANCELED:
5389 case CPU_UP_CANCELED_FROZEN:
5390 if (!cpu_rq(cpu)->migration_thread)
5391 break;
5392 /* Unbind it from offline cpu so it can run. Fall thru. */
5393 kthread_bind(cpu_rq(cpu)->migration_thread,
5394 any_online_cpu(cpu_online_map));
5395 kthread_stop(cpu_rq(cpu)->migration_thread);
5396 cpu_rq(cpu)->migration_thread = NULL;
5397 break;
5399 case CPU_DEAD:
5400 case CPU_DEAD_FROZEN:
5401 migrate_live_tasks(cpu);
5402 rq = cpu_rq(cpu);
5403 kthread_stop(rq->migration_thread);
5404 rq->migration_thread = NULL;
5405 /* Idle task back to normal (off runqueue, low prio) */
5406 rq = task_rq_lock(rq->idle, &flags);
5407 update_rq_clock(rq);
5408 deactivate_task(rq, rq->idle, 0, rq->clock);
5409 rq->idle->static_prio = MAX_PRIO;
5410 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5411 rq->idle->sched_class = &idle_sched_class;
5412 migrate_dead_tasks(cpu);
5413 task_rq_unlock(rq, &flags);
5414 migrate_nr_uninterruptible(rq);
5415 BUG_ON(rq->nr_running != 0);
5417 /* No need to migrate the tasks: it was best-effort if
5418 * they didn't take sched_hotcpu_mutex. Just wake up
5419 * the requestors. */
5420 spin_lock_irq(&rq->lock);
5421 while (!list_empty(&rq->migration_queue)) {
5422 struct migration_req *req;
5424 req = list_entry(rq->migration_queue.next,
5425 struct migration_req, list);
5426 list_del_init(&req->list);
5427 complete(&req->done);
5429 spin_unlock_irq(&rq->lock);
5430 break;
5431 #endif
5432 case CPU_LOCK_RELEASE:
5433 mutex_unlock(&sched_hotcpu_mutex);
5434 break;
5436 return NOTIFY_OK;
5439 /* Register at highest priority so that task migration (migrate_all_tasks)
5440 * happens before everything else.
5442 static struct notifier_block __cpuinitdata migration_notifier = {
5443 .notifier_call = migration_call,
5444 .priority = 10
5447 int __init migration_init(void)
5449 void *cpu = (void *)(long)smp_processor_id();
5450 int err;
5452 /* Start one for the boot CPU: */
5453 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5454 BUG_ON(err == NOTIFY_BAD);
5455 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5456 register_cpu_notifier(&migration_notifier);
5458 return 0;
5460 #endif
5462 #ifdef CONFIG_SMP
5464 /* Number of possible processor ids */
5465 int nr_cpu_ids __read_mostly = NR_CPUS;
5466 EXPORT_SYMBOL(nr_cpu_ids);
5468 #undef SCHED_DOMAIN_DEBUG
5469 #ifdef SCHED_DOMAIN_DEBUG
5470 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5472 int level = 0;
5474 if (!sd) {
5475 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5476 return;
5479 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5481 do {
5482 int i;
5483 char str[NR_CPUS];
5484 struct sched_group *group = sd->groups;
5485 cpumask_t groupmask;
5487 cpumask_scnprintf(str, NR_CPUS, sd->span);
5488 cpus_clear(groupmask);
5490 printk(KERN_DEBUG);
5491 for (i = 0; i < level + 1; i++)
5492 printk(" ");
5493 printk("domain %d: ", level);
5495 if (!(sd->flags & SD_LOAD_BALANCE)) {
5496 printk("does not load-balance\n");
5497 if (sd->parent)
5498 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5499 " has parent");
5500 break;
5503 printk("span %s\n", str);
5505 if (!cpu_isset(cpu, sd->span))
5506 printk(KERN_ERR "ERROR: domain->span does not contain "
5507 "CPU%d\n", cpu);
5508 if (!cpu_isset(cpu, group->cpumask))
5509 printk(KERN_ERR "ERROR: domain->groups does not contain"
5510 " CPU%d\n", cpu);
5512 printk(KERN_DEBUG);
5513 for (i = 0; i < level + 2; i++)
5514 printk(" ");
5515 printk("groups:");
5516 do {
5517 if (!group) {
5518 printk("\n");
5519 printk(KERN_ERR "ERROR: group is NULL\n");
5520 break;
5523 if (!group->__cpu_power) {
5524 printk("\n");
5525 printk(KERN_ERR "ERROR: domain->cpu_power not "
5526 "set\n");
5529 if (!cpus_weight(group->cpumask)) {
5530 printk("\n");
5531 printk(KERN_ERR "ERROR: empty group\n");
5534 if (cpus_intersects(groupmask, group->cpumask)) {
5535 printk("\n");
5536 printk(KERN_ERR "ERROR: repeated CPUs\n");
5539 cpus_or(groupmask, groupmask, group->cpumask);
5541 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5542 printk(" %s", str);
5544 group = group->next;
5545 } while (group != sd->groups);
5546 printk("\n");
5548 if (!cpus_equal(sd->span, groupmask))
5549 printk(KERN_ERR "ERROR: groups don't span "
5550 "domain->span\n");
5552 level++;
5553 sd = sd->parent;
5554 if (!sd)
5555 continue;
5557 if (!cpus_subset(groupmask, sd->span))
5558 printk(KERN_ERR "ERROR: parent span is not a superset "
5559 "of domain->span\n");
5561 } while (sd);
5563 #else
5564 # define sched_domain_debug(sd, cpu) do { } while (0)
5565 #endif
5567 static int sd_degenerate(struct sched_domain *sd)
5569 if (cpus_weight(sd->span) == 1)
5570 return 1;
5572 /* Following flags need at least 2 groups */
5573 if (sd->flags & (SD_LOAD_BALANCE |
5574 SD_BALANCE_NEWIDLE |
5575 SD_BALANCE_FORK |
5576 SD_BALANCE_EXEC |
5577 SD_SHARE_CPUPOWER |
5578 SD_SHARE_PKG_RESOURCES)) {
5579 if (sd->groups != sd->groups->next)
5580 return 0;
5583 /* Following flags don't use groups */
5584 if (sd->flags & (SD_WAKE_IDLE |
5585 SD_WAKE_AFFINE |
5586 SD_WAKE_BALANCE))
5587 return 0;
5589 return 1;
5592 static int
5593 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5595 unsigned long cflags = sd->flags, pflags = parent->flags;
5597 if (sd_degenerate(parent))
5598 return 1;
5600 if (!cpus_equal(sd->span, parent->span))
5601 return 0;
5603 /* Does parent contain flags not in child? */
5604 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5605 if (cflags & SD_WAKE_AFFINE)
5606 pflags &= ~SD_WAKE_BALANCE;
5607 /* Flags needing groups don't count if only 1 group in parent */
5608 if (parent->groups == parent->groups->next) {
5609 pflags &= ~(SD_LOAD_BALANCE |
5610 SD_BALANCE_NEWIDLE |
5611 SD_BALANCE_FORK |
5612 SD_BALANCE_EXEC |
5613 SD_SHARE_CPUPOWER |
5614 SD_SHARE_PKG_RESOURCES);
5616 if (~cflags & pflags)
5617 return 0;
5619 return 1;
5623 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5624 * hold the hotplug lock.
5626 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5628 struct rq *rq = cpu_rq(cpu);
5629 struct sched_domain *tmp;
5631 /* Remove the sched domains which do not contribute to scheduling. */
5632 for (tmp = sd; tmp; tmp = tmp->parent) {
5633 struct sched_domain *parent = tmp->parent;
5634 if (!parent)
5635 break;
5636 if (sd_parent_degenerate(tmp, parent)) {
5637 tmp->parent = parent->parent;
5638 if (parent->parent)
5639 parent->parent->child = tmp;
5643 if (sd && sd_degenerate(sd)) {
5644 sd = sd->parent;
5645 if (sd)
5646 sd->child = NULL;
5649 sched_domain_debug(sd, cpu);
5651 rcu_assign_pointer(rq->sd, sd);
5654 /* cpus with isolated domains */
5655 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5657 /* Setup the mask of cpus configured for isolated domains */
5658 static int __init isolated_cpu_setup(char *str)
5660 int ints[NR_CPUS], i;
5662 str = get_options(str, ARRAY_SIZE(ints), ints);
5663 cpus_clear(cpu_isolated_map);
5664 for (i = 1; i <= ints[0]; i++)
5665 if (ints[i] < NR_CPUS)
5666 cpu_set(ints[i], cpu_isolated_map);
5667 return 1;
5670 __setup ("isolcpus=", isolated_cpu_setup);
5673 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5674 * to a function which identifies what group(along with sched group) a CPU
5675 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5676 * (due to the fact that we keep track of groups covered with a cpumask_t).
5678 * init_sched_build_groups will build a circular linked list of the groups
5679 * covered by the given span, and will set each group's ->cpumask correctly,
5680 * and ->cpu_power to 0.
5682 static void
5683 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5684 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5685 struct sched_group **sg))
5687 struct sched_group *first = NULL, *last = NULL;
5688 cpumask_t covered = CPU_MASK_NONE;
5689 int i;
5691 for_each_cpu_mask(i, span) {
5692 struct sched_group *sg;
5693 int group = group_fn(i, cpu_map, &sg);
5694 int j;
5696 if (cpu_isset(i, covered))
5697 continue;
5699 sg->cpumask = CPU_MASK_NONE;
5700 sg->__cpu_power = 0;
5702 for_each_cpu_mask(j, span) {
5703 if (group_fn(j, cpu_map, NULL) != group)
5704 continue;
5706 cpu_set(j, covered);
5707 cpu_set(j, sg->cpumask);
5709 if (!first)
5710 first = sg;
5711 if (last)
5712 last->next = sg;
5713 last = sg;
5715 last->next = first;
5718 #define SD_NODES_PER_DOMAIN 16
5720 #ifdef CONFIG_NUMA
5723 * find_next_best_node - find the next node to include in a sched_domain
5724 * @node: node whose sched_domain we're building
5725 * @used_nodes: nodes already in the sched_domain
5727 * Find the next node to include in a given scheduling domain. Simply
5728 * finds the closest node not already in the @used_nodes map.
5730 * Should use nodemask_t.
5732 static int find_next_best_node(int node, unsigned long *used_nodes)
5734 int i, n, val, min_val, best_node = 0;
5736 min_val = INT_MAX;
5738 for (i = 0; i < MAX_NUMNODES; i++) {
5739 /* Start at @node */
5740 n = (node + i) % MAX_NUMNODES;
5742 if (!nr_cpus_node(n))
5743 continue;
5745 /* Skip already used nodes */
5746 if (test_bit(n, used_nodes))
5747 continue;
5749 /* Simple min distance search */
5750 val = node_distance(node, n);
5752 if (val < min_val) {
5753 min_val = val;
5754 best_node = n;
5758 set_bit(best_node, used_nodes);
5759 return best_node;
5763 * sched_domain_node_span - get a cpumask for a node's sched_domain
5764 * @node: node whose cpumask we're constructing
5765 * @size: number of nodes to include in this span
5767 * Given a node, construct a good cpumask for its sched_domain to span. It
5768 * should be one that prevents unnecessary balancing, but also spreads tasks
5769 * out optimally.
5771 static cpumask_t sched_domain_node_span(int node)
5773 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5774 cpumask_t span, nodemask;
5775 int i;
5777 cpus_clear(span);
5778 bitmap_zero(used_nodes, MAX_NUMNODES);
5780 nodemask = node_to_cpumask(node);
5781 cpus_or(span, span, nodemask);
5782 set_bit(node, used_nodes);
5784 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5785 int next_node = find_next_best_node(node, used_nodes);
5787 nodemask = node_to_cpumask(next_node);
5788 cpus_or(span, span, nodemask);
5791 return span;
5793 #endif
5795 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5798 * SMT sched-domains:
5800 #ifdef CONFIG_SCHED_SMT
5801 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5802 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5804 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5805 struct sched_group **sg)
5807 if (sg)
5808 *sg = &per_cpu(sched_group_cpus, cpu);
5809 return cpu;
5811 #endif
5814 * multi-core sched-domains:
5816 #ifdef CONFIG_SCHED_MC
5817 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5818 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5819 #endif
5821 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5822 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5823 struct sched_group **sg)
5825 int group;
5826 cpumask_t mask = cpu_sibling_map[cpu];
5827 cpus_and(mask, mask, *cpu_map);
5828 group = first_cpu(mask);
5829 if (sg)
5830 *sg = &per_cpu(sched_group_core, group);
5831 return group;
5833 #elif defined(CONFIG_SCHED_MC)
5834 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5835 struct sched_group **sg)
5837 if (sg)
5838 *sg = &per_cpu(sched_group_core, cpu);
5839 return cpu;
5841 #endif
5843 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5844 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5846 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5847 struct sched_group **sg)
5849 int group;
5850 #ifdef CONFIG_SCHED_MC
5851 cpumask_t mask = cpu_coregroup_map(cpu);
5852 cpus_and(mask, mask, *cpu_map);
5853 group = first_cpu(mask);
5854 #elif defined(CONFIG_SCHED_SMT)
5855 cpumask_t mask = cpu_sibling_map[cpu];
5856 cpus_and(mask, mask, *cpu_map);
5857 group = first_cpu(mask);
5858 #else
5859 group = cpu;
5860 #endif
5861 if (sg)
5862 *sg = &per_cpu(sched_group_phys, group);
5863 return group;
5866 #ifdef CONFIG_NUMA
5868 * The init_sched_build_groups can't handle what we want to do with node
5869 * groups, so roll our own. Now each node has its own list of groups which
5870 * gets dynamically allocated.
5872 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5873 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5875 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5876 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5878 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5879 struct sched_group **sg)
5881 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5882 int group;
5884 cpus_and(nodemask, nodemask, *cpu_map);
5885 group = first_cpu(nodemask);
5887 if (sg)
5888 *sg = &per_cpu(sched_group_allnodes, group);
5889 return group;
5892 static void init_numa_sched_groups_power(struct sched_group *group_head)
5894 struct sched_group *sg = group_head;
5895 int j;
5897 if (!sg)
5898 return;
5899 next_sg:
5900 for_each_cpu_mask(j, sg->cpumask) {
5901 struct sched_domain *sd;
5903 sd = &per_cpu(phys_domains, j);
5904 if (j != first_cpu(sd->groups->cpumask)) {
5906 * Only add "power" once for each
5907 * physical package.
5909 continue;
5912 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5914 sg = sg->next;
5915 if (sg != group_head)
5916 goto next_sg;
5918 #endif
5920 #ifdef CONFIG_NUMA
5921 /* Free memory allocated for various sched_group structures */
5922 static void free_sched_groups(const cpumask_t *cpu_map)
5924 int cpu, i;
5926 for_each_cpu_mask(cpu, *cpu_map) {
5927 struct sched_group **sched_group_nodes
5928 = sched_group_nodes_bycpu[cpu];
5930 if (!sched_group_nodes)
5931 continue;
5933 for (i = 0; i < MAX_NUMNODES; i++) {
5934 cpumask_t nodemask = node_to_cpumask(i);
5935 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5937 cpus_and(nodemask, nodemask, *cpu_map);
5938 if (cpus_empty(nodemask))
5939 continue;
5941 if (sg == NULL)
5942 continue;
5943 sg = sg->next;
5944 next_sg:
5945 oldsg = sg;
5946 sg = sg->next;
5947 kfree(oldsg);
5948 if (oldsg != sched_group_nodes[i])
5949 goto next_sg;
5951 kfree(sched_group_nodes);
5952 sched_group_nodes_bycpu[cpu] = NULL;
5955 #else
5956 static void free_sched_groups(const cpumask_t *cpu_map)
5959 #endif
5962 * Initialize sched groups cpu_power.
5964 * cpu_power indicates the capacity of sched group, which is used while
5965 * distributing the load between different sched groups in a sched domain.
5966 * Typically cpu_power for all the groups in a sched domain will be same unless
5967 * there are asymmetries in the topology. If there are asymmetries, group
5968 * having more cpu_power will pickup more load compared to the group having
5969 * less cpu_power.
5971 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5972 * the maximum number of tasks a group can handle in the presence of other idle
5973 * or lightly loaded groups in the same sched domain.
5975 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5977 struct sched_domain *child;
5978 struct sched_group *group;
5980 WARN_ON(!sd || !sd->groups);
5982 if (cpu != first_cpu(sd->groups->cpumask))
5983 return;
5985 child = sd->child;
5987 sd->groups->__cpu_power = 0;
5990 * For perf policy, if the groups in child domain share resources
5991 * (for example cores sharing some portions of the cache hierarchy
5992 * or SMT), then set this domain groups cpu_power such that each group
5993 * can handle only one task, when there are other idle groups in the
5994 * same sched domain.
5996 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5997 (child->flags &
5998 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5999 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6000 return;
6004 * add cpu_power of each child group to this groups cpu_power
6006 group = child->groups;
6007 do {
6008 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6009 group = group->next;
6010 } while (group != child->groups);
6014 * Build sched domains for a given set of cpus and attach the sched domains
6015 * to the individual cpus
6017 static int build_sched_domains(const cpumask_t *cpu_map)
6019 int i;
6020 #ifdef CONFIG_NUMA
6021 struct sched_group **sched_group_nodes = NULL;
6022 int sd_allnodes = 0;
6025 * Allocate the per-node list of sched groups
6027 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6028 GFP_KERNEL);
6029 if (!sched_group_nodes) {
6030 printk(KERN_WARNING "Can not alloc sched group node list\n");
6031 return -ENOMEM;
6033 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6034 #endif
6037 * Set up domains for cpus specified by the cpu_map.
6039 for_each_cpu_mask(i, *cpu_map) {
6040 struct sched_domain *sd = NULL, *p;
6041 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6043 cpus_and(nodemask, nodemask, *cpu_map);
6045 #ifdef CONFIG_NUMA
6046 if (cpus_weight(*cpu_map) >
6047 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6048 sd = &per_cpu(allnodes_domains, i);
6049 *sd = SD_ALLNODES_INIT;
6050 sd->span = *cpu_map;
6051 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6052 p = sd;
6053 sd_allnodes = 1;
6054 } else
6055 p = NULL;
6057 sd = &per_cpu(node_domains, i);
6058 *sd = SD_NODE_INIT;
6059 sd->span = sched_domain_node_span(cpu_to_node(i));
6060 sd->parent = p;
6061 if (p)
6062 p->child = sd;
6063 cpus_and(sd->span, sd->span, *cpu_map);
6064 #endif
6066 p = sd;
6067 sd = &per_cpu(phys_domains, i);
6068 *sd = SD_CPU_INIT;
6069 sd->span = nodemask;
6070 sd->parent = p;
6071 if (p)
6072 p->child = sd;
6073 cpu_to_phys_group(i, cpu_map, &sd->groups);
6075 #ifdef CONFIG_SCHED_MC
6076 p = sd;
6077 sd = &per_cpu(core_domains, i);
6078 *sd = SD_MC_INIT;
6079 sd->span = cpu_coregroup_map(i);
6080 cpus_and(sd->span, sd->span, *cpu_map);
6081 sd->parent = p;
6082 p->child = sd;
6083 cpu_to_core_group(i, cpu_map, &sd->groups);
6084 #endif
6086 #ifdef CONFIG_SCHED_SMT
6087 p = sd;
6088 sd = &per_cpu(cpu_domains, i);
6089 *sd = SD_SIBLING_INIT;
6090 sd->span = cpu_sibling_map[i];
6091 cpus_and(sd->span, sd->span, *cpu_map);
6092 sd->parent = p;
6093 p->child = sd;
6094 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6095 #endif
6098 #ifdef CONFIG_SCHED_SMT
6099 /* Set up CPU (sibling) groups */
6100 for_each_cpu_mask(i, *cpu_map) {
6101 cpumask_t this_sibling_map = cpu_sibling_map[i];
6102 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6103 if (i != first_cpu(this_sibling_map))
6104 continue;
6106 init_sched_build_groups(this_sibling_map, cpu_map,
6107 &cpu_to_cpu_group);
6109 #endif
6111 #ifdef CONFIG_SCHED_MC
6112 /* Set up multi-core groups */
6113 for_each_cpu_mask(i, *cpu_map) {
6114 cpumask_t this_core_map = cpu_coregroup_map(i);
6115 cpus_and(this_core_map, this_core_map, *cpu_map);
6116 if (i != first_cpu(this_core_map))
6117 continue;
6118 init_sched_build_groups(this_core_map, cpu_map,
6119 &cpu_to_core_group);
6121 #endif
6123 /* Set up physical groups */
6124 for (i = 0; i < MAX_NUMNODES; i++) {
6125 cpumask_t nodemask = node_to_cpumask(i);
6127 cpus_and(nodemask, nodemask, *cpu_map);
6128 if (cpus_empty(nodemask))
6129 continue;
6131 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6134 #ifdef CONFIG_NUMA
6135 /* Set up node groups */
6136 if (sd_allnodes)
6137 init_sched_build_groups(*cpu_map, cpu_map,
6138 &cpu_to_allnodes_group);
6140 for (i = 0; i < MAX_NUMNODES; i++) {
6141 /* Set up node groups */
6142 struct sched_group *sg, *prev;
6143 cpumask_t nodemask = node_to_cpumask(i);
6144 cpumask_t domainspan;
6145 cpumask_t covered = CPU_MASK_NONE;
6146 int j;
6148 cpus_and(nodemask, nodemask, *cpu_map);
6149 if (cpus_empty(nodemask)) {
6150 sched_group_nodes[i] = NULL;
6151 continue;
6154 domainspan = sched_domain_node_span(i);
6155 cpus_and(domainspan, domainspan, *cpu_map);
6157 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6158 if (!sg) {
6159 printk(KERN_WARNING "Can not alloc domain group for "
6160 "node %d\n", i);
6161 goto error;
6163 sched_group_nodes[i] = sg;
6164 for_each_cpu_mask(j, nodemask) {
6165 struct sched_domain *sd;
6167 sd = &per_cpu(node_domains, j);
6168 sd->groups = sg;
6170 sg->__cpu_power = 0;
6171 sg->cpumask = nodemask;
6172 sg->next = sg;
6173 cpus_or(covered, covered, nodemask);
6174 prev = sg;
6176 for (j = 0; j < MAX_NUMNODES; j++) {
6177 cpumask_t tmp, notcovered;
6178 int n = (i + j) % MAX_NUMNODES;
6180 cpus_complement(notcovered, covered);
6181 cpus_and(tmp, notcovered, *cpu_map);
6182 cpus_and(tmp, tmp, domainspan);
6183 if (cpus_empty(tmp))
6184 break;
6186 nodemask = node_to_cpumask(n);
6187 cpus_and(tmp, tmp, nodemask);
6188 if (cpus_empty(tmp))
6189 continue;
6191 sg = kmalloc_node(sizeof(struct sched_group),
6192 GFP_KERNEL, i);
6193 if (!sg) {
6194 printk(KERN_WARNING
6195 "Can not alloc domain group for node %d\n", j);
6196 goto error;
6198 sg->__cpu_power = 0;
6199 sg->cpumask = tmp;
6200 sg->next = prev->next;
6201 cpus_or(covered, covered, tmp);
6202 prev->next = sg;
6203 prev = sg;
6206 #endif
6208 /* Calculate CPU power for physical packages and nodes */
6209 #ifdef CONFIG_SCHED_SMT
6210 for_each_cpu_mask(i, *cpu_map) {
6211 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6213 init_sched_groups_power(i, sd);
6215 #endif
6216 #ifdef CONFIG_SCHED_MC
6217 for_each_cpu_mask(i, *cpu_map) {
6218 struct sched_domain *sd = &per_cpu(core_domains, i);
6220 init_sched_groups_power(i, sd);
6222 #endif
6224 for_each_cpu_mask(i, *cpu_map) {
6225 struct sched_domain *sd = &per_cpu(phys_domains, i);
6227 init_sched_groups_power(i, sd);
6230 #ifdef CONFIG_NUMA
6231 for (i = 0; i < MAX_NUMNODES; i++)
6232 init_numa_sched_groups_power(sched_group_nodes[i]);
6234 if (sd_allnodes) {
6235 struct sched_group *sg;
6237 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6238 init_numa_sched_groups_power(sg);
6240 #endif
6242 /* Attach the domains */
6243 for_each_cpu_mask(i, *cpu_map) {
6244 struct sched_domain *sd;
6245 #ifdef CONFIG_SCHED_SMT
6246 sd = &per_cpu(cpu_domains, i);
6247 #elif defined(CONFIG_SCHED_MC)
6248 sd = &per_cpu(core_domains, i);
6249 #else
6250 sd = &per_cpu(phys_domains, i);
6251 #endif
6252 cpu_attach_domain(sd, i);
6255 return 0;
6257 #ifdef CONFIG_NUMA
6258 error:
6259 free_sched_groups(cpu_map);
6260 return -ENOMEM;
6261 #endif
6264 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6266 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6268 cpumask_t cpu_default_map;
6269 int err;
6272 * Setup mask for cpus without special case scheduling requirements.
6273 * For now this just excludes isolated cpus, but could be used to
6274 * exclude other special cases in the future.
6276 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6278 err = build_sched_domains(&cpu_default_map);
6280 return err;
6283 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6285 free_sched_groups(cpu_map);
6289 * Detach sched domains from a group of cpus specified in cpu_map
6290 * These cpus will now be attached to the NULL domain
6292 static void detach_destroy_domains(const cpumask_t *cpu_map)
6294 int i;
6296 for_each_cpu_mask(i, *cpu_map)
6297 cpu_attach_domain(NULL, i);
6298 synchronize_sched();
6299 arch_destroy_sched_domains(cpu_map);
6303 * Partition sched domains as specified by the cpumasks below.
6304 * This attaches all cpus from the cpumasks to the NULL domain,
6305 * waits for a RCU quiescent period, recalculates sched
6306 * domain information and then attaches them back to the
6307 * correct sched domains
6308 * Call with hotplug lock held
6310 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6312 cpumask_t change_map;
6313 int err = 0;
6315 cpus_and(*partition1, *partition1, cpu_online_map);
6316 cpus_and(*partition2, *partition2, cpu_online_map);
6317 cpus_or(change_map, *partition1, *partition2);
6319 /* Detach sched domains from all of the affected cpus */
6320 detach_destroy_domains(&change_map);
6321 if (!cpus_empty(*partition1))
6322 err = build_sched_domains(partition1);
6323 if (!err && !cpus_empty(*partition2))
6324 err = build_sched_domains(partition2);
6326 return err;
6329 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6330 int arch_reinit_sched_domains(void)
6332 int err;
6334 mutex_lock(&sched_hotcpu_mutex);
6335 detach_destroy_domains(&cpu_online_map);
6336 err = arch_init_sched_domains(&cpu_online_map);
6337 mutex_unlock(&sched_hotcpu_mutex);
6339 return err;
6342 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6344 int ret;
6346 if (buf[0] != '0' && buf[0] != '1')
6347 return -EINVAL;
6349 if (smt)
6350 sched_smt_power_savings = (buf[0] == '1');
6351 else
6352 sched_mc_power_savings = (buf[0] == '1');
6354 ret = arch_reinit_sched_domains();
6356 return ret ? ret : count;
6359 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6361 int err = 0;
6363 #ifdef CONFIG_SCHED_SMT
6364 if (smt_capable())
6365 err = sysfs_create_file(&cls->kset.kobj,
6366 &attr_sched_smt_power_savings.attr);
6367 #endif
6368 #ifdef CONFIG_SCHED_MC
6369 if (!err && mc_capable())
6370 err = sysfs_create_file(&cls->kset.kobj,
6371 &attr_sched_mc_power_savings.attr);
6372 #endif
6373 return err;
6375 #endif
6377 #ifdef CONFIG_SCHED_MC
6378 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6380 return sprintf(page, "%u\n", sched_mc_power_savings);
6382 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6383 const char *buf, size_t count)
6385 return sched_power_savings_store(buf, count, 0);
6387 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6388 sched_mc_power_savings_store);
6389 #endif
6391 #ifdef CONFIG_SCHED_SMT
6392 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6394 return sprintf(page, "%u\n", sched_smt_power_savings);
6396 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6397 const char *buf, size_t count)
6399 return sched_power_savings_store(buf, count, 1);
6401 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6402 sched_smt_power_savings_store);
6403 #endif
6406 * Force a reinitialization of the sched domains hierarchy. The domains
6407 * and groups cannot be updated in place without racing with the balancing
6408 * code, so we temporarily attach all running cpus to the NULL domain
6409 * which will prevent rebalancing while the sched domains are recalculated.
6411 static int update_sched_domains(struct notifier_block *nfb,
6412 unsigned long action, void *hcpu)
6414 switch (action) {
6415 case CPU_UP_PREPARE:
6416 case CPU_UP_PREPARE_FROZEN:
6417 case CPU_DOWN_PREPARE:
6418 case CPU_DOWN_PREPARE_FROZEN:
6419 detach_destroy_domains(&cpu_online_map);
6420 return NOTIFY_OK;
6422 case CPU_UP_CANCELED:
6423 case CPU_UP_CANCELED_FROZEN:
6424 case CPU_DOWN_FAILED:
6425 case CPU_DOWN_FAILED_FROZEN:
6426 case CPU_ONLINE:
6427 case CPU_ONLINE_FROZEN:
6428 case CPU_DEAD:
6429 case CPU_DEAD_FROZEN:
6431 * Fall through and re-initialise the domains.
6433 break;
6434 default:
6435 return NOTIFY_DONE;
6438 /* The hotplug lock is already held by cpu_up/cpu_down */
6439 arch_init_sched_domains(&cpu_online_map);
6441 return NOTIFY_OK;
6444 void __init sched_init_smp(void)
6446 cpumask_t non_isolated_cpus;
6448 mutex_lock(&sched_hotcpu_mutex);
6449 arch_init_sched_domains(&cpu_online_map);
6450 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6451 if (cpus_empty(non_isolated_cpus))
6452 cpu_set(smp_processor_id(), non_isolated_cpus);
6453 mutex_unlock(&sched_hotcpu_mutex);
6454 /* XXX: Theoretical race here - CPU may be hotplugged now */
6455 hotcpu_notifier(update_sched_domains, 0);
6457 init_sched_domain_sysctl();
6459 /* Move init over to a non-isolated CPU */
6460 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6461 BUG();
6462 sched_init_granularity();
6464 #else
6465 void __init sched_init_smp(void)
6467 sched_init_granularity();
6469 #endif /* CONFIG_SMP */
6471 int in_sched_functions(unsigned long addr)
6473 /* Linker adds these: start and end of __sched functions */
6474 extern char __sched_text_start[], __sched_text_end[];
6476 return in_lock_functions(addr) ||
6477 (addr >= (unsigned long)__sched_text_start
6478 && addr < (unsigned long)__sched_text_end);
6481 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6483 cfs_rq->tasks_timeline = RB_ROOT;
6484 cfs_rq->fair_clock = 1;
6485 #ifdef CONFIG_FAIR_GROUP_SCHED
6486 cfs_rq->rq = rq;
6487 #endif
6490 void __init sched_init(void)
6492 u64 now = sched_clock();
6493 int highest_cpu = 0;
6494 int i, j;
6497 * Link up the scheduling class hierarchy:
6499 rt_sched_class.next = &fair_sched_class;
6500 fair_sched_class.next = &idle_sched_class;
6501 idle_sched_class.next = NULL;
6503 for_each_possible_cpu(i) {
6504 struct rt_prio_array *array;
6505 struct rq *rq;
6507 rq = cpu_rq(i);
6508 spin_lock_init(&rq->lock);
6509 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6510 rq->nr_running = 0;
6511 rq->clock = 1;
6512 init_cfs_rq(&rq->cfs, rq);
6513 #ifdef CONFIG_FAIR_GROUP_SCHED
6514 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6515 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6516 #endif
6517 rq->ls.load_update_last = now;
6518 rq->ls.load_update_start = now;
6520 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6521 rq->cpu_load[j] = 0;
6522 #ifdef CONFIG_SMP
6523 rq->sd = NULL;
6524 rq->active_balance = 0;
6525 rq->next_balance = jiffies;
6526 rq->push_cpu = 0;
6527 rq->cpu = i;
6528 rq->migration_thread = NULL;
6529 INIT_LIST_HEAD(&rq->migration_queue);
6530 #endif
6531 atomic_set(&rq->nr_iowait, 0);
6533 array = &rq->rt.active;
6534 for (j = 0; j < MAX_RT_PRIO; j++) {
6535 INIT_LIST_HEAD(array->queue + j);
6536 __clear_bit(j, array->bitmap);
6538 highest_cpu = i;
6539 /* delimiter for bitsearch: */
6540 __set_bit(MAX_RT_PRIO, array->bitmap);
6543 set_load_weight(&init_task);
6545 #ifdef CONFIG_PREEMPT_NOTIFIERS
6546 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6547 #endif
6549 #ifdef CONFIG_SMP
6550 nr_cpu_ids = highest_cpu + 1;
6551 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6552 #endif
6554 #ifdef CONFIG_RT_MUTEXES
6555 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6556 #endif
6559 * The boot idle thread does lazy MMU switching as well:
6561 atomic_inc(&init_mm.mm_count);
6562 enter_lazy_tlb(&init_mm, current);
6565 * Make us the idle thread. Technically, schedule() should not be
6566 * called from this thread, however somewhere below it might be,
6567 * but because we are the idle thread, we just pick up running again
6568 * when this runqueue becomes "idle".
6570 init_idle(current, smp_processor_id());
6572 * During early bootup we pretend to be a normal task:
6574 current->sched_class = &fair_sched_class;
6577 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6578 void __might_sleep(char *file, int line)
6580 #ifdef in_atomic
6581 static unsigned long prev_jiffy; /* ratelimiting */
6583 if ((in_atomic() || irqs_disabled()) &&
6584 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6585 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6586 return;
6587 prev_jiffy = jiffies;
6588 printk(KERN_ERR "BUG: sleeping function called from invalid"
6589 " context at %s:%d\n", file, line);
6590 printk("in_atomic():%d, irqs_disabled():%d\n",
6591 in_atomic(), irqs_disabled());
6592 debug_show_held_locks(current);
6593 if (irqs_disabled())
6594 print_irqtrace_events(current);
6595 dump_stack();
6597 #endif
6599 EXPORT_SYMBOL(__might_sleep);
6600 #endif
6602 #ifdef CONFIG_MAGIC_SYSRQ
6603 void normalize_rt_tasks(void)
6605 struct task_struct *g, *p;
6606 unsigned long flags;
6607 struct rq *rq;
6608 int on_rq;
6610 read_lock_irq(&tasklist_lock);
6611 do_each_thread(g, p) {
6612 p->se.fair_key = 0;
6613 p->se.wait_runtime = 0;
6614 p->se.exec_start = 0;
6615 p->se.wait_start_fair = 0;
6616 p->se.sleep_start_fair = 0;
6617 #ifdef CONFIG_SCHEDSTATS
6618 p->se.wait_start = 0;
6619 p->se.sleep_start = 0;
6620 p->se.block_start = 0;
6621 #endif
6622 task_rq(p)->cfs.fair_clock = 0;
6623 task_rq(p)->clock = 0;
6625 if (!rt_task(p)) {
6627 * Renice negative nice level userspace
6628 * tasks back to 0:
6630 if (TASK_NICE(p) < 0 && p->mm)
6631 set_user_nice(p, 0);
6632 continue;
6635 spin_lock_irqsave(&p->pi_lock, flags);
6636 rq = __task_rq_lock(p);
6637 #ifdef CONFIG_SMP
6639 * Do not touch the migration thread:
6641 if (p == rq->migration_thread)
6642 goto out_unlock;
6643 #endif
6645 on_rq = p->se.on_rq;
6646 if (on_rq) {
6647 update_rq_clock(task_rq(p));
6648 deactivate_task(task_rq(p), p, 0, task_rq(p)->clock);
6650 __setscheduler(rq, p, SCHED_NORMAL, 0);
6651 if (on_rq) {
6652 activate_task(task_rq(p), p, 0);
6653 resched_task(rq->curr);
6655 #ifdef CONFIG_SMP
6656 out_unlock:
6657 #endif
6658 __task_rq_unlock(rq);
6659 spin_unlock_irqrestore(&p->pi_lock, flags);
6660 } while_each_thread(g, p);
6662 read_unlock_irq(&tasklist_lock);
6665 #endif /* CONFIG_MAGIC_SYSRQ */
6667 #ifdef CONFIG_IA64
6669 * These functions are only useful for the IA64 MCA handling.
6671 * They can only be called when the whole system has been
6672 * stopped - every CPU needs to be quiescent, and no scheduling
6673 * activity can take place. Using them for anything else would
6674 * be a serious bug, and as a result, they aren't even visible
6675 * under any other configuration.
6679 * curr_task - return the current task for a given cpu.
6680 * @cpu: the processor in question.
6682 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6684 struct task_struct *curr_task(int cpu)
6686 return cpu_curr(cpu);
6690 * set_curr_task - set the current task for a given cpu.
6691 * @cpu: the processor in question.
6692 * @p: the task pointer to set.
6694 * Description: This function must only be used when non-maskable interrupts
6695 * are serviced on a separate stack. It allows the architecture to switch the
6696 * notion of the current task on a cpu in a non-blocking manner. This function
6697 * must be called with all CPU's synchronized, and interrupts disabled, the
6698 * and caller must save the original value of the current task (see
6699 * curr_task() above) and restore that value before reenabling interrupts and
6700 * re-starting the system.
6702 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6704 void set_curr_task(int cpu, struct task_struct *p)
6706 cpu_curr(cpu) = p;
6709 #endif