IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[linux-2.6/kmemtrace.git] / drivers / scsi / libsas / sas_expander.c
blob30b8014bcc7a57f30dc3ccefc13bec5a3eed4144
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/pci.h>
26 #include <linux/scatterlist.h>
28 #include "sas_internal.h"
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37 u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
40 #if 0
41 /* FIXME: smp needs to migrate into the sas class */
42 static ssize_t smp_portal_read(struct kobject *, char *, loff_t, size_t);
43 static ssize_t smp_portal_write(struct kobject *, char *, loff_t, size_t);
44 #endif
46 /* ---------- SMP task management ---------- */
48 static void smp_task_timedout(unsigned long _task)
50 struct sas_task *task = (void *) _task;
51 unsigned long flags;
53 spin_lock_irqsave(&task->task_state_lock, flags);
54 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
55 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
56 spin_unlock_irqrestore(&task->task_state_lock, flags);
58 complete(&task->completion);
61 static void smp_task_done(struct sas_task *task)
63 if (!del_timer(&task->timer))
64 return;
65 complete(&task->completion);
68 /* Give it some long enough timeout. In seconds. */
69 #define SMP_TIMEOUT 10
71 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
72 void *resp, int resp_size)
74 int res;
75 struct sas_task *task = sas_alloc_task(GFP_KERNEL);
76 struct sas_internal *i =
77 to_sas_internal(dev->port->ha->core.shost->transportt);
79 if (!task)
80 return -ENOMEM;
82 task->dev = dev;
83 task->task_proto = dev->tproto;
84 sg_init_one(&task->smp_task.smp_req, req, req_size);
85 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
87 task->task_done = smp_task_done;
89 task->timer.data = (unsigned long) task;
90 task->timer.function = smp_task_timedout;
91 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
92 add_timer(&task->timer);
94 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
96 if (res) {
97 del_timer(&task->timer);
98 SAS_DPRINTK("executing SMP task failed:%d\n", res);
99 goto ex_err;
102 wait_for_completion(&task->completion);
103 res = -ETASK;
104 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
105 SAS_DPRINTK("smp task timed out or aborted\n");
106 i->dft->lldd_abort_task(task);
107 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
108 SAS_DPRINTK("SMP task aborted and not done\n");
109 goto ex_err;
112 if (task->task_status.resp == SAS_TASK_COMPLETE &&
113 task->task_status.stat == SAM_GOOD)
114 res = 0;
115 else
116 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
117 "status 0x%x\n", __FUNCTION__,
118 SAS_ADDR(dev->sas_addr),
119 task->task_status.resp,
120 task->task_status.stat);
121 ex_err:
122 sas_free_task(task);
123 return res;
126 /* ---------- Allocations ---------- */
128 static inline void *alloc_smp_req(int size)
130 u8 *p = kzalloc(size, GFP_KERNEL);
131 if (p)
132 p[0] = SMP_REQUEST;
133 return p;
136 static inline void *alloc_smp_resp(int size)
138 return kzalloc(size, GFP_KERNEL);
141 /* ---------- Expander configuration ---------- */
143 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
144 void *disc_resp)
146 struct expander_device *ex = &dev->ex_dev;
147 struct ex_phy *phy = &ex->ex_phy[phy_id];
148 struct smp_resp *resp = disc_resp;
149 struct discover_resp *dr = &resp->disc;
150 struct sas_rphy *rphy = dev->rphy;
151 int rediscover = (phy->phy != NULL);
153 if (!rediscover) {
154 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
156 /* FIXME: error_handling */
157 BUG_ON(!phy->phy);
160 switch (resp->result) {
161 case SMP_RESP_PHY_VACANT:
162 phy->phy_state = PHY_VACANT;
163 return;
164 default:
165 phy->phy_state = PHY_NOT_PRESENT;
166 return;
167 case SMP_RESP_FUNC_ACC:
168 phy->phy_state = PHY_EMPTY; /* do not know yet */
169 break;
172 phy->phy_id = phy_id;
173 phy->attached_dev_type = dr->attached_dev_type;
174 phy->linkrate = dr->linkrate;
175 phy->attached_sata_host = dr->attached_sata_host;
176 phy->attached_sata_dev = dr->attached_sata_dev;
177 phy->attached_sata_ps = dr->attached_sata_ps;
178 phy->attached_iproto = dr->iproto << 1;
179 phy->attached_tproto = dr->tproto << 1;
180 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
181 phy->attached_phy_id = dr->attached_phy_id;
182 phy->phy_change_count = dr->change_count;
183 phy->routing_attr = dr->routing_attr;
184 phy->virtual = dr->virtual;
185 phy->last_da_index = -1;
187 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
188 phy->phy->identify.target_port_protocols = phy->attached_tproto;
189 phy->phy->identify.phy_identifier = phy_id;
190 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
191 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
192 phy->phy->minimum_linkrate = dr->pmin_linkrate;
193 phy->phy->maximum_linkrate = dr->pmax_linkrate;
194 phy->phy->negotiated_linkrate = phy->linkrate;
196 if (!rediscover)
197 sas_phy_add(phy->phy);
199 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
200 SAS_ADDR(dev->sas_addr), phy->phy_id,
201 phy->routing_attr == TABLE_ROUTING ? 'T' :
202 phy->routing_attr == DIRECT_ROUTING ? 'D' :
203 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
204 SAS_ADDR(phy->attached_sas_addr));
206 return;
209 #define DISCOVER_REQ_SIZE 16
210 #define DISCOVER_RESP_SIZE 56
212 static int sas_ex_phy_discover(struct domain_device *dev, int single)
214 struct expander_device *ex = &dev->ex_dev;
215 int res = 0;
216 u8 *disc_req;
217 u8 *disc_resp;
219 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
220 if (!disc_req)
221 return -ENOMEM;
223 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
224 if (!disc_resp) {
225 kfree(disc_req);
226 return -ENOMEM;
229 disc_req[1] = SMP_DISCOVER;
231 if (0 <= single && single < ex->num_phys) {
232 disc_req[9] = single;
233 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
234 disc_resp, DISCOVER_RESP_SIZE);
235 if (res)
236 goto out_err;
237 sas_set_ex_phy(dev, single, disc_resp);
238 } else {
239 int i;
241 for (i = 0; i < ex->num_phys; i++) {
242 disc_req[9] = i;
243 res = smp_execute_task(dev, disc_req,
244 DISCOVER_REQ_SIZE, disc_resp,
245 DISCOVER_RESP_SIZE);
246 if (res)
247 goto out_err;
248 sas_set_ex_phy(dev, i, disc_resp);
251 out_err:
252 kfree(disc_resp);
253 kfree(disc_req);
254 return res;
257 static int sas_expander_discover(struct domain_device *dev)
259 struct expander_device *ex = &dev->ex_dev;
260 int res = -ENOMEM;
262 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
263 if (!ex->ex_phy)
264 return -ENOMEM;
266 res = sas_ex_phy_discover(dev, -1);
267 if (res)
268 goto out_err;
270 return 0;
271 out_err:
272 kfree(ex->ex_phy);
273 ex->ex_phy = NULL;
274 return res;
277 #define MAX_EXPANDER_PHYS 128
279 static void ex_assign_report_general(struct domain_device *dev,
280 struct smp_resp *resp)
282 struct report_general_resp *rg = &resp->rg;
284 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
285 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
286 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
287 dev->ex_dev.conf_route_table = rg->conf_route_table;
288 dev->ex_dev.configuring = rg->configuring;
289 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
292 #define RG_REQ_SIZE 8
293 #define RG_RESP_SIZE 32
295 static int sas_ex_general(struct domain_device *dev)
297 u8 *rg_req;
298 struct smp_resp *rg_resp;
299 int res;
300 int i;
302 rg_req = alloc_smp_req(RG_REQ_SIZE);
303 if (!rg_req)
304 return -ENOMEM;
306 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
307 if (!rg_resp) {
308 kfree(rg_req);
309 return -ENOMEM;
312 rg_req[1] = SMP_REPORT_GENERAL;
314 for (i = 0; i < 5; i++) {
315 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
316 RG_RESP_SIZE);
318 if (res) {
319 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
320 SAS_ADDR(dev->sas_addr), res);
321 goto out;
322 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
323 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
324 SAS_ADDR(dev->sas_addr), rg_resp->result);
325 res = rg_resp->result;
326 goto out;
329 ex_assign_report_general(dev, rg_resp);
331 if (dev->ex_dev.configuring) {
332 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
333 SAS_ADDR(dev->sas_addr));
334 schedule_timeout_interruptible(5*HZ);
335 } else
336 break;
338 out:
339 kfree(rg_req);
340 kfree(rg_resp);
341 return res;
344 static void ex_assign_manuf_info(struct domain_device *dev, void
345 *_mi_resp)
347 u8 *mi_resp = _mi_resp;
348 struct sas_rphy *rphy = dev->rphy;
349 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
351 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
352 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
353 memcpy(edev->product_rev, mi_resp + 36,
354 SAS_EXPANDER_PRODUCT_REV_LEN);
356 if (mi_resp[8] & 1) {
357 memcpy(edev->component_vendor_id, mi_resp + 40,
358 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
359 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
360 edev->component_revision_id = mi_resp[50];
364 #define MI_REQ_SIZE 8
365 #define MI_RESP_SIZE 64
367 static int sas_ex_manuf_info(struct domain_device *dev)
369 u8 *mi_req;
370 u8 *mi_resp;
371 int res;
373 mi_req = alloc_smp_req(MI_REQ_SIZE);
374 if (!mi_req)
375 return -ENOMEM;
377 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
378 if (!mi_resp) {
379 kfree(mi_req);
380 return -ENOMEM;
383 mi_req[1] = SMP_REPORT_MANUF_INFO;
385 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
386 if (res) {
387 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
388 SAS_ADDR(dev->sas_addr), res);
389 goto out;
390 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
391 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
392 SAS_ADDR(dev->sas_addr), mi_resp[2]);
393 goto out;
396 ex_assign_manuf_info(dev, mi_resp);
397 out:
398 kfree(mi_req);
399 kfree(mi_resp);
400 return res;
403 #define PC_REQ_SIZE 44
404 #define PC_RESP_SIZE 8
406 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
407 enum phy_func phy_func,
408 struct sas_phy_linkrates *rates)
410 u8 *pc_req;
411 u8 *pc_resp;
412 int res;
414 pc_req = alloc_smp_req(PC_REQ_SIZE);
415 if (!pc_req)
416 return -ENOMEM;
418 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
419 if (!pc_resp) {
420 kfree(pc_req);
421 return -ENOMEM;
424 pc_req[1] = SMP_PHY_CONTROL;
425 pc_req[9] = phy_id;
426 pc_req[10]= phy_func;
427 if (rates) {
428 pc_req[32] = rates->minimum_linkrate << 4;
429 pc_req[33] = rates->maximum_linkrate << 4;
432 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
434 kfree(pc_resp);
435 kfree(pc_req);
436 return res;
439 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
441 struct expander_device *ex = &dev->ex_dev;
442 struct ex_phy *phy = &ex->ex_phy[phy_id];
444 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
445 phy->linkrate = SAS_PHY_DISABLED;
448 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
450 struct expander_device *ex = &dev->ex_dev;
451 int i;
453 for (i = 0; i < ex->num_phys; i++) {
454 struct ex_phy *phy = &ex->ex_phy[i];
456 if (phy->phy_state == PHY_VACANT ||
457 phy->phy_state == PHY_NOT_PRESENT)
458 continue;
460 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
461 sas_ex_disable_phy(dev, i);
465 static int sas_dev_present_in_domain(struct asd_sas_port *port,
466 u8 *sas_addr)
468 struct domain_device *dev;
470 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
471 return 1;
472 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
473 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
474 return 1;
476 return 0;
479 #define RPEL_REQ_SIZE 16
480 #define RPEL_RESP_SIZE 32
481 int sas_smp_get_phy_events(struct sas_phy *phy)
483 int res;
484 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
485 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
486 u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
487 u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
489 if (!resp)
490 return -ENOMEM;
492 req[1] = SMP_REPORT_PHY_ERR_LOG;
493 req[9] = phy->number;
495 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
496 resp, RPEL_RESP_SIZE);
498 if (!res)
499 goto out;
501 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
502 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
503 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
504 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
506 out:
507 kfree(resp);
508 return res;
512 #define RPS_REQ_SIZE 16
513 #define RPS_RESP_SIZE 60
515 static int sas_get_report_phy_sata(struct domain_device *dev,
516 int phy_id,
517 struct smp_resp *rps_resp)
519 int res;
520 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
522 if (!rps_req)
523 return -ENOMEM;
525 rps_req[1] = SMP_REPORT_PHY_SATA;
526 rps_req[9] = phy_id;
528 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
529 rps_resp, RPS_RESP_SIZE);
531 kfree(rps_req);
532 return 0;
535 static void sas_ex_get_linkrate(struct domain_device *parent,
536 struct domain_device *child,
537 struct ex_phy *parent_phy)
539 struct expander_device *parent_ex = &parent->ex_dev;
540 struct sas_port *port;
541 int i;
543 child->pathways = 0;
545 port = parent_phy->port;
547 for (i = 0; i < parent_ex->num_phys; i++) {
548 struct ex_phy *phy = &parent_ex->ex_phy[i];
550 if (phy->phy_state == PHY_VACANT ||
551 phy->phy_state == PHY_NOT_PRESENT)
552 continue;
554 if (SAS_ADDR(phy->attached_sas_addr) ==
555 SAS_ADDR(child->sas_addr)) {
557 child->min_linkrate = min(parent->min_linkrate,
558 phy->linkrate);
559 child->max_linkrate = max(parent->max_linkrate,
560 phy->linkrate);
561 child->pathways++;
562 sas_port_add_phy(port, phy->phy);
565 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
566 child->pathways = min(child->pathways, parent->pathways);
569 static struct domain_device *sas_ex_discover_end_dev(
570 struct domain_device *parent, int phy_id)
572 struct expander_device *parent_ex = &parent->ex_dev;
573 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
574 struct domain_device *child = NULL;
575 struct sas_rphy *rphy;
576 int res;
578 if (phy->attached_sata_host || phy->attached_sata_ps)
579 return NULL;
581 child = kzalloc(sizeof(*child), GFP_KERNEL);
582 if (!child)
583 return NULL;
585 child->parent = parent;
586 child->port = parent->port;
587 child->iproto = phy->attached_iproto;
588 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
589 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
590 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
591 BUG_ON(!phy->port);
592 /* FIXME: better error handling*/
593 BUG_ON(sas_port_add(phy->port) != 0);
594 sas_ex_get_linkrate(parent, child, phy);
596 if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
597 child->dev_type = SATA_DEV;
598 if (phy->attached_tproto & SAS_PROTO_STP)
599 child->tproto = phy->attached_tproto;
600 if (phy->attached_sata_dev)
601 child->tproto |= SATA_DEV;
602 res = sas_get_report_phy_sata(parent, phy_id,
603 &child->sata_dev.rps_resp);
604 if (res) {
605 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
606 "0x%x\n", SAS_ADDR(parent->sas_addr),
607 phy_id, res);
608 kfree(child);
609 return NULL;
611 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
612 sizeof(struct dev_to_host_fis));
613 sas_init_dev(child);
614 res = sas_discover_sata(child);
615 if (res) {
616 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
617 "%016llx:0x%x returned 0x%x\n",
618 SAS_ADDR(child->sas_addr),
619 SAS_ADDR(parent->sas_addr), phy_id, res);
620 kfree(child);
621 return NULL;
623 } else if (phy->attached_tproto & SAS_PROTO_SSP) {
624 child->dev_type = SAS_END_DEV;
625 rphy = sas_end_device_alloc(phy->port);
626 /* FIXME: error handling */
627 BUG_ON(!rphy);
628 child->tproto = phy->attached_tproto;
629 sas_init_dev(child);
631 child->rphy = rphy;
632 sas_fill_in_rphy(child, rphy);
634 spin_lock(&parent->port->dev_list_lock);
635 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
636 spin_unlock(&parent->port->dev_list_lock);
638 res = sas_discover_end_dev(child);
639 if (res) {
640 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
641 "at %016llx:0x%x returned 0x%x\n",
642 SAS_ADDR(child->sas_addr),
643 SAS_ADDR(parent->sas_addr), phy_id, res);
644 /* FIXME: this kfrees list elements without removing them */
645 //kfree(child);
646 return NULL;
648 } else {
649 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
650 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
651 phy_id);
654 list_add_tail(&child->siblings, &parent_ex->children);
655 return child;
658 static struct domain_device *sas_ex_discover_expander(
659 struct domain_device *parent, int phy_id)
661 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
662 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
663 struct domain_device *child = NULL;
664 struct sas_rphy *rphy;
665 struct sas_expander_device *edev;
666 struct asd_sas_port *port;
667 int res;
669 if (phy->routing_attr == DIRECT_ROUTING) {
670 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
671 "allowed\n",
672 SAS_ADDR(parent->sas_addr), phy_id,
673 SAS_ADDR(phy->attached_sas_addr),
674 phy->attached_phy_id);
675 return NULL;
677 child = kzalloc(sizeof(*child), GFP_KERNEL);
678 if (!child)
679 return NULL;
681 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
682 /* FIXME: better error handling */
683 BUG_ON(sas_port_add(phy->port) != 0);
686 switch (phy->attached_dev_type) {
687 case EDGE_DEV:
688 rphy = sas_expander_alloc(phy->port,
689 SAS_EDGE_EXPANDER_DEVICE);
690 break;
691 case FANOUT_DEV:
692 rphy = sas_expander_alloc(phy->port,
693 SAS_FANOUT_EXPANDER_DEVICE);
694 break;
695 default:
696 rphy = NULL; /* shut gcc up */
697 BUG();
699 port = parent->port;
700 child->rphy = rphy;
701 edev = rphy_to_expander_device(rphy);
702 child->dev_type = phy->attached_dev_type;
703 child->parent = parent;
704 child->port = port;
705 child->iproto = phy->attached_iproto;
706 child->tproto = phy->attached_tproto;
707 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
708 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
709 sas_ex_get_linkrate(parent, child, phy);
710 edev->level = parent_ex->level + 1;
711 parent->port->disc.max_level = max(parent->port->disc.max_level,
712 edev->level);
713 sas_init_dev(child);
714 sas_fill_in_rphy(child, rphy);
715 sas_rphy_add(rphy);
717 spin_lock(&parent->port->dev_list_lock);
718 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
719 spin_unlock(&parent->port->dev_list_lock);
721 res = sas_discover_expander(child);
722 if (res) {
723 kfree(child);
724 return NULL;
726 list_add_tail(&child->siblings, &parent->ex_dev.children);
727 return child;
730 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
732 struct expander_device *ex = &dev->ex_dev;
733 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
734 struct domain_device *child = NULL;
735 int res = 0;
737 /* Phy state */
738 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
739 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
740 res = sas_ex_phy_discover(dev, phy_id);
741 if (res)
742 return res;
745 /* Parent and domain coherency */
746 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
747 SAS_ADDR(dev->port->sas_addr))) {
748 sas_add_parent_port(dev, phy_id);
749 return 0;
751 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
752 SAS_ADDR(dev->parent->sas_addr))) {
753 sas_add_parent_port(dev, phy_id);
754 if (ex_phy->routing_attr == TABLE_ROUTING)
755 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
756 return 0;
759 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
760 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
762 if (ex_phy->attached_dev_type == NO_DEVICE) {
763 if (ex_phy->routing_attr == DIRECT_ROUTING) {
764 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
765 sas_configure_routing(dev, ex_phy->attached_sas_addr);
767 return 0;
768 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
769 return 0;
771 if (ex_phy->attached_dev_type != SAS_END_DEV &&
772 ex_phy->attached_dev_type != FANOUT_DEV &&
773 ex_phy->attached_dev_type != EDGE_DEV) {
774 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
775 "phy 0x%x\n", ex_phy->attached_dev_type,
776 SAS_ADDR(dev->sas_addr),
777 phy_id);
778 return 0;
781 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
782 if (res) {
783 SAS_DPRINTK("configure routing for dev %016llx "
784 "reported 0x%x. Forgotten\n",
785 SAS_ADDR(ex_phy->attached_sas_addr), res);
786 sas_disable_routing(dev, ex_phy->attached_sas_addr);
787 return res;
790 switch (ex_phy->attached_dev_type) {
791 case SAS_END_DEV:
792 child = sas_ex_discover_end_dev(dev, phy_id);
793 break;
794 case FANOUT_DEV:
795 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
796 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
797 "attached to ex %016llx phy 0x%x\n",
798 SAS_ADDR(ex_phy->attached_sas_addr),
799 ex_phy->attached_phy_id,
800 SAS_ADDR(dev->sas_addr),
801 phy_id);
802 sas_ex_disable_phy(dev, phy_id);
803 break;
804 } else
805 memcpy(dev->port->disc.fanout_sas_addr,
806 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
807 /* fallthrough */
808 case EDGE_DEV:
809 child = sas_ex_discover_expander(dev, phy_id);
810 break;
811 default:
812 break;
815 if (child) {
816 int i;
818 for (i = 0; i < ex->num_phys; i++) {
819 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
820 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
821 continue;
823 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
824 SAS_ADDR(child->sas_addr))
825 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
829 return res;
832 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
834 struct expander_device *ex = &dev->ex_dev;
835 int i;
837 for (i = 0; i < ex->num_phys; i++) {
838 struct ex_phy *phy = &ex->ex_phy[i];
840 if (phy->phy_state == PHY_VACANT ||
841 phy->phy_state == PHY_NOT_PRESENT)
842 continue;
844 if ((phy->attached_dev_type == EDGE_DEV ||
845 phy->attached_dev_type == FANOUT_DEV) &&
846 phy->routing_attr == SUBTRACTIVE_ROUTING) {
848 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
850 return 1;
853 return 0;
856 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
858 struct expander_device *ex = &dev->ex_dev;
859 struct domain_device *child;
860 u8 sub_addr[8] = {0, };
862 list_for_each_entry(child, &ex->children, siblings) {
863 if (child->dev_type != EDGE_DEV &&
864 child->dev_type != FANOUT_DEV)
865 continue;
866 if (sub_addr[0] == 0) {
867 sas_find_sub_addr(child, sub_addr);
868 continue;
869 } else {
870 u8 s2[8];
872 if (sas_find_sub_addr(child, s2) &&
873 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
875 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
876 "diverges from subtractive "
877 "boundary %016llx\n",
878 SAS_ADDR(dev->sas_addr),
879 SAS_ADDR(child->sas_addr),
880 SAS_ADDR(s2),
881 SAS_ADDR(sub_addr));
883 sas_ex_disable_port(child, s2);
887 return 0;
890 * sas_ex_discover_devices -- discover devices attached to this expander
891 * dev: pointer to the expander domain device
892 * single: if you want to do a single phy, else set to -1;
894 * Configure this expander for use with its devices and register the
895 * devices of this expander.
897 static int sas_ex_discover_devices(struct domain_device *dev, int single)
899 struct expander_device *ex = &dev->ex_dev;
900 int i = 0, end = ex->num_phys;
901 int res = 0;
903 if (0 <= single && single < end) {
904 i = single;
905 end = i+1;
908 for ( ; i < end; i++) {
909 struct ex_phy *ex_phy = &ex->ex_phy[i];
911 if (ex_phy->phy_state == PHY_VACANT ||
912 ex_phy->phy_state == PHY_NOT_PRESENT ||
913 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
914 continue;
916 switch (ex_phy->linkrate) {
917 case SAS_PHY_DISABLED:
918 case SAS_PHY_RESET_PROBLEM:
919 case SAS_SATA_PORT_SELECTOR:
920 continue;
921 default:
922 res = sas_ex_discover_dev(dev, i);
923 if (res)
924 break;
925 continue;
929 if (!res)
930 sas_check_level_subtractive_boundary(dev);
932 return res;
935 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
937 struct expander_device *ex = &dev->ex_dev;
938 int i;
939 u8 *sub_sas_addr = NULL;
941 if (dev->dev_type != EDGE_DEV)
942 return 0;
944 for (i = 0; i < ex->num_phys; i++) {
945 struct ex_phy *phy = &ex->ex_phy[i];
947 if (phy->phy_state == PHY_VACANT ||
948 phy->phy_state == PHY_NOT_PRESENT)
949 continue;
951 if ((phy->attached_dev_type == FANOUT_DEV ||
952 phy->attached_dev_type == EDGE_DEV) &&
953 phy->routing_attr == SUBTRACTIVE_ROUTING) {
955 if (!sub_sas_addr)
956 sub_sas_addr = &phy->attached_sas_addr[0];
957 else if (SAS_ADDR(sub_sas_addr) !=
958 SAS_ADDR(phy->attached_sas_addr)) {
960 SAS_DPRINTK("ex %016llx phy 0x%x "
961 "diverges(%016llx) on subtractive "
962 "boundary(%016llx). Disabled\n",
963 SAS_ADDR(dev->sas_addr), i,
964 SAS_ADDR(phy->attached_sas_addr),
965 SAS_ADDR(sub_sas_addr));
966 sas_ex_disable_phy(dev, i);
970 return 0;
973 static void sas_print_parent_topology_bug(struct domain_device *child,
974 struct ex_phy *parent_phy,
975 struct ex_phy *child_phy)
977 static const char ra_char[] = {
978 [DIRECT_ROUTING] = 'D',
979 [SUBTRACTIVE_ROUTING] = 'S',
980 [TABLE_ROUTING] = 'T',
982 static const char *ex_type[] = {
983 [EDGE_DEV] = "edge",
984 [FANOUT_DEV] = "fanout",
986 struct domain_device *parent = child->parent;
988 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
989 "has %c:%c routing link!\n",
991 ex_type[parent->dev_type],
992 SAS_ADDR(parent->sas_addr),
993 parent_phy->phy_id,
995 ex_type[child->dev_type],
996 SAS_ADDR(child->sas_addr),
997 child_phy->phy_id,
999 ra_char[parent_phy->routing_attr],
1000 ra_char[child_phy->routing_attr]);
1003 static int sas_check_eeds(struct domain_device *child,
1004 struct ex_phy *parent_phy,
1005 struct ex_phy *child_phy)
1007 int res = 0;
1008 struct domain_device *parent = child->parent;
1010 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1011 res = -ENODEV;
1012 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1013 "phy S:0x%x, while there is a fanout ex %016llx\n",
1014 SAS_ADDR(parent->sas_addr),
1015 parent_phy->phy_id,
1016 SAS_ADDR(child->sas_addr),
1017 child_phy->phy_id,
1018 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1019 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1020 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1021 SAS_ADDR_SIZE);
1022 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1023 SAS_ADDR_SIZE);
1024 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1025 SAS_ADDR(parent->sas_addr)) ||
1026 (SAS_ADDR(parent->port->disc.eeds_a) ==
1027 SAS_ADDR(child->sas_addr)))
1029 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1030 SAS_ADDR(parent->sas_addr)) ||
1031 (SAS_ADDR(parent->port->disc.eeds_b) ==
1032 SAS_ADDR(child->sas_addr))))
1034 else {
1035 res = -ENODEV;
1036 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1037 "phy 0x%x link forms a third EEDS!\n",
1038 SAS_ADDR(parent->sas_addr),
1039 parent_phy->phy_id,
1040 SAS_ADDR(child->sas_addr),
1041 child_phy->phy_id);
1044 return res;
1047 /* Here we spill over 80 columns. It is intentional.
1049 static int sas_check_parent_topology(struct domain_device *child)
1051 struct expander_device *child_ex = &child->ex_dev;
1052 struct expander_device *parent_ex;
1053 int i;
1054 int res = 0;
1056 if (!child->parent)
1057 return 0;
1059 if (child->parent->dev_type != EDGE_DEV &&
1060 child->parent->dev_type != FANOUT_DEV)
1061 return 0;
1063 parent_ex = &child->parent->ex_dev;
1065 for (i = 0; i < parent_ex->num_phys; i++) {
1066 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1067 struct ex_phy *child_phy;
1069 if (parent_phy->phy_state == PHY_VACANT ||
1070 parent_phy->phy_state == PHY_NOT_PRESENT)
1071 continue;
1073 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1074 continue;
1076 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1078 switch (child->parent->dev_type) {
1079 case EDGE_DEV:
1080 if (child->dev_type == FANOUT_DEV) {
1081 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1082 child_phy->routing_attr != TABLE_ROUTING) {
1083 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1084 res = -ENODEV;
1086 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1087 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1088 res = sas_check_eeds(child, parent_phy, child_phy);
1089 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1090 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1091 res = -ENODEV;
1093 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1094 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1095 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1096 res = -ENODEV;
1098 break;
1099 case FANOUT_DEV:
1100 if (parent_phy->routing_attr != TABLE_ROUTING ||
1101 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1102 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1103 res = -ENODEV;
1105 break;
1106 default:
1107 break;
1111 return res;
1114 #define RRI_REQ_SIZE 16
1115 #define RRI_RESP_SIZE 44
1117 static int sas_configure_present(struct domain_device *dev, int phy_id,
1118 u8 *sas_addr, int *index, int *present)
1120 int i, res = 0;
1121 struct expander_device *ex = &dev->ex_dev;
1122 struct ex_phy *phy = &ex->ex_phy[phy_id];
1123 u8 *rri_req;
1124 u8 *rri_resp;
1126 *present = 0;
1127 *index = 0;
1129 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1130 if (!rri_req)
1131 return -ENOMEM;
1133 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1134 if (!rri_resp) {
1135 kfree(rri_req);
1136 return -ENOMEM;
1139 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1140 rri_req[9] = phy_id;
1142 for (i = 0; i < ex->max_route_indexes ; i++) {
1143 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1144 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1145 RRI_RESP_SIZE);
1146 if (res)
1147 goto out;
1148 res = rri_resp[2];
1149 if (res == SMP_RESP_NO_INDEX) {
1150 SAS_DPRINTK("overflow of indexes: dev %016llx "
1151 "phy 0x%x index 0x%x\n",
1152 SAS_ADDR(dev->sas_addr), phy_id, i);
1153 goto out;
1154 } else if (res != SMP_RESP_FUNC_ACC) {
1155 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1156 "result 0x%x\n", __FUNCTION__,
1157 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1158 goto out;
1160 if (SAS_ADDR(sas_addr) != 0) {
1161 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1162 *index = i;
1163 if ((rri_resp[12] & 0x80) == 0x80)
1164 *present = 0;
1165 else
1166 *present = 1;
1167 goto out;
1168 } else if (SAS_ADDR(rri_resp+16) == 0) {
1169 *index = i;
1170 *present = 0;
1171 goto out;
1173 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1174 phy->last_da_index < i) {
1175 phy->last_da_index = i;
1176 *index = i;
1177 *present = 0;
1178 goto out;
1181 res = -1;
1182 out:
1183 kfree(rri_req);
1184 kfree(rri_resp);
1185 return res;
1188 #define CRI_REQ_SIZE 44
1189 #define CRI_RESP_SIZE 8
1191 static int sas_configure_set(struct domain_device *dev, int phy_id,
1192 u8 *sas_addr, int index, int include)
1194 int res;
1195 u8 *cri_req;
1196 u8 *cri_resp;
1198 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1199 if (!cri_req)
1200 return -ENOMEM;
1202 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1203 if (!cri_resp) {
1204 kfree(cri_req);
1205 return -ENOMEM;
1208 cri_req[1] = SMP_CONF_ROUTE_INFO;
1209 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1210 cri_req[9] = phy_id;
1211 if (SAS_ADDR(sas_addr) == 0 || !include)
1212 cri_req[12] |= 0x80;
1213 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1215 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1216 CRI_RESP_SIZE);
1217 if (res)
1218 goto out;
1219 res = cri_resp[2];
1220 if (res == SMP_RESP_NO_INDEX) {
1221 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1222 "index 0x%x\n",
1223 SAS_ADDR(dev->sas_addr), phy_id, index);
1225 out:
1226 kfree(cri_req);
1227 kfree(cri_resp);
1228 return res;
1231 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1232 u8 *sas_addr, int include)
1234 int index;
1235 int present;
1236 int res;
1238 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1239 if (res)
1240 return res;
1241 if (include ^ present)
1242 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1244 return res;
1248 * sas_configure_parent -- configure routing table of parent
1249 * parent: parent expander
1250 * child: child expander
1251 * sas_addr: SAS port identifier of device directly attached to child
1253 static int sas_configure_parent(struct domain_device *parent,
1254 struct domain_device *child,
1255 u8 *sas_addr, int include)
1257 struct expander_device *ex_parent = &parent->ex_dev;
1258 int res = 0;
1259 int i;
1261 if (parent->parent) {
1262 res = sas_configure_parent(parent->parent, parent, sas_addr,
1263 include);
1264 if (res)
1265 return res;
1268 if (ex_parent->conf_route_table == 0) {
1269 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1270 SAS_ADDR(parent->sas_addr));
1271 return 0;
1274 for (i = 0; i < ex_parent->num_phys; i++) {
1275 struct ex_phy *phy = &ex_parent->ex_phy[i];
1277 if ((phy->routing_attr == TABLE_ROUTING) &&
1278 (SAS_ADDR(phy->attached_sas_addr) ==
1279 SAS_ADDR(child->sas_addr))) {
1280 res = sas_configure_phy(parent, i, sas_addr, include);
1281 if (res)
1282 return res;
1286 return res;
1290 * sas_configure_routing -- configure routing
1291 * dev: expander device
1292 * sas_addr: port identifier of device directly attached to the expander device
1294 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1296 if (dev->parent)
1297 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1298 return 0;
1301 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1303 if (dev->parent)
1304 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1305 return 0;
1308 #if 0
1309 #define SMP_BIN_ATTR_NAME "smp_portal"
1311 static void sas_ex_smp_hook(struct domain_device *dev)
1313 struct expander_device *ex_dev = &dev->ex_dev;
1314 struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
1316 memset(bin_attr, 0, sizeof(*bin_attr));
1318 bin_attr->attr.name = SMP_BIN_ATTR_NAME;
1319 bin_attr->attr.owner = THIS_MODULE;
1320 bin_attr->attr.mode = 0600;
1322 bin_attr->size = 0;
1323 bin_attr->private = NULL;
1324 bin_attr->read = smp_portal_read;
1325 bin_attr->write= smp_portal_write;
1326 bin_attr->mmap = NULL;
1328 ex_dev->smp_portal_pid = -1;
1329 init_MUTEX(&ex_dev->smp_sema);
1331 #endif
1334 * sas_discover_expander -- expander discovery
1335 * @ex: pointer to expander domain device
1337 * See comment in sas_discover_sata().
1339 static int sas_discover_expander(struct domain_device *dev)
1341 int res;
1343 res = sas_notify_lldd_dev_found(dev);
1344 if (res)
1345 return res;
1347 res = sas_ex_general(dev);
1348 if (res)
1349 goto out_err;
1350 res = sas_ex_manuf_info(dev);
1351 if (res)
1352 goto out_err;
1354 res = sas_expander_discover(dev);
1355 if (res) {
1356 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1357 SAS_ADDR(dev->sas_addr), res);
1358 goto out_err;
1361 sas_check_ex_subtractive_boundary(dev);
1362 res = sas_check_parent_topology(dev);
1363 if (res)
1364 goto out_err;
1365 return 0;
1366 out_err:
1367 sas_notify_lldd_dev_gone(dev);
1368 return res;
1371 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1373 int res = 0;
1374 struct domain_device *dev;
1376 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1377 if (dev->dev_type == EDGE_DEV ||
1378 dev->dev_type == FANOUT_DEV) {
1379 struct sas_expander_device *ex =
1380 rphy_to_expander_device(dev->rphy);
1382 if (level == ex->level)
1383 res = sas_ex_discover_devices(dev, -1);
1384 else if (level > 0)
1385 res = sas_ex_discover_devices(port->port_dev, -1);
1390 return res;
1393 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1395 int res;
1396 int level;
1398 do {
1399 level = port->disc.max_level;
1400 res = sas_ex_level_discovery(port, level);
1401 mb();
1402 } while (level < port->disc.max_level);
1404 return res;
1407 int sas_discover_root_expander(struct domain_device *dev)
1409 int res;
1410 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1412 sas_rphy_add(dev->rphy);
1414 ex->level = dev->port->disc.max_level; /* 0 */
1415 res = sas_discover_expander(dev);
1416 if (!res)
1417 sas_ex_bfs_disc(dev->port);
1419 return res;
1422 /* ---------- Domain revalidation ---------- */
1424 static int sas_get_phy_discover(struct domain_device *dev,
1425 int phy_id, struct smp_resp *disc_resp)
1427 int res;
1428 u8 *disc_req;
1430 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1431 if (!disc_req)
1432 return -ENOMEM;
1434 disc_req[1] = SMP_DISCOVER;
1435 disc_req[9] = phy_id;
1437 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1438 disc_resp, DISCOVER_RESP_SIZE);
1439 if (res)
1440 goto out;
1441 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1442 res = disc_resp->result;
1443 goto out;
1445 out:
1446 kfree(disc_req);
1447 return res;
1450 static int sas_get_phy_change_count(struct domain_device *dev,
1451 int phy_id, int *pcc)
1453 int res;
1454 struct smp_resp *disc_resp;
1456 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1457 if (!disc_resp)
1458 return -ENOMEM;
1460 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1461 if (!res)
1462 *pcc = disc_resp->disc.change_count;
1464 kfree(disc_resp);
1465 return res;
1468 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1469 int phy_id, u8 *attached_sas_addr)
1471 int res;
1472 struct smp_resp *disc_resp;
1473 struct discover_resp *dr;
1475 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1476 if (!disc_resp)
1477 return -ENOMEM;
1478 dr = &disc_resp->disc;
1480 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1481 if (!res) {
1482 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1483 if (dr->attached_dev_type == 0)
1484 memset(attached_sas_addr, 0, 8);
1486 kfree(disc_resp);
1487 return res;
1490 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1491 int from_phy)
1493 struct expander_device *ex = &dev->ex_dev;
1494 int res = 0;
1495 int i;
1497 for (i = from_phy; i < ex->num_phys; i++) {
1498 int phy_change_count = 0;
1500 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1501 if (res)
1502 goto out;
1503 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1504 ex->ex_phy[i].phy_change_count = phy_change_count;
1505 *phy_id = i;
1506 return 0;
1509 out:
1510 return res;
1513 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1515 int res;
1516 u8 *rg_req;
1517 struct smp_resp *rg_resp;
1519 rg_req = alloc_smp_req(RG_REQ_SIZE);
1520 if (!rg_req)
1521 return -ENOMEM;
1523 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1524 if (!rg_resp) {
1525 kfree(rg_req);
1526 return -ENOMEM;
1529 rg_req[1] = SMP_REPORT_GENERAL;
1531 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1532 RG_RESP_SIZE);
1533 if (res)
1534 goto out;
1535 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1536 res = rg_resp->result;
1537 goto out;
1540 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1541 out:
1542 kfree(rg_resp);
1543 kfree(rg_req);
1544 return res;
1547 static int sas_find_bcast_dev(struct domain_device *dev,
1548 struct domain_device **src_dev)
1550 struct expander_device *ex = &dev->ex_dev;
1551 int ex_change_count = -1;
1552 int res;
1554 res = sas_get_ex_change_count(dev, &ex_change_count);
1555 if (res)
1556 goto out;
1557 if (ex_change_count != -1 &&
1558 ex_change_count != ex->ex_change_count) {
1559 *src_dev = dev;
1560 ex->ex_change_count = ex_change_count;
1561 } else {
1562 struct domain_device *ch;
1564 list_for_each_entry(ch, &ex->children, siblings) {
1565 if (ch->dev_type == EDGE_DEV ||
1566 ch->dev_type == FANOUT_DEV) {
1567 res = sas_find_bcast_dev(ch, src_dev);
1568 if (src_dev)
1569 return res;
1573 out:
1574 return res;
1577 static void sas_unregister_ex_tree(struct domain_device *dev)
1579 struct expander_device *ex = &dev->ex_dev;
1580 struct domain_device *child, *n;
1582 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1583 if (child->dev_type == EDGE_DEV ||
1584 child->dev_type == FANOUT_DEV)
1585 sas_unregister_ex_tree(child);
1586 else
1587 sas_unregister_dev(child);
1589 sas_unregister_dev(dev);
1592 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1593 int phy_id)
1595 struct expander_device *ex_dev = &parent->ex_dev;
1596 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1597 struct domain_device *child, *n;
1599 list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1600 if (SAS_ADDR(child->sas_addr) ==
1601 SAS_ADDR(phy->attached_sas_addr)) {
1602 if (child->dev_type == EDGE_DEV ||
1603 child->dev_type == FANOUT_DEV)
1604 sas_unregister_ex_tree(child);
1605 else
1606 sas_unregister_dev(child);
1607 break;
1610 sas_disable_routing(parent, phy->attached_sas_addr);
1611 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1612 sas_port_delete_phy(phy->port, phy->phy);
1613 if (phy->port->num_phys == 0)
1614 sas_port_delete(phy->port);
1615 phy->port = NULL;
1618 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1619 const int level)
1621 struct expander_device *ex_root = &root->ex_dev;
1622 struct domain_device *child;
1623 int res = 0;
1625 list_for_each_entry(child, &ex_root->children, siblings) {
1626 if (child->dev_type == EDGE_DEV ||
1627 child->dev_type == FANOUT_DEV) {
1628 struct sas_expander_device *ex =
1629 rphy_to_expander_device(child->rphy);
1631 if (level > ex->level)
1632 res = sas_discover_bfs_by_root_level(child,
1633 level);
1634 else if (level == ex->level)
1635 res = sas_ex_discover_devices(child, -1);
1638 return res;
1641 static int sas_discover_bfs_by_root(struct domain_device *dev)
1643 int res;
1644 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1645 int level = ex->level+1;
1647 res = sas_ex_discover_devices(dev, -1);
1648 if (res)
1649 goto out;
1650 do {
1651 res = sas_discover_bfs_by_root_level(dev, level);
1652 mb();
1653 level += 1;
1654 } while (level <= dev->port->disc.max_level);
1655 out:
1656 return res;
1659 static int sas_discover_new(struct domain_device *dev, int phy_id)
1661 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1662 struct domain_device *child;
1663 int res;
1665 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1666 SAS_ADDR(dev->sas_addr), phy_id);
1667 res = sas_ex_phy_discover(dev, phy_id);
1668 if (res)
1669 goto out;
1670 res = sas_ex_discover_devices(dev, phy_id);
1671 if (res)
1672 goto out;
1673 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1674 if (SAS_ADDR(child->sas_addr) ==
1675 SAS_ADDR(ex_phy->attached_sas_addr)) {
1676 if (child->dev_type == EDGE_DEV ||
1677 child->dev_type == FANOUT_DEV)
1678 res = sas_discover_bfs_by_root(child);
1679 break;
1682 out:
1683 return res;
1686 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1688 struct expander_device *ex = &dev->ex_dev;
1689 struct ex_phy *phy = &ex->ex_phy[phy_id];
1690 u8 attached_sas_addr[8];
1691 int res;
1693 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1694 switch (res) {
1695 case SMP_RESP_NO_PHY:
1696 phy->phy_state = PHY_NOT_PRESENT;
1697 sas_unregister_devs_sas_addr(dev, phy_id);
1698 goto out; break;
1699 case SMP_RESP_PHY_VACANT:
1700 phy->phy_state = PHY_VACANT;
1701 sas_unregister_devs_sas_addr(dev, phy_id);
1702 goto out; break;
1703 case SMP_RESP_FUNC_ACC:
1704 break;
1707 if (SAS_ADDR(attached_sas_addr) == 0) {
1708 phy->phy_state = PHY_EMPTY;
1709 sas_unregister_devs_sas_addr(dev, phy_id);
1710 } else if (SAS_ADDR(attached_sas_addr) ==
1711 SAS_ADDR(phy->attached_sas_addr)) {
1712 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1713 SAS_ADDR(dev->sas_addr), phy_id);
1714 sas_ex_phy_discover(dev, phy_id);
1715 } else
1716 res = sas_discover_new(dev, phy_id);
1717 out:
1718 return res;
1721 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1723 struct expander_device *ex = &dev->ex_dev;
1724 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1725 int res = 0;
1726 int i;
1728 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1729 SAS_ADDR(dev->sas_addr), phy_id);
1731 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1732 for (i = 0; i < ex->num_phys; i++) {
1733 struct ex_phy *phy = &ex->ex_phy[i];
1735 if (i == phy_id)
1736 continue;
1737 if (SAS_ADDR(phy->attached_sas_addr) ==
1738 SAS_ADDR(changed_phy->attached_sas_addr)) {
1739 SAS_DPRINTK("phy%d part of wide port with "
1740 "phy%d\n", phy_id, i);
1741 goto out;
1744 res = sas_rediscover_dev(dev, phy_id);
1745 } else
1746 res = sas_discover_new(dev, phy_id);
1747 out:
1748 return res;
1752 * sas_revalidate_domain -- revalidate the domain
1753 * @port: port to the domain of interest
1755 * NOTE: this process _must_ quit (return) as soon as any connection
1756 * errors are encountered. Connection recovery is done elsewhere.
1757 * Discover process only interrogates devices in order to discover the
1758 * domain.
1760 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1762 int res;
1763 struct domain_device *dev = NULL;
1765 res = sas_find_bcast_dev(port_dev, &dev);
1766 if (res)
1767 goto out;
1768 if (dev) {
1769 struct expander_device *ex = &dev->ex_dev;
1770 int i = 0, phy_id;
1772 do {
1773 phy_id = -1;
1774 res = sas_find_bcast_phy(dev, &phy_id, i);
1775 if (phy_id == -1)
1776 break;
1777 res = sas_rediscover(dev, phy_id);
1778 i = phy_id + 1;
1779 } while (i < ex->num_phys);
1781 out:
1782 return res;
1785 #if 0
1786 /* ---------- SMP portal ---------- */
1788 static ssize_t smp_portal_write(struct kobject *kobj, char *buf, loff_t offs,
1789 size_t size)
1791 struct domain_device *dev = to_dom_device(kobj);
1792 struct expander_device *ex = &dev->ex_dev;
1794 if (offs != 0)
1795 return -EFBIG;
1796 else if (size == 0)
1797 return 0;
1799 down_interruptible(&ex->smp_sema);
1800 if (ex->smp_req)
1801 kfree(ex->smp_req);
1802 ex->smp_req = kzalloc(size, GFP_USER);
1803 if (!ex->smp_req) {
1804 up(&ex->smp_sema);
1805 return -ENOMEM;
1807 memcpy(ex->smp_req, buf, size);
1808 ex->smp_req_size = size;
1809 ex->smp_portal_pid = current->pid;
1810 up(&ex->smp_sema);
1812 return size;
1815 static ssize_t smp_portal_read(struct kobject *kobj, char *buf, loff_t offs,
1816 size_t size)
1818 struct domain_device *dev = to_dom_device(kobj);
1819 struct expander_device *ex = &dev->ex_dev;
1820 u8 *smp_resp;
1821 int res = -EINVAL;
1823 /* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
1824 * it should be 0.
1827 down_interruptible(&ex->smp_sema);
1828 if (!ex->smp_req || ex->smp_portal_pid != current->pid)
1829 goto out;
1831 res = 0;
1832 if (size == 0)
1833 goto out;
1835 res = -ENOMEM;
1836 smp_resp = alloc_smp_resp(size);
1837 if (!smp_resp)
1838 goto out;
1839 res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
1840 smp_resp, size);
1841 if (!res) {
1842 memcpy(buf, smp_resp, size);
1843 res = size;
1846 kfree(smp_resp);
1847 out:
1848 kfree(ex->smp_req);
1849 ex->smp_req = NULL;
1850 ex->smp_req_size = 0;
1851 ex->smp_portal_pid = -1;
1852 up(&ex->smp_sema);
1853 return res;
1855 #endif