4 * (C) 1997 Linus Torvalds
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
27 * This is needed for the following functions:
29 * - invalidate_inode_buffers
32 * FIXME: remove all knowledge of the buffer layer from this file
34 #include <linux/buffer_head.h>
37 * New inode.c implementation.
39 * This implementation has the basic premise of trying
40 * to be extremely low-overhead and SMP-safe, yet be
41 * simple enough to be "obviously correct".
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
52 * Inode lookup is no longer as critical as it used to be:
53 * most of the lookups are going to be through the dcache.
55 #define I_HASHBITS i_hash_shift
56 #define I_HASHMASK i_hash_mask
58 static unsigned int i_hash_mask __read_mostly
;
59 static unsigned int i_hash_shift __read_mostly
;
62 * Each inode can be on two separate lists. One is
63 * the hash list of the inode, used for lookups. The
64 * other linked list is the "type" list:
65 * "in_use" - valid inode, i_count > 0, i_nlink > 0
66 * "dirty" - as "in_use" but also dirty
67 * "unused" - valid inode, i_count = 0
69 * A "dirty" list is maintained for each super block,
70 * allowing for low-overhead inode sync() operations.
73 LIST_HEAD(inode_in_use
);
74 LIST_HEAD(inode_unused
);
75 static struct hlist_head
*inode_hashtable __read_mostly
;
78 * A simple spinlock to protect the list manipulations.
80 * NOTE! You also have to own the lock if you change
81 * the i_state of an inode while it is in use..
83 DEFINE_SPINLOCK(inode_lock
);
86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87 * icache shrinking path, and the umount path. Without this exclusion,
88 * by the time prune_icache calls iput for the inode whose pages it has
89 * been invalidating, or by the time it calls clear_inode & destroy_inode
90 * from its final dispose_list, the struct super_block they refer to
91 * (for inode->i_sb->s_op) may already have been freed and reused.
93 static DEFINE_MUTEX(iprune_mutex
);
96 * Statistics gathering..
98 struct inodes_stat_t inodes_stat
;
100 static struct kmem_cache
* inode_cachep __read_mostly
;
102 static struct inode
*alloc_inode(struct super_block
*sb
)
104 static const struct address_space_operations empty_aops
;
105 static struct inode_operations empty_iops
;
106 static const struct file_operations empty_fops
;
109 if (sb
->s_op
->alloc_inode
)
110 inode
= sb
->s_op
->alloc_inode(sb
);
112 inode
= (struct inode
*) kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
115 struct address_space
* const mapping
= &inode
->i_data
;
118 inode
->i_blkbits
= sb
->s_blocksize_bits
;
120 atomic_set(&inode
->i_count
, 1);
121 inode
->i_op
= &empty_iops
;
122 inode
->i_fop
= &empty_fops
;
124 atomic_set(&inode
->i_writecount
, 0);
128 inode
->i_generation
= 0;
130 memset(&inode
->i_dquot
, 0, sizeof(inode
->i_dquot
));
132 inode
->i_pipe
= NULL
;
133 inode
->i_bdev
= NULL
;
134 inode
->i_cdev
= NULL
;
136 inode
->dirtied_when
= 0;
137 if (security_inode_alloc(inode
)) {
138 if (inode
->i_sb
->s_op
->destroy_inode
)
139 inode
->i_sb
->s_op
->destroy_inode(inode
);
141 kmem_cache_free(inode_cachep
, (inode
));
145 mapping
->a_ops
= &empty_aops
;
146 mapping
->host
= inode
;
148 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER
);
149 mapping
->assoc_mapping
= NULL
;
150 mapping
->backing_dev_info
= &default_backing_dev_info
;
153 * If the block_device provides a backing_dev_info for client
154 * inodes then use that. Otherwise the inode share the bdev's
158 struct backing_dev_info
*bdi
;
160 bdi
= sb
->s_bdev
->bd_inode_backing_dev_info
;
162 bdi
= sb
->s_bdev
->bd_inode
->i_mapping
->backing_dev_info
;
163 mapping
->backing_dev_info
= bdi
;
165 inode
->i_private
= NULL
;
166 inode
->i_mapping
= mapping
;
171 void destroy_inode(struct inode
*inode
)
173 BUG_ON(inode_has_buffers(inode
));
174 security_inode_free(inode
);
175 if (inode
->i_sb
->s_op
->destroy_inode
)
176 inode
->i_sb
->s_op
->destroy_inode(inode
);
178 kmem_cache_free(inode_cachep
, (inode
));
183 * These are initializations that only need to be done
184 * once, because the fields are idempotent across use
185 * of the inode, so let the slab aware of that.
187 void inode_init_once(struct inode
*inode
)
189 memset(inode
, 0, sizeof(*inode
));
190 INIT_HLIST_NODE(&inode
->i_hash
);
191 INIT_LIST_HEAD(&inode
->i_dentry
);
192 INIT_LIST_HEAD(&inode
->i_devices
);
193 mutex_init(&inode
->i_mutex
);
194 init_rwsem(&inode
->i_alloc_sem
);
195 INIT_RADIX_TREE(&inode
->i_data
.page_tree
, GFP_ATOMIC
);
196 rwlock_init(&inode
->i_data
.tree_lock
);
197 spin_lock_init(&inode
->i_data
.i_mmap_lock
);
198 INIT_LIST_HEAD(&inode
->i_data
.private_list
);
199 spin_lock_init(&inode
->i_data
.private_lock
);
200 INIT_RAW_PRIO_TREE_ROOT(&inode
->i_data
.i_mmap
);
201 INIT_LIST_HEAD(&inode
->i_data
.i_mmap_nonlinear
);
202 spin_lock_init(&inode
->i_lock
);
203 i_size_ordered_init(inode
);
204 #ifdef CONFIG_INOTIFY
205 INIT_LIST_HEAD(&inode
->inotify_watches
);
206 mutex_init(&inode
->inotify_mutex
);
210 EXPORT_SYMBOL(inode_init_once
);
212 static void init_once(void * foo
, struct kmem_cache
* cachep
, unsigned long flags
)
214 struct inode
* inode
= (struct inode
*) foo
;
216 if ((flags
& (SLAB_CTOR_VERIFY
|SLAB_CTOR_CONSTRUCTOR
)) ==
217 SLAB_CTOR_CONSTRUCTOR
)
218 inode_init_once(inode
);
222 * inode_lock must be held
224 void __iget(struct inode
* inode
)
226 if (atomic_read(&inode
->i_count
)) {
227 atomic_inc(&inode
->i_count
);
230 atomic_inc(&inode
->i_count
);
231 if (!(inode
->i_state
& (I_DIRTY
|I_LOCK
)))
232 list_move(&inode
->i_list
, &inode_in_use
);
233 inodes_stat
.nr_unused
--;
237 * clear_inode - clear an inode
238 * @inode: inode to clear
240 * This is called by the filesystem to tell us
241 * that the inode is no longer useful. We just
242 * terminate it with extreme prejudice.
244 void clear_inode(struct inode
*inode
)
247 invalidate_inode_buffers(inode
);
249 BUG_ON(inode
->i_data
.nrpages
);
250 BUG_ON(!(inode
->i_state
& I_FREEING
));
251 BUG_ON(inode
->i_state
& I_CLEAR
);
252 wait_on_inode(inode
);
254 if (inode
->i_sb
&& inode
->i_sb
->s_op
->clear_inode
)
255 inode
->i_sb
->s_op
->clear_inode(inode
);
256 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
258 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
260 inode
->i_state
= I_CLEAR
;
263 EXPORT_SYMBOL(clear_inode
);
266 * dispose_list - dispose of the contents of a local list
267 * @head: the head of the list to free
269 * Dispose-list gets a local list with local inodes in it, so it doesn't
270 * need to worry about list corruption and SMP locks.
272 static void dispose_list(struct list_head
*head
)
276 while (!list_empty(head
)) {
279 inode
= list_entry(head
->next
, struct inode
, i_list
);
280 list_del(&inode
->i_list
);
282 if (inode
->i_data
.nrpages
)
283 truncate_inode_pages(&inode
->i_data
, 0);
286 spin_lock(&inode_lock
);
287 hlist_del_init(&inode
->i_hash
);
288 list_del_init(&inode
->i_sb_list
);
289 spin_unlock(&inode_lock
);
291 wake_up_inode(inode
);
292 destroy_inode(inode
);
295 spin_lock(&inode_lock
);
296 inodes_stat
.nr_inodes
-= nr_disposed
;
297 spin_unlock(&inode_lock
);
301 * Invalidate all inodes for a device.
303 static int invalidate_list(struct list_head
*head
, struct list_head
*dispose
)
305 struct list_head
*next
;
306 int busy
= 0, count
= 0;
310 struct list_head
* tmp
= next
;
311 struct inode
* inode
;
314 * We can reschedule here without worrying about the list's
315 * consistency because the per-sb list of inodes must not
316 * change during umount anymore, and because iprune_mutex keeps
317 * shrink_icache_memory() away.
319 cond_resched_lock(&inode_lock
);
324 inode
= list_entry(tmp
, struct inode
, i_sb_list
);
325 invalidate_inode_buffers(inode
);
326 if (!atomic_read(&inode
->i_count
)) {
327 list_move(&inode
->i_list
, dispose
);
328 inode
->i_state
|= I_FREEING
;
334 /* only unused inodes may be cached with i_count zero */
335 inodes_stat
.nr_unused
-= count
;
340 * invalidate_inodes - discard the inodes on a device
343 * Discard all of the inodes for a given superblock. If the discard
344 * fails because there are busy inodes then a non zero value is returned.
345 * If the discard is successful all the inodes have been discarded.
347 int invalidate_inodes(struct super_block
* sb
)
350 LIST_HEAD(throw_away
);
352 mutex_lock(&iprune_mutex
);
353 spin_lock(&inode_lock
);
354 inotify_unmount_inodes(&sb
->s_inodes
);
355 busy
= invalidate_list(&sb
->s_inodes
, &throw_away
);
356 spin_unlock(&inode_lock
);
358 dispose_list(&throw_away
);
359 mutex_unlock(&iprune_mutex
);
364 EXPORT_SYMBOL(invalidate_inodes
);
366 static int can_unuse(struct inode
*inode
)
370 if (inode_has_buffers(inode
))
372 if (atomic_read(&inode
->i_count
))
374 if (inode
->i_data
.nrpages
)
380 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
381 * a temporary list and then are freed outside inode_lock by dispose_list().
383 * Any inodes which are pinned purely because of attached pagecache have their
384 * pagecache removed. We expect the final iput() on that inode to add it to
385 * the front of the inode_unused list. So look for it there and if the
386 * inode is still freeable, proceed. The right inode is found 99.9% of the
387 * time in testing on a 4-way.
389 * If the inode has metadata buffers attached to mapping->private_list then
390 * try to remove them.
392 static void prune_icache(int nr_to_scan
)
397 unsigned long reap
= 0;
399 mutex_lock(&iprune_mutex
);
400 spin_lock(&inode_lock
);
401 for (nr_scanned
= 0; nr_scanned
< nr_to_scan
; nr_scanned
++) {
404 if (list_empty(&inode_unused
))
407 inode
= list_entry(inode_unused
.prev
, struct inode
, i_list
);
409 if (inode
->i_state
|| atomic_read(&inode
->i_count
)) {
410 list_move(&inode
->i_list
, &inode_unused
);
413 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
415 spin_unlock(&inode_lock
);
416 if (remove_inode_buffers(inode
))
417 reap
+= invalidate_inode_pages(&inode
->i_data
);
419 spin_lock(&inode_lock
);
421 if (inode
!= list_entry(inode_unused
.next
,
422 struct inode
, i_list
))
423 continue; /* wrong inode or list_empty */
424 if (!can_unuse(inode
))
427 list_move(&inode
->i_list
, &freeable
);
428 inode
->i_state
|= I_FREEING
;
431 inodes_stat
.nr_unused
-= nr_pruned
;
432 if (current_is_kswapd())
433 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
435 __count_vm_events(PGINODESTEAL
, reap
);
436 spin_unlock(&inode_lock
);
438 dispose_list(&freeable
);
439 mutex_unlock(&iprune_mutex
);
443 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
444 * "unused" means that no dentries are referring to the inodes: the files are
445 * not open and the dcache references to those inodes have already been
448 * This function is passed the number of inodes to scan, and it returns the
449 * total number of remaining possibly-reclaimable inodes.
451 static int shrink_icache_memory(int nr
, gfp_t gfp_mask
)
455 * Nasty deadlock avoidance. We may hold various FS locks,
456 * and we don't want to recurse into the FS that called us
457 * in clear_inode() and friends..
459 if (!(gfp_mask
& __GFP_FS
))
463 return (inodes_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
466 static void __wait_on_freeing_inode(struct inode
*inode
);
468 * Called with the inode lock held.
469 * NOTE: we are not increasing the inode-refcount, you must call __iget()
470 * by hand after calling find_inode now! This simplifies iunique and won't
471 * add any additional branch in the common code.
473 static struct inode
* find_inode(struct super_block
* sb
, struct hlist_head
*head
, int (*test
)(struct inode
*, void *), void *data
)
475 struct hlist_node
*node
;
476 struct inode
* inode
= NULL
;
479 hlist_for_each (node
, head
) {
480 inode
= hlist_entry(node
, struct inode
, i_hash
);
481 if (inode
->i_sb
!= sb
)
483 if (!test(inode
, data
))
485 if (inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
)) {
486 __wait_on_freeing_inode(inode
);
491 return node
? inode
: NULL
;
495 * find_inode_fast is the fast path version of find_inode, see the comment at
496 * iget_locked for details.
498 static struct inode
* find_inode_fast(struct super_block
* sb
, struct hlist_head
*head
, unsigned long ino
)
500 struct hlist_node
*node
;
501 struct inode
* inode
= NULL
;
504 hlist_for_each (node
, head
) {
505 inode
= hlist_entry(node
, struct inode
, i_hash
);
506 if (inode
->i_ino
!= ino
)
508 if (inode
->i_sb
!= sb
)
510 if (inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
)) {
511 __wait_on_freeing_inode(inode
);
516 return node
? inode
: NULL
;
520 * new_inode - obtain an inode
523 * Allocates a new inode for given superblock.
525 struct inode
*new_inode(struct super_block
*sb
)
527 static unsigned long last_ino
;
528 struct inode
* inode
;
530 spin_lock_prefetch(&inode_lock
);
532 inode
= alloc_inode(sb
);
534 spin_lock(&inode_lock
);
535 inodes_stat
.nr_inodes
++;
536 list_add(&inode
->i_list
, &inode_in_use
);
537 list_add(&inode
->i_sb_list
, &sb
->s_inodes
);
538 inode
->i_ino
= ++last_ino
;
540 spin_unlock(&inode_lock
);
545 EXPORT_SYMBOL(new_inode
);
547 void unlock_new_inode(struct inode
*inode
)
550 * This is special! We do not need the spinlock
551 * when clearing I_LOCK, because we're guaranteed
552 * that nobody else tries to do anything about the
553 * state of the inode when it is locked, as we
554 * just created it (so there can be no old holders
555 * that haven't tested I_LOCK).
557 inode
->i_state
&= ~(I_LOCK
|I_NEW
);
558 wake_up_inode(inode
);
561 EXPORT_SYMBOL(unlock_new_inode
);
564 * This is called without the inode lock held.. Be careful.
566 * We no longer cache the sb_flags in i_flags - see fs.h
567 * -- rmk@arm.uk.linux.org
569 static struct inode
* get_new_inode(struct super_block
*sb
, struct hlist_head
*head
, int (*test
)(struct inode
*, void *), int (*set
)(struct inode
*, void *), void *data
)
571 struct inode
* inode
;
573 inode
= alloc_inode(sb
);
577 spin_lock(&inode_lock
);
578 /* We released the lock, so.. */
579 old
= find_inode(sb
, head
, test
, data
);
581 if (set(inode
, data
))
584 inodes_stat
.nr_inodes
++;
585 list_add(&inode
->i_list
, &inode_in_use
);
586 list_add(&inode
->i_sb_list
, &sb
->s_inodes
);
587 hlist_add_head(&inode
->i_hash
, head
);
588 inode
->i_state
= I_LOCK
|I_NEW
;
589 spin_unlock(&inode_lock
);
591 /* Return the locked inode with I_NEW set, the
592 * caller is responsible for filling in the contents
598 * Uhhuh, somebody else created the same inode under
599 * us. Use the old inode instead of the one we just
603 spin_unlock(&inode_lock
);
604 destroy_inode(inode
);
606 wait_on_inode(inode
);
611 spin_unlock(&inode_lock
);
612 destroy_inode(inode
);
617 * get_new_inode_fast is the fast path version of get_new_inode, see the
618 * comment at iget_locked for details.
620 static struct inode
* get_new_inode_fast(struct super_block
*sb
, struct hlist_head
*head
, unsigned long ino
)
622 struct inode
* inode
;
624 inode
= alloc_inode(sb
);
628 spin_lock(&inode_lock
);
629 /* We released the lock, so.. */
630 old
= find_inode_fast(sb
, head
, ino
);
633 inodes_stat
.nr_inodes
++;
634 list_add(&inode
->i_list
, &inode_in_use
);
635 list_add(&inode
->i_sb_list
, &sb
->s_inodes
);
636 hlist_add_head(&inode
->i_hash
, head
);
637 inode
->i_state
= I_LOCK
|I_NEW
;
638 spin_unlock(&inode_lock
);
640 /* Return the locked inode with I_NEW set, the
641 * caller is responsible for filling in the contents
647 * Uhhuh, somebody else created the same inode under
648 * us. Use the old inode instead of the one we just
652 spin_unlock(&inode_lock
);
653 destroy_inode(inode
);
655 wait_on_inode(inode
);
660 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
664 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
666 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> I_HASHBITS
);
667 return tmp
& I_HASHMASK
;
671 * iunique - get a unique inode number
673 * @max_reserved: highest reserved inode number
675 * Obtain an inode number that is unique on the system for a given
676 * superblock. This is used by file systems that have no natural
677 * permanent inode numbering system. An inode number is returned that
678 * is higher than the reserved limit but unique.
681 * With a large number of inodes live on the file system this function
682 * currently becomes quite slow.
684 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
686 static ino_t counter
;
688 struct hlist_head
* head
;
690 spin_lock(&inode_lock
);
692 if (counter
> max_reserved
) {
693 head
= inode_hashtable
+ hash(sb
,counter
);
695 inode
= find_inode_fast(sb
, head
, res
);
697 spin_unlock(&inode_lock
);
701 counter
= max_reserved
+ 1;
707 EXPORT_SYMBOL(iunique
);
709 struct inode
*igrab(struct inode
*inode
)
711 spin_lock(&inode_lock
);
712 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
)))
716 * Handle the case where s_op->clear_inode is not been
717 * called yet, and somebody is calling igrab
718 * while the inode is getting freed.
721 spin_unlock(&inode_lock
);
725 EXPORT_SYMBOL(igrab
);
728 * ifind - internal function, you want ilookup5() or iget5().
729 * @sb: super block of file system to search
730 * @head: the head of the list to search
731 * @test: callback used for comparisons between inodes
732 * @data: opaque data pointer to pass to @test
733 * @wait: if true wait for the inode to be unlocked, if false do not
735 * ifind() searches for the inode specified by @data in the inode
736 * cache. This is a generalized version of ifind_fast() for file systems where
737 * the inode number is not sufficient for unique identification of an inode.
739 * If the inode is in the cache, the inode is returned with an incremented
742 * Otherwise NULL is returned.
744 * Note, @test is called with the inode_lock held, so can't sleep.
746 static struct inode
*ifind(struct super_block
*sb
,
747 struct hlist_head
*head
, int (*test
)(struct inode
*, void *),
748 void *data
, const int wait
)
752 spin_lock(&inode_lock
);
753 inode
= find_inode(sb
, head
, test
, data
);
756 spin_unlock(&inode_lock
);
758 wait_on_inode(inode
);
761 spin_unlock(&inode_lock
);
766 * ifind_fast - internal function, you want ilookup() or iget().
767 * @sb: super block of file system to search
768 * @head: head of the list to search
769 * @ino: inode number to search for
771 * ifind_fast() searches for the inode @ino in the inode cache. This is for
772 * file systems where the inode number is sufficient for unique identification
775 * If the inode is in the cache, the inode is returned with an incremented
778 * Otherwise NULL is returned.
780 static struct inode
*ifind_fast(struct super_block
*sb
,
781 struct hlist_head
*head
, unsigned long ino
)
785 spin_lock(&inode_lock
);
786 inode
= find_inode_fast(sb
, head
, ino
);
789 spin_unlock(&inode_lock
);
790 wait_on_inode(inode
);
793 spin_unlock(&inode_lock
);
798 * ilookup5_nowait - search for an inode in the inode cache
799 * @sb: super block of file system to search
800 * @hashval: hash value (usually inode number) to search for
801 * @test: callback used for comparisons between inodes
802 * @data: opaque data pointer to pass to @test
804 * ilookup5() uses ifind() to search for the inode specified by @hashval and
805 * @data in the inode cache. This is a generalized version of ilookup() for
806 * file systems where the inode number is not sufficient for unique
807 * identification of an inode.
809 * If the inode is in the cache, the inode is returned with an incremented
810 * reference count. Note, the inode lock is not waited upon so you have to be
811 * very careful what you do with the returned inode. You probably should be
812 * using ilookup5() instead.
814 * Otherwise NULL is returned.
816 * Note, @test is called with the inode_lock held, so can't sleep.
818 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
819 int (*test
)(struct inode
*, void *), void *data
)
821 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
823 return ifind(sb
, head
, test
, data
, 0);
826 EXPORT_SYMBOL(ilookup5_nowait
);
829 * ilookup5 - search for an inode in the inode cache
830 * @sb: super block of file system to search
831 * @hashval: hash value (usually inode number) to search for
832 * @test: callback used for comparisons between inodes
833 * @data: opaque data pointer to pass to @test
835 * ilookup5() uses ifind() to search for the inode specified by @hashval and
836 * @data in the inode cache. This is a generalized version of ilookup() for
837 * file systems where the inode number is not sufficient for unique
838 * identification of an inode.
840 * If the inode is in the cache, the inode lock is waited upon and the inode is
841 * returned with an incremented reference count.
843 * Otherwise NULL is returned.
845 * Note, @test is called with the inode_lock held, so can't sleep.
847 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
848 int (*test
)(struct inode
*, void *), void *data
)
850 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
852 return ifind(sb
, head
, test
, data
, 1);
855 EXPORT_SYMBOL(ilookup5
);
858 * ilookup - search for an inode in the inode cache
859 * @sb: super block of file system to search
860 * @ino: inode number to search for
862 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
863 * This is for file systems where the inode number is sufficient for unique
864 * identification of an inode.
866 * If the inode is in the cache, the inode is returned with an incremented
869 * Otherwise NULL is returned.
871 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
873 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
875 return ifind_fast(sb
, head
, ino
);
878 EXPORT_SYMBOL(ilookup
);
881 * iget5_locked - obtain an inode from a mounted file system
882 * @sb: super block of file system
883 * @hashval: hash value (usually inode number) to get
884 * @test: callback used for comparisons between inodes
885 * @set: callback used to initialize a new struct inode
886 * @data: opaque data pointer to pass to @test and @set
888 * This is iget() without the read_inode() portion of get_new_inode().
890 * iget5_locked() uses ifind() to search for the inode specified by @hashval
891 * and @data in the inode cache and if present it is returned with an increased
892 * reference count. This is a generalized version of iget_locked() for file
893 * systems where the inode number is not sufficient for unique identification
896 * If the inode is not in cache, get_new_inode() is called to allocate a new
897 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
898 * file system gets to fill it in before unlocking it via unlock_new_inode().
900 * Note both @test and @set are called with the inode_lock held, so can't sleep.
902 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
903 int (*test
)(struct inode
*, void *),
904 int (*set
)(struct inode
*, void *), void *data
)
906 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
909 inode
= ifind(sb
, head
, test
, data
, 1);
913 * get_new_inode() will do the right thing, re-trying the search
914 * in case it had to block at any point.
916 return get_new_inode(sb
, head
, test
, set
, data
);
919 EXPORT_SYMBOL(iget5_locked
);
922 * iget_locked - obtain an inode from a mounted file system
923 * @sb: super block of file system
924 * @ino: inode number to get
926 * This is iget() without the read_inode() portion of get_new_inode_fast().
928 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
929 * the inode cache and if present it is returned with an increased reference
930 * count. This is for file systems where the inode number is sufficient for
931 * unique identification of an inode.
933 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
934 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
935 * The file system gets to fill it in before unlocking it via
936 * unlock_new_inode().
938 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
940 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
943 inode
= ifind_fast(sb
, head
, ino
);
947 * get_new_inode_fast() will do the right thing, re-trying the search
948 * in case it had to block at any point.
950 return get_new_inode_fast(sb
, head
, ino
);
953 EXPORT_SYMBOL(iget_locked
);
956 * __insert_inode_hash - hash an inode
957 * @inode: unhashed inode
958 * @hashval: unsigned long value used to locate this object in the
961 * Add an inode to the inode hash for this superblock.
963 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
965 struct hlist_head
*head
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
966 spin_lock(&inode_lock
);
967 hlist_add_head(&inode
->i_hash
, head
);
968 spin_unlock(&inode_lock
);
971 EXPORT_SYMBOL(__insert_inode_hash
);
974 * remove_inode_hash - remove an inode from the hash
975 * @inode: inode to unhash
977 * Remove an inode from the superblock.
979 void remove_inode_hash(struct inode
*inode
)
981 spin_lock(&inode_lock
);
982 hlist_del_init(&inode
->i_hash
);
983 spin_unlock(&inode_lock
);
986 EXPORT_SYMBOL(remove_inode_hash
);
989 * Tell the filesystem that this inode is no longer of any interest and should
990 * be completely destroyed.
992 * We leave the inode in the inode hash table until *after* the filesystem's
993 * ->delete_inode completes. This ensures that an iget (such as nfsd might
994 * instigate) will always find up-to-date information either in the hash or on
997 * I_FREEING is set so that no-one will take a new reference to the inode while
998 * it is being deleted.
1000 void generic_delete_inode(struct inode
*inode
)
1002 struct super_operations
*op
= inode
->i_sb
->s_op
;
1004 list_del_init(&inode
->i_list
);
1005 list_del_init(&inode
->i_sb_list
);
1006 inode
->i_state
|= I_FREEING
;
1007 inodes_stat
.nr_inodes
--;
1008 spin_unlock(&inode_lock
);
1010 security_inode_delete(inode
);
1012 if (op
->delete_inode
) {
1013 void (*delete)(struct inode
*) = op
->delete_inode
;
1014 if (!is_bad_inode(inode
))
1016 /* Filesystems implementing their own
1017 * s_op->delete_inode are required to call
1018 * truncate_inode_pages and clear_inode()
1022 truncate_inode_pages(&inode
->i_data
, 0);
1025 spin_lock(&inode_lock
);
1026 hlist_del_init(&inode
->i_hash
);
1027 spin_unlock(&inode_lock
);
1028 wake_up_inode(inode
);
1029 BUG_ON(inode
->i_state
!= I_CLEAR
);
1030 destroy_inode(inode
);
1033 EXPORT_SYMBOL(generic_delete_inode
);
1035 static void generic_forget_inode(struct inode
*inode
)
1037 struct super_block
*sb
= inode
->i_sb
;
1039 if (!hlist_unhashed(&inode
->i_hash
)) {
1040 if (!(inode
->i_state
& (I_DIRTY
|I_LOCK
)))
1041 list_move(&inode
->i_list
, &inode_unused
);
1042 inodes_stat
.nr_unused
++;
1043 if (!sb
|| (sb
->s_flags
& MS_ACTIVE
)) {
1044 spin_unlock(&inode_lock
);
1047 inode
->i_state
|= I_WILL_FREE
;
1048 spin_unlock(&inode_lock
);
1049 write_inode_now(inode
, 1);
1050 spin_lock(&inode_lock
);
1051 inode
->i_state
&= ~I_WILL_FREE
;
1052 inodes_stat
.nr_unused
--;
1053 hlist_del_init(&inode
->i_hash
);
1055 list_del_init(&inode
->i_list
);
1056 list_del_init(&inode
->i_sb_list
);
1057 inode
->i_state
|= I_FREEING
;
1058 inodes_stat
.nr_inodes
--;
1059 spin_unlock(&inode_lock
);
1060 if (inode
->i_data
.nrpages
)
1061 truncate_inode_pages(&inode
->i_data
, 0);
1063 wake_up_inode(inode
);
1064 destroy_inode(inode
);
1068 * Normal UNIX filesystem behaviour: delete the
1069 * inode when the usage count drops to zero, and
1072 void generic_drop_inode(struct inode
*inode
)
1074 if (!inode
->i_nlink
)
1075 generic_delete_inode(inode
);
1077 generic_forget_inode(inode
);
1080 EXPORT_SYMBOL_GPL(generic_drop_inode
);
1083 * Called when we're dropping the last reference
1086 * Call the FS "drop()" function, defaulting to
1087 * the legacy UNIX filesystem behaviour..
1089 * NOTE! NOTE! NOTE! We're called with the inode lock
1090 * held, and the drop function is supposed to release
1093 static inline void iput_final(struct inode
*inode
)
1095 struct super_operations
*op
= inode
->i_sb
->s_op
;
1096 void (*drop
)(struct inode
*) = generic_drop_inode
;
1098 if (op
&& op
->drop_inode
)
1099 drop
= op
->drop_inode
;
1104 * iput - put an inode
1105 * @inode: inode to put
1107 * Puts an inode, dropping its usage count. If the inode use count hits
1108 * zero, the inode is then freed and may also be destroyed.
1110 * Consequently, iput() can sleep.
1112 void iput(struct inode
*inode
)
1115 struct super_operations
*op
= inode
->i_sb
->s_op
;
1117 BUG_ON(inode
->i_state
== I_CLEAR
);
1119 if (op
&& op
->put_inode
)
1120 op
->put_inode(inode
);
1122 if (atomic_dec_and_lock(&inode
->i_count
, &inode_lock
))
1127 EXPORT_SYMBOL(iput
);
1130 * bmap - find a block number in a file
1131 * @inode: inode of file
1132 * @block: block to find
1134 * Returns the block number on the device holding the inode that
1135 * is the disk block number for the block of the file requested.
1136 * That is, asked for block 4 of inode 1 the function will return the
1137 * disk block relative to the disk start that holds that block of the
1140 sector_t
bmap(struct inode
* inode
, sector_t block
)
1143 if (inode
->i_mapping
->a_ops
->bmap
)
1144 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1147 EXPORT_SYMBOL(bmap
);
1150 * touch_atime - update the access time
1151 * @mnt: mount the inode is accessed on
1152 * @dentry: dentry accessed
1154 * Update the accessed time on an inode and mark it for writeback.
1155 * This function automatically handles read only file systems and media,
1156 * as well as the "noatime" flag and inode specific "noatime" markers.
1158 void touch_atime(struct vfsmount
*mnt
, struct dentry
*dentry
)
1160 struct inode
*inode
= dentry
->d_inode
;
1161 struct timespec now
;
1163 if (IS_RDONLY(inode
))
1165 if (inode
->i_flags
& S_NOATIME
)
1167 if (inode
->i_sb
->s_flags
& MS_NOATIME
)
1169 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1173 * We may have a NULL vfsmount when coming from NFSD
1176 if (mnt
->mnt_flags
& MNT_NOATIME
)
1178 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1181 if (mnt
->mnt_flags
& MNT_RELATIME
) {
1183 * With relative atime, only update atime if the
1184 * previous atime is earlier than either the ctime or
1187 if (timespec_compare(&inode
->i_mtime
,
1188 &inode
->i_atime
) < 0 &&
1189 timespec_compare(&inode
->i_ctime
,
1190 &inode
->i_atime
) < 0)
1195 now
= current_fs_time(inode
->i_sb
);
1196 if (timespec_equal(&inode
->i_atime
, &now
))
1199 inode
->i_atime
= now
;
1200 mark_inode_dirty_sync(inode
);
1202 EXPORT_SYMBOL(touch_atime
);
1205 * file_update_time - update mtime and ctime time
1206 * @file: file accessed
1208 * Update the mtime and ctime members of an inode and mark the inode
1209 * for writeback. Note that this function is meant exclusively for
1210 * usage in the file write path of filesystems, and filesystems may
1211 * choose to explicitly ignore update via this function with the
1212 * S_NOCTIME inode flag, e.g. for network filesystem where these
1213 * timestamps are handled by the server.
1216 void file_update_time(struct file
*file
)
1218 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1219 struct timespec now
;
1222 if (IS_NOCMTIME(inode
))
1224 if (IS_RDONLY(inode
))
1227 now
= current_fs_time(inode
->i_sb
);
1228 if (!timespec_equal(&inode
->i_mtime
, &now
)) {
1229 inode
->i_mtime
= now
;
1233 if (!timespec_equal(&inode
->i_ctime
, &now
)) {
1234 inode
->i_ctime
= now
;
1239 mark_inode_dirty_sync(inode
);
1242 EXPORT_SYMBOL(file_update_time
);
1244 int inode_needs_sync(struct inode
*inode
)
1248 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1253 EXPORT_SYMBOL(inode_needs_sync
);
1256 * Quota functions that want to walk the inode lists..
1260 void remove_dquot_ref(struct super_block
*sb
, int type
,
1261 struct list_head
*tofree_head
)
1263 struct inode
*inode
;
1266 return; /* nothing to do */
1267 spin_lock(&inode_lock
); /* This lock is for inodes code */
1270 * We don't have to lock against quota code - test IS_QUOTAINIT is
1271 * just for speedup...
1273 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
)
1274 if (!IS_NOQUOTA(inode
))
1275 remove_inode_dquot_ref(inode
, type
, tofree_head
);
1277 spin_unlock(&inode_lock
);
1282 int inode_wait(void *word
)
1289 * If we try to find an inode in the inode hash while it is being
1290 * deleted, we have to wait until the filesystem completes its
1291 * deletion before reporting that it isn't found. This function waits
1292 * until the deletion _might_ have completed. Callers are responsible
1293 * to recheck inode state.
1295 * It doesn't matter if I_LOCK is not set initially, a call to
1296 * wake_up_inode() after removing from the hash list will DTRT.
1298 * This is called with inode_lock held.
1300 static void __wait_on_freeing_inode(struct inode
*inode
)
1302 wait_queue_head_t
*wq
;
1303 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_LOCK
);
1304 wq
= bit_waitqueue(&inode
->i_state
, __I_LOCK
);
1305 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1306 spin_unlock(&inode_lock
);
1308 finish_wait(wq
, &wait
.wait
);
1309 spin_lock(&inode_lock
);
1312 void wake_up_inode(struct inode
*inode
)
1315 * Prevent speculative execution through spin_unlock(&inode_lock);
1318 wake_up_bit(&inode
->i_state
, __I_LOCK
);
1322 * We rarely want to lock two inodes that do not have a parent/child
1323 * relationship (such as directory, child inode) simultaneously. The
1324 * vast majority of file systems should be able to get along fine
1325 * without this. Do not use these functions except as a last resort.
1327 void inode_double_lock(struct inode
*inode1
, struct inode
*inode2
)
1329 if (inode1
== NULL
|| inode2
== NULL
|| inode1
== inode2
) {
1331 mutex_lock(&inode1
->i_mutex
);
1333 mutex_lock(&inode2
->i_mutex
);
1337 if (inode1
< inode2
) {
1338 mutex_lock_nested(&inode1
->i_mutex
, I_MUTEX_PARENT
);
1339 mutex_lock_nested(&inode2
->i_mutex
, I_MUTEX_CHILD
);
1341 mutex_lock_nested(&inode2
->i_mutex
, I_MUTEX_PARENT
);
1342 mutex_lock_nested(&inode1
->i_mutex
, I_MUTEX_CHILD
);
1345 EXPORT_SYMBOL(inode_double_lock
);
1347 void inode_double_unlock(struct inode
*inode1
, struct inode
*inode2
)
1350 mutex_unlock(&inode1
->i_mutex
);
1352 if (inode2
&& inode2
!= inode1
)
1353 mutex_unlock(&inode2
->i_mutex
);
1355 EXPORT_SYMBOL(inode_double_unlock
);
1357 static __initdata
unsigned long ihash_entries
;
1358 static int __init
set_ihash_entries(char *str
)
1362 ihash_entries
= simple_strtoul(str
, &str
, 0);
1365 __setup("ihash_entries=", set_ihash_entries
);
1368 * Initialize the waitqueues and inode hash table.
1370 void __init
inode_init_early(void)
1374 /* If hashes are distributed across NUMA nodes, defer
1375 * hash allocation until vmalloc space is available.
1381 alloc_large_system_hash("Inode-cache",
1382 sizeof(struct hlist_head
),
1390 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1391 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1394 void __init
inode_init(unsigned long mempages
)
1398 /* inode slab cache */
1399 inode_cachep
= kmem_cache_create("inode_cache",
1400 sizeof(struct inode
),
1402 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1406 set_shrinker(DEFAULT_SEEKS
, shrink_icache_memory
);
1408 /* Hash may have been set up in inode_init_early */
1413 alloc_large_system_hash("Inode-cache",
1414 sizeof(struct hlist_head
),
1422 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1423 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1426 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1428 inode
->i_mode
= mode
;
1429 if (S_ISCHR(mode
)) {
1430 inode
->i_fop
= &def_chr_fops
;
1431 inode
->i_rdev
= rdev
;
1432 } else if (S_ISBLK(mode
)) {
1433 inode
->i_fop
= &def_blk_fops
;
1434 inode
->i_rdev
= rdev
;
1435 } else if (S_ISFIFO(mode
))
1436 inode
->i_fop
= &def_fifo_fops
;
1437 else if (S_ISSOCK(mode
))
1438 inode
->i_fop
= &bad_sock_fops
;
1440 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o)\n",
1443 EXPORT_SYMBOL(init_special_inode
);