x86: cpa, micro-optimization
[linux-2.6/kmemtrace.git] / arch / x86 / mm / pageattr.c
blobbb55a78dcd621cad4a608073ed46c438f4940163
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
12 #include <asm/e820.h>
13 #include <asm/processor.h>
14 #include <asm/tlbflush.h>
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17 #include <asm/pgalloc.h>
20 * The current flushing context - we pass it instead of 5 arguments:
22 struct cpa_data {
23 unsigned long vaddr;
24 pgprot_t mask_set;
25 pgprot_t mask_clr;
26 int numpages;
27 int flushtlb;
30 static inline int
31 within(unsigned long addr, unsigned long start, unsigned long end)
33 return addr >= start && addr < end;
37 * Flushing functions
40 /**
41 * clflush_cache_range - flush a cache range with clflush
42 * @addr: virtual start address
43 * @size: number of bytes to flush
45 * clflush is an unordered instruction which needs fencing with mfence
46 * to avoid ordering issues.
48 void clflush_cache_range(void *vaddr, unsigned int size)
50 void *vend = vaddr + size - 1;
52 mb();
54 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
55 clflush(vaddr);
57 * Flush any possible final partial cacheline:
59 clflush(vend);
61 mb();
64 static void __cpa_flush_all(void *arg)
66 unsigned long cache = (unsigned long)arg;
69 * Flush all to work around Errata in early athlons regarding
70 * large page flushing.
72 __flush_tlb_all();
74 if (cache && boot_cpu_data.x86_model >= 4)
75 wbinvd();
78 static void cpa_flush_all(unsigned long cache)
80 BUG_ON(irqs_disabled());
82 on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
85 static void __cpa_flush_range(void *arg)
88 * We could optimize that further and do individual per page
89 * tlb invalidates for a low number of pages. Caveat: we must
90 * flush the high aliases on 64bit as well.
92 __flush_tlb_all();
95 static void cpa_flush_range(unsigned long start, int numpages, int cache)
97 unsigned int i, level;
98 unsigned long addr;
100 BUG_ON(irqs_disabled());
101 WARN_ON(PAGE_ALIGN(start) != start);
103 on_each_cpu(__cpa_flush_range, NULL, 1, 1);
105 if (!cache)
106 return;
109 * We only need to flush on one CPU,
110 * clflush is a MESI-coherent instruction that
111 * will cause all other CPUs to flush the same
112 * cachelines:
114 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
115 pte_t *pte = lookup_address(addr, &level);
118 * Only flush present addresses:
120 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
121 clflush_cache_range((void *) addr, PAGE_SIZE);
125 #define HIGH_MAP_START __START_KERNEL_map
126 #define HIGH_MAP_END (__START_KERNEL_map + KERNEL_TEXT_SIZE)
130 * Converts a virtual address to a X86-64 highmap address
132 static unsigned long virt_to_highmap(void *address)
134 #ifdef CONFIG_X86_64
135 return __pa((unsigned long)address) + HIGH_MAP_START - phys_base;
136 #else
137 return (unsigned long)address;
138 #endif
142 * Certain areas of memory on x86 require very specific protection flags,
143 * for example the BIOS area or kernel text. Callers don't always get this
144 * right (again, ioremap() on BIOS memory is not uncommon) so this function
145 * checks and fixes these known static required protection bits.
147 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address)
149 pgprot_t forbidden = __pgprot(0);
152 * The BIOS area between 640k and 1Mb needs to be executable for
153 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
155 if (within(__pa(address), BIOS_BEGIN, BIOS_END))
156 pgprot_val(forbidden) |= _PAGE_NX;
159 * The kernel text needs to be executable for obvious reasons
160 * Does not cover __inittext since that is gone later on
162 if (within(address, (unsigned long)_text, (unsigned long)_etext))
163 pgprot_val(forbidden) |= _PAGE_NX;
165 * Do the same for the x86-64 high kernel mapping
167 if (within(address, virt_to_highmap(_text), virt_to_highmap(_etext)))
168 pgprot_val(forbidden) |= _PAGE_NX;
171 #ifdef CONFIG_DEBUG_RODATA
172 /* The .rodata section needs to be read-only */
173 if (within(address, (unsigned long)__start_rodata,
174 (unsigned long)__end_rodata))
175 pgprot_val(forbidden) |= _PAGE_RW;
177 * Do the same for the x86-64 high kernel mapping
179 if (within(address, virt_to_highmap(__start_rodata),
180 virt_to_highmap(__end_rodata)))
181 pgprot_val(forbidden) |= _PAGE_RW;
182 #endif
184 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
186 return prot;
190 * Lookup the page table entry for a virtual address. Return a pointer
191 * to the entry and the level of the mapping.
193 * Note: We return pud and pmd either when the entry is marked large
194 * or when the present bit is not set. Otherwise we would return a
195 * pointer to a nonexisting mapping.
197 pte_t *lookup_address(unsigned long address, int *level)
199 pgd_t *pgd = pgd_offset_k(address);
200 pud_t *pud;
201 pmd_t *pmd;
203 *level = PG_LEVEL_NONE;
205 if (pgd_none(*pgd))
206 return NULL;
208 pud = pud_offset(pgd, address);
209 if (pud_none(*pud))
210 return NULL;
212 *level = PG_LEVEL_1G;
213 if (pud_large(*pud) || !pud_present(*pud))
214 return (pte_t *)pud;
216 pmd = pmd_offset(pud, address);
217 if (pmd_none(*pmd))
218 return NULL;
220 *level = PG_LEVEL_2M;
221 if (pmd_large(*pmd) || !pmd_present(*pmd))
222 return (pte_t *)pmd;
224 *level = PG_LEVEL_4K;
226 return pte_offset_kernel(pmd, address);
230 * Set the new pmd in all the pgds we know about:
232 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
234 /* change init_mm */
235 set_pte_atomic(kpte, pte);
236 #ifdef CONFIG_X86_32
237 if (!SHARED_KERNEL_PMD) {
238 struct page *page;
240 address = __pa(address);
241 list_for_each_entry(page, &pgd_list, lru) {
242 pgd_t *pgd;
243 pud_t *pud;
244 pmd_t *pmd;
246 pgd = (pgd_t *)page_address(page) + pgd_index(address);
247 pud = pud_offset(pgd, address);
248 pmd = pmd_offset(pud, address);
249 set_pte_atomic((pte_t *)pmd, pte);
252 #endif
255 static int
256 try_preserve_large_page(pte_t *kpte, unsigned long address,
257 struct cpa_data *cpa)
259 unsigned long nextpage_addr, numpages, pmask, psize, flags;
260 pte_t new_pte, old_pte, *tmp;
261 pgprot_t old_prot, new_prot;
262 int level, do_split = 1;
265 * An Athlon 64 X2 showed hard hangs if we tried to preserve
266 * largepages and changed the PSE entry from RW to RO.
268 * As AMD CPUs have a long series of erratas in this area,
269 * (and none of the known ones seem to explain this hang),
270 * disable this code until the hang can be debugged:
272 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
273 return 1;
275 spin_lock_irqsave(&pgd_lock, flags);
277 * Check for races, another CPU might have split this page
278 * up already:
280 tmp = lookup_address(address, &level);
281 if (tmp != kpte)
282 goto out_unlock;
284 switch (level) {
285 case PG_LEVEL_2M:
286 psize = PMD_PAGE_SIZE;
287 pmask = PMD_PAGE_MASK;
288 break;
289 #ifdef CONFIG_X86_64
290 case PG_LEVEL_1G:
291 psize = PMD_PAGE_SIZE;
292 pmask = PMD_PAGE_MASK;
293 break;
294 #endif
295 default:
296 do_split = -EINVAL;
297 goto out_unlock;
301 * Calculate the number of pages, which fit into this large
302 * page starting at address:
304 nextpage_addr = (address + psize) & pmask;
305 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
306 if (numpages < cpa->numpages)
307 cpa->numpages = numpages;
310 * We are safe now. Check whether the new pgprot is the same:
312 old_pte = *kpte;
313 old_prot = new_prot = pte_pgprot(old_pte);
315 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
316 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
317 new_prot = static_protections(new_prot, address);
320 * If there are no changes, return. maxpages has been updated
321 * above:
323 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
324 do_split = 0;
325 goto out_unlock;
329 * We need to change the attributes. Check, whether we can
330 * change the large page in one go. We request a split, when
331 * the address is not aligned and the number of pages is
332 * smaller than the number of pages in the large page. Note
333 * that we limited the number of possible pages already to
334 * the number of pages in the large page.
336 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
338 * The address is aligned and the number of pages
339 * covers the full page.
341 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
342 __set_pmd_pte(kpte, address, new_pte);
343 cpa->flushtlb = 1;
344 do_split = 0;
347 out_unlock:
348 spin_unlock_irqrestore(&pgd_lock, flags);
350 return do_split;
353 static int split_large_page(pte_t *kpte, unsigned long address)
355 unsigned long flags, pfn, pfninc = 1;
356 gfp_t gfp_flags = GFP_KERNEL;
357 unsigned int i, level;
358 pte_t *pbase, *tmp;
359 pgprot_t ref_prot;
360 struct page *base;
362 #ifdef CONFIG_DEBUG_PAGEALLOC
363 gfp_flags = GFP_ATOMIC | __GFP_NOWARN;
364 #endif
365 base = alloc_pages(gfp_flags, 0);
366 if (!base)
367 return -ENOMEM;
369 spin_lock_irqsave(&pgd_lock, flags);
371 * Check for races, another CPU might have split this page
372 * up for us already:
374 tmp = lookup_address(address, &level);
375 if (tmp != kpte)
376 goto out_unlock;
378 pbase = (pte_t *)page_address(base);
379 #ifdef CONFIG_X86_32
380 paravirt_alloc_pt(&init_mm, page_to_pfn(base));
381 #endif
382 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
384 #ifdef CONFIG_X86_64
385 if (level == PG_LEVEL_1G) {
386 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
387 pgprot_val(ref_prot) |= _PAGE_PSE;
389 #endif
392 * Get the target pfn from the original entry:
394 pfn = pte_pfn(*kpte);
395 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
396 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
399 * Install the new, split up pagetable. Important details here:
401 * On Intel the NX bit of all levels must be cleared to make a
402 * page executable. See section 4.13.2 of Intel 64 and IA-32
403 * Architectures Software Developer's Manual).
405 * Mark the entry present. The current mapping might be
406 * set to not present, which we preserved above.
408 ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
409 pgprot_val(ref_prot) |= _PAGE_PRESENT;
410 __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
411 base = NULL;
413 out_unlock:
414 spin_unlock_irqrestore(&pgd_lock, flags);
416 if (base)
417 __free_pages(base, 0);
419 return 0;
422 static int __change_page_attr(unsigned long address, struct cpa_data *cpa)
424 int level, do_split, err;
425 struct page *kpte_page;
426 pte_t *kpte;
428 repeat:
429 kpte = lookup_address(address, &level);
430 if (!kpte)
431 return -EINVAL;
433 kpte_page = virt_to_page(kpte);
434 BUG_ON(PageLRU(kpte_page));
435 BUG_ON(PageCompound(kpte_page));
437 if (level == PG_LEVEL_4K) {
438 pte_t new_pte, old_pte = *kpte;
439 pgprot_t new_prot = pte_pgprot(old_pte);
441 if(!pte_val(old_pte)) {
442 printk(KERN_WARNING "CPA: called for zero pte. "
443 "vaddr = %lx cpa->vaddr = %lx\n", address,
444 cpa->vaddr);
445 WARN_ON(1);
446 return -EINVAL;
449 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
450 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
452 new_prot = static_protections(new_prot, address);
455 * We need to keep the pfn from the existing PTE,
456 * after all we're only going to change it's attributes
457 * not the memory it points to
459 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
462 * Do we really change anything ?
464 if (pte_val(old_pte) != pte_val(new_pte)) {
465 set_pte_atomic(kpte, new_pte);
466 cpa->flushtlb = 1;
468 cpa->numpages = 1;
469 return 0;
473 * Check, whether we can keep the large page intact
474 * and just change the pte:
476 do_split = try_preserve_large_page(kpte, address, cpa);
478 * When the range fits into the existing large page,
479 * return. cp->numpages and cpa->tlbflush have been updated in
480 * try_large_page:
482 if (do_split <= 0)
483 return do_split;
486 * We have to split the large page:
488 err = split_large_page(kpte, address);
489 if (!err) {
490 cpa->flushtlb = 1;
491 goto repeat;
494 return err;
498 * change_page_attr_addr - Change page table attributes in linear mapping
499 * @address: Virtual address in linear mapping.
500 * @prot: New page table attribute (PAGE_*)
502 * Change page attributes of a page in the direct mapping. This is a variant
503 * of change_page_attr() that also works on memory holes that do not have
504 * mem_map entry (pfn_valid() is false).
506 * See change_page_attr() documentation for more details.
508 * Modules and drivers should use the set_memory_* APIs instead.
510 static int change_page_attr_addr(struct cpa_data *cpa)
512 int err;
513 unsigned long address = cpa->vaddr;
515 #ifdef CONFIG_X86_64
516 unsigned long phys_addr = __pa(address);
519 * If we are inside the high mapped kernel range, then we
520 * fixup the low mapping first. __va() returns the virtual
521 * address in the linear mapping:
523 if (within(address, HIGH_MAP_START, HIGH_MAP_END))
524 address = (unsigned long) __va(phys_addr);
525 #endif
527 err = __change_page_attr(address, cpa);
528 if (err)
529 return err;
531 #ifdef CONFIG_X86_64
533 * If the physical address is inside the kernel map, we need
534 * to touch the high mapped kernel as well:
536 if (within(phys_addr, 0, KERNEL_TEXT_SIZE)) {
538 * Calc the high mapping address. See __phys_addr()
539 * for the non obvious details.
541 * Note that NX and other required permissions are
542 * checked in static_protections().
544 address = phys_addr + HIGH_MAP_START - phys_base;
547 * Our high aliases are imprecise, because we check
548 * everything between 0 and KERNEL_TEXT_SIZE, so do
549 * not propagate lookup failures back to users:
551 __change_page_attr(address, cpa);
553 #endif
554 return err;
557 static int __change_page_attr_set_clr(struct cpa_data *cpa)
559 int ret, numpages = cpa->numpages;
561 while (numpages) {
563 * Store the remaining nr of pages for the large page
564 * preservation check.
566 cpa->numpages = numpages;
567 ret = change_page_attr_addr(cpa);
568 if (ret)
569 return ret;
572 * Adjust the number of pages with the result of the
573 * CPA operation. Either a large page has been
574 * preserved or a single page update happened.
576 BUG_ON(cpa->numpages > numpages);
577 numpages -= cpa->numpages;
578 cpa->vaddr += cpa->numpages * PAGE_SIZE;
580 return 0;
583 static inline int cache_attr(pgprot_t attr)
585 return pgprot_val(attr) &
586 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
589 static int change_page_attr_set_clr(unsigned long addr, int numpages,
590 pgprot_t mask_set, pgprot_t mask_clr)
592 struct cpa_data cpa;
593 int ret, cache;
596 * Check, if we are requested to change a not supported
597 * feature:
599 mask_set = canon_pgprot(mask_set);
600 mask_clr = canon_pgprot(mask_clr);
601 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr))
602 return 0;
604 cpa.vaddr = addr;
605 cpa.numpages = numpages;
606 cpa.mask_set = mask_set;
607 cpa.mask_clr = mask_clr;
608 cpa.flushtlb = 0;
610 ret = __change_page_attr_set_clr(&cpa);
613 * Check whether we really changed something:
615 if (!cpa.flushtlb)
616 return ret;
619 * No need to flush, when we did not set any of the caching
620 * attributes:
622 cache = cache_attr(mask_set);
625 * On success we use clflush, when the CPU supports it to
626 * avoid the wbindv. If the CPU does not support it and in the
627 * error case we fall back to cpa_flush_all (which uses
628 * wbindv):
630 if (!ret && cpu_has_clflush)
631 cpa_flush_range(addr, numpages, cache);
632 else
633 cpa_flush_all(cache);
635 return ret;
638 static inline int change_page_attr_set(unsigned long addr, int numpages,
639 pgprot_t mask)
641 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
644 static inline int change_page_attr_clear(unsigned long addr, int numpages,
645 pgprot_t mask)
647 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
650 int set_memory_uc(unsigned long addr, int numpages)
652 return change_page_attr_set(addr, numpages,
653 __pgprot(_PAGE_PCD | _PAGE_PWT));
655 EXPORT_SYMBOL(set_memory_uc);
657 int set_memory_wb(unsigned long addr, int numpages)
659 return change_page_attr_clear(addr, numpages,
660 __pgprot(_PAGE_PCD | _PAGE_PWT));
662 EXPORT_SYMBOL(set_memory_wb);
664 int set_memory_x(unsigned long addr, int numpages)
666 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
668 EXPORT_SYMBOL(set_memory_x);
670 int set_memory_nx(unsigned long addr, int numpages)
672 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
674 EXPORT_SYMBOL(set_memory_nx);
676 int set_memory_ro(unsigned long addr, int numpages)
678 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
681 int set_memory_rw(unsigned long addr, int numpages)
683 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
686 int set_memory_np(unsigned long addr, int numpages)
688 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
691 int set_pages_uc(struct page *page, int numpages)
693 unsigned long addr = (unsigned long)page_address(page);
695 return set_memory_uc(addr, numpages);
697 EXPORT_SYMBOL(set_pages_uc);
699 int set_pages_wb(struct page *page, int numpages)
701 unsigned long addr = (unsigned long)page_address(page);
703 return set_memory_wb(addr, numpages);
705 EXPORT_SYMBOL(set_pages_wb);
707 int set_pages_x(struct page *page, int numpages)
709 unsigned long addr = (unsigned long)page_address(page);
711 return set_memory_x(addr, numpages);
713 EXPORT_SYMBOL(set_pages_x);
715 int set_pages_nx(struct page *page, int numpages)
717 unsigned long addr = (unsigned long)page_address(page);
719 return set_memory_nx(addr, numpages);
721 EXPORT_SYMBOL(set_pages_nx);
723 int set_pages_ro(struct page *page, int numpages)
725 unsigned long addr = (unsigned long)page_address(page);
727 return set_memory_ro(addr, numpages);
730 int set_pages_rw(struct page *page, int numpages)
732 unsigned long addr = (unsigned long)page_address(page);
734 return set_memory_rw(addr, numpages);
737 #ifdef CONFIG_DEBUG_PAGEALLOC
739 static int __set_pages_p(struct page *page, int numpages)
741 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
742 .numpages = numpages,
743 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
744 .mask_clr = __pgprot(0)};
746 return __change_page_attr_set_clr(&cpa);
749 static int __set_pages_np(struct page *page, int numpages)
751 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
752 .numpages = numpages,
753 .mask_set = __pgprot(0),
754 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
756 return __change_page_attr_set_clr(&cpa);
759 void kernel_map_pages(struct page *page, int numpages, int enable)
761 if (PageHighMem(page))
762 return;
763 if (!enable) {
764 debug_check_no_locks_freed(page_address(page),
765 numpages * PAGE_SIZE);
769 * If page allocator is not up yet then do not call c_p_a():
771 if (!debug_pagealloc_enabled)
772 return;
775 * The return value is ignored - the calls cannot fail,
776 * large pages are disabled at boot time:
778 if (enable)
779 __set_pages_p(page, numpages);
780 else
781 __set_pages_np(page, numpages);
784 * We should perform an IPI and flush all tlbs,
785 * but that can deadlock->flush only current cpu:
787 __flush_tlb_all();
789 #endif
792 * The testcases use internal knowledge of the implementation that shouldn't
793 * be exposed to the rest of the kernel. Include these directly here.
795 #ifdef CONFIG_CPA_DEBUG
796 #include "pageattr-test.c"
797 #endif