2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
65 u16 heads
, u16 sectors
);
66 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
67 static void ata_dev_xfermask(struct ata_device
*dev
);
69 static unsigned int ata_unique_id
= 1;
70 static struct workqueue_struct
*ata_wq
;
72 int atapi_enabled
= 1;
73 module_param(atapi_enabled
, int, 0444);
74 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
77 module_param(atapi_dmadir
, int, 0444);
78 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
81 module_param_named(fua
, libata_fua
, int, 0444);
82 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
84 MODULE_AUTHOR("Jeff Garzik");
85 MODULE_DESCRIPTION("Library module for ATA devices");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION
);
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
100 * Inherited from caller.
103 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
105 fis
[0] = 0x27; /* Register - Host to Device FIS */
106 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis
[2] = tf
->command
;
109 fis
[3] = tf
->feature
;
116 fis
[8] = tf
->hob_lbal
;
117 fis
[9] = tf
->hob_lbam
;
118 fis
[10] = tf
->hob_lbah
;
119 fis
[11] = tf
->hob_feature
;
122 fis
[13] = tf
->hob_nsect
;
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
140 * Inherited from caller.
143 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
145 tf
->command
= fis
[2]; /* status */
146 tf
->feature
= fis
[3]; /* error */
153 tf
->hob_lbal
= fis
[8];
154 tf
->hob_lbam
= fis
[9];
155 tf
->hob_lbah
= fis
[10];
158 tf
->hob_nsect
= fis
[13];
161 static const u8 ata_rw_cmds
[] = {
165 ATA_CMD_READ_MULTI_EXT
,
166 ATA_CMD_WRITE_MULTI_EXT
,
170 ATA_CMD_WRITE_MULTI_FUA_EXT
,
174 ATA_CMD_PIO_READ_EXT
,
175 ATA_CMD_PIO_WRITE_EXT
,
188 ATA_CMD_WRITE_FUA_EXT
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
195 * Examine the device configuration and tf->flags to calculate
196 * the proper read/write commands and protocol to use.
201 int ata_rwcmd_protocol(struct ata_queued_cmd
*qc
)
203 struct ata_taskfile
*tf
= &qc
->tf
;
204 struct ata_device
*dev
= qc
->dev
;
207 int index
, fua
, lba48
, write
;
209 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
210 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
211 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
213 if (dev
->flags
& ATA_DFLAG_PIO
) {
214 tf
->protocol
= ATA_PROT_PIO
;
215 index
= dev
->multi_count
? 0 : 8;
216 } else if (lba48
&& (qc
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
217 /* Unable to use DMA due to host limitation */
218 tf
->protocol
= ATA_PROT_PIO
;
219 index
= dev
->multi_count
? 0 : 8;
221 tf
->protocol
= ATA_PROT_DMA
;
225 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
248 static unsigned int ata_pack_xfermask(unsigned int pio_mask
,
249 unsigned int mwdma_mask
,
250 unsigned int udma_mask
)
252 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
253 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
254 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
267 static void ata_unpack_xfermask(unsigned int xfer_mask
,
268 unsigned int *pio_mask
,
269 unsigned int *mwdma_mask
,
270 unsigned int *udma_mask
)
273 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
275 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
277 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
280 static const struct ata_xfer_ent
{
284 { ATA_SHIFT_PIO
, ATA_BITS_PIO
, XFER_PIO_0
},
285 { ATA_SHIFT_MWDMA
, ATA_BITS_MWDMA
, XFER_MW_DMA_0
},
286 { ATA_SHIFT_UDMA
, ATA_BITS_UDMA
, XFER_UDMA_0
},
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
301 * Matching XFER_* value, 0 if no match found.
303 static u8
ata_xfer_mask2mode(unsigned int xfer_mask
)
305 int highbit
= fls(xfer_mask
) - 1;
306 const struct ata_xfer_ent
*ent
;
308 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
309 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
310 return ent
->base
+ highbit
- ent
->shift
;
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
318 * Return matching xfer_mask for @xfer_mode.
324 * Matching xfer_mask, 0 if no match found.
326 static unsigned int ata_xfer_mode2mask(u8 xfer_mode
)
328 const struct ata_xfer_ent
*ent
;
330 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
331 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
332 return 1 << (ent
->shift
+ xfer_mode
- ent
->base
);
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
340 * Return matching xfer_shift for @xfer_mode.
346 * Matching xfer_shift, -1 if no match found.
348 static int ata_xfer_mode2shift(unsigned int xfer_mode
)
350 const struct ata_xfer_ent
*ent
;
352 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
353 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
362 * Determine string which represents the highest speed
363 * (highest bit in @modemask).
369 * Constant C string representing highest speed listed in
370 * @mode_mask, or the constant C string "<n/a>".
372 static const char *ata_mode_string(unsigned int xfer_mask
)
374 static const char * const xfer_mode_str
[] = {
394 highbit
= fls(xfer_mask
) - 1;
395 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
396 return xfer_mode_str
[highbit
];
400 static const char *sata_spd_string(unsigned int spd
)
402 static const char * const spd_str
[] = {
407 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
409 return spd_str
[spd
- 1];
412 void ata_dev_disable(struct ata_device
*dev
)
414 if (ata_dev_enabled(dev
)) {
415 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
438 static unsigned int ata_pio_devchk(struct ata_port
*ap
,
441 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
444 ap
->ops
->dev_select(ap
, device
);
446 outb(0x55, ioaddr
->nsect_addr
);
447 outb(0xaa, ioaddr
->lbal_addr
);
449 outb(0xaa, ioaddr
->nsect_addr
);
450 outb(0x55, ioaddr
->lbal_addr
);
452 outb(0x55, ioaddr
->nsect_addr
);
453 outb(0xaa, ioaddr
->lbal_addr
);
455 nsect
= inb(ioaddr
->nsect_addr
);
456 lbal
= inb(ioaddr
->lbal_addr
);
458 if ((nsect
== 0x55) && (lbal
== 0xaa))
459 return 1; /* we found a device */
461 return 0; /* nothing found */
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
482 static unsigned int ata_mmio_devchk(struct ata_port
*ap
,
485 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
488 ap
->ops
->dev_select(ap
, device
);
490 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
491 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
493 writeb(0xaa, (void __iomem
*) ioaddr
->nsect_addr
);
494 writeb(0x55, (void __iomem
*) ioaddr
->lbal_addr
);
496 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
497 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
499 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
500 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
502 if ((nsect
== 0x55) && (lbal
== 0xaa))
503 return 1; /* we found a device */
505 return 0; /* nothing found */
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
521 static unsigned int ata_devchk(struct ata_port
*ap
,
524 if (ap
->flags
& ATA_FLAG_MMIO
)
525 return ata_mmio_devchk(ap
, device
);
526 return ata_pio_devchk(ap
, device
);
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
545 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
552 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
553 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
558 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
559 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI
;
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN
;
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
572 * @r_err: Value of error register on completion
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
591 ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
, u8
*r_err
)
593 struct ata_taskfile tf
;
597 ap
->ops
->dev_select(ap
, device
);
599 memset(&tf
, 0, sizeof(tf
));
601 ap
->ops
->tf_read(ap
, &tf
);
606 /* see if device passed diags */
609 else if ((device
== 0) && (err
== 0x81))
614 /* determine if device is ATA or ATAPI */
615 class = ata_dev_classify(&tf
);
617 if (class == ATA_DEV_UNKNOWN
)
619 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
625 * ata_id_string - Convert IDENTIFY DEVICE page into string
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
639 void ata_id_string(const u16
*id
, unsigned char *s
,
640 unsigned int ofs
, unsigned int len
)
659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
665 * This function is identical to ata_id_string except that it
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
672 void ata_id_c_string(const u16
*id
, unsigned char *s
,
673 unsigned int ofs
, unsigned int len
)
679 ata_id_string(id
, s
, ofs
, len
- 1);
681 p
= s
+ strnlen(s
, len
- 1);
682 while (p
> s
&& p
[-1] == ' ')
687 static u64
ata_id_n_sectors(const u16
*id
)
689 if (ata_id_has_lba(id
)) {
690 if (ata_id_has_lba48(id
))
691 return ata_id_u64(id
, 100);
693 return ata_id_u32(id
, 60);
695 if (ata_id_current_chs_valid(id
))
696 return ata_id_u32(id
, 57);
698 return id
[1] * id
[3] * id
[6];
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
707 * This function performs no actual function.
709 * May be used as the dev_select() entry in ata_port_operations.
714 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
726 * ATA channel. Works with both PIO and MMIO.
728 * May be used as the dev_select() entry in ata_port_operations.
734 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
739 tmp
= ATA_DEVICE_OBS
;
741 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
743 if (ap
->flags
& ATA_FLAG_MMIO
) {
744 writeb(tmp
, (void __iomem
*) ap
->ioaddr
.device_addr
);
746 outb(tmp
, ap
->ioaddr
.device_addr
);
748 ata_pause(ap
); /* needed; also flushes, for mmio */
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
770 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
771 unsigned int wait
, unsigned int can_sleep
)
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap
->id
, device
, wait
);
779 ap
->ops
->dev_select(ap
, device
);
782 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
790 * @id: IDENTIFY DEVICE page to dump
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
799 static inline void ata_dump_id(const u16
*id
)
801 DPRINTK("49==0x%04x "
811 DPRINTK("80==0x%04x "
821 DPRINTK("88==0x%04x "
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
834 * FIXME: pre IDE drive timing (do we care ?).
842 static unsigned int ata_id_xfermask(const u16
*id
)
844 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
846 /* Usual case. Word 53 indicates word 64 is valid */
847 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
848 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
856 pio_mask
= (2 << (id
[ATA_ID_OLD_PIO_MODES
] & 0xFF)) - 1 ;
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
866 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
869 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
870 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
872 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
878 * @fn: workqueue function to be scheduled
879 * @data: data value to pass to workqueue function
880 * @delay: delay time for workqueue function
882 * Schedule @fn(@data) for execution after @delay jiffies using
883 * port_task. There is one port_task per port and it's the
884 * user(low level driver)'s responsibility to make sure that only
885 * one task is active at any given time.
887 * libata core layer takes care of synchronization between
888 * port_task and EH. ata_port_queue_task() may be ignored for EH
892 * Inherited from caller.
894 void ata_port_queue_task(struct ata_port
*ap
, void (*fn
)(void *), void *data
,
899 if (ap
->flags
& ATA_FLAG_FLUSH_PORT_TASK
)
902 PREPARE_WORK(&ap
->port_task
, fn
, data
);
905 rc
= queue_work(ata_wq
, &ap
->port_task
);
907 rc
= queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
909 /* rc == 0 means that another user is using port task */
914 * ata_port_flush_task - Flush port_task
915 * @ap: The ata_port to flush port_task for
917 * After this function completes, port_task is guranteed not to
918 * be running or scheduled.
921 * Kernel thread context (may sleep)
923 void ata_port_flush_task(struct ata_port
*ap
)
929 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
930 ap
->flags
|= ATA_FLAG_FLUSH_PORT_TASK
;
931 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
933 DPRINTK("flush #1\n");
934 flush_workqueue(ata_wq
);
937 * At this point, if a task is running, it's guaranteed to see
938 * the FLUSH flag; thus, it will never queue pio tasks again.
941 if (!cancel_delayed_work(&ap
->port_task
)) {
942 DPRINTK("flush #2\n");
943 flush_workqueue(ata_wq
);
946 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
947 ap
->flags
&= ~ATA_FLAG_FLUSH_PORT_TASK
;
948 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
953 void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
955 struct completion
*waiting
= qc
->private_data
;
961 * ata_exec_internal - execute libata internal command
962 * @dev: Device to which the command is sent
963 * @tf: Taskfile registers for the command and the result
964 * @cdb: CDB for packet command
965 * @dma_dir: Data tranfer direction of the command
966 * @buf: Data buffer of the command
967 * @buflen: Length of data buffer
969 * Executes libata internal command with timeout. @tf contains
970 * command on entry and result on return. Timeout and error
971 * conditions are reported via return value. No recovery action
972 * is taken after a command times out. It's caller's duty to
973 * clean up after timeout.
976 * None. Should be called with kernel context, might sleep.
979 unsigned ata_exec_internal(struct ata_device
*dev
,
980 struct ata_taskfile
*tf
, const u8
*cdb
,
981 int dma_dir
, void *buf
, unsigned int buflen
)
983 struct ata_port
*ap
= dev
->ap
;
984 u8 command
= tf
->command
;
985 struct ata_queued_cmd
*qc
;
986 unsigned int tag
, preempted_tag
;
987 u32 preempted_sactive
, preempted_qc_active
;
988 DECLARE_COMPLETION(wait
);
990 unsigned int err_mask
;
993 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
995 /* no internal command while frozen */
996 if (ap
->flags
& ATA_FLAG_FROZEN
) {
997 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
998 return AC_ERR_SYSTEM
;
1001 /* initialize internal qc */
1003 /* XXX: Tag 0 is used for drivers with legacy EH as some
1004 * drivers choke if any other tag is given. This breaks
1005 * ata_tag_internal() test for those drivers. Don't use new
1006 * EH stuff without converting to it.
1008 if (ap
->ops
->error_handler
)
1009 tag
= ATA_TAG_INTERNAL
;
1013 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1015 qc
= __ata_qc_from_tag(ap
, tag
);
1023 preempted_tag
= ap
->active_tag
;
1024 preempted_sactive
= ap
->sactive
;
1025 preempted_qc_active
= ap
->qc_active
;
1026 ap
->active_tag
= ATA_TAG_POISON
;
1030 /* prepare & issue qc */
1033 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1034 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1035 qc
->dma_dir
= dma_dir
;
1036 if (dma_dir
!= DMA_NONE
) {
1037 ata_sg_init_one(qc
, buf
, buflen
);
1038 qc
->nsect
= buflen
/ ATA_SECT_SIZE
;
1041 qc
->private_data
= &wait
;
1042 qc
->complete_fn
= ata_qc_complete_internal
;
1046 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
1048 rc
= wait_for_completion_timeout(&wait
, ATA_TMOUT_INTERNAL
);
1050 ata_port_flush_task(ap
);
1053 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
1055 /* We're racing with irq here. If we lose, the
1056 * following test prevents us from completing the qc
1057 * twice. If we win, the port is frozen and will be
1058 * cleaned up by ->post_internal_cmd().
1060 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1061 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1063 if (ap
->ops
->error_handler
)
1064 ata_port_freeze(ap
);
1066 ata_qc_complete(qc
);
1068 ata_dev_printk(dev
, KERN_WARNING
,
1069 "qc timeout (cmd 0x%x)\n", command
);
1072 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
1075 /* do post_internal_cmd */
1076 if (ap
->ops
->post_internal_cmd
)
1077 ap
->ops
->post_internal_cmd(qc
);
1079 if (qc
->flags
& ATA_QCFLAG_FAILED
&& !qc
->err_mask
) {
1080 ata_dev_printk(dev
, KERN_WARNING
, "zero err_mask for failed "
1081 "internal command, assuming AC_ERR_OTHER\n");
1082 qc
->err_mask
|= AC_ERR_OTHER
;
1086 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
1088 *tf
= qc
->result_tf
;
1089 err_mask
= qc
->err_mask
;
1092 ap
->active_tag
= preempted_tag
;
1093 ap
->sactive
= preempted_sactive
;
1094 ap
->qc_active
= preempted_qc_active
;
1096 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1097 * Until those drivers are fixed, we detect the condition
1098 * here, fail the command with AC_ERR_SYSTEM and reenable the
1101 * Note that this doesn't change any behavior as internal
1102 * command failure results in disabling the device in the
1103 * higher layer for LLDDs without new reset/EH callbacks.
1105 * Kill the following code as soon as those drivers are fixed.
1107 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1108 err_mask
|= AC_ERR_SYSTEM
;
1112 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
1118 * ata_pio_need_iordy - check if iordy needed
1121 * Check if the current speed of the device requires IORDY. Used
1122 * by various controllers for chip configuration.
1125 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1128 int speed
= adev
->pio_mode
- XFER_PIO_0
;
1135 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1137 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1138 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1139 /* Is the speed faster than the drive allows non IORDY ? */
1141 /* This is cycle times not frequency - watch the logic! */
1142 if (pio
> 240) /* PIO2 is 240nS per cycle */
1151 * ata_dev_read_id - Read ID data from the specified device
1152 * @dev: target device
1153 * @p_class: pointer to class of the target device (may be changed)
1154 * @post_reset: is this read ID post-reset?
1155 * @id: buffer to read IDENTIFY data into
1157 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1158 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1159 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1160 * for pre-ATA4 drives.
1163 * Kernel thread context (may sleep)
1166 * 0 on success, -errno otherwise.
1168 static int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1169 int post_reset
, u16
*id
)
1171 struct ata_port
*ap
= dev
->ap
;
1172 unsigned int class = *p_class
;
1173 struct ata_taskfile tf
;
1174 unsigned int err_mask
= 0;
1178 DPRINTK("ENTER, host %u, dev %u\n", ap
->id
, dev
->devno
);
1180 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
1183 ata_tf_init(dev
, &tf
);
1187 tf
.command
= ATA_CMD_ID_ATA
;
1190 tf
.command
= ATA_CMD_ID_ATAPI
;
1194 reason
= "unsupported class";
1198 tf
.protocol
= ATA_PROT_PIO
;
1200 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
1201 id
, sizeof(id
[0]) * ATA_ID_WORDS
);
1204 reason
= "I/O error";
1208 swap_buf_le16(id
, ATA_ID_WORDS
);
1211 if ((class == ATA_DEV_ATA
) != (ata_id_is_ata(id
) | ata_id_is_cfa(id
))) {
1213 reason
= "device reports illegal type";
1217 if (post_reset
&& class == ATA_DEV_ATA
) {
1219 * The exact sequence expected by certain pre-ATA4 drives is:
1222 * INITIALIZE DEVICE PARAMETERS
1224 * Some drives were very specific about that exact sequence.
1226 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
1227 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
1230 reason
= "INIT_DEV_PARAMS failed";
1234 /* current CHS translation info (id[53-58]) might be
1235 * changed. reread the identify device info.
1247 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
1248 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
1252 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
1254 return ((dev
->ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
1257 static void ata_dev_config_ncq(struct ata_device
*dev
,
1258 char *desc
, size_t desc_sz
)
1260 struct ata_port
*ap
= dev
->ap
;
1261 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
1263 if (!ata_id_has_ncq(dev
->id
)) {
1268 if (ap
->flags
& ATA_FLAG_NCQ
) {
1269 hdepth
= min(ap
->host
->can_queue
, ATA_MAX_QUEUE
- 1);
1270 dev
->flags
|= ATA_DFLAG_NCQ
;
1273 if (hdepth
>= ddepth
)
1274 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
1276 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
1280 * ata_dev_configure - Configure the specified ATA/ATAPI device
1281 * @dev: Target device to configure
1282 * @print_info: Enable device info printout
1284 * Configure @dev according to @dev->id. Generic and low-level
1285 * driver specific fixups are also applied.
1288 * Kernel thread context (may sleep)
1291 * 0 on success, -errno otherwise
1293 static int ata_dev_configure(struct ata_device
*dev
, int print_info
)
1295 struct ata_port
*ap
= dev
->ap
;
1296 const u16
*id
= dev
->id
;
1297 unsigned int xfer_mask
;
1300 if (!ata_dev_enabled(dev
)) {
1301 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1302 ap
->id
, dev
->devno
);
1306 DPRINTK("ENTER, host %u, dev %u\n", ap
->id
, dev
->devno
);
1308 /* print device capabilities */
1310 ata_dev_printk(dev
, KERN_DEBUG
, "cfg 49:%04x 82:%04x 83:%04x "
1311 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1312 id
[49], id
[82], id
[83], id
[84],
1313 id
[85], id
[86], id
[87], id
[88]);
1315 /* initialize to-be-configured parameters */
1316 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
1317 dev
->max_sectors
= 0;
1325 * common ATA, ATAPI feature tests
1328 /* find max transfer mode; for printk only */
1329 xfer_mask
= ata_id_xfermask(id
);
1333 /* ATA-specific feature tests */
1334 if (dev
->class == ATA_DEV_ATA
) {
1335 dev
->n_sectors
= ata_id_n_sectors(id
);
1337 if (ata_id_has_lba(id
)) {
1338 const char *lba_desc
;
1342 dev
->flags
|= ATA_DFLAG_LBA
;
1343 if (ata_id_has_lba48(id
)) {
1344 dev
->flags
|= ATA_DFLAG_LBA48
;
1349 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
1351 /* print device info to dmesg */
1353 ata_dev_printk(dev
, KERN_INFO
, "ATA-%d, "
1354 "max %s, %Lu sectors: %s %s\n",
1355 ata_id_major_version(id
),
1356 ata_mode_string(xfer_mask
),
1357 (unsigned long long)dev
->n_sectors
,
1358 lba_desc
, ncq_desc
);
1362 /* Default translation */
1363 dev
->cylinders
= id
[1];
1365 dev
->sectors
= id
[6];
1367 if (ata_id_current_chs_valid(id
)) {
1368 /* Current CHS translation is valid. */
1369 dev
->cylinders
= id
[54];
1370 dev
->heads
= id
[55];
1371 dev
->sectors
= id
[56];
1374 /* print device info to dmesg */
1376 ata_dev_printk(dev
, KERN_INFO
, "ATA-%d, "
1377 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1378 ata_id_major_version(id
),
1379 ata_mode_string(xfer_mask
),
1380 (unsigned long long)dev
->n_sectors
,
1381 dev
->cylinders
, dev
->heads
, dev
->sectors
);
1384 if (dev
->id
[59] & 0x100) {
1385 dev
->multi_count
= dev
->id
[59] & 0xff;
1386 DPRINTK("ata%u: dev %u multi count %u\n",
1387 ap
->id
, dev
->devno
, dev
->multi_count
);
1393 /* ATAPI-specific feature tests */
1394 else if (dev
->class == ATA_DEV_ATAPI
) {
1395 char *cdb_intr_string
= "";
1397 rc
= atapi_cdb_len(id
);
1398 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
1399 ata_dev_printk(dev
, KERN_WARNING
,
1400 "unsupported CDB len\n");
1404 dev
->cdb_len
= (unsigned int) rc
;
1406 if (ata_id_cdb_intr(dev
->id
)) {
1407 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
1408 cdb_intr_string
= ", CDB intr";
1411 /* print device info to dmesg */
1413 ata_dev_printk(dev
, KERN_INFO
, "ATAPI, max %s%s\n",
1414 ata_mode_string(xfer_mask
),
1418 ap
->host
->max_cmd_len
= 0;
1419 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1420 ap
->host
->max_cmd_len
= max_t(unsigned int,
1421 ap
->host
->max_cmd_len
,
1422 ap
->device
[i
].cdb_len
);
1424 /* limit bridge transfers to udma5, 200 sectors */
1425 if (ata_dev_knobble(dev
)) {
1427 ata_dev_printk(dev
, KERN_INFO
,
1428 "applying bridge limits\n");
1429 dev
->udma_mask
&= ATA_UDMA5
;
1430 dev
->max_sectors
= ATA_MAX_SECTORS
;
1433 if (ap
->ops
->dev_config
)
1434 ap
->ops
->dev_config(ap
, dev
);
1436 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap
));
1440 DPRINTK("EXIT, err\n");
1445 * ata_bus_probe - Reset and probe ATA bus
1448 * Master ATA bus probing function. Initiates a hardware-dependent
1449 * bus reset, then attempts to identify any devices found on
1453 * PCI/etc. bus probe sem.
1456 * Zero on success, negative errno otherwise.
1459 static int ata_bus_probe(struct ata_port
*ap
)
1461 unsigned int classes
[ATA_MAX_DEVICES
];
1462 int tries
[ATA_MAX_DEVICES
];
1463 int i
, rc
, down_xfermask
;
1464 struct ata_device
*dev
;
1468 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1469 tries
[i
] = ATA_PROBE_MAX_TRIES
;
1474 /* reset and determine device classes */
1475 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1476 classes
[i
] = ATA_DEV_UNKNOWN
;
1478 if (ap
->ops
->probe_reset
) {
1479 rc
= ap
->ops
->probe_reset(ap
, classes
);
1481 ata_port_printk(ap
, KERN_ERR
,
1482 "reset failed (errno=%d)\n", rc
);
1486 ap
->ops
->phy_reset(ap
);
1488 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1489 if (!(ap
->flags
& ATA_FLAG_DISABLED
))
1490 classes
[i
] = ap
->device
[i
].class;
1491 ap
->device
[i
].class = ATA_DEV_UNKNOWN
;
1497 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1498 if (classes
[i
] == ATA_DEV_UNKNOWN
)
1499 classes
[i
] = ATA_DEV_NONE
;
1501 /* after the reset the device state is PIO 0 and the controller
1502 state is undefined. Record the mode */
1504 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1505 ap
->device
[i
].pio_mode
= XFER_PIO_0
;
1507 /* read IDENTIFY page and configure devices */
1508 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1509 dev
= &ap
->device
[i
];
1512 dev
->class = classes
[i
];
1514 if (!ata_dev_enabled(dev
))
1517 rc
= ata_dev_read_id(dev
, &dev
->class, 1, dev
->id
);
1521 rc
= ata_dev_configure(dev
, 1);
1526 /* configure transfer mode */
1527 rc
= ata_set_mode(ap
, &dev
);
1533 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1534 if (ata_dev_enabled(&ap
->device
[i
]))
1537 /* no device present, disable port */
1538 ata_port_disable(ap
);
1539 ap
->ops
->port_disable(ap
);
1546 tries
[dev
->devno
] = 0;
1549 sata_down_spd_limit(ap
);
1552 tries
[dev
->devno
]--;
1553 if (down_xfermask
&&
1554 ata_down_xfermask_limit(dev
, tries
[dev
->devno
] == 1))
1555 tries
[dev
->devno
] = 0;
1558 if (!tries
[dev
->devno
]) {
1559 ata_down_xfermask_limit(dev
, 1);
1560 ata_dev_disable(dev
);
1567 * ata_port_probe - Mark port as enabled
1568 * @ap: Port for which we indicate enablement
1570 * Modify @ap data structure such that the system
1571 * thinks that the entire port is enabled.
1573 * LOCKING: host_set lock, or some other form of
1577 void ata_port_probe(struct ata_port
*ap
)
1579 ap
->flags
&= ~ATA_FLAG_DISABLED
;
1583 * sata_print_link_status - Print SATA link status
1584 * @ap: SATA port to printk link status about
1586 * This function prints link speed and status of a SATA link.
1591 static void sata_print_link_status(struct ata_port
*ap
)
1593 u32 sstatus
, scontrol
, tmp
;
1595 if (sata_scr_read(ap
, SCR_STATUS
, &sstatus
))
1597 sata_scr_read(ap
, SCR_CONTROL
, &scontrol
);
1599 if (ata_port_online(ap
)) {
1600 tmp
= (sstatus
>> 4) & 0xf;
1601 ata_port_printk(ap
, KERN_INFO
,
1602 "SATA link up %s (SStatus %X SControl %X)\n",
1603 sata_spd_string(tmp
), sstatus
, scontrol
);
1605 ata_port_printk(ap
, KERN_INFO
,
1606 "SATA link down (SStatus %X SControl %X)\n",
1612 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1613 * @ap: SATA port associated with target SATA PHY.
1615 * This function issues commands to standard SATA Sxxx
1616 * PHY registers, to wake up the phy (and device), and
1617 * clear any reset condition.
1620 * PCI/etc. bus probe sem.
1623 void __sata_phy_reset(struct ata_port
*ap
)
1626 unsigned long timeout
= jiffies
+ (HZ
* 5);
1628 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
1629 /* issue phy wake/reset */
1630 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x301);
1631 /* Couldn't find anything in SATA I/II specs, but
1632 * AHCI-1.1 10.4.2 says at least 1 ms. */
1635 /* phy wake/clear reset */
1636 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x300);
1638 /* wait for phy to become ready, if necessary */
1641 sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
1642 if ((sstatus
& 0xf) != 1)
1644 } while (time_before(jiffies
, timeout
));
1646 /* print link status */
1647 sata_print_link_status(ap
);
1649 /* TODO: phy layer with polling, timeouts, etc. */
1650 if (!ata_port_offline(ap
))
1653 ata_port_disable(ap
);
1655 if (ap
->flags
& ATA_FLAG_DISABLED
)
1658 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
1659 ata_port_disable(ap
);
1663 ap
->cbl
= ATA_CBL_SATA
;
1667 * sata_phy_reset - Reset SATA bus.
1668 * @ap: SATA port associated with target SATA PHY.
1670 * This function resets the SATA bus, and then probes
1671 * the bus for devices.
1674 * PCI/etc. bus probe sem.
1677 void sata_phy_reset(struct ata_port
*ap
)
1679 __sata_phy_reset(ap
);
1680 if (ap
->flags
& ATA_FLAG_DISABLED
)
1686 * ata_dev_pair - return other device on cable
1689 * Obtain the other device on the same cable, or if none is
1690 * present NULL is returned
1693 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
1695 struct ata_port
*ap
= adev
->ap
;
1696 struct ata_device
*pair
= &ap
->device
[1 - adev
->devno
];
1697 if (!ata_dev_enabled(pair
))
1703 * ata_port_disable - Disable port.
1704 * @ap: Port to be disabled.
1706 * Modify @ap data structure such that the system
1707 * thinks that the entire port is disabled, and should
1708 * never attempt to probe or communicate with devices
1711 * LOCKING: host_set lock, or some other form of
1715 void ata_port_disable(struct ata_port
*ap
)
1717 ap
->device
[0].class = ATA_DEV_NONE
;
1718 ap
->device
[1].class = ATA_DEV_NONE
;
1719 ap
->flags
|= ATA_FLAG_DISABLED
;
1723 * sata_down_spd_limit - adjust SATA spd limit downward
1724 * @ap: Port to adjust SATA spd limit for
1726 * Adjust SATA spd limit of @ap downward. Note that this
1727 * function only adjusts the limit. The change must be applied
1728 * using sata_set_spd().
1731 * Inherited from caller.
1734 * 0 on success, negative errno on failure
1736 int sata_down_spd_limit(struct ata_port
*ap
)
1738 u32 sstatus
, spd
, mask
;
1741 rc
= sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
1745 mask
= ap
->sata_spd_limit
;
1748 highbit
= fls(mask
) - 1;
1749 mask
&= ~(1 << highbit
);
1751 spd
= (sstatus
>> 4) & 0xf;
1755 mask
&= (1 << spd
) - 1;
1759 ap
->sata_spd_limit
= mask
;
1761 ata_port_printk(ap
, KERN_WARNING
, "limiting SATA link speed to %s\n",
1762 sata_spd_string(fls(mask
)));
1767 static int __sata_set_spd_needed(struct ata_port
*ap
, u32
*scontrol
)
1771 if (ap
->sata_spd_limit
== UINT_MAX
)
1774 limit
= fls(ap
->sata_spd_limit
);
1776 spd
= (*scontrol
>> 4) & 0xf;
1777 *scontrol
= (*scontrol
& ~0xf0) | ((limit
& 0xf) << 4);
1779 return spd
!= limit
;
1783 * sata_set_spd_needed - is SATA spd configuration needed
1784 * @ap: Port in question
1786 * Test whether the spd limit in SControl matches
1787 * @ap->sata_spd_limit. This function is used to determine
1788 * whether hardreset is necessary to apply SATA spd
1792 * Inherited from caller.
1795 * 1 if SATA spd configuration is needed, 0 otherwise.
1797 int sata_set_spd_needed(struct ata_port
*ap
)
1801 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
))
1804 return __sata_set_spd_needed(ap
, &scontrol
);
1808 * sata_set_spd - set SATA spd according to spd limit
1809 * @ap: Port to set SATA spd for
1811 * Set SATA spd of @ap according to sata_spd_limit.
1814 * Inherited from caller.
1817 * 0 if spd doesn't need to be changed, 1 if spd has been
1818 * changed. Negative errno if SCR registers are inaccessible.
1820 int sata_set_spd(struct ata_port
*ap
)
1825 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
1828 if (!__sata_set_spd_needed(ap
, &scontrol
))
1831 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
1838 * This mode timing computation functionality is ported over from
1839 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1842 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1843 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1844 * for PIO 5, which is a nonstandard extension and UDMA6, which
1845 * is currently supported only by Maxtor drives.
1848 static const struct ata_timing ata_timing
[] = {
1850 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
1851 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
1852 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
1853 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
1855 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
1856 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
1857 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
1859 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1861 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
1862 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
1863 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
1865 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
1866 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
1867 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
1869 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1870 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
1871 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
1873 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
1874 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
1875 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
1877 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1882 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1883 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1885 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
1887 q
->setup
= EZ(t
->setup
* 1000, T
);
1888 q
->act8b
= EZ(t
->act8b
* 1000, T
);
1889 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
1890 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
1891 q
->active
= EZ(t
->active
* 1000, T
);
1892 q
->recover
= EZ(t
->recover
* 1000, T
);
1893 q
->cycle
= EZ(t
->cycle
* 1000, T
);
1894 q
->udma
= EZ(t
->udma
* 1000, UT
);
1897 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
1898 struct ata_timing
*m
, unsigned int what
)
1900 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
1901 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
1902 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
1903 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
1904 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
1905 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
1906 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
1907 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
1910 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
1912 const struct ata_timing
*t
;
1914 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
1915 if (t
->mode
== 0xFF)
1920 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
1921 struct ata_timing
*t
, int T
, int UT
)
1923 const struct ata_timing
*s
;
1924 struct ata_timing p
;
1930 if (!(s
= ata_timing_find_mode(speed
)))
1933 memcpy(t
, s
, sizeof(*s
));
1936 * If the drive is an EIDE drive, it can tell us it needs extended
1937 * PIO/MW_DMA cycle timing.
1940 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
1941 memset(&p
, 0, sizeof(p
));
1942 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
1943 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
1944 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
1945 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
1946 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
1948 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
1952 * Convert the timing to bus clock counts.
1955 ata_timing_quantize(t
, t
, T
, UT
);
1958 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1959 * S.M.A.R.T * and some other commands. We have to ensure that the
1960 * DMA cycle timing is slower/equal than the fastest PIO timing.
1963 if (speed
> XFER_PIO_4
) {
1964 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
1965 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
1969 * Lengthen active & recovery time so that cycle time is correct.
1972 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
1973 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
1974 t
->rec8b
= t
->cyc8b
- t
->act8b
;
1977 if (t
->active
+ t
->recover
< t
->cycle
) {
1978 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
1979 t
->recover
= t
->cycle
- t
->active
;
1986 * ata_down_xfermask_limit - adjust dev xfer masks downward
1987 * @dev: Device to adjust xfer masks
1988 * @force_pio0: Force PIO0
1990 * Adjust xfer masks of @dev downward. Note that this function
1991 * does not apply the change. Invoking ata_set_mode() afterwards
1992 * will apply the limit.
1995 * Inherited from caller.
1998 * 0 on success, negative errno on failure
2000 int ata_down_xfermask_limit(struct ata_device
*dev
, int force_pio0
)
2002 unsigned long xfer_mask
;
2005 xfer_mask
= ata_pack_xfermask(dev
->pio_mask
, dev
->mwdma_mask
,
2010 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2011 if (xfer_mask
& ATA_MASK_UDMA
)
2012 xfer_mask
&= ~ATA_MASK_MWDMA
;
2014 highbit
= fls(xfer_mask
) - 1;
2015 xfer_mask
&= ~(1 << highbit
);
2017 xfer_mask
&= 1 << ATA_SHIFT_PIO
;
2021 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
2024 ata_dev_printk(dev
, KERN_WARNING
, "limiting speed to %s\n",
2025 ata_mode_string(xfer_mask
));
2033 static int ata_dev_set_mode(struct ata_device
*dev
)
2035 unsigned int err_mask
;
2038 dev
->flags
&= ~ATA_DFLAG_PIO
;
2039 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
2040 dev
->flags
|= ATA_DFLAG_PIO
;
2042 err_mask
= ata_dev_set_xfermode(dev
);
2044 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
2045 "(err_mask=0x%x)\n", err_mask
);
2049 rc
= ata_dev_revalidate(dev
, 0);
2053 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2054 dev
->xfer_shift
, (int)dev
->xfer_mode
);
2056 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
2057 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)));
2062 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2063 * @ap: port on which timings will be programmed
2064 * @r_failed_dev: out paramter for failed device
2066 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2067 * ata_set_mode() fails, pointer to the failing device is
2068 * returned in @r_failed_dev.
2071 * PCI/etc. bus probe sem.
2074 * 0 on success, negative errno otherwise
2076 int ata_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2078 struct ata_device
*dev
;
2079 int i
, rc
= 0, used_dma
= 0, found
= 0;
2081 /* has private set_mode? */
2082 if (ap
->ops
->set_mode
) {
2083 /* FIXME: make ->set_mode handle no device case and
2084 * return error code and failing device on failure.
2086 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2087 if (ata_dev_enabled(&ap
->device
[i
])) {
2088 ap
->ops
->set_mode(ap
);
2095 /* step 1: calculate xfer_mask */
2096 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2097 unsigned int pio_mask
, dma_mask
;
2099 dev
= &ap
->device
[i
];
2101 if (!ata_dev_enabled(dev
))
2104 ata_dev_xfermask(dev
);
2106 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
2107 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
2108 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
2109 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
2118 /* step 2: always set host PIO timings */
2119 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2120 dev
= &ap
->device
[i
];
2121 if (!ata_dev_enabled(dev
))
2124 if (!dev
->pio_mode
) {
2125 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
2130 dev
->xfer_mode
= dev
->pio_mode
;
2131 dev
->xfer_shift
= ATA_SHIFT_PIO
;
2132 if (ap
->ops
->set_piomode
)
2133 ap
->ops
->set_piomode(ap
, dev
);
2136 /* step 3: set host DMA timings */
2137 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2138 dev
= &ap
->device
[i
];
2140 if (!ata_dev_enabled(dev
) || !dev
->dma_mode
)
2143 dev
->xfer_mode
= dev
->dma_mode
;
2144 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
2145 if (ap
->ops
->set_dmamode
)
2146 ap
->ops
->set_dmamode(ap
, dev
);
2149 /* step 4: update devices' xfer mode */
2150 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2151 dev
= &ap
->device
[i
];
2153 if (!ata_dev_enabled(dev
))
2156 rc
= ata_dev_set_mode(dev
);
2161 /* Record simplex status. If we selected DMA then the other
2162 * host channels are not permitted to do so.
2164 if (used_dma
&& (ap
->host_set
->flags
& ATA_HOST_SIMPLEX
))
2165 ap
->host_set
->simplex_claimed
= 1;
2167 /* step5: chip specific finalisation */
2168 if (ap
->ops
->post_set_mode
)
2169 ap
->ops
->post_set_mode(ap
);
2173 *r_failed_dev
= dev
;
2178 * ata_tf_to_host - issue ATA taskfile to host controller
2179 * @ap: port to which command is being issued
2180 * @tf: ATA taskfile register set
2182 * Issues ATA taskfile register set to ATA host controller,
2183 * with proper synchronization with interrupt handler and
2187 * spin_lock_irqsave(host_set lock)
2190 static inline void ata_tf_to_host(struct ata_port
*ap
,
2191 const struct ata_taskfile
*tf
)
2193 ap
->ops
->tf_load(ap
, tf
);
2194 ap
->ops
->exec_command(ap
, tf
);
2198 * ata_busy_sleep - sleep until BSY clears, or timeout
2199 * @ap: port containing status register to be polled
2200 * @tmout_pat: impatience timeout
2201 * @tmout: overall timeout
2203 * Sleep until ATA Status register bit BSY clears,
2204 * or a timeout occurs.
2209 unsigned int ata_busy_sleep (struct ata_port
*ap
,
2210 unsigned long tmout_pat
, unsigned long tmout
)
2212 unsigned long timer_start
, timeout
;
2215 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
2216 timer_start
= jiffies
;
2217 timeout
= timer_start
+ tmout_pat
;
2218 while ((status
& ATA_BUSY
) && (time_before(jiffies
, timeout
))) {
2220 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
2223 if (status
& ATA_BUSY
)
2224 ata_port_printk(ap
, KERN_WARNING
,
2225 "port is slow to respond, please be patient\n");
2227 timeout
= timer_start
+ tmout
;
2228 while ((status
& ATA_BUSY
) && (time_before(jiffies
, timeout
))) {
2230 status
= ata_chk_status(ap
);
2233 if (status
& ATA_BUSY
) {
2234 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
2235 "(%lu secs)\n", tmout
/ HZ
);
2242 static void ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
)
2244 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2245 unsigned int dev0
= devmask
& (1 << 0);
2246 unsigned int dev1
= devmask
& (1 << 1);
2247 unsigned long timeout
;
2249 /* if device 0 was found in ata_devchk, wait for its
2253 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2255 /* if device 1 was found in ata_devchk, wait for
2256 * register access, then wait for BSY to clear
2258 timeout
= jiffies
+ ATA_TMOUT_BOOT
;
2262 ap
->ops
->dev_select(ap
, 1);
2263 if (ap
->flags
& ATA_FLAG_MMIO
) {
2264 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
2265 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
2267 nsect
= inb(ioaddr
->nsect_addr
);
2268 lbal
= inb(ioaddr
->lbal_addr
);
2270 if ((nsect
== 1) && (lbal
== 1))
2272 if (time_after(jiffies
, timeout
)) {
2276 msleep(50); /* give drive a breather */
2279 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2281 /* is all this really necessary? */
2282 ap
->ops
->dev_select(ap
, 0);
2284 ap
->ops
->dev_select(ap
, 1);
2286 ap
->ops
->dev_select(ap
, 0);
2289 static unsigned int ata_bus_softreset(struct ata_port
*ap
,
2290 unsigned int devmask
)
2292 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2294 DPRINTK("ata%u: bus reset via SRST\n", ap
->id
);
2296 /* software reset. causes dev0 to be selected */
2297 if (ap
->flags
& ATA_FLAG_MMIO
) {
2298 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2299 udelay(20); /* FIXME: flush */
2300 writeb(ap
->ctl
| ATA_SRST
, (void __iomem
*) ioaddr
->ctl_addr
);
2301 udelay(20); /* FIXME: flush */
2302 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2304 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2306 outb(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
2308 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2311 /* spec mandates ">= 2ms" before checking status.
2312 * We wait 150ms, because that was the magic delay used for
2313 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2314 * between when the ATA command register is written, and then
2315 * status is checked. Because waiting for "a while" before
2316 * checking status is fine, post SRST, we perform this magic
2317 * delay here as well.
2319 * Old drivers/ide uses the 2mS rule and then waits for ready
2323 /* Before we perform post reset processing we want to see if
2324 * the bus shows 0xFF because the odd clown forgets the D7
2325 * pulldown resistor.
2327 if (ata_check_status(ap
) == 0xFF) {
2328 ata_port_printk(ap
, KERN_ERR
, "SRST failed (status 0xFF)\n");
2329 return AC_ERR_OTHER
;
2332 ata_bus_post_reset(ap
, devmask
);
2338 * ata_bus_reset - reset host port and associated ATA channel
2339 * @ap: port to reset
2341 * This is typically the first time we actually start issuing
2342 * commands to the ATA channel. We wait for BSY to clear, then
2343 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2344 * result. Determine what devices, if any, are on the channel
2345 * by looking at the device 0/1 error register. Look at the signature
2346 * stored in each device's taskfile registers, to determine if
2347 * the device is ATA or ATAPI.
2350 * PCI/etc. bus probe sem.
2351 * Obtains host_set lock.
2354 * Sets ATA_FLAG_DISABLED if bus reset fails.
2357 void ata_bus_reset(struct ata_port
*ap
)
2359 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2360 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2362 unsigned int dev0
, dev1
= 0, devmask
= 0;
2364 DPRINTK("ENTER, host %u, port %u\n", ap
->id
, ap
->port_no
);
2366 /* determine if device 0/1 are present */
2367 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
2370 dev0
= ata_devchk(ap
, 0);
2372 dev1
= ata_devchk(ap
, 1);
2376 devmask
|= (1 << 0);
2378 devmask
|= (1 << 1);
2380 /* select device 0 again */
2381 ap
->ops
->dev_select(ap
, 0);
2383 /* issue bus reset */
2384 if (ap
->flags
& ATA_FLAG_SRST
)
2385 if (ata_bus_softreset(ap
, devmask
))
2389 * determine by signature whether we have ATA or ATAPI devices
2391 ap
->device
[0].class = ata_dev_try_classify(ap
, 0, &err
);
2392 if ((slave_possible
) && (err
!= 0x81))
2393 ap
->device
[1].class = ata_dev_try_classify(ap
, 1, &err
);
2395 /* re-enable interrupts */
2396 if (ap
->ioaddr
.ctl_addr
) /* FIXME: hack. create a hook instead */
2399 /* is double-select really necessary? */
2400 if (ap
->device
[1].class != ATA_DEV_NONE
)
2401 ap
->ops
->dev_select(ap
, 1);
2402 if (ap
->device
[0].class != ATA_DEV_NONE
)
2403 ap
->ops
->dev_select(ap
, 0);
2405 /* if no devices were detected, disable this port */
2406 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
2407 (ap
->device
[1].class == ATA_DEV_NONE
))
2410 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
2411 /* set up device control for ATA_FLAG_SATA_RESET */
2412 if (ap
->flags
& ATA_FLAG_MMIO
)
2413 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2415 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2422 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
2423 ap
->ops
->port_disable(ap
);
2428 static int sata_phy_resume(struct ata_port
*ap
)
2430 unsigned long timeout
= jiffies
+ (HZ
* 5);
2431 u32 scontrol
, sstatus
;
2434 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2437 scontrol
= (scontrol
& 0x0f0) | 0x300;
2439 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2442 /* Wait for phy to become ready, if necessary. */
2445 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &sstatus
)))
2447 if ((sstatus
& 0xf) != 1)
2449 } while (time_before(jiffies
, timeout
));
2455 * ata_std_probeinit - initialize probing
2456 * @ap: port to be probed
2458 * @ap is about to be probed. Initialize it. This function is
2459 * to be used as standard callback for ata_drive_probe_reset().
2461 * NOTE!!! Do not use this function as probeinit if a low level
2462 * driver implements only hardreset. Just pass NULL as probeinit
2463 * in that case. Using this function is probably okay but doing
2464 * so makes reset sequence different from the original
2465 * ->phy_reset implementation and Jeff nervous. :-P
2467 void ata_std_probeinit(struct ata_port
*ap
)
2472 sata_phy_resume(ap
);
2474 /* init sata_spd_limit to the current value */
2475 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
) == 0) {
2476 int spd
= (scontrol
>> 4) & 0xf;
2477 ap
->sata_spd_limit
&= (1 << spd
) - 1;
2480 /* wait for device */
2481 if (ata_port_online(ap
))
2482 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2486 * ata_std_softreset - reset host port via ATA SRST
2487 * @ap: port to reset
2488 * @classes: resulting classes of attached devices
2490 * Reset host port using ATA SRST. This function is to be used
2491 * as standard callback for ata_drive_*_reset() functions.
2494 * Kernel thread context (may sleep)
2497 * 0 on success, -errno otherwise.
2499 int ata_std_softreset(struct ata_port
*ap
, unsigned int *classes
)
2501 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2502 unsigned int devmask
= 0, err_mask
;
2507 if (ata_port_offline(ap
)) {
2508 classes
[0] = ATA_DEV_NONE
;
2512 /* determine if device 0/1 are present */
2513 if (ata_devchk(ap
, 0))
2514 devmask
|= (1 << 0);
2515 if (slave_possible
&& ata_devchk(ap
, 1))
2516 devmask
|= (1 << 1);
2518 /* select device 0 again */
2519 ap
->ops
->dev_select(ap
, 0);
2521 /* issue bus reset */
2522 DPRINTK("about to softreset, devmask=%x\n", devmask
);
2523 err_mask
= ata_bus_softreset(ap
, devmask
);
2525 ata_port_printk(ap
, KERN_ERR
, "SRST failed (err_mask=0x%x)\n",
2530 /* determine by signature whether we have ATA or ATAPI devices */
2531 classes
[0] = ata_dev_try_classify(ap
, 0, &err
);
2532 if (slave_possible
&& err
!= 0x81)
2533 classes
[1] = ata_dev_try_classify(ap
, 1, &err
);
2536 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2541 * sata_std_hardreset - reset host port via SATA phy reset
2542 * @ap: port to reset
2543 * @class: resulting class of attached device
2545 * SATA phy-reset host port using DET bits of SControl register.
2546 * This function is to be used as standard callback for
2547 * ata_drive_*_reset().
2550 * Kernel thread context (may sleep)
2553 * 0 on success, -errno otherwise.
2555 int sata_std_hardreset(struct ata_port
*ap
, unsigned int *class)
2562 if (sata_set_spd_needed(ap
)) {
2563 /* SATA spec says nothing about how to reconfigure
2564 * spd. To be on the safe side, turn off phy during
2565 * reconfiguration. This works for at least ICH7 AHCI
2568 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2571 scontrol
= (scontrol
& 0x0f0) | 0x302;
2573 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2579 /* issue phy wake/reset */
2580 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2583 scontrol
= (scontrol
& 0x0f0) | 0x301;
2585 if ((rc
= sata_scr_write_flush(ap
, SCR_CONTROL
, scontrol
)))
2588 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2589 * 10.4.2 says at least 1 ms.
2593 /* bring phy back */
2594 sata_phy_resume(ap
);
2596 /* TODO: phy layer with polling, timeouts, etc. */
2597 if (ata_port_offline(ap
)) {
2598 *class = ATA_DEV_NONE
;
2599 DPRINTK("EXIT, link offline\n");
2603 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
2604 ata_port_printk(ap
, KERN_ERR
,
2605 "COMRESET failed (device not ready)\n");
2609 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
2611 *class = ata_dev_try_classify(ap
, 0, NULL
);
2613 DPRINTK("EXIT, class=%u\n", *class);
2618 * ata_std_postreset - standard postreset callback
2619 * @ap: the target ata_port
2620 * @classes: classes of attached devices
2622 * This function is invoked after a successful reset. Note that
2623 * the device might have been reset more than once using
2624 * different reset methods before postreset is invoked.
2626 * This function is to be used as standard callback for
2627 * ata_drive_*_reset().
2630 * Kernel thread context (may sleep)
2632 void ata_std_postreset(struct ata_port
*ap
, unsigned int *classes
)
2638 /* print link status */
2639 sata_print_link_status(ap
);
2642 if (sata_scr_read(ap
, SCR_ERROR
, &serror
) == 0)
2643 sata_scr_write(ap
, SCR_ERROR
, serror
);
2645 /* re-enable interrupts */
2646 if (!ap
->ops
->error_handler
) {
2647 /* FIXME: hack. create a hook instead */
2648 if (ap
->ioaddr
.ctl_addr
)
2652 /* is double-select really necessary? */
2653 if (classes
[0] != ATA_DEV_NONE
)
2654 ap
->ops
->dev_select(ap
, 1);
2655 if (classes
[1] != ATA_DEV_NONE
)
2656 ap
->ops
->dev_select(ap
, 0);
2658 /* bail out if no device is present */
2659 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
2660 DPRINTK("EXIT, no device\n");
2664 /* set up device control */
2665 if (ap
->ioaddr
.ctl_addr
) {
2666 if (ap
->flags
& ATA_FLAG_MMIO
)
2667 writeb(ap
->ctl
, (void __iomem
*) ap
->ioaddr
.ctl_addr
);
2669 outb(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
2676 * ata_std_probe_reset - standard probe reset method
2677 * @ap: prot to perform probe-reset
2678 * @classes: resulting classes of attached devices
2680 * The stock off-the-shelf ->probe_reset method.
2683 * Kernel thread context (may sleep)
2686 * 0 on success, -errno otherwise.
2688 int ata_std_probe_reset(struct ata_port
*ap
, unsigned int *classes
)
2690 ata_reset_fn_t hardreset
;
2693 if (sata_scr_valid(ap
))
2694 hardreset
= sata_std_hardreset
;
2696 return ata_drive_probe_reset(ap
, ata_std_probeinit
,
2697 ata_std_softreset
, hardreset
,
2698 ata_std_postreset
, classes
);
2701 int ata_do_reset(struct ata_port
*ap
, ata_reset_fn_t reset
,
2702 unsigned int *classes
)
2706 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2707 classes
[i
] = ATA_DEV_UNKNOWN
;
2709 rc
= reset(ap
, classes
);
2713 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2714 * is complete and convert all ATA_DEV_UNKNOWN to
2717 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2718 if (classes
[i
] != ATA_DEV_UNKNOWN
)
2721 if (i
< ATA_MAX_DEVICES
)
2722 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
2723 if (classes
[i
] == ATA_DEV_UNKNOWN
)
2724 classes
[i
] = ATA_DEV_NONE
;
2730 * ata_drive_probe_reset - Perform probe reset with given methods
2731 * @ap: port to reset
2732 * @probeinit: probeinit method (can be NULL)
2733 * @softreset: softreset method (can be NULL)
2734 * @hardreset: hardreset method (can be NULL)
2735 * @postreset: postreset method (can be NULL)
2736 * @classes: resulting classes of attached devices
2738 * Reset the specified port and classify attached devices using
2739 * given methods. This function prefers softreset but tries all
2740 * possible reset sequences to reset and classify devices. This
2741 * function is intended to be used for constructing ->probe_reset
2742 * callback by low level drivers.
2744 * Reset methods should follow the following rules.
2746 * - Return 0 on sucess, -errno on failure.
2747 * - If classification is supported, fill classes[] with
2748 * recognized class codes.
2749 * - If classification is not supported, leave classes[] alone.
2752 * Kernel thread context (may sleep)
2755 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2756 * if classification fails, and any error code from reset
2759 int ata_drive_probe_reset(struct ata_port
*ap
, ata_probeinit_fn_t probeinit
,
2760 ata_reset_fn_t softreset
, ata_reset_fn_t hardreset
,
2761 ata_postreset_fn_t postreset
, unsigned int *classes
)
2765 ata_eh_freeze_port(ap
);
2770 if (softreset
&& !sata_set_spd_needed(ap
)) {
2771 rc
= ata_do_reset(ap
, softreset
, classes
);
2772 if (rc
== 0 && classes
[0] != ATA_DEV_UNKNOWN
)
2774 ata_port_printk(ap
, KERN_INFO
, "softreset failed, "
2775 "will try hardreset in 5 secs\n");
2783 rc
= ata_do_reset(ap
, hardreset
, classes
);
2785 if (classes
[0] != ATA_DEV_UNKNOWN
)
2790 if (sata_down_spd_limit(ap
))
2793 ata_port_printk(ap
, KERN_INFO
, "hardreset failed, "
2794 "will retry in 5 secs\n");
2799 ata_port_printk(ap
, KERN_INFO
,
2800 "hardreset succeeded without classification, "
2801 "will retry softreset in 5 secs\n");
2804 rc
= ata_do_reset(ap
, softreset
, classes
);
2810 postreset(ap
, classes
);
2812 ata_eh_thaw_port(ap
);
2814 if (classes
[0] == ATA_DEV_UNKNOWN
)
2821 * ata_dev_same_device - Determine whether new ID matches configured device
2822 * @dev: device to compare against
2823 * @new_class: class of the new device
2824 * @new_id: IDENTIFY page of the new device
2826 * Compare @new_class and @new_id against @dev and determine
2827 * whether @dev is the device indicated by @new_class and
2834 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2836 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
2839 const u16
*old_id
= dev
->id
;
2840 unsigned char model
[2][41], serial
[2][21];
2843 if (dev
->class != new_class
) {
2844 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
2845 dev
->class, new_class
);
2849 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD_OFS
, sizeof(model
[0]));
2850 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD_OFS
, sizeof(model
[1]));
2851 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO_OFS
, sizeof(serial
[0]));
2852 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO_OFS
, sizeof(serial
[1]));
2853 new_n_sectors
= ata_id_n_sectors(new_id
);
2855 if (strcmp(model
[0], model
[1])) {
2856 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
2857 "'%s' != '%s'\n", model
[0], model
[1]);
2861 if (strcmp(serial
[0], serial
[1])) {
2862 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
2863 "'%s' != '%s'\n", serial
[0], serial
[1]);
2867 if (dev
->class == ATA_DEV_ATA
&& dev
->n_sectors
!= new_n_sectors
) {
2868 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
2870 (unsigned long long)dev
->n_sectors
,
2871 (unsigned long long)new_n_sectors
);
2879 * ata_dev_revalidate - Revalidate ATA device
2880 * @dev: device to revalidate
2881 * @post_reset: is this revalidation after reset?
2883 * Re-read IDENTIFY page and make sure @dev is still attached to
2887 * Kernel thread context (may sleep)
2890 * 0 on success, negative errno otherwise
2892 int ata_dev_revalidate(struct ata_device
*dev
, int post_reset
)
2894 unsigned int class = dev
->class;
2895 u16
*id
= (void *)dev
->ap
->sector_buf
;
2898 if (!ata_dev_enabled(dev
)) {
2904 rc
= ata_dev_read_id(dev
, &class, post_reset
, id
);
2908 /* is the device still there? */
2909 if (!ata_dev_same_device(dev
, class, id
)) {
2914 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
2916 /* configure device according to the new ID */
2917 rc
= ata_dev_configure(dev
, 0);
2922 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
2926 static const char * const ata_dma_blacklist
[] = {
2927 "WDC AC11000H", NULL
,
2928 "WDC AC22100H", NULL
,
2929 "WDC AC32500H", NULL
,
2930 "WDC AC33100H", NULL
,
2931 "WDC AC31600H", NULL
,
2932 "WDC AC32100H", "24.09P07",
2933 "WDC AC23200L", "21.10N21",
2934 "Compaq CRD-8241B", NULL
,
2939 "SanDisk SDP3B", NULL
,
2940 "SanDisk SDP3B-64", NULL
,
2941 "SANYO CD-ROM CRD", NULL
,
2942 "HITACHI CDR-8", NULL
,
2943 "HITACHI CDR-8335", NULL
,
2944 "HITACHI CDR-8435", NULL
,
2945 "Toshiba CD-ROM XM-6202B", NULL
,
2946 "TOSHIBA CD-ROM XM-1702BC", NULL
,
2948 "E-IDE CD-ROM CR-840", NULL
,
2949 "CD-ROM Drive/F5A", NULL
,
2950 "WPI CDD-820", NULL
,
2951 "SAMSUNG CD-ROM SC-148C", NULL
,
2952 "SAMSUNG CD-ROM SC", NULL
,
2953 "SanDisk SDP3B-64", NULL
,
2954 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,
2955 "_NEC DV5800A", NULL
,
2956 "SAMSUNG CD-ROM SN-124", "N001"
2959 static int ata_strim(char *s
, size_t len
)
2961 len
= strnlen(s
, len
);
2963 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2964 while ((len
> 0) && (s
[len
- 1] == ' ')) {
2971 static int ata_dma_blacklisted(const struct ata_device
*dev
)
2973 unsigned char model_num
[40];
2974 unsigned char model_rev
[16];
2975 unsigned int nlen
, rlen
;
2978 ata_id_string(dev
->id
, model_num
, ATA_ID_PROD_OFS
,
2980 ata_id_string(dev
->id
, model_rev
, ATA_ID_FW_REV_OFS
,
2982 nlen
= ata_strim(model_num
, sizeof(model_num
));
2983 rlen
= ata_strim(model_rev
, sizeof(model_rev
));
2985 for (i
= 0; i
< ARRAY_SIZE(ata_dma_blacklist
); i
+= 2) {
2986 if (!strncmp(ata_dma_blacklist
[i
], model_num
, nlen
)) {
2987 if (ata_dma_blacklist
[i
+1] == NULL
)
2989 if (!strncmp(ata_dma_blacklist
[i
], model_rev
, rlen
))
2997 * ata_dev_xfermask - Compute supported xfermask of the given device
2998 * @dev: Device to compute xfermask for
3000 * Compute supported xfermask of @dev and store it in
3001 * dev->*_mask. This function is responsible for applying all
3002 * known limits including host controller limits, device
3005 * FIXME: The current implementation limits all transfer modes to
3006 * the fastest of the lowested device on the port. This is not
3007 * required on most controllers.
3012 static void ata_dev_xfermask(struct ata_device
*dev
)
3014 struct ata_port
*ap
= dev
->ap
;
3015 struct ata_host_set
*hs
= ap
->host_set
;
3016 unsigned long xfer_mask
;
3019 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
3020 ap
->mwdma_mask
, ap
->udma_mask
);
3022 /* Apply cable rule here. Don't apply it early because when
3023 * we handle hot plug the cable type can itself change.
3025 if (ap
->cbl
== ATA_CBL_PATA40
)
3026 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
3028 /* FIXME: Use port-wide xfermask for now */
3029 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
3030 struct ata_device
*d
= &ap
->device
[i
];
3032 if (ata_dev_absent(d
))
3035 if (ata_dev_disabled(d
)) {
3036 /* to avoid violating device selection timing */
3037 xfer_mask
&= ata_pack_xfermask(d
->pio_mask
,
3038 UINT_MAX
, UINT_MAX
);
3042 xfer_mask
&= ata_pack_xfermask(d
->pio_mask
,
3043 d
->mwdma_mask
, d
->udma_mask
);
3044 xfer_mask
&= ata_id_xfermask(d
->id
);
3045 if (ata_dma_blacklisted(d
))
3046 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3049 if (ata_dma_blacklisted(dev
))
3050 ata_dev_printk(dev
, KERN_WARNING
,
3051 "device is on DMA blacklist, disabling DMA\n");
3053 if (hs
->flags
& ATA_HOST_SIMPLEX
) {
3054 if (hs
->simplex_claimed
)
3055 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3058 if (ap
->ops
->mode_filter
)
3059 xfer_mask
= ap
->ops
->mode_filter(ap
, dev
, xfer_mask
);
3061 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
3062 &dev
->mwdma_mask
, &dev
->udma_mask
);
3066 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3067 * @dev: Device to which command will be sent
3069 * Issue SET FEATURES - XFER MODE command to device @dev
3073 * PCI/etc. bus probe sem.
3076 * 0 on success, AC_ERR_* mask otherwise.
3079 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
3081 struct ata_taskfile tf
;
3082 unsigned int err_mask
;
3084 /* set up set-features taskfile */
3085 DPRINTK("set features - xfer mode\n");
3087 ata_tf_init(dev
, &tf
);
3088 tf
.command
= ATA_CMD_SET_FEATURES
;
3089 tf
.feature
= SETFEATURES_XFER
;
3090 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3091 tf
.protocol
= ATA_PROT_NODATA
;
3092 tf
.nsect
= dev
->xfer_mode
;
3094 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3096 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3101 * ata_dev_init_params - Issue INIT DEV PARAMS command
3102 * @dev: Device to which command will be sent
3103 * @heads: Number of heads (taskfile parameter)
3104 * @sectors: Number of sectors (taskfile parameter)
3107 * Kernel thread context (may sleep)
3110 * 0 on success, AC_ERR_* mask otherwise.
3112 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
3113 u16 heads
, u16 sectors
)
3115 struct ata_taskfile tf
;
3116 unsigned int err_mask
;
3118 /* Number of sectors per track 1-255. Number of heads 1-16 */
3119 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
3120 return AC_ERR_INVALID
;
3122 /* set up init dev params taskfile */
3123 DPRINTK("init dev params \n");
3125 ata_tf_init(dev
, &tf
);
3126 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
3127 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3128 tf
.protocol
= ATA_PROT_NODATA
;
3130 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
3132 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3134 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3139 * ata_sg_clean - Unmap DMA memory associated with command
3140 * @qc: Command containing DMA memory to be released
3142 * Unmap all mapped DMA memory associated with this command.
3145 * spin_lock_irqsave(host_set lock)
3148 static void ata_sg_clean(struct ata_queued_cmd
*qc
)
3150 struct ata_port
*ap
= qc
->ap
;
3151 struct scatterlist
*sg
= qc
->__sg
;
3152 int dir
= qc
->dma_dir
;
3153 void *pad_buf
= NULL
;
3155 WARN_ON(!(qc
->flags
& ATA_QCFLAG_DMAMAP
));
3156 WARN_ON(sg
== NULL
);
3158 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
3159 WARN_ON(qc
->n_elem
> 1);
3161 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
3163 /* if we padded the buffer out to 32-bit bound, and data
3164 * xfer direction is from-device, we must copy from the
3165 * pad buffer back into the supplied buffer
3167 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
3168 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3170 if (qc
->flags
& ATA_QCFLAG_SG
) {
3172 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
3173 /* restore last sg */
3174 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
3176 struct scatterlist
*psg
= &qc
->pad_sgent
;
3177 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3178 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
3179 kunmap_atomic(addr
, KM_IRQ0
);
3183 dma_unmap_single(ap
->dev
,
3184 sg_dma_address(&sg
[0]), sg_dma_len(&sg
[0]),
3187 sg
->length
+= qc
->pad_len
;
3189 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
3190 pad_buf
, qc
->pad_len
);
3193 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
3198 * ata_fill_sg - Fill PCI IDE PRD table
3199 * @qc: Metadata associated with taskfile to be transferred
3201 * Fill PCI IDE PRD (scatter-gather) table with segments
3202 * associated with the current disk command.
3205 * spin_lock_irqsave(host_set lock)
3208 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
3210 struct ata_port
*ap
= qc
->ap
;
3211 struct scatterlist
*sg
;
3214 WARN_ON(qc
->__sg
== NULL
);
3215 WARN_ON(qc
->n_elem
== 0 && qc
->pad_len
== 0);
3218 ata_for_each_sg(sg
, qc
) {
3222 /* determine if physical DMA addr spans 64K boundary.
3223 * Note h/w doesn't support 64-bit, so we unconditionally
3224 * truncate dma_addr_t to u32.
3226 addr
= (u32
) sg_dma_address(sg
);
3227 sg_len
= sg_dma_len(sg
);
3230 offset
= addr
& 0xffff;
3232 if ((offset
+ sg_len
) > 0x10000)
3233 len
= 0x10000 - offset
;
3235 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
3236 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
3237 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
3246 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
3249 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3250 * @qc: Metadata associated with taskfile to check
3252 * Allow low-level driver to filter ATA PACKET commands, returning
3253 * a status indicating whether or not it is OK to use DMA for the
3254 * supplied PACKET command.
3257 * spin_lock_irqsave(host_set lock)
3259 * RETURNS: 0 when ATAPI DMA can be used
3262 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
3264 struct ata_port
*ap
= qc
->ap
;
3265 int rc
= 0; /* Assume ATAPI DMA is OK by default */
3267 if (ap
->ops
->check_atapi_dma
)
3268 rc
= ap
->ops
->check_atapi_dma(qc
);
3270 /* We don't support polling DMA.
3271 * Use PIO if the LLDD handles only interrupts in
3272 * the HSM_ST_LAST state and the ATAPI device
3273 * generates CDB interrupts.
3275 if ((ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
3276 (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
3282 * ata_qc_prep - Prepare taskfile for submission
3283 * @qc: Metadata associated with taskfile to be prepared
3285 * Prepare ATA taskfile for submission.
3288 * spin_lock_irqsave(host_set lock)
3290 void ata_qc_prep(struct ata_queued_cmd
*qc
)
3292 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
3298 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
3301 * ata_sg_init_one - Associate command with memory buffer
3302 * @qc: Command to be associated
3303 * @buf: Memory buffer
3304 * @buflen: Length of memory buffer, in bytes.
3306 * Initialize the data-related elements of queued_cmd @qc
3307 * to point to a single memory buffer, @buf of byte length @buflen.
3310 * spin_lock_irqsave(host_set lock)
3313 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
3315 struct scatterlist
*sg
;
3317 qc
->flags
|= ATA_QCFLAG_SINGLE
;
3319 memset(&qc
->sgent
, 0, sizeof(qc
->sgent
));
3320 qc
->__sg
= &qc
->sgent
;
3322 qc
->orig_n_elem
= 1;
3326 sg_init_one(sg
, buf
, buflen
);
3330 * ata_sg_init - Associate command with scatter-gather table.
3331 * @qc: Command to be associated
3332 * @sg: Scatter-gather table.
3333 * @n_elem: Number of elements in s/g table.
3335 * Initialize the data-related elements of queued_cmd @qc
3336 * to point to a scatter-gather table @sg, containing @n_elem
3340 * spin_lock_irqsave(host_set lock)
3343 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
3344 unsigned int n_elem
)
3346 qc
->flags
|= ATA_QCFLAG_SG
;
3348 qc
->n_elem
= n_elem
;
3349 qc
->orig_n_elem
= n_elem
;
3353 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3354 * @qc: Command with memory buffer to be mapped.
3356 * DMA-map the memory buffer associated with queued_cmd @qc.
3359 * spin_lock_irqsave(host_set lock)
3362 * Zero on success, negative on error.
3365 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
3367 struct ata_port
*ap
= qc
->ap
;
3368 int dir
= qc
->dma_dir
;
3369 struct scatterlist
*sg
= qc
->__sg
;
3370 dma_addr_t dma_address
;
3373 /* we must lengthen transfers to end on a 32-bit boundary */
3374 qc
->pad_len
= sg
->length
& 3;
3376 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3377 struct scatterlist
*psg
= &qc
->pad_sgent
;
3379 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
3381 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
3383 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
3384 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
3387 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3388 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
3390 sg
->length
-= qc
->pad_len
;
3391 if (sg
->length
== 0)
3394 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3395 sg
->length
, qc
->pad_len
);
3403 dma_address
= dma_map_single(ap
->dev
, qc
->buf_virt
,
3405 if (dma_mapping_error(dma_address
)) {
3407 sg
->length
+= qc
->pad_len
;
3411 sg_dma_address(sg
) = dma_address
;
3412 sg_dma_len(sg
) = sg
->length
;
3415 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
3416 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3422 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3423 * @qc: Command with scatter-gather table to be mapped.
3425 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3428 * spin_lock_irqsave(host_set lock)
3431 * Zero on success, negative on error.
3435 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
3437 struct ata_port
*ap
= qc
->ap
;
3438 struct scatterlist
*sg
= qc
->__sg
;
3439 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
3440 int n_elem
, pre_n_elem
, dir
, trim_sg
= 0;
3442 VPRINTK("ENTER, ata%u\n", ap
->id
);
3443 WARN_ON(!(qc
->flags
& ATA_QCFLAG_SG
));
3445 /* we must lengthen transfers to end on a 32-bit boundary */
3446 qc
->pad_len
= lsg
->length
& 3;
3448 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3449 struct scatterlist
*psg
= &qc
->pad_sgent
;
3450 unsigned int offset
;
3452 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
3454 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
3457 * psg->page/offset are used to copy to-be-written
3458 * data in this function or read data in ata_sg_clean.
3460 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
3461 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
3462 psg
->offset
= offset_in_page(offset
);
3464 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
3465 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3466 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
3467 kunmap_atomic(addr
, KM_IRQ0
);
3470 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3471 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
3473 lsg
->length
-= qc
->pad_len
;
3474 if (lsg
->length
== 0)
3477 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3478 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
3481 pre_n_elem
= qc
->n_elem
;
3482 if (trim_sg
&& pre_n_elem
)
3491 n_elem
= dma_map_sg(ap
->dev
, sg
, pre_n_elem
, dir
);
3493 /* restore last sg */
3494 lsg
->length
+= qc
->pad_len
;
3498 DPRINTK("%d sg elements mapped\n", n_elem
);
3501 qc
->n_elem
= n_elem
;
3507 * swap_buf_le16 - swap halves of 16-bit words in place
3508 * @buf: Buffer to swap
3509 * @buf_words: Number of 16-bit words in buffer.
3511 * Swap halves of 16-bit words if needed to convert from
3512 * little-endian byte order to native cpu byte order, or
3516 * Inherited from caller.
3518 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
3523 for (i
= 0; i
< buf_words
; i
++)
3524 buf
[i
] = le16_to_cpu(buf
[i
]);
3525 #endif /* __BIG_ENDIAN */
3529 * ata_mmio_data_xfer - Transfer data by MMIO
3530 * @dev: device for this I/O
3532 * @buflen: buffer length
3533 * @write_data: read/write
3535 * Transfer data from/to the device data register by MMIO.
3538 * Inherited from caller.
3541 void ata_mmio_data_xfer(struct ata_device
*adev
, unsigned char *buf
,
3542 unsigned int buflen
, int write_data
)
3544 struct ata_port
*ap
= adev
->ap
;
3546 unsigned int words
= buflen
>> 1;
3547 u16
*buf16
= (u16
*) buf
;
3548 void __iomem
*mmio
= (void __iomem
*)ap
->ioaddr
.data_addr
;
3550 /* Transfer multiple of 2 bytes */
3552 for (i
= 0; i
< words
; i
++)
3553 writew(le16_to_cpu(buf16
[i
]), mmio
);
3555 for (i
= 0; i
< words
; i
++)
3556 buf16
[i
] = cpu_to_le16(readw(mmio
));
3559 /* Transfer trailing 1 byte, if any. */
3560 if (unlikely(buflen
& 0x01)) {
3561 u16 align_buf
[1] = { 0 };
3562 unsigned char *trailing_buf
= buf
+ buflen
- 1;
3565 memcpy(align_buf
, trailing_buf
, 1);
3566 writew(le16_to_cpu(align_buf
[0]), mmio
);
3568 align_buf
[0] = cpu_to_le16(readw(mmio
));
3569 memcpy(trailing_buf
, align_buf
, 1);
3575 * ata_pio_data_xfer - Transfer data by PIO
3576 * @adev: device to target
3578 * @buflen: buffer length
3579 * @write_data: read/write
3581 * Transfer data from/to the device data register by PIO.
3584 * Inherited from caller.
3587 void ata_pio_data_xfer(struct ata_device
*adev
, unsigned char *buf
,
3588 unsigned int buflen
, int write_data
)
3590 struct ata_port
*ap
= adev
->ap
;
3591 unsigned int words
= buflen
>> 1;
3593 /* Transfer multiple of 2 bytes */
3595 outsw(ap
->ioaddr
.data_addr
, buf
, words
);
3597 insw(ap
->ioaddr
.data_addr
, buf
, words
);
3599 /* Transfer trailing 1 byte, if any. */
3600 if (unlikely(buflen
& 0x01)) {
3601 u16 align_buf
[1] = { 0 };
3602 unsigned char *trailing_buf
= buf
+ buflen
- 1;
3605 memcpy(align_buf
, trailing_buf
, 1);
3606 outw(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
3608 align_buf
[0] = cpu_to_le16(inw(ap
->ioaddr
.data_addr
));
3609 memcpy(trailing_buf
, align_buf
, 1);
3615 * ata_pio_data_xfer_noirq - Transfer data by PIO
3616 * @adev: device to target
3618 * @buflen: buffer length
3619 * @write_data: read/write
3621 * Transfer data from/to the device data register by PIO. Do the
3622 * transfer with interrupts disabled.
3625 * Inherited from caller.
3628 void ata_pio_data_xfer_noirq(struct ata_device
*adev
, unsigned char *buf
,
3629 unsigned int buflen
, int write_data
)
3631 unsigned long flags
;
3632 local_irq_save(flags
);
3633 ata_pio_data_xfer(adev
, buf
, buflen
, write_data
);
3634 local_irq_restore(flags
);
3639 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3640 * @qc: Command on going
3642 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3645 * Inherited from caller.
3648 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
3650 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3651 struct scatterlist
*sg
= qc
->__sg
;
3652 struct ata_port
*ap
= qc
->ap
;
3654 unsigned int offset
;
3657 if (qc
->cursect
== (qc
->nsect
- 1))
3658 ap
->hsm_task_state
= HSM_ST_LAST
;
3660 page
= sg
[qc
->cursg
].page
;
3661 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
* ATA_SECT_SIZE
;
3663 /* get the current page and offset */
3664 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
3665 offset
%= PAGE_SIZE
;
3667 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3669 if (PageHighMem(page
)) {
3670 unsigned long flags
;
3672 /* FIXME: use a bounce buffer */
3673 local_irq_save(flags
);
3674 buf
= kmap_atomic(page
, KM_IRQ0
);
3676 /* do the actual data transfer */
3677 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, ATA_SECT_SIZE
, do_write
);
3679 kunmap_atomic(buf
, KM_IRQ0
);
3680 local_irq_restore(flags
);
3682 buf
= page_address(page
);
3683 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, ATA_SECT_SIZE
, do_write
);
3689 if ((qc
->cursg_ofs
* ATA_SECT_SIZE
) == (&sg
[qc
->cursg
])->length
) {
3696 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3697 * @qc: Command on going
3699 * Transfer one or many ATA_SECT_SIZE of data from/to the
3700 * ATA device for the DRQ request.
3703 * Inherited from caller.
3706 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
3708 if (is_multi_taskfile(&qc
->tf
)) {
3709 /* READ/WRITE MULTIPLE */
3712 WARN_ON(qc
->dev
->multi_count
== 0);
3714 nsect
= min(qc
->nsect
- qc
->cursect
, qc
->dev
->multi_count
);
3722 * atapi_send_cdb - Write CDB bytes to hardware
3723 * @ap: Port to which ATAPI device is attached.
3724 * @qc: Taskfile currently active
3726 * When device has indicated its readiness to accept
3727 * a CDB, this function is called. Send the CDB.
3733 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
3736 DPRINTK("send cdb\n");
3737 WARN_ON(qc
->dev
->cdb_len
< 12);
3739 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
3740 ata_altstatus(ap
); /* flush */
3742 switch (qc
->tf
.protocol
) {
3743 case ATA_PROT_ATAPI
:
3744 ap
->hsm_task_state
= HSM_ST
;
3746 case ATA_PROT_ATAPI_NODATA
:
3747 ap
->hsm_task_state
= HSM_ST_LAST
;
3749 case ATA_PROT_ATAPI_DMA
:
3750 ap
->hsm_task_state
= HSM_ST_LAST
;
3751 /* initiate bmdma */
3752 ap
->ops
->bmdma_start(qc
);
3758 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3759 * @qc: Command on going
3760 * @bytes: number of bytes
3762 * Transfer Transfer data from/to the ATAPI device.
3765 * Inherited from caller.
3769 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
3771 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3772 struct scatterlist
*sg
= qc
->__sg
;
3773 struct ata_port
*ap
= qc
->ap
;
3776 unsigned int offset
, count
;
3778 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
3779 ap
->hsm_task_state
= HSM_ST_LAST
;
3782 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
3784 * The end of qc->sg is reached and the device expects
3785 * more data to transfer. In order not to overrun qc->sg
3786 * and fulfill length specified in the byte count register,
3787 * - for read case, discard trailing data from the device
3788 * - for write case, padding zero data to the device
3790 u16 pad_buf
[1] = { 0 };
3791 unsigned int words
= bytes
>> 1;
3794 if (words
) /* warning if bytes > 1 */
3795 ata_dev_printk(qc
->dev
, KERN_WARNING
,
3796 "%u bytes trailing data\n", bytes
);
3798 for (i
= 0; i
< words
; i
++)
3799 ap
->ops
->data_xfer(qc
->dev
, (unsigned char*)pad_buf
, 2, do_write
);
3801 ap
->hsm_task_state
= HSM_ST_LAST
;
3805 sg
= &qc
->__sg
[qc
->cursg
];
3808 offset
= sg
->offset
+ qc
->cursg_ofs
;
3810 /* get the current page and offset */
3811 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
3812 offset
%= PAGE_SIZE
;
3814 /* don't overrun current sg */
3815 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
3817 /* don't cross page boundaries */
3818 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
3820 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3822 if (PageHighMem(page
)) {
3823 unsigned long flags
;
3825 /* FIXME: use bounce buffer */
3826 local_irq_save(flags
);
3827 buf
= kmap_atomic(page
, KM_IRQ0
);
3829 /* do the actual data transfer */
3830 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
3832 kunmap_atomic(buf
, KM_IRQ0
);
3833 local_irq_restore(flags
);
3835 buf
= page_address(page
);
3836 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
3840 qc
->curbytes
+= count
;
3841 qc
->cursg_ofs
+= count
;
3843 if (qc
->cursg_ofs
== sg
->length
) {
3853 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3854 * @qc: Command on going
3856 * Transfer Transfer data from/to the ATAPI device.
3859 * Inherited from caller.
3862 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
3864 struct ata_port
*ap
= qc
->ap
;
3865 struct ata_device
*dev
= qc
->dev
;
3866 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
3867 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
3869 /* Abuse qc->result_tf for temp storage of intermediate TF
3870 * here to save some kernel stack usage.
3871 * For normal completion, qc->result_tf is not relevant. For
3872 * error, qc->result_tf is later overwritten by ata_qc_complete().
3873 * So, the correctness of qc->result_tf is not affected.
3875 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
3876 ireason
= qc
->result_tf
.nsect
;
3877 bc_lo
= qc
->result_tf
.lbam
;
3878 bc_hi
= qc
->result_tf
.lbah
;
3879 bytes
= (bc_hi
<< 8) | bc_lo
;
3881 /* shall be cleared to zero, indicating xfer of data */
3882 if (ireason
& (1 << 0))
3885 /* make sure transfer direction matches expected */
3886 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
3887 if (do_write
!= i_write
)
3890 VPRINTK("ata%u: xfering %d bytes\n", ap
->id
, bytes
);
3892 __atapi_pio_bytes(qc
, bytes
);
3897 ata_dev_printk(dev
, KERN_INFO
, "ATAPI check failed\n");
3898 qc
->err_mask
|= AC_ERR_HSM
;
3899 ap
->hsm_task_state
= HSM_ST_ERR
;
3903 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3904 * @ap: the target ata_port
3908 * 1 if ok in workqueue, 0 otherwise.
3911 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
3913 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
3916 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
3917 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
3918 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
3921 if (is_atapi_taskfile(&qc
->tf
) &&
3922 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
3930 * ata_hsm_qc_complete - finish a qc running on standard HSM
3931 * @qc: Command to complete
3932 * @in_wq: 1 if called from workqueue, 0 otherwise
3934 * Finish @qc which is running on standard HSM.
3937 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3938 * Otherwise, none on entry and grabs host lock.
3940 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
3942 struct ata_port
*ap
= qc
->ap
;
3943 unsigned long flags
;
3945 if (ap
->ops
->error_handler
) {
3947 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
3949 /* EH might have kicked in while host_set lock
3952 qc
= ata_qc_from_tag(ap
, qc
->tag
);
3954 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
3956 ata_qc_complete(qc
);
3958 ata_port_freeze(ap
);
3961 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
3963 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
3964 ata_qc_complete(qc
);
3966 ata_port_freeze(ap
);
3970 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
3972 ata_qc_complete(qc
);
3973 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
3975 ata_qc_complete(qc
);
3978 ata_altstatus(ap
); /* flush */
3982 * ata_hsm_move - move the HSM to the next state.
3983 * @ap: the target ata_port
3985 * @status: current device status
3986 * @in_wq: 1 if called from workqueue, 0 otherwise
3989 * 1 when poll next status needed, 0 otherwise.
3992 static int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
3993 u8 status
, int in_wq
)
3995 unsigned long flags
= 0;
3998 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
4000 /* Make sure ata_qc_issue_prot() does not throw things
4001 * like DMA polling into the workqueue. Notice that
4002 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4004 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
4007 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4008 ap
->id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
4010 switch (ap
->hsm_task_state
) {
4012 /* Send first data block or PACKET CDB */
4014 /* If polling, we will stay in the work queue after
4015 * sending the data. Otherwise, interrupt handler
4016 * takes over after sending the data.
4018 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4020 /* check device status */
4021 if (unlikely((status
& ATA_DRQ
) == 0)) {
4022 /* handle BSY=0, DRQ=0 as error */
4023 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4024 /* device stops HSM for abort/error */
4025 qc
->err_mask
|= AC_ERR_DEV
;
4027 /* HSM violation. Let EH handle this */
4028 qc
->err_mask
|= AC_ERR_HSM
;
4030 ap
->hsm_task_state
= HSM_ST_ERR
;
4034 /* Device should not ask for data transfer (DRQ=1)
4035 * when it finds something wrong.
4036 * We ignore DRQ here and stop the HSM by
4037 * changing hsm_task_state to HSM_ST_ERR and
4038 * let the EH abort the command or reset the device.
4040 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4041 printk(KERN_WARNING
"ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4043 qc
->err_mask
|= AC_ERR_HSM
;
4044 ap
->hsm_task_state
= HSM_ST_ERR
;
4048 /* Send the CDB (atapi) or the first data block (ata pio out).
4049 * During the state transition, interrupt handler shouldn't
4050 * be invoked before the data transfer is complete and
4051 * hsm_task_state is changed. Hence, the following locking.
4054 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
4056 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
4057 /* PIO data out protocol.
4058 * send first data block.
4061 /* ata_pio_sectors() might change the state
4062 * to HSM_ST_LAST. so, the state is changed here
4063 * before ata_pio_sectors().
4065 ap
->hsm_task_state
= HSM_ST
;
4066 ata_pio_sectors(qc
);
4067 ata_altstatus(ap
); /* flush */
4070 atapi_send_cdb(ap
, qc
);
4073 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
4075 /* if polling, ata_pio_task() handles the rest.
4076 * otherwise, interrupt handler takes over from here.
4081 /* complete command or read/write the data register */
4082 if (qc
->tf
.protocol
== ATA_PROT_ATAPI
) {
4083 /* ATAPI PIO protocol */
4084 if ((status
& ATA_DRQ
) == 0) {
4085 /* No more data to transfer or device error.
4086 * Device error will be tagged in HSM_ST_LAST.
4088 ap
->hsm_task_state
= HSM_ST_LAST
;
4092 /* Device should not ask for data transfer (DRQ=1)
4093 * when it finds something wrong.
4094 * We ignore DRQ here and stop the HSM by
4095 * changing hsm_task_state to HSM_ST_ERR and
4096 * let the EH abort the command or reset the device.
4098 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4099 printk(KERN_WARNING
"ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4101 qc
->err_mask
|= AC_ERR_HSM
;
4102 ap
->hsm_task_state
= HSM_ST_ERR
;
4106 atapi_pio_bytes(qc
);
4108 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
4109 /* bad ireason reported by device */
4113 /* ATA PIO protocol */
4114 if (unlikely((status
& ATA_DRQ
) == 0)) {
4115 /* handle BSY=0, DRQ=0 as error */
4116 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4117 /* device stops HSM for abort/error */
4118 qc
->err_mask
|= AC_ERR_DEV
;
4120 /* HSM violation. Let EH handle this */
4121 qc
->err_mask
|= AC_ERR_HSM
;
4123 ap
->hsm_task_state
= HSM_ST_ERR
;
4127 /* For PIO reads, some devices may ask for
4128 * data transfer (DRQ=1) alone with ERR=1.
4129 * We respect DRQ here and transfer one
4130 * block of junk data before changing the
4131 * hsm_task_state to HSM_ST_ERR.
4133 * For PIO writes, ERR=1 DRQ=1 doesn't make
4134 * sense since the data block has been
4135 * transferred to the device.
4137 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4138 /* data might be corrputed */
4139 qc
->err_mask
|= AC_ERR_DEV
;
4141 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
4142 ata_pio_sectors(qc
);
4144 status
= ata_wait_idle(ap
);
4147 if (status
& (ATA_BUSY
| ATA_DRQ
))
4148 qc
->err_mask
|= AC_ERR_HSM
;
4150 /* ata_pio_sectors() might change the
4151 * state to HSM_ST_LAST. so, the state
4152 * is changed after ata_pio_sectors().
4154 ap
->hsm_task_state
= HSM_ST_ERR
;
4158 ata_pio_sectors(qc
);
4160 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
4161 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
4164 status
= ata_wait_idle(ap
);
4169 ata_altstatus(ap
); /* flush */
4174 if (unlikely(!ata_ok(status
))) {
4175 qc
->err_mask
|= __ac_err_mask(status
);
4176 ap
->hsm_task_state
= HSM_ST_ERR
;
4180 /* no more data to transfer */
4181 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4182 ap
->id
, qc
->dev
->devno
, status
);
4184 WARN_ON(qc
->err_mask
);
4186 ap
->hsm_task_state
= HSM_ST_IDLE
;
4188 /* complete taskfile transaction */
4189 ata_hsm_qc_complete(qc
, in_wq
);
4195 /* make sure qc->err_mask is available to
4196 * know what's wrong and recover
4198 WARN_ON(qc
->err_mask
== 0);
4200 ap
->hsm_task_state
= HSM_ST_IDLE
;
4202 /* complete taskfile transaction */
4203 ata_hsm_qc_complete(qc
, in_wq
);
4215 static void ata_pio_task(void *_data
)
4217 struct ata_queued_cmd
*qc
= _data
;
4218 struct ata_port
*ap
= qc
->ap
;
4223 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
4226 * This is purely heuristic. This is a fast path.
4227 * Sometimes when we enter, BSY will be cleared in
4228 * a chk-status or two. If not, the drive is probably seeking
4229 * or something. Snooze for a couple msecs, then
4230 * chk-status again. If still busy, queue delayed work.
4232 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
4233 if (status
& ATA_BUSY
) {
4235 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
4236 if (status
& ATA_BUSY
) {
4237 ata_port_queue_task(ap
, ata_pio_task
, qc
, ATA_SHORT_PAUSE
);
4243 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
4245 /* another command or interrupt handler
4246 * may be running at this point.
4253 * ata_qc_new - Request an available ATA command, for queueing
4254 * @ap: Port associated with device @dev
4255 * @dev: Device from whom we request an available command structure
4261 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4263 struct ata_queued_cmd
*qc
= NULL
;
4266 /* no command while frozen */
4267 if (unlikely(ap
->flags
& ATA_FLAG_FROZEN
))
4270 /* the last tag is reserved for internal command. */
4271 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4272 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4273 qc
= __ata_qc_from_tag(ap
, i
);
4284 * ata_qc_new_init - Request an available ATA command, and initialize it
4285 * @dev: Device from whom we request an available command structure
4291 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4293 struct ata_port
*ap
= dev
->ap
;
4294 struct ata_queued_cmd
*qc
;
4296 qc
= ata_qc_new(ap
);
4309 * ata_qc_free - free unused ata_queued_cmd
4310 * @qc: Command to complete
4312 * Designed to free unused ata_queued_cmd object
4313 * in case something prevents using it.
4316 * spin_lock_irqsave(host_set lock)
4318 void ata_qc_free(struct ata_queued_cmd
*qc
)
4320 struct ata_port
*ap
= qc
->ap
;
4323 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4327 if (likely(ata_tag_valid(tag
))) {
4328 qc
->tag
= ATA_TAG_POISON
;
4329 clear_bit(tag
, &ap
->qc_allocated
);
4333 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4335 struct ata_port
*ap
= qc
->ap
;
4337 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4338 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4340 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4343 /* command should be marked inactive atomically with qc completion */
4344 if (qc
->tf
.protocol
== ATA_PROT_NCQ
)
4345 ap
->sactive
&= ~(1 << qc
->tag
);
4347 ap
->active_tag
= ATA_TAG_POISON
;
4349 /* atapi: mark qc as inactive to prevent the interrupt handler
4350 * from completing the command twice later, before the error handler
4351 * is called. (when rc != 0 and atapi request sense is needed)
4353 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4354 ap
->qc_active
&= ~(1 << qc
->tag
);
4356 /* call completion callback */
4357 qc
->complete_fn(qc
);
4361 * ata_qc_complete - Complete an active ATA command
4362 * @qc: Command to complete
4363 * @err_mask: ATA Status register contents
4365 * Indicate to the mid and upper layers that an ATA
4366 * command has completed, with either an ok or not-ok status.
4369 * spin_lock_irqsave(host_set lock)
4371 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4373 struct ata_port
*ap
= qc
->ap
;
4375 /* XXX: New EH and old EH use different mechanisms to
4376 * synchronize EH with regular execution path.
4378 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4379 * Normal execution path is responsible for not accessing a
4380 * failed qc. libata core enforces the rule by returning NULL
4381 * from ata_qc_from_tag() for failed qcs.
4383 * Old EH depends on ata_qc_complete() nullifying completion
4384 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4385 * not synchronize with interrupt handler. Only PIO task is
4388 if (ap
->ops
->error_handler
) {
4389 WARN_ON(ap
->flags
& ATA_FLAG_FROZEN
);
4391 if (unlikely(qc
->err_mask
))
4392 qc
->flags
|= ATA_QCFLAG_FAILED
;
4394 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4395 if (!ata_tag_internal(qc
->tag
)) {
4396 /* always fill result TF for failed qc */
4397 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4398 ata_qc_schedule_eh(qc
);
4403 /* read result TF if requested */
4404 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4405 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4407 __ata_qc_complete(qc
);
4409 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
4412 /* read result TF if failed or requested */
4413 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4414 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4416 __ata_qc_complete(qc
);
4421 * ata_qc_complete_multiple - Complete multiple qcs successfully
4422 * @ap: port in question
4423 * @qc_active: new qc_active mask
4424 * @finish_qc: LLDD callback invoked before completing a qc
4426 * Complete in-flight commands. This functions is meant to be
4427 * called from low-level driver's interrupt routine to complete
4428 * requests normally. ap->qc_active and @qc_active is compared
4429 * and commands are completed accordingly.
4432 * spin_lock_irqsave(host_set lock)
4435 * Number of completed commands on success, -errno otherwise.
4437 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
4438 void (*finish_qc
)(struct ata_queued_cmd
*))
4444 done_mask
= ap
->qc_active
^ qc_active
;
4446 if (unlikely(done_mask
& qc_active
)) {
4447 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
4448 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
4452 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
4453 struct ata_queued_cmd
*qc
;
4455 if (!(done_mask
& (1 << i
)))
4458 if ((qc
= ata_qc_from_tag(ap
, i
))) {
4461 ata_qc_complete(qc
);
4469 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
4471 struct ata_port
*ap
= qc
->ap
;
4473 switch (qc
->tf
.protocol
) {
4476 case ATA_PROT_ATAPI_DMA
:
4479 case ATA_PROT_ATAPI
:
4481 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
4494 * ata_qc_issue - issue taskfile to device
4495 * @qc: command to issue to device
4497 * Prepare an ATA command to submission to device.
4498 * This includes mapping the data into a DMA-able
4499 * area, filling in the S/G table, and finally
4500 * writing the taskfile to hardware, starting the command.
4503 * spin_lock_irqsave(host_set lock)
4505 void ata_qc_issue(struct ata_queued_cmd
*qc
)
4507 struct ata_port
*ap
= qc
->ap
;
4509 /* Make sure only one non-NCQ command is outstanding. The
4510 * check is skipped for old EH because it reuses active qc to
4511 * request ATAPI sense.
4513 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(ap
->active_tag
));
4515 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4516 WARN_ON(ap
->sactive
& (1 << qc
->tag
));
4517 ap
->sactive
|= 1 << qc
->tag
;
4519 WARN_ON(ap
->sactive
);
4520 ap
->active_tag
= qc
->tag
;
4523 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
4524 ap
->qc_active
|= 1 << qc
->tag
;
4526 if (ata_should_dma_map(qc
)) {
4527 if (qc
->flags
& ATA_QCFLAG_SG
) {
4528 if (ata_sg_setup(qc
))
4530 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
4531 if (ata_sg_setup_one(qc
))
4535 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4538 ap
->ops
->qc_prep(qc
);
4540 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
4541 if (unlikely(qc
->err_mask
))
4546 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4547 qc
->err_mask
|= AC_ERR_SYSTEM
;
4549 ata_qc_complete(qc
);
4553 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4554 * @qc: command to issue to device
4556 * Using various libata functions and hooks, this function
4557 * starts an ATA command. ATA commands are grouped into
4558 * classes called "protocols", and issuing each type of protocol
4559 * is slightly different.
4561 * May be used as the qc_issue() entry in ata_port_operations.
4564 * spin_lock_irqsave(host_set lock)
4567 * Zero on success, AC_ERR_* mask on failure
4570 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
4572 struct ata_port
*ap
= qc
->ap
;
4574 /* Use polling pio if the LLD doesn't handle
4575 * interrupt driven pio and atapi CDB interrupt.
4577 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
4578 switch (qc
->tf
.protocol
) {
4580 case ATA_PROT_ATAPI
:
4581 case ATA_PROT_ATAPI_NODATA
:
4582 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
4584 case ATA_PROT_ATAPI_DMA
:
4585 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
4586 /* see ata_check_atapi_dma() */
4594 /* select the device */
4595 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
4597 /* start the command */
4598 switch (qc
->tf
.protocol
) {
4599 case ATA_PROT_NODATA
:
4600 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4601 ata_qc_set_polling(qc
);
4603 ata_tf_to_host(ap
, &qc
->tf
);
4604 ap
->hsm_task_state
= HSM_ST_LAST
;
4606 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4607 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4612 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4614 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
4615 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
4616 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
4617 ap
->hsm_task_state
= HSM_ST_LAST
;
4621 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4622 ata_qc_set_polling(qc
);
4624 ata_tf_to_host(ap
, &qc
->tf
);
4626 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
4627 /* PIO data out protocol */
4628 ap
->hsm_task_state
= HSM_ST_FIRST
;
4629 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4631 /* always send first data block using
4632 * the ata_pio_task() codepath.
4635 /* PIO data in protocol */
4636 ap
->hsm_task_state
= HSM_ST
;
4638 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4639 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4641 /* if polling, ata_pio_task() handles the rest.
4642 * otherwise, interrupt handler takes over from here.
4648 case ATA_PROT_ATAPI
:
4649 case ATA_PROT_ATAPI_NODATA
:
4650 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4651 ata_qc_set_polling(qc
);
4653 ata_tf_to_host(ap
, &qc
->tf
);
4655 ap
->hsm_task_state
= HSM_ST_FIRST
;
4657 /* send cdb by polling if no cdb interrupt */
4658 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
4659 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
4660 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4663 case ATA_PROT_ATAPI_DMA
:
4664 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4666 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
4667 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
4668 ap
->hsm_task_state
= HSM_ST_FIRST
;
4670 /* send cdb by polling if no cdb interrupt */
4671 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4672 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4677 return AC_ERR_SYSTEM
;
4684 * ata_host_intr - Handle host interrupt for given (port, task)
4685 * @ap: Port on which interrupt arrived (possibly...)
4686 * @qc: Taskfile currently active in engine
4688 * Handle host interrupt for given queued command. Currently,
4689 * only DMA interrupts are handled. All other commands are
4690 * handled via polling with interrupts disabled (nIEN bit).
4693 * spin_lock_irqsave(host_set lock)
4696 * One if interrupt was handled, zero if not (shared irq).
4699 inline unsigned int ata_host_intr (struct ata_port
*ap
,
4700 struct ata_queued_cmd
*qc
)
4702 u8 status
, host_stat
= 0;
4704 VPRINTK("ata%u: protocol %d task_state %d\n",
4705 ap
->id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
4707 /* Check whether we are expecting interrupt in this state */
4708 switch (ap
->hsm_task_state
) {
4710 /* Some pre-ATAPI-4 devices assert INTRQ
4711 * at this state when ready to receive CDB.
4714 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4715 * The flag was turned on only for atapi devices.
4716 * No need to check is_atapi_taskfile(&qc->tf) again.
4718 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4722 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
4723 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
) {
4724 /* check status of DMA engine */
4725 host_stat
= ap
->ops
->bmdma_status(ap
);
4726 VPRINTK("ata%u: host_stat 0x%X\n", ap
->id
, host_stat
);
4728 /* if it's not our irq... */
4729 if (!(host_stat
& ATA_DMA_INTR
))
4732 /* before we do anything else, clear DMA-Start bit */
4733 ap
->ops
->bmdma_stop(qc
);
4735 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
4736 /* error when transfering data to/from memory */
4737 qc
->err_mask
|= AC_ERR_HOST_BUS
;
4738 ap
->hsm_task_state
= HSM_ST_ERR
;
4748 /* check altstatus */
4749 status
= ata_altstatus(ap
);
4750 if (status
& ATA_BUSY
)
4753 /* check main status, clearing INTRQ */
4754 status
= ata_chk_status(ap
);
4755 if (unlikely(status
& ATA_BUSY
))
4758 /* ack bmdma irq events */
4759 ap
->ops
->irq_clear(ap
);
4761 ata_hsm_move(ap
, qc
, status
, 0);
4762 return 1; /* irq handled */
4765 ap
->stats
.idle_irq
++;
4768 if ((ap
->stats
.idle_irq
% 1000) == 0) {
4769 ata_irq_ack(ap
, 0); /* debug trap */
4770 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
4774 return 0; /* irq not handled */
4778 * ata_interrupt - Default ATA host interrupt handler
4779 * @irq: irq line (unused)
4780 * @dev_instance: pointer to our ata_host_set information structure
4783 * Default interrupt handler for PCI IDE devices. Calls
4784 * ata_host_intr() for each port that is not disabled.
4787 * Obtains host_set lock during operation.
4790 * IRQ_NONE or IRQ_HANDLED.
4793 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
, struct pt_regs
*regs
)
4795 struct ata_host_set
*host_set
= dev_instance
;
4797 unsigned int handled
= 0;
4798 unsigned long flags
;
4800 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4801 spin_lock_irqsave(&host_set
->lock
, flags
);
4803 for (i
= 0; i
< host_set
->n_ports
; i
++) {
4804 struct ata_port
*ap
;
4806 ap
= host_set
->ports
[i
];
4808 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
4809 struct ata_queued_cmd
*qc
;
4811 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
4812 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
4813 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
4814 handled
|= ata_host_intr(ap
, qc
);
4818 spin_unlock_irqrestore(&host_set
->lock
, flags
);
4820 return IRQ_RETVAL(handled
);
4824 * sata_scr_valid - test whether SCRs are accessible
4825 * @ap: ATA port to test SCR accessibility for
4827 * Test whether SCRs are accessible for @ap.
4833 * 1 if SCRs are accessible, 0 otherwise.
4835 int sata_scr_valid(struct ata_port
*ap
)
4837 return ap
->cbl
== ATA_CBL_SATA
&& ap
->ops
->scr_read
;
4841 * sata_scr_read - read SCR register of the specified port
4842 * @ap: ATA port to read SCR for
4844 * @val: Place to store read value
4846 * Read SCR register @reg of @ap into *@val. This function is
4847 * guaranteed to succeed if the cable type of the port is SATA
4848 * and the port implements ->scr_read.
4854 * 0 on success, negative errno on failure.
4856 int sata_scr_read(struct ata_port
*ap
, int reg
, u32
*val
)
4858 if (sata_scr_valid(ap
)) {
4859 *val
= ap
->ops
->scr_read(ap
, reg
);
4866 * sata_scr_write - write SCR register of the specified port
4867 * @ap: ATA port to write SCR for
4868 * @reg: SCR to write
4869 * @val: value to write
4871 * Write @val to SCR register @reg of @ap. This function is
4872 * guaranteed to succeed if the cable type of the port is SATA
4873 * and the port implements ->scr_read.
4879 * 0 on success, negative errno on failure.
4881 int sata_scr_write(struct ata_port
*ap
, int reg
, u32 val
)
4883 if (sata_scr_valid(ap
)) {
4884 ap
->ops
->scr_write(ap
, reg
, val
);
4891 * sata_scr_write_flush - write SCR register of the specified port and flush
4892 * @ap: ATA port to write SCR for
4893 * @reg: SCR to write
4894 * @val: value to write
4896 * This function is identical to sata_scr_write() except that this
4897 * function performs flush after writing to the register.
4903 * 0 on success, negative errno on failure.
4905 int sata_scr_write_flush(struct ata_port
*ap
, int reg
, u32 val
)
4907 if (sata_scr_valid(ap
)) {
4908 ap
->ops
->scr_write(ap
, reg
, val
);
4909 ap
->ops
->scr_read(ap
, reg
);
4916 * ata_port_online - test whether the given port is online
4917 * @ap: ATA port to test
4919 * Test whether @ap is online. Note that this function returns 0
4920 * if online status of @ap cannot be obtained, so
4921 * ata_port_online(ap) != !ata_port_offline(ap).
4927 * 1 if the port online status is available and online.
4929 int ata_port_online(struct ata_port
*ap
)
4933 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) == 0x3)
4939 * ata_port_offline - test whether the given port is offline
4940 * @ap: ATA port to test
4942 * Test whether @ap is offline. Note that this function returns
4943 * 0 if offline status of @ap cannot be obtained, so
4944 * ata_port_online(ap) != !ata_port_offline(ap).
4950 * 1 if the port offline status is available and offline.
4952 int ata_port_offline(struct ata_port
*ap
)
4956 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) != 0x3)
4962 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4963 * without filling any other registers
4965 static int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
4967 struct ata_taskfile tf
;
4970 ata_tf_init(dev
, &tf
);
4973 tf
.flags
|= ATA_TFLAG_DEVICE
;
4974 tf
.protocol
= ATA_PROT_NODATA
;
4976 err
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
4978 ata_dev_printk(dev
, KERN_ERR
, "%s: ata command failed: %d\n",
4984 static int ata_flush_cache(struct ata_device
*dev
)
4988 if (!ata_try_flush_cache(dev
))
4991 if (ata_id_has_flush_ext(dev
->id
))
4992 cmd
= ATA_CMD_FLUSH_EXT
;
4994 cmd
= ATA_CMD_FLUSH
;
4996 return ata_do_simple_cmd(dev
, cmd
);
4999 static int ata_standby_drive(struct ata_device
*dev
)
5001 return ata_do_simple_cmd(dev
, ATA_CMD_STANDBYNOW1
);
5004 static int ata_start_drive(struct ata_device
*dev
)
5006 return ata_do_simple_cmd(dev
, ATA_CMD_IDLEIMMEDIATE
);
5010 * ata_device_resume - wakeup a previously suspended devices
5011 * @dev: the device to resume
5013 * Kick the drive back into action, by sending it an idle immediate
5014 * command and making sure its transfer mode matches between drive
5018 int ata_device_resume(struct ata_device
*dev
)
5020 struct ata_port
*ap
= dev
->ap
;
5022 if (ap
->flags
& ATA_FLAG_SUSPENDED
) {
5023 struct ata_device
*failed_dev
;
5025 ata_busy_wait(ap
, ATA_BUSY
| ATA_DRQ
, 200000);
5027 ap
->flags
&= ~ATA_FLAG_SUSPENDED
;
5028 while (ata_set_mode(ap
, &failed_dev
))
5029 ata_dev_disable(failed_dev
);
5031 if (!ata_dev_enabled(dev
))
5033 if (dev
->class == ATA_DEV_ATA
)
5034 ata_start_drive(dev
);
5040 * ata_device_suspend - prepare a device for suspend
5041 * @dev: the device to suspend
5042 * @state: target power management state
5044 * Flush the cache on the drive, if appropriate, then issue a
5045 * standbynow command.
5047 int ata_device_suspend(struct ata_device
*dev
, pm_message_t state
)
5049 struct ata_port
*ap
= dev
->ap
;
5051 if (!ata_dev_enabled(dev
))
5053 if (dev
->class == ATA_DEV_ATA
)
5054 ata_flush_cache(dev
);
5056 if (state
.event
!= PM_EVENT_FREEZE
)
5057 ata_standby_drive(dev
);
5058 ap
->flags
|= ATA_FLAG_SUSPENDED
;
5063 * ata_port_start - Set port up for dma.
5064 * @ap: Port to initialize
5066 * Called just after data structures for each port are
5067 * initialized. Allocates space for PRD table.
5069 * May be used as the port_start() entry in ata_port_operations.
5072 * Inherited from caller.
5075 int ata_port_start (struct ata_port
*ap
)
5077 struct device
*dev
= ap
->dev
;
5080 ap
->prd
= dma_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
, GFP_KERNEL
);
5084 rc
= ata_pad_alloc(ap
, dev
);
5086 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
5090 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
, (unsigned long long) ap
->prd_dma
);
5097 * ata_port_stop - Undo ata_port_start()
5098 * @ap: Port to shut down
5100 * Frees the PRD table.
5102 * May be used as the port_stop() entry in ata_port_operations.
5105 * Inherited from caller.
5108 void ata_port_stop (struct ata_port
*ap
)
5110 struct device
*dev
= ap
->dev
;
5112 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
5113 ata_pad_free(ap
, dev
);
5116 void ata_host_stop (struct ata_host_set
*host_set
)
5118 if (host_set
->mmio_base
)
5119 iounmap(host_set
->mmio_base
);
5124 * ata_host_remove - Unregister SCSI host structure with upper layers
5125 * @ap: Port to unregister
5126 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5129 * Inherited from caller.
5132 static void ata_host_remove(struct ata_port
*ap
, unsigned int do_unregister
)
5134 struct Scsi_Host
*sh
= ap
->host
;
5139 scsi_remove_host(sh
);
5141 ap
->ops
->port_stop(ap
);
5145 * ata_dev_init - Initialize an ata_device structure
5146 * @dev: Device structure to initialize
5148 * Initialize @dev in preparation for probing.
5151 * Inherited from caller.
5153 void ata_dev_init(struct ata_device
*dev
)
5155 struct ata_port
*ap
= dev
->ap
;
5156 unsigned long flags
;
5158 /* High bits of dev->flags are used to record warm plug
5159 * requests which occur asynchronously. Synchronize using
5162 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
5163 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5164 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
5166 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5167 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5168 dev
->pio_mask
= UINT_MAX
;
5169 dev
->mwdma_mask
= UINT_MAX
;
5170 dev
->udma_mask
= UINT_MAX
;
5174 * ata_host_init - Initialize an ata_port structure
5175 * @ap: Structure to initialize
5176 * @host: associated SCSI mid-layer structure
5177 * @host_set: Collection of hosts to which @ap belongs
5178 * @ent: Probe information provided by low-level driver
5179 * @port_no: Port number associated with this ata_port
5181 * Initialize a new ata_port structure, and its associated
5185 * Inherited from caller.
5187 static void ata_host_init(struct ata_port
*ap
, struct Scsi_Host
*host
,
5188 struct ata_host_set
*host_set
,
5189 const struct ata_probe_ent
*ent
, unsigned int port_no
)
5195 host
->max_channel
= 1;
5196 host
->unique_id
= ata_unique_id
++;
5197 host
->max_cmd_len
= 12;
5199 ap
->flags
= ATA_FLAG_DISABLED
;
5200 ap
->id
= host
->unique_id
;
5202 ap
->ctl
= ATA_DEVCTL_OBS
;
5203 ap
->host_set
= host_set
;
5205 ap
->port_no
= port_no
;
5207 ent
->legacy_mode
? ent
->hard_port_no
: port_no
;
5208 ap
->pio_mask
= ent
->pio_mask
;
5209 ap
->mwdma_mask
= ent
->mwdma_mask
;
5210 ap
->udma_mask
= ent
->udma_mask
;
5211 ap
->flags
|= ent
->host_flags
;
5212 ap
->ops
= ent
->port_ops
;
5213 ap
->sata_spd_limit
= UINT_MAX
;
5214 ap
->active_tag
= ATA_TAG_POISON
;
5215 ap
->last_ctl
= 0xFF;
5216 ap
->msg_enable
= ATA_MSG_DRV
;
5218 INIT_WORK(&ap
->port_task
, NULL
, NULL
);
5219 INIT_LIST_HEAD(&ap
->eh_done_q
);
5220 init_waitqueue_head(&ap
->eh_wait_q
);
5222 /* set cable type */
5223 ap
->cbl
= ATA_CBL_NONE
;
5224 if (ap
->flags
& ATA_FLAG_SATA
)
5225 ap
->cbl
= ATA_CBL_SATA
;
5227 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5228 struct ata_device
*dev
= &ap
->device
[i
];
5235 ap
->stats
.unhandled_irq
= 1;
5236 ap
->stats
.idle_irq
= 1;
5239 memcpy(&ap
->ioaddr
, &ent
->port
[port_no
], sizeof(struct ata_ioports
));
5243 * ata_host_add - Attach low-level ATA driver to system
5244 * @ent: Information provided by low-level driver
5245 * @host_set: Collections of ports to which we add
5246 * @port_no: Port number associated with this host
5248 * Attach low-level ATA driver to system.
5251 * PCI/etc. bus probe sem.
5254 * New ata_port on success, for NULL on error.
5257 static struct ata_port
* ata_host_add(const struct ata_probe_ent
*ent
,
5258 struct ata_host_set
*host_set
,
5259 unsigned int port_no
)
5261 struct Scsi_Host
*host
;
5262 struct ata_port
*ap
;
5267 if (!ent
->port_ops
->probe_reset
&&
5268 !(ent
->host_flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
))) {
5269 printk(KERN_ERR
"ata%u: no reset mechanism available\n",
5274 host
= scsi_host_alloc(ent
->sht
, sizeof(struct ata_port
));
5278 host
->transportt
= &ata_scsi_transport_template
;
5280 ap
= ata_shost_to_port(host
);
5282 ata_host_init(ap
, host
, host_set
, ent
, port_no
);
5284 rc
= ap
->ops
->port_start(ap
);
5291 scsi_host_put(host
);
5296 * ata_device_add - Register hardware device with ATA and SCSI layers
5297 * @ent: Probe information describing hardware device to be registered
5299 * This function processes the information provided in the probe
5300 * information struct @ent, allocates the necessary ATA and SCSI
5301 * host information structures, initializes them, and registers
5302 * everything with requisite kernel subsystems.
5304 * This function requests irqs, probes the ATA bus, and probes
5308 * PCI/etc. bus probe sem.
5311 * Number of ports registered. Zero on error (no ports registered).
5314 int ata_device_add(const struct ata_probe_ent
*ent
)
5316 unsigned int count
= 0, i
;
5317 struct device
*dev
= ent
->dev
;
5318 struct ata_host_set
*host_set
;
5321 /* alloc a container for our list of ATA ports (buses) */
5322 host_set
= kzalloc(sizeof(struct ata_host_set
) +
5323 (ent
->n_ports
* sizeof(void *)), GFP_KERNEL
);
5326 spin_lock_init(&host_set
->lock
);
5328 host_set
->dev
= dev
;
5329 host_set
->n_ports
= ent
->n_ports
;
5330 host_set
->irq
= ent
->irq
;
5331 host_set
->mmio_base
= ent
->mmio_base
;
5332 host_set
->private_data
= ent
->private_data
;
5333 host_set
->ops
= ent
->port_ops
;
5334 host_set
->flags
= ent
->host_set_flags
;
5336 /* register each port bound to this device */
5337 for (i
= 0; i
< ent
->n_ports
; i
++) {
5338 struct ata_port
*ap
;
5339 unsigned long xfer_mode_mask
;
5341 ap
= ata_host_add(ent
, host_set
, i
);
5345 host_set
->ports
[i
] = ap
;
5346 xfer_mode_mask
=(ap
->udma_mask
<< ATA_SHIFT_UDMA
) |
5347 (ap
->mwdma_mask
<< ATA_SHIFT_MWDMA
) |
5348 (ap
->pio_mask
<< ATA_SHIFT_PIO
);
5350 /* print per-port info to dmesg */
5351 ata_port_printk(ap
, KERN_INFO
, "%cATA max %s cmd 0x%lX "
5352 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5353 ap
->flags
& ATA_FLAG_SATA
? 'S' : 'P',
5354 ata_mode_string(xfer_mode_mask
),
5355 ap
->ioaddr
.cmd_addr
,
5356 ap
->ioaddr
.ctl_addr
,
5357 ap
->ioaddr
.bmdma_addr
,
5361 host_set
->ops
->irq_clear(ap
);
5362 ata_eh_freeze_port(ap
); /* freeze port before requesting IRQ */
5369 /* obtain irq, that is shared between channels */
5370 if (request_irq(ent
->irq
, ent
->port_ops
->irq_handler
, ent
->irq_flags
,
5371 DRV_NAME
, host_set
))
5374 /* perform each probe synchronously */
5375 DPRINTK("probe begin\n");
5376 for (i
= 0; i
< count
; i
++) {
5377 struct ata_port
*ap
;
5380 ap
= host_set
->ports
[i
];
5382 DPRINTK("ata%u: bus probe begin\n", ap
->id
);
5383 rc
= ata_bus_probe(ap
);
5384 DPRINTK("ata%u: bus probe end\n", ap
->id
);
5387 /* FIXME: do something useful here?
5388 * Current libata behavior will
5389 * tear down everything when
5390 * the module is removed
5391 * or the h/w is unplugged.
5395 rc
= scsi_add_host(ap
->host
, dev
);
5397 ata_port_printk(ap
, KERN_ERR
, "scsi_add_host failed\n");
5398 /* FIXME: do something useful here */
5399 /* FIXME: handle unconditional calls to
5400 * scsi_scan_host and ata_host_remove, below,
5406 /* probes are done, now scan each port's disk(s) */
5407 DPRINTK("host probe begin\n");
5408 for (i
= 0; i
< count
; i
++) {
5409 struct ata_port
*ap
= host_set
->ports
[i
];
5411 ata_scsi_scan_host(ap
);
5414 dev_set_drvdata(dev
, host_set
);
5416 VPRINTK("EXIT, returning %u\n", ent
->n_ports
);
5417 return ent
->n_ports
; /* success */
5420 for (i
= 0; i
< count
; i
++) {
5421 ata_host_remove(host_set
->ports
[i
], 1);
5422 scsi_host_put(host_set
->ports
[i
]->host
);
5426 VPRINTK("EXIT, returning 0\n");
5431 * ata_host_set_remove - PCI layer callback for device removal
5432 * @host_set: ATA host set that was removed
5434 * Unregister all objects associated with this host set. Free those
5438 * Inherited from calling layer (may sleep).
5441 void ata_host_set_remove(struct ata_host_set
*host_set
)
5443 struct ata_port
*ap
;
5446 for (i
= 0; i
< host_set
->n_ports
; i
++) {
5447 ap
= host_set
->ports
[i
];
5448 scsi_remove_host(ap
->host
);
5451 free_irq(host_set
->irq
, host_set
);
5453 for (i
= 0; i
< host_set
->n_ports
; i
++) {
5454 ap
= host_set
->ports
[i
];
5456 ata_scsi_release(ap
->host
);
5458 if ((ap
->flags
& ATA_FLAG_NO_LEGACY
) == 0) {
5459 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
5461 if (ioaddr
->cmd_addr
== 0x1f0)
5462 release_region(0x1f0, 8);
5463 else if (ioaddr
->cmd_addr
== 0x170)
5464 release_region(0x170, 8);
5467 scsi_host_put(ap
->host
);
5470 if (host_set
->ops
->host_stop
)
5471 host_set
->ops
->host_stop(host_set
);
5477 * ata_scsi_release - SCSI layer callback hook for host unload
5478 * @host: libata host to be unloaded
5480 * Performs all duties necessary to shut down a libata port...
5481 * Kill port kthread, disable port, and release resources.
5484 * Inherited from SCSI layer.
5490 int ata_scsi_release(struct Scsi_Host
*host
)
5492 struct ata_port
*ap
= ata_shost_to_port(host
);
5496 ap
->ops
->port_disable(ap
);
5497 ata_host_remove(ap
, 0);
5504 * ata_std_ports - initialize ioaddr with standard port offsets.
5505 * @ioaddr: IO address structure to be initialized
5507 * Utility function which initializes data_addr, error_addr,
5508 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5509 * device_addr, status_addr, and command_addr to standard offsets
5510 * relative to cmd_addr.
5512 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5515 void ata_std_ports(struct ata_ioports
*ioaddr
)
5517 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
5518 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
5519 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
5520 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
5521 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
5522 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
5523 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
5524 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
5525 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
5526 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
5532 void ata_pci_host_stop (struct ata_host_set
*host_set
)
5534 struct pci_dev
*pdev
= to_pci_dev(host_set
->dev
);
5536 pci_iounmap(pdev
, host_set
->mmio_base
);
5540 * ata_pci_remove_one - PCI layer callback for device removal
5541 * @pdev: PCI device that was removed
5543 * PCI layer indicates to libata via this hook that
5544 * hot-unplug or module unload event has occurred.
5545 * Handle this by unregistering all objects associated
5546 * with this PCI device. Free those objects. Then finally
5547 * release PCI resources and disable device.
5550 * Inherited from PCI layer (may sleep).
5553 void ata_pci_remove_one (struct pci_dev
*pdev
)
5555 struct device
*dev
= pci_dev_to_dev(pdev
);
5556 struct ata_host_set
*host_set
= dev_get_drvdata(dev
);
5558 ata_host_set_remove(host_set
);
5559 pci_release_regions(pdev
);
5560 pci_disable_device(pdev
);
5561 dev_set_drvdata(dev
, NULL
);
5564 /* move to PCI subsystem */
5565 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
5567 unsigned long tmp
= 0;
5569 switch (bits
->width
) {
5572 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
5578 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
5584 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
5595 return (tmp
== bits
->val
) ? 1 : 0;
5598 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5600 pci_save_state(pdev
);
5601 pci_disable_device(pdev
);
5602 pci_set_power_state(pdev
, PCI_D3hot
);
5606 int ata_pci_device_resume(struct pci_dev
*pdev
)
5608 pci_set_power_state(pdev
, PCI_D0
);
5609 pci_restore_state(pdev
);
5610 pci_enable_device(pdev
);
5611 pci_set_master(pdev
);
5614 #endif /* CONFIG_PCI */
5617 static int __init
ata_init(void)
5619 ata_wq
= create_workqueue("ata");
5623 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
5627 static void __exit
ata_exit(void)
5629 destroy_workqueue(ata_wq
);
5632 module_init(ata_init
);
5633 module_exit(ata_exit
);
5635 static unsigned long ratelimit_time
;
5636 static spinlock_t ata_ratelimit_lock
= SPIN_LOCK_UNLOCKED
;
5638 int ata_ratelimit(void)
5641 unsigned long flags
;
5643 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
5645 if (time_after(jiffies
, ratelimit_time
)) {
5647 ratelimit_time
= jiffies
+ (HZ
/5);
5651 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
5657 * ata_wait_register - wait until register value changes
5658 * @reg: IO-mapped register
5659 * @mask: Mask to apply to read register value
5660 * @val: Wait condition
5661 * @interval_msec: polling interval in milliseconds
5662 * @timeout_msec: timeout in milliseconds
5664 * Waiting for some bits of register to change is a common
5665 * operation for ATA controllers. This function reads 32bit LE
5666 * IO-mapped register @reg and tests for the following condition.
5668 * (*@reg & mask) != val
5670 * If the condition is met, it returns; otherwise, the process is
5671 * repeated after @interval_msec until timeout.
5674 * Kernel thread context (may sleep)
5677 * The final register value.
5679 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
5680 unsigned long interval_msec
,
5681 unsigned long timeout_msec
)
5683 unsigned long timeout
;
5686 tmp
= ioread32(reg
);
5688 /* Calculate timeout _after_ the first read to make sure
5689 * preceding writes reach the controller before starting to
5690 * eat away the timeout.
5692 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
5694 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
5695 msleep(interval_msec
);
5696 tmp
= ioread32(reg
);
5703 * libata is essentially a library of internal helper functions for
5704 * low-level ATA host controller drivers. As such, the API/ABI is
5705 * likely to change as new drivers are added and updated.
5706 * Do not depend on ABI/API stability.
5709 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
5710 EXPORT_SYMBOL_GPL(ata_std_ports
);
5711 EXPORT_SYMBOL_GPL(ata_device_add
);
5712 EXPORT_SYMBOL_GPL(ata_host_set_remove
);
5713 EXPORT_SYMBOL_GPL(ata_sg_init
);
5714 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
5715 EXPORT_SYMBOL_GPL(ata_qc_complete
);
5716 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
5717 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
5718 EXPORT_SYMBOL_GPL(ata_tf_load
);
5719 EXPORT_SYMBOL_GPL(ata_tf_read
);
5720 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
5721 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
5722 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
5723 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
5724 EXPORT_SYMBOL_GPL(ata_check_status
);
5725 EXPORT_SYMBOL_GPL(ata_altstatus
);
5726 EXPORT_SYMBOL_GPL(ata_exec_command
);
5727 EXPORT_SYMBOL_GPL(ata_port_start
);
5728 EXPORT_SYMBOL_GPL(ata_port_stop
);
5729 EXPORT_SYMBOL_GPL(ata_host_stop
);
5730 EXPORT_SYMBOL_GPL(ata_interrupt
);
5731 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer
);
5732 EXPORT_SYMBOL_GPL(ata_pio_data_xfer
);
5733 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq
);
5734 EXPORT_SYMBOL_GPL(ata_qc_prep
);
5735 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
5736 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
5737 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
5738 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
5739 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
5740 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
5741 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
5742 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
5743 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
5744 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
5745 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
5746 EXPORT_SYMBOL_GPL(ata_port_probe
);
5747 EXPORT_SYMBOL_GPL(sata_set_spd
);
5748 EXPORT_SYMBOL_GPL(sata_phy_reset
);
5749 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
5750 EXPORT_SYMBOL_GPL(ata_bus_reset
);
5751 EXPORT_SYMBOL_GPL(ata_std_probeinit
);
5752 EXPORT_SYMBOL_GPL(ata_std_softreset
);
5753 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
5754 EXPORT_SYMBOL_GPL(ata_std_postreset
);
5755 EXPORT_SYMBOL_GPL(ata_std_probe_reset
);
5756 EXPORT_SYMBOL_GPL(ata_drive_probe_reset
);
5757 EXPORT_SYMBOL_GPL(ata_dev_revalidate
);
5758 EXPORT_SYMBOL_GPL(ata_dev_classify
);
5759 EXPORT_SYMBOL_GPL(ata_dev_pair
);
5760 EXPORT_SYMBOL_GPL(ata_port_disable
);
5761 EXPORT_SYMBOL_GPL(ata_ratelimit
);
5762 EXPORT_SYMBOL_GPL(ata_wait_register
);
5763 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
5764 EXPORT_SYMBOL_GPL(ata_port_queue_task
);
5765 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
5766 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
5767 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
5768 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
5769 EXPORT_SYMBOL_GPL(ata_scsi_release
);
5770 EXPORT_SYMBOL_GPL(ata_host_intr
);
5771 EXPORT_SYMBOL_GPL(sata_scr_valid
);
5772 EXPORT_SYMBOL_GPL(sata_scr_read
);
5773 EXPORT_SYMBOL_GPL(sata_scr_write
);
5774 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
5775 EXPORT_SYMBOL_GPL(ata_port_online
);
5776 EXPORT_SYMBOL_GPL(ata_port_offline
);
5777 EXPORT_SYMBOL_GPL(ata_id_string
);
5778 EXPORT_SYMBOL_GPL(ata_id_c_string
);
5779 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
5781 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
5782 EXPORT_SYMBOL_GPL(ata_timing_compute
);
5783 EXPORT_SYMBOL_GPL(ata_timing_merge
);
5786 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
5787 EXPORT_SYMBOL_GPL(ata_pci_host_stop
);
5788 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode
);
5789 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
5790 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
5791 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
5792 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
5793 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
5794 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
5795 #endif /* CONFIG_PCI */
5797 EXPORT_SYMBOL_GPL(ata_device_suspend
);
5798 EXPORT_SYMBOL_GPL(ata_device_resume
);
5799 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend
);
5800 EXPORT_SYMBOL_GPL(ata_scsi_device_resume
);
5802 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
5803 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
5804 EXPORT_SYMBOL_GPL(ata_port_abort
);
5805 EXPORT_SYMBOL_GPL(ata_port_freeze
);
5806 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
5807 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
5808 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
5809 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
5810 EXPORT_SYMBOL_GPL(ata_do_eh
);