4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
72 unsigned long long __attribute__((weak
)) sched_clock(void)
74 return (unsigned long long)jiffies
* (1000000000 / HZ
);
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Some helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105 * These are the 'tuning knobs' of the scheduler:
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
121 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
128 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
130 sg
->__cpu_power
+= val
;
131 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
142 static unsigned int static_prio_timeslice(int static_prio
)
144 if (static_prio
== NICE_TO_PRIO(19))
147 if (static_prio
< NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE
* 4, static_prio
);
150 return SCALE_PRIO(DEF_TIMESLICE
, static_prio
);
153 static inline int rt_policy(int policy
)
155 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
160 static inline int task_has_rt_policy(struct task_struct
*p
)
162 return rt_policy(p
->policy
);
166 * This is the priority-queue data structure of the RT scheduling class:
168 struct rt_prio_array
{
169 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
170 struct list_head queue
[MAX_RT_PRIO
];
174 struct load_weight load
;
175 u64 load_update_start
, load_update_last
;
176 unsigned long delta_fair
, delta_exec
, delta_stat
;
179 /* CFS-related fields in a runqueue */
181 struct load_weight load
;
182 unsigned long nr_running
;
188 unsigned long wait_runtime_overruns
, wait_runtime_underruns
;
190 struct rb_root tasks_timeline
;
191 struct rb_node
*rb_leftmost
;
192 struct rb_node
*rb_load_balance_curr
;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
197 struct sched_entity
*curr
;
198 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
207 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
211 /* Real-Time classes' related field in a runqueue: */
213 struct rt_prio_array active
;
214 int rt_load_balance_idx
;
215 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
219 * This is the main, per-CPU runqueue data structure.
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
226 spinlock_t lock
; /* runqueue lock */
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
232 unsigned long nr_running
;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
235 unsigned char idle_at_tick
;
237 unsigned char in_nohz_recently
;
239 struct load_stat ls
; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates
;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list
; /* list of leaf cfs_rq on this cpu */
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
255 unsigned long nr_uninterruptible
;
257 struct task_struct
*curr
, *idle
;
258 unsigned long next_balance
;
259 struct mm_struct
*prev_mm
;
261 u64 clock
, prev_clock_raw
;
264 unsigned int clock_warps
, clock_overflows
;
265 unsigned int clock_unstable_events
;
271 struct sched_domain
*sd
;
273 /* For active balancing */
276 int cpu
; /* cpu of this runqueue */
278 struct task_struct
*migration_thread
;
279 struct list_head migration_queue
;
282 #ifdef CONFIG_SCHEDSTATS
284 struct sched_info rq_sched_info
;
286 /* sys_sched_yield() stats */
287 unsigned long yld_exp_empty
;
288 unsigned long yld_act_empty
;
289 unsigned long yld_both_empty
;
290 unsigned long yld_cnt
;
292 /* schedule() stats */
293 unsigned long sched_switch
;
294 unsigned long sched_cnt
;
295 unsigned long sched_goidle
;
297 /* try_to_wake_up() stats */
298 unsigned long ttwu_cnt
;
299 unsigned long ttwu_local
;
301 struct lock_class_key rq_lock_key
;
304 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
305 static DEFINE_MUTEX(sched_hotcpu_mutex
);
307 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
309 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
312 static inline int cpu_of(struct rq
*rq
)
322 * Update the per-runqueue clock, as finegrained as the platform can give
323 * us, but without assuming monotonicity, etc.:
325 static void __update_rq_clock(struct rq
*rq
)
327 u64 prev_raw
= rq
->prev_clock_raw
;
328 u64 now
= sched_clock();
329 s64 delta
= now
- prev_raw
;
330 u64 clock
= rq
->clock
;
332 #ifdef CONFIG_SCHED_DEBUG
333 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
336 * Protect against sched_clock() occasionally going backwards:
338 if (unlikely(delta
< 0)) {
343 * Catch too large forward jumps too:
345 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
346 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
347 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
350 rq
->clock_overflows
++;
352 if (unlikely(delta
> rq
->clock_max_delta
))
353 rq
->clock_max_delta
= delta
;
358 rq
->prev_clock_raw
= now
;
362 static void update_rq_clock(struct rq
*rq
)
364 if (likely(smp_processor_id() == cpu_of(rq
)))
365 __update_rq_clock(rq
);
369 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
370 * See detach_destroy_domains: synchronize_sched for details.
372 * The domain tree of any CPU may only be accessed from within
373 * preempt-disabled sections.
375 #define for_each_domain(cpu, __sd) \
376 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
378 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
379 #define this_rq() (&__get_cpu_var(runqueues))
380 #define task_rq(p) cpu_rq(task_cpu(p))
381 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
384 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
385 * clock constructed from sched_clock():
387 unsigned long long cpu_clock(int cpu
)
389 unsigned long long now
;
393 local_irq_save(flags
);
397 local_irq_restore(flags
);
402 #ifdef CONFIG_FAIR_GROUP_SCHED
403 /* Change a task's ->cfs_rq if it moves across CPUs */
404 static inline void set_task_cfs_rq(struct task_struct
*p
)
406 p
->se
.cfs_rq
= &task_rq(p
)->cfs
;
409 static inline void set_task_cfs_rq(struct task_struct
*p
)
414 #ifndef prepare_arch_switch
415 # define prepare_arch_switch(next) do { } while (0)
417 #ifndef finish_arch_switch
418 # define finish_arch_switch(prev) do { } while (0)
421 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
422 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
424 return rq
->curr
== p
;
427 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
431 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
433 #ifdef CONFIG_DEBUG_SPINLOCK
434 /* this is a valid case when another task releases the spinlock */
435 rq
->lock
.owner
= current
;
438 * If we are tracking spinlock dependencies then we have to
439 * fix up the runqueue lock - which gets 'carried over' from
442 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
444 spin_unlock_irq(&rq
->lock
);
447 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
448 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
453 return rq
->curr
== p
;
457 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
461 * We can optimise this out completely for !SMP, because the
462 * SMP rebalancing from interrupt is the only thing that cares
467 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
468 spin_unlock_irq(&rq
->lock
);
470 spin_unlock(&rq
->lock
);
474 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
478 * After ->oncpu is cleared, the task can be moved to a different CPU.
479 * We must ensure this doesn't happen until the switch is completely
485 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
489 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
492 * __task_rq_lock - lock the runqueue a given task resides on.
493 * Must be called interrupts disabled.
495 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
502 spin_lock(&rq
->lock
);
503 if (unlikely(rq
!= task_rq(p
))) {
504 spin_unlock(&rq
->lock
);
505 goto repeat_lock_task
;
511 * task_rq_lock - lock the runqueue a given task resides on and disable
512 * interrupts. Note the ordering: we can safely lookup the task_rq without
513 * explicitly disabling preemption.
515 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
521 local_irq_save(*flags
);
523 spin_lock(&rq
->lock
);
524 if (unlikely(rq
!= task_rq(p
))) {
525 spin_unlock_irqrestore(&rq
->lock
, *flags
);
526 goto repeat_lock_task
;
531 static inline void __task_rq_unlock(struct rq
*rq
)
534 spin_unlock(&rq
->lock
);
537 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
540 spin_unlock_irqrestore(&rq
->lock
, *flags
);
544 * this_rq_lock - lock this runqueue and disable interrupts.
546 static inline struct rq
*this_rq_lock(void)
553 spin_lock(&rq
->lock
);
559 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
561 void sched_clock_unstable_event(void)
566 rq
= task_rq_lock(current
, &flags
);
567 rq
->prev_clock_raw
= sched_clock();
568 rq
->clock_unstable_events
++;
569 task_rq_unlock(rq
, &flags
);
573 * resched_task - mark a task 'to be rescheduled now'.
575 * On UP this means the setting of the need_resched flag, on SMP it
576 * might also involve a cross-CPU call to trigger the scheduler on
581 #ifndef tsk_is_polling
582 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
585 static void resched_task(struct task_struct
*p
)
589 assert_spin_locked(&task_rq(p
)->lock
);
591 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
594 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
597 if (cpu
== smp_processor_id())
600 /* NEED_RESCHED must be visible before we test polling */
602 if (!tsk_is_polling(p
))
603 smp_send_reschedule(cpu
);
606 static void resched_cpu(int cpu
)
608 struct rq
*rq
= cpu_rq(cpu
);
611 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
613 resched_task(cpu_curr(cpu
));
614 spin_unlock_irqrestore(&rq
->lock
, flags
);
617 static inline void resched_task(struct task_struct
*p
)
619 assert_spin_locked(&task_rq(p
)->lock
);
620 set_tsk_need_resched(p
);
624 static u64
div64_likely32(u64 divident
, unsigned long divisor
)
626 #if BITS_PER_LONG == 32
627 if (likely(divident
<= 0xffffffffULL
))
628 return (u32
)divident
/ divisor
;
629 do_div(divident
, divisor
);
633 return divident
/ divisor
;
637 #if BITS_PER_LONG == 32
638 # define WMULT_CONST (~0UL)
640 # define WMULT_CONST (1UL << 32)
643 #define WMULT_SHIFT 32
646 * Shift right and round:
648 #define RSR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
651 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
652 struct load_weight
*lw
)
656 if (unlikely(!lw
->inv_weight
))
657 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
659 tmp
= (u64
)delta_exec
* weight
;
661 * Check whether we'd overflow the 64-bit multiplication:
663 if (unlikely(tmp
> WMULT_CONST
))
664 tmp
= RSR(RSR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
667 tmp
= RSR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
669 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
672 static inline unsigned long
673 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
675 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
678 static void update_load_add(struct load_weight
*lw
, unsigned long inc
)
684 static void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
691 * To aid in avoiding the subversion of "niceness" due to uneven distribution
692 * of tasks with abnormal "nice" values across CPUs the contribution that
693 * each task makes to its run queue's load is weighted according to its
694 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
695 * scaled version of the new time slice allocation that they receive on time
699 #define WEIGHT_IDLEPRIO 2
700 #define WMULT_IDLEPRIO (1 << 31)
703 * Nice levels are multiplicative, with a gentle 10% change for every
704 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
705 * nice 1, it will get ~10% less CPU time than another CPU-bound task
706 * that remained on nice 0.
708 * The "10% effect" is relative and cumulative: from _any_ nice level,
709 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
710 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
711 * If a task goes up by ~10% and another task goes down by ~10% then
712 * the relative distance between them is ~25%.)
714 static const int prio_to_weight
[40] = {
715 /* -20 */ 88761, 71755, 56483, 46273, 36291,
716 /* -15 */ 29154, 23254, 18705, 14949, 11916,
717 /* -10 */ 9548, 7620, 6100, 4904, 3906,
718 /* -5 */ 3121, 2501, 1991, 1586, 1277,
719 /* 0 */ 1024, 820, 655, 526, 423,
720 /* 5 */ 335, 272, 215, 172, 137,
721 /* 10 */ 110, 87, 70, 56, 45,
722 /* 15 */ 36, 29, 23, 18, 15,
726 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
728 * In cases where the weight does not change often, we can use the
729 * precalculated inverse to speed up arithmetics by turning divisions
730 * into multiplications:
732 static const u32 prio_to_wmult
[40] = {
733 /* -20 */ 48388, 59856, 76040, 92818, 118348,
734 /* -15 */ 147320, 184698, 229616, 287308, 360437,
735 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
736 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
737 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
738 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
739 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
740 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
743 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
746 * runqueue iterator, to support SMP load-balancing between different
747 * scheduling classes, without having to expose their internal data
748 * structures to the load-balancing proper:
752 struct task_struct
*(*start
)(void *);
753 struct task_struct
*(*next
)(void *);
756 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
757 unsigned long max_nr_move
, unsigned long max_load_move
,
758 struct sched_domain
*sd
, enum cpu_idle_type idle
,
759 int *all_pinned
, unsigned long *load_moved
,
760 int *this_best_prio
, struct rq_iterator
*iterator
);
762 #include "sched_stats.h"
763 #include "sched_rt.c"
764 #include "sched_fair.c"
765 #include "sched_idletask.c"
766 #ifdef CONFIG_SCHED_DEBUG
767 # include "sched_debug.c"
770 #define sched_class_highest (&rt_sched_class)
772 static void __update_curr_load(struct rq
*rq
, struct load_stat
*ls
)
774 if (rq
->curr
!= rq
->idle
&& ls
->load
.weight
) {
775 ls
->delta_exec
+= ls
->delta_stat
;
776 ls
->delta_fair
+= calc_delta_fair(ls
->delta_stat
, &ls
->load
);
782 * Update delta_exec, delta_fair fields for rq.
784 * delta_fair clock advances at a rate inversely proportional to
785 * total load (rq->ls.load.weight) on the runqueue, while
786 * delta_exec advances at the same rate as wall-clock (provided
789 * delta_exec / delta_fair is a measure of the (smoothened) load on this
790 * runqueue over any given interval. This (smoothened) load is used
791 * during load balance.
793 * This function is called /before/ updating rq->ls.load
794 * and when switching tasks.
796 static void update_curr_load(struct rq
*rq
)
798 struct load_stat
*ls
= &rq
->ls
;
801 start
= ls
->load_update_start
;
802 ls
->load_update_start
= rq
->clock
;
803 ls
->delta_stat
+= rq
->clock
- start
;
805 * Stagger updates to ls->delta_fair. Very frequent updates
808 if (ls
->delta_stat
>= sysctl_sched_stat_granularity
)
809 __update_curr_load(rq
, ls
);
812 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
814 update_curr_load(rq
);
815 update_load_add(&rq
->ls
.load
, p
->se
.load
.weight
);
818 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
820 update_curr_load(rq
);
821 update_load_sub(&rq
->ls
.load
, p
->se
.load
.weight
);
824 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
830 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
836 static void set_load_weight(struct task_struct
*p
)
838 task_rq(p
)->cfs
.wait_runtime
-= p
->se
.wait_runtime
;
839 p
->se
.wait_runtime
= 0;
841 if (task_has_rt_policy(p
)) {
842 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
843 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
848 * SCHED_IDLE tasks get minimal weight:
850 if (p
->policy
== SCHED_IDLE
) {
851 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
852 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
856 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
857 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
860 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
862 sched_info_queued(p
);
863 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
867 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
869 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
874 * __normal_prio - return the priority that is based on the static prio
876 static inline int __normal_prio(struct task_struct
*p
)
878 return p
->static_prio
;
882 * Calculate the expected normal priority: i.e. priority
883 * without taking RT-inheritance into account. Might be
884 * boosted by interactivity modifiers. Changes upon fork,
885 * setprio syscalls, and whenever the interactivity
886 * estimator recalculates.
888 static inline int normal_prio(struct task_struct
*p
)
892 if (task_has_rt_policy(p
))
893 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
895 prio
= __normal_prio(p
);
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
906 static int effective_prio(struct task_struct
*p
)
908 p
->normal_prio
= normal_prio(p
);
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
914 if (!rt_prio(p
->prio
))
915 return p
->normal_prio
;
920 * activate_task - move a task to the runqueue.
922 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
924 if (p
->state
== TASK_UNINTERRUPTIBLE
)
925 rq
->nr_uninterruptible
--;
927 enqueue_task(rq
, p
, wakeup
);
928 inc_nr_running(p
, rq
);
932 * activate_idle_task - move idle task to the _front_ of runqueue.
934 static inline void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
938 if (p
->state
== TASK_UNINTERRUPTIBLE
)
939 rq
->nr_uninterruptible
--;
941 enqueue_task(rq
, p
, 0);
942 inc_nr_running(p
, rq
);
946 * deactivate_task - remove a task from the runqueue.
948 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
950 if (p
->state
== TASK_UNINTERRUPTIBLE
)
951 rq
->nr_uninterruptible
++;
953 dequeue_task(rq
, p
, sleep
);
954 dec_nr_running(p
, rq
);
958 * task_curr - is this task currently executing on a CPU?
959 * @p: the task in question.
961 inline int task_curr(const struct task_struct
*p
)
963 return cpu_curr(task_cpu(p
)) == p
;
966 /* Used instead of source_load when we know the type == 0 */
967 unsigned long weighted_cpuload(const int cpu
)
969 return cpu_rq(cpu
)->ls
.load
.weight
;
972 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
975 task_thread_info(p
)->cpu
= cpu
;
982 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
984 int old_cpu
= task_cpu(p
);
985 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
986 u64 clock_offset
, fair_clock_offset
;
988 clock_offset
= old_rq
->clock
- new_rq
->clock
;
989 fair_clock_offset
= old_rq
->cfs
.fair_clock
- new_rq
->cfs
.fair_clock
;
991 if (p
->se
.wait_start_fair
)
992 p
->se
.wait_start_fair
-= fair_clock_offset
;
993 if (p
->se
.sleep_start_fair
)
994 p
->se
.sleep_start_fair
-= fair_clock_offset
;
996 #ifdef CONFIG_SCHEDSTATS
997 if (p
->se
.wait_start
)
998 p
->se
.wait_start
-= clock_offset
;
999 if (p
->se
.sleep_start
)
1000 p
->se
.sleep_start
-= clock_offset
;
1001 if (p
->se
.block_start
)
1002 p
->se
.block_start
-= clock_offset
;
1005 __set_task_cpu(p
, new_cpu
);
1008 struct migration_req
{
1009 struct list_head list
;
1011 struct task_struct
*task
;
1014 struct completion done
;
1018 * The task's runqueue lock must be held.
1019 * Returns true if you have to wait for migration thread.
1022 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1024 struct rq
*rq
= task_rq(p
);
1027 * If the task is not on a runqueue (and not running), then
1028 * it is sufficient to simply update the task's cpu field.
1030 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1031 set_task_cpu(p
, dest_cpu
);
1035 init_completion(&req
->done
);
1037 req
->dest_cpu
= dest_cpu
;
1038 list_add(&req
->list
, &rq
->migration_queue
);
1044 * wait_task_inactive - wait for a thread to unschedule.
1046 * The caller must ensure that the task *will* unschedule sometime soon,
1047 * else this function might spin for a *long* time. This function can't
1048 * be called with interrupts off, or it may introduce deadlock with
1049 * smp_call_function() if an IPI is sent by the same process we are
1050 * waiting to become inactive.
1052 void wait_task_inactive(struct task_struct
*p
)
1054 unsigned long flags
;
1060 * We do the initial early heuristics without holding
1061 * any task-queue locks at all. We'll only try to get
1062 * the runqueue lock when things look like they will
1068 * If the task is actively running on another CPU
1069 * still, just relax and busy-wait without holding
1072 * NOTE! Since we don't hold any locks, it's not
1073 * even sure that "rq" stays as the right runqueue!
1074 * But we don't care, since "task_running()" will
1075 * return false if the runqueue has changed and p
1076 * is actually now running somewhere else!
1078 while (task_running(rq
, p
))
1082 * Ok, time to look more closely! We need the rq
1083 * lock now, to be *sure*. If we're wrong, we'll
1084 * just go back and repeat.
1086 rq
= task_rq_lock(p
, &flags
);
1087 running
= task_running(rq
, p
);
1088 on_rq
= p
->se
.on_rq
;
1089 task_rq_unlock(rq
, &flags
);
1092 * Was it really running after all now that we
1093 * checked with the proper locks actually held?
1095 * Oops. Go back and try again..
1097 if (unlikely(running
)) {
1103 * It's not enough that it's not actively running,
1104 * it must be off the runqueue _entirely_, and not
1107 * So if it wa still runnable (but just not actively
1108 * running right now), it's preempted, and we should
1109 * yield - it could be a while.
1111 if (unlikely(on_rq
)) {
1117 * Ahh, all good. It wasn't running, and it wasn't
1118 * runnable, which means that it will never become
1119 * running in the future either. We're all done!
1124 * kick_process - kick a running thread to enter/exit the kernel
1125 * @p: the to-be-kicked thread
1127 * Cause a process which is running on another CPU to enter
1128 * kernel-mode, without any delay. (to get signals handled.)
1130 * NOTE: this function doesnt have to take the runqueue lock,
1131 * because all it wants to ensure is that the remote task enters
1132 * the kernel. If the IPI races and the task has been migrated
1133 * to another CPU then no harm is done and the purpose has been
1136 void kick_process(struct task_struct
*p
)
1142 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1143 smp_send_reschedule(cpu
);
1148 * Return a low guess at the load of a migration-source cpu weighted
1149 * according to the scheduling class and "nice" value.
1151 * We want to under-estimate the load of migration sources, to
1152 * balance conservatively.
1154 static inline unsigned long source_load(int cpu
, int type
)
1156 struct rq
*rq
= cpu_rq(cpu
);
1157 unsigned long total
= weighted_cpuload(cpu
);
1162 return min(rq
->cpu_load
[type
-1], total
);
1166 * Return a high guess at the load of a migration-target cpu weighted
1167 * according to the scheduling class and "nice" value.
1169 static inline unsigned long target_load(int cpu
, int type
)
1171 struct rq
*rq
= cpu_rq(cpu
);
1172 unsigned long total
= weighted_cpuload(cpu
);
1177 return max(rq
->cpu_load
[type
-1], total
);
1181 * Return the average load per task on the cpu's run queue
1183 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1185 struct rq
*rq
= cpu_rq(cpu
);
1186 unsigned long total
= weighted_cpuload(cpu
);
1187 unsigned long n
= rq
->nr_running
;
1189 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1193 * find_idlest_group finds and returns the least busy CPU group within the
1196 static struct sched_group
*
1197 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1199 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1200 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1201 int load_idx
= sd
->forkexec_idx
;
1202 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1205 unsigned long load
, avg_load
;
1209 /* Skip over this group if it has no CPUs allowed */
1210 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1213 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1215 /* Tally up the load of all CPUs in the group */
1218 for_each_cpu_mask(i
, group
->cpumask
) {
1219 /* Bias balancing toward cpus of our domain */
1221 load
= source_load(i
, load_idx
);
1223 load
= target_load(i
, load_idx
);
1228 /* Adjust by relative CPU power of the group */
1229 avg_load
= sg_div_cpu_power(group
,
1230 avg_load
* SCHED_LOAD_SCALE
);
1233 this_load
= avg_load
;
1235 } else if (avg_load
< min_load
) {
1236 min_load
= avg_load
;
1240 group
= group
->next
;
1241 } while (group
!= sd
->groups
);
1243 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1249 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1252 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1255 unsigned long load
, min_load
= ULONG_MAX
;
1259 /* Traverse only the allowed CPUs */
1260 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1262 for_each_cpu_mask(i
, tmp
) {
1263 load
= weighted_cpuload(i
);
1265 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1275 * sched_balance_self: balance the current task (running on cpu) in domains
1276 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1279 * Balance, ie. select the least loaded group.
1281 * Returns the target CPU number, or the same CPU if no balancing is needed.
1283 * preempt must be disabled.
1285 static int sched_balance_self(int cpu
, int flag
)
1287 struct task_struct
*t
= current
;
1288 struct sched_domain
*tmp
, *sd
= NULL
;
1290 for_each_domain(cpu
, tmp
) {
1292 * If power savings logic is enabled for a domain, stop there.
1294 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1296 if (tmp
->flags
& flag
)
1302 struct sched_group
*group
;
1303 int new_cpu
, weight
;
1305 if (!(sd
->flags
& flag
)) {
1311 group
= find_idlest_group(sd
, t
, cpu
);
1317 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1318 if (new_cpu
== -1 || new_cpu
== cpu
) {
1319 /* Now try balancing at a lower domain level of cpu */
1324 /* Now try balancing at a lower domain level of new_cpu */
1327 weight
= cpus_weight(span
);
1328 for_each_domain(cpu
, tmp
) {
1329 if (weight
<= cpus_weight(tmp
->span
))
1331 if (tmp
->flags
& flag
)
1334 /* while loop will break here if sd == NULL */
1340 #endif /* CONFIG_SMP */
1343 * wake_idle() will wake a task on an idle cpu if task->cpu is
1344 * not idle and an idle cpu is available. The span of cpus to
1345 * search starts with cpus closest then further out as needed,
1346 * so we always favor a closer, idle cpu.
1348 * Returns the CPU we should wake onto.
1350 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1351 static int wake_idle(int cpu
, struct task_struct
*p
)
1354 struct sched_domain
*sd
;
1358 * If it is idle, then it is the best cpu to run this task.
1360 * This cpu is also the best, if it has more than one task already.
1361 * Siblings must be also busy(in most cases) as they didn't already
1362 * pickup the extra load from this cpu and hence we need not check
1363 * sibling runqueue info. This will avoid the checks and cache miss
1364 * penalities associated with that.
1366 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1369 for_each_domain(cpu
, sd
) {
1370 if (sd
->flags
& SD_WAKE_IDLE
) {
1371 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1372 for_each_cpu_mask(i
, tmp
) {
1383 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1390 * try_to_wake_up - wake up a thread
1391 * @p: the to-be-woken-up thread
1392 * @state: the mask of task states that can be woken
1393 * @sync: do a synchronous wakeup?
1395 * Put it on the run-queue if it's not already there. The "current"
1396 * thread is always on the run-queue (except when the actual
1397 * re-schedule is in progress), and as such you're allowed to do
1398 * the simpler "current->state = TASK_RUNNING" to mark yourself
1399 * runnable without the overhead of this.
1401 * returns failure only if the task is already active.
1403 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1405 int cpu
, this_cpu
, success
= 0;
1406 unsigned long flags
;
1410 struct sched_domain
*sd
, *this_sd
= NULL
;
1411 unsigned long load
, this_load
;
1415 rq
= task_rq_lock(p
, &flags
);
1416 old_state
= p
->state
;
1417 if (!(old_state
& state
))
1424 this_cpu
= smp_processor_id();
1427 if (unlikely(task_running(rq
, p
)))
1432 schedstat_inc(rq
, ttwu_cnt
);
1433 if (cpu
== this_cpu
) {
1434 schedstat_inc(rq
, ttwu_local
);
1438 for_each_domain(this_cpu
, sd
) {
1439 if (cpu_isset(cpu
, sd
->span
)) {
1440 schedstat_inc(sd
, ttwu_wake_remote
);
1446 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1450 * Check for affine wakeup and passive balancing possibilities.
1453 int idx
= this_sd
->wake_idx
;
1454 unsigned int imbalance
;
1456 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1458 load
= source_load(cpu
, idx
);
1459 this_load
= target_load(this_cpu
, idx
);
1461 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1463 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1464 unsigned long tl
= this_load
;
1465 unsigned long tl_per_task
;
1467 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1470 * If sync wakeup then subtract the (maximum possible)
1471 * effect of the currently running task from the load
1472 * of the current CPU:
1475 tl
-= current
->se
.load
.weight
;
1478 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1479 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1481 * This domain has SD_WAKE_AFFINE and
1482 * p is cache cold in this domain, and
1483 * there is no bad imbalance.
1485 schedstat_inc(this_sd
, ttwu_move_affine
);
1491 * Start passive balancing when half the imbalance_pct
1494 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1495 if (imbalance
*this_load
<= 100*load
) {
1496 schedstat_inc(this_sd
, ttwu_move_balance
);
1502 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1504 new_cpu
= wake_idle(new_cpu
, p
);
1505 if (new_cpu
!= cpu
) {
1506 set_task_cpu(p
, new_cpu
);
1507 task_rq_unlock(rq
, &flags
);
1508 /* might preempt at this point */
1509 rq
= task_rq_lock(p
, &flags
);
1510 old_state
= p
->state
;
1511 if (!(old_state
& state
))
1516 this_cpu
= smp_processor_id();
1521 #endif /* CONFIG_SMP */
1522 update_rq_clock(rq
);
1523 activate_task(rq
, p
, 1);
1525 * Sync wakeups (i.e. those types of wakeups where the waker
1526 * has indicated that it will leave the CPU in short order)
1527 * don't trigger a preemption, if the woken up task will run on
1528 * this cpu. (in this case the 'I will reschedule' promise of
1529 * the waker guarantees that the freshly woken up task is going
1530 * to be considered on this CPU.)
1532 if (!sync
|| cpu
!= this_cpu
)
1533 check_preempt_curr(rq
, p
);
1537 p
->state
= TASK_RUNNING
;
1539 task_rq_unlock(rq
, &flags
);
1544 int fastcall
wake_up_process(struct task_struct
*p
)
1546 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1547 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1549 EXPORT_SYMBOL(wake_up_process
);
1551 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1553 return try_to_wake_up(p
, state
, 0);
1557 * Perform scheduler related setup for a newly forked process p.
1558 * p is forked by current.
1560 * __sched_fork() is basic setup used by init_idle() too:
1562 static void __sched_fork(struct task_struct
*p
)
1564 p
->se
.wait_start_fair
= 0;
1565 p
->se
.exec_start
= 0;
1566 p
->se
.sum_exec_runtime
= 0;
1567 p
->se
.delta_exec
= 0;
1568 p
->se
.delta_fair_run
= 0;
1569 p
->se
.delta_fair_sleep
= 0;
1570 p
->se
.wait_runtime
= 0;
1571 p
->se
.sleep_start_fair
= 0;
1573 #ifdef CONFIG_SCHEDSTATS
1574 p
->se
.wait_start
= 0;
1575 p
->se
.sum_wait_runtime
= 0;
1576 p
->se
.sum_sleep_runtime
= 0;
1577 p
->se
.sleep_start
= 0;
1578 p
->se
.block_start
= 0;
1579 p
->se
.sleep_max
= 0;
1580 p
->se
.block_max
= 0;
1583 p
->se
.wait_runtime_overruns
= 0;
1584 p
->se
.wait_runtime_underruns
= 0;
1587 INIT_LIST_HEAD(&p
->run_list
);
1590 #ifdef CONFIG_PREEMPT_NOTIFIERS
1591 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1595 * We mark the process as running here, but have not actually
1596 * inserted it onto the runqueue yet. This guarantees that
1597 * nobody will actually run it, and a signal or other external
1598 * event cannot wake it up and insert it on the runqueue either.
1600 p
->state
= TASK_RUNNING
;
1604 * fork()/clone()-time setup:
1606 void sched_fork(struct task_struct
*p
, int clone_flags
)
1608 int cpu
= get_cpu();
1613 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1615 __set_task_cpu(p
, cpu
);
1618 * Make sure we do not leak PI boosting priority to the child:
1620 p
->prio
= current
->normal_prio
;
1622 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1623 if (likely(sched_info_on()))
1624 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1626 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1629 #ifdef CONFIG_PREEMPT
1630 /* Want to start with kernel preemption disabled. */
1631 task_thread_info(p
)->preempt_count
= 1;
1637 * After fork, child runs first. (default) If set to 0 then
1638 * parent will (try to) run first.
1640 unsigned int __read_mostly sysctl_sched_child_runs_first
= 1;
1643 * wake_up_new_task - wake up a newly created task for the first time.
1645 * This function will do some initial scheduler statistics housekeeping
1646 * that must be done for every newly created context, then puts the task
1647 * on the runqueue and wakes it.
1649 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1651 unsigned long flags
;
1655 rq
= task_rq_lock(p
, &flags
);
1656 BUG_ON(p
->state
!= TASK_RUNNING
);
1657 this_cpu
= smp_processor_id(); /* parent's CPU */
1658 update_rq_clock(rq
);
1660 p
->prio
= effective_prio(p
);
1662 if (!p
->sched_class
->task_new
|| !sysctl_sched_child_runs_first
||
1663 (clone_flags
& CLONE_VM
) || task_cpu(p
) != this_cpu
||
1664 !current
->se
.on_rq
) {
1666 activate_task(rq
, p
, 0);
1669 * Let the scheduling class do new task startup
1670 * management (if any):
1672 p
->sched_class
->task_new(rq
, p
);
1673 inc_nr_running(p
, rq
);
1675 check_preempt_curr(rq
, p
);
1676 task_rq_unlock(rq
, &flags
);
1679 #ifdef CONFIG_PREEMPT_NOTIFIERS
1682 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1683 * @notifier: notifier struct to register
1685 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1687 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1689 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1692 * preempt_notifier_unregister - no longer interested in preemption notifications
1693 * @notifier: notifier struct to unregister
1695 * This is safe to call from within a preemption notifier.
1697 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1699 hlist_del(¬ifier
->link
);
1701 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1703 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1705 struct preempt_notifier
*notifier
;
1706 struct hlist_node
*node
;
1708 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1709 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1713 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1714 struct task_struct
*next
)
1716 struct preempt_notifier
*notifier
;
1717 struct hlist_node
*node
;
1719 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1720 notifier
->ops
->sched_out(notifier
, next
);
1725 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1730 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1731 struct task_struct
*next
)
1738 * prepare_task_switch - prepare to switch tasks
1739 * @rq: the runqueue preparing to switch
1740 * @prev: the current task that is being switched out
1741 * @next: the task we are going to switch to.
1743 * This is called with the rq lock held and interrupts off. It must
1744 * be paired with a subsequent finish_task_switch after the context
1747 * prepare_task_switch sets up locking and calls architecture specific
1751 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1752 struct task_struct
*next
)
1754 fire_sched_out_preempt_notifiers(prev
, next
);
1755 prepare_lock_switch(rq
, next
);
1756 prepare_arch_switch(next
);
1760 * finish_task_switch - clean up after a task-switch
1761 * @rq: runqueue associated with task-switch
1762 * @prev: the thread we just switched away from.
1764 * finish_task_switch must be called after the context switch, paired
1765 * with a prepare_task_switch call before the context switch.
1766 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1767 * and do any other architecture-specific cleanup actions.
1769 * Note that we may have delayed dropping an mm in context_switch(). If
1770 * so, we finish that here outside of the runqueue lock. (Doing it
1771 * with the lock held can cause deadlocks; see schedule() for
1774 static inline void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1775 __releases(rq
->lock
)
1777 struct mm_struct
*mm
= rq
->prev_mm
;
1783 * A task struct has one reference for the use as "current".
1784 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1785 * schedule one last time. The schedule call will never return, and
1786 * the scheduled task must drop that reference.
1787 * The test for TASK_DEAD must occur while the runqueue locks are
1788 * still held, otherwise prev could be scheduled on another cpu, die
1789 * there before we look at prev->state, and then the reference would
1791 * Manfred Spraul <manfred@colorfullife.com>
1793 prev_state
= prev
->state
;
1794 finish_arch_switch(prev
);
1795 finish_lock_switch(rq
, prev
);
1796 fire_sched_in_preempt_notifiers(current
);
1799 if (unlikely(prev_state
== TASK_DEAD
)) {
1801 * Remove function-return probe instances associated with this
1802 * task and put them back on the free list.
1804 kprobe_flush_task(prev
);
1805 put_task_struct(prev
);
1810 * schedule_tail - first thing a freshly forked thread must call.
1811 * @prev: the thread we just switched away from.
1813 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1814 __releases(rq
->lock
)
1816 struct rq
*rq
= this_rq();
1818 finish_task_switch(rq
, prev
);
1819 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1820 /* In this case, finish_task_switch does not reenable preemption */
1823 if (current
->set_child_tid
)
1824 put_user(current
->pid
, current
->set_child_tid
);
1828 * context_switch - switch to the new MM and the new
1829 * thread's register state.
1832 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1833 struct task_struct
*next
)
1835 struct mm_struct
*mm
, *oldmm
;
1837 prepare_task_switch(rq
, prev
, next
);
1839 oldmm
= prev
->active_mm
;
1841 * For paravirt, this is coupled with an exit in switch_to to
1842 * combine the page table reload and the switch backend into
1845 arch_enter_lazy_cpu_mode();
1847 if (unlikely(!mm
)) {
1848 next
->active_mm
= oldmm
;
1849 atomic_inc(&oldmm
->mm_count
);
1850 enter_lazy_tlb(oldmm
, next
);
1852 switch_mm(oldmm
, mm
, next
);
1854 if (unlikely(!prev
->mm
)) {
1855 prev
->active_mm
= NULL
;
1856 rq
->prev_mm
= oldmm
;
1859 * Since the runqueue lock will be released by the next
1860 * task (which is an invalid locking op but in the case
1861 * of the scheduler it's an obvious special-case), so we
1862 * do an early lockdep release here:
1864 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1865 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1868 /* Here we just switch the register state and the stack. */
1869 switch_to(prev
, next
, prev
);
1873 * this_rq must be evaluated again because prev may have moved
1874 * CPUs since it called schedule(), thus the 'rq' on its stack
1875 * frame will be invalid.
1877 finish_task_switch(this_rq(), prev
);
1881 * nr_running, nr_uninterruptible and nr_context_switches:
1883 * externally visible scheduler statistics: current number of runnable
1884 * threads, current number of uninterruptible-sleeping threads, total
1885 * number of context switches performed since bootup.
1887 unsigned long nr_running(void)
1889 unsigned long i
, sum
= 0;
1891 for_each_online_cpu(i
)
1892 sum
+= cpu_rq(i
)->nr_running
;
1897 unsigned long nr_uninterruptible(void)
1899 unsigned long i
, sum
= 0;
1901 for_each_possible_cpu(i
)
1902 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1905 * Since we read the counters lockless, it might be slightly
1906 * inaccurate. Do not allow it to go below zero though:
1908 if (unlikely((long)sum
< 0))
1914 unsigned long long nr_context_switches(void)
1917 unsigned long long sum
= 0;
1919 for_each_possible_cpu(i
)
1920 sum
+= cpu_rq(i
)->nr_switches
;
1925 unsigned long nr_iowait(void)
1927 unsigned long i
, sum
= 0;
1929 for_each_possible_cpu(i
)
1930 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1935 unsigned long nr_active(void)
1937 unsigned long i
, running
= 0, uninterruptible
= 0;
1939 for_each_online_cpu(i
) {
1940 running
+= cpu_rq(i
)->nr_running
;
1941 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1944 if (unlikely((long)uninterruptible
< 0))
1945 uninterruptible
= 0;
1947 return running
+ uninterruptible
;
1951 * Update rq->cpu_load[] statistics. This function is usually called every
1952 * scheduler tick (TICK_NSEC).
1954 static void update_cpu_load(struct rq
*this_rq
)
1956 u64 fair_delta64
, exec_delta64
, idle_delta64
, sample_interval64
, tmp64
;
1957 unsigned long total_load
= this_rq
->ls
.load
.weight
;
1958 unsigned long this_load
= total_load
;
1959 struct load_stat
*ls
= &this_rq
->ls
;
1962 this_rq
->nr_load_updates
++;
1963 if (unlikely(!(sysctl_sched_features
& SCHED_FEAT_PRECISE_CPU_LOAD
)))
1966 /* Update delta_fair/delta_exec fields first */
1967 update_curr_load(this_rq
);
1969 fair_delta64
= ls
->delta_fair
+ 1;
1972 exec_delta64
= ls
->delta_exec
+ 1;
1975 sample_interval64
= this_rq
->clock
- ls
->load_update_last
;
1976 ls
->load_update_last
= this_rq
->clock
;
1978 if ((s64
)sample_interval64
< (s64
)TICK_NSEC
)
1979 sample_interval64
= TICK_NSEC
;
1981 if (exec_delta64
> sample_interval64
)
1982 exec_delta64
= sample_interval64
;
1984 idle_delta64
= sample_interval64
- exec_delta64
;
1986 tmp64
= div64_64(SCHED_LOAD_SCALE
* exec_delta64
, fair_delta64
);
1987 tmp64
= div64_64(tmp64
* exec_delta64
, sample_interval64
);
1989 this_load
= (unsigned long)tmp64
;
1993 /* Update our load: */
1994 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
1995 unsigned long old_load
, new_load
;
1997 /* scale is effectively 1 << i now, and >> i divides by scale */
1999 old_load
= this_rq
->cpu_load
[i
];
2000 new_load
= this_load
;
2002 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2009 * double_rq_lock - safely lock two runqueues
2011 * Note this does not disable interrupts like task_rq_lock,
2012 * you need to do so manually before calling.
2014 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2015 __acquires(rq1
->lock
)
2016 __acquires(rq2
->lock
)
2018 BUG_ON(!irqs_disabled());
2020 spin_lock(&rq1
->lock
);
2021 __acquire(rq2
->lock
); /* Fake it out ;) */
2024 spin_lock(&rq1
->lock
);
2025 spin_lock(&rq2
->lock
);
2027 spin_lock(&rq2
->lock
);
2028 spin_lock(&rq1
->lock
);
2031 update_rq_clock(rq1
);
2032 update_rq_clock(rq2
);
2036 * double_rq_unlock - safely unlock two runqueues
2038 * Note this does not restore interrupts like task_rq_unlock,
2039 * you need to do so manually after calling.
2041 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2042 __releases(rq1
->lock
)
2043 __releases(rq2
->lock
)
2045 spin_unlock(&rq1
->lock
);
2047 spin_unlock(&rq2
->lock
);
2049 __release(rq2
->lock
);
2053 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2055 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2056 __releases(this_rq
->lock
)
2057 __acquires(busiest
->lock
)
2058 __acquires(this_rq
->lock
)
2060 if (unlikely(!irqs_disabled())) {
2061 /* printk() doesn't work good under rq->lock */
2062 spin_unlock(&this_rq
->lock
);
2065 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2066 if (busiest
< this_rq
) {
2067 spin_unlock(&this_rq
->lock
);
2068 spin_lock(&busiest
->lock
);
2069 spin_lock(&this_rq
->lock
);
2071 spin_lock(&busiest
->lock
);
2076 * If dest_cpu is allowed for this process, migrate the task to it.
2077 * This is accomplished by forcing the cpu_allowed mask to only
2078 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2079 * the cpu_allowed mask is restored.
2081 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2083 struct migration_req req
;
2084 unsigned long flags
;
2087 rq
= task_rq_lock(p
, &flags
);
2088 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2089 || unlikely(cpu_is_offline(dest_cpu
)))
2092 /* force the process onto the specified CPU */
2093 if (migrate_task(p
, dest_cpu
, &req
)) {
2094 /* Need to wait for migration thread (might exit: take ref). */
2095 struct task_struct
*mt
= rq
->migration_thread
;
2097 get_task_struct(mt
);
2098 task_rq_unlock(rq
, &flags
);
2099 wake_up_process(mt
);
2100 put_task_struct(mt
);
2101 wait_for_completion(&req
.done
);
2106 task_rq_unlock(rq
, &flags
);
2110 * sched_exec - execve() is a valuable balancing opportunity, because at
2111 * this point the task has the smallest effective memory and cache footprint.
2113 void sched_exec(void)
2115 int new_cpu
, this_cpu
= get_cpu();
2116 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2118 if (new_cpu
!= this_cpu
)
2119 sched_migrate_task(current
, new_cpu
);
2123 * pull_task - move a task from a remote runqueue to the local runqueue.
2124 * Both runqueues must be locked.
2126 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2127 struct rq
*this_rq
, int this_cpu
)
2129 deactivate_task(src_rq
, p
, 0);
2130 set_task_cpu(p
, this_cpu
);
2131 activate_task(this_rq
, p
, 0);
2133 * Note that idle threads have a prio of MAX_PRIO, for this test
2134 * to be always true for them.
2136 check_preempt_curr(this_rq
, p
);
2140 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2143 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2144 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2148 * We do not migrate tasks that are:
2149 * 1) running (obviously), or
2150 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2151 * 3) are cache-hot on their current CPU.
2153 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
2157 if (task_running(rq
, p
))
2161 * Aggressive migration if too many balance attempts have failed:
2163 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
2169 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2170 unsigned long max_nr_move
, unsigned long max_load_move
,
2171 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2172 int *all_pinned
, unsigned long *load_moved
,
2173 int *this_best_prio
, struct rq_iterator
*iterator
)
2175 int pulled
= 0, pinned
= 0, skip_for_load
;
2176 struct task_struct
*p
;
2177 long rem_load_move
= max_load_move
;
2179 if (max_nr_move
== 0 || max_load_move
== 0)
2185 * Start the load-balancing iterator:
2187 p
= iterator
->start(iterator
->arg
);
2192 * To help distribute high priority tasks accross CPUs we don't
2193 * skip a task if it will be the highest priority task (i.e. smallest
2194 * prio value) on its new queue regardless of its load weight
2196 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2197 SCHED_LOAD_SCALE_FUZZ
;
2198 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2199 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2200 p
= iterator
->next(iterator
->arg
);
2204 pull_task(busiest
, p
, this_rq
, this_cpu
);
2206 rem_load_move
-= p
->se
.load
.weight
;
2209 * We only want to steal up to the prescribed number of tasks
2210 * and the prescribed amount of weighted load.
2212 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2213 if (p
->prio
< *this_best_prio
)
2214 *this_best_prio
= p
->prio
;
2215 p
= iterator
->next(iterator
->arg
);
2220 * Right now, this is the only place pull_task() is called,
2221 * so we can safely collect pull_task() stats here rather than
2222 * inside pull_task().
2224 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2227 *all_pinned
= pinned
;
2228 *load_moved
= max_load_move
- rem_load_move
;
2233 * move_tasks tries to move up to max_load_move weighted load from busiest to
2234 * this_rq, as part of a balancing operation within domain "sd".
2235 * Returns 1 if successful and 0 otherwise.
2237 * Called with both runqueues locked.
2239 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2240 unsigned long max_load_move
,
2241 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2244 struct sched_class
*class = sched_class_highest
;
2245 unsigned long total_load_moved
= 0;
2246 int this_best_prio
= this_rq
->curr
->prio
;
2250 class->load_balance(this_rq
, this_cpu
, busiest
,
2251 ULONG_MAX
, max_load_move
- total_load_moved
,
2252 sd
, idle
, all_pinned
, &this_best_prio
);
2253 class = class->next
;
2254 } while (class && max_load_move
> total_load_moved
);
2256 return total_load_moved
> 0;
2260 * move_one_task tries to move exactly one task from busiest to this_rq, as
2261 * part of active balancing operations within "domain".
2262 * Returns 1 if successful and 0 otherwise.
2264 * Called with both runqueues locked.
2266 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2267 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2269 struct sched_class
*class;
2270 int this_best_prio
= MAX_PRIO
;
2272 for (class = sched_class_highest
; class; class = class->next
)
2273 if (class->load_balance(this_rq
, this_cpu
, busiest
,
2274 1, ULONG_MAX
, sd
, idle
, NULL
,
2282 * find_busiest_group finds and returns the busiest CPU group within the
2283 * domain. It calculates and returns the amount of weighted load which
2284 * should be moved to restore balance via the imbalance parameter.
2286 static struct sched_group
*
2287 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2288 unsigned long *imbalance
, enum cpu_idle_type idle
,
2289 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2291 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2292 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2293 unsigned long max_pull
;
2294 unsigned long busiest_load_per_task
, busiest_nr_running
;
2295 unsigned long this_load_per_task
, this_nr_running
;
2297 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2298 int power_savings_balance
= 1;
2299 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2300 unsigned long min_nr_running
= ULONG_MAX
;
2301 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2304 max_load
= this_load
= total_load
= total_pwr
= 0;
2305 busiest_load_per_task
= busiest_nr_running
= 0;
2306 this_load_per_task
= this_nr_running
= 0;
2307 if (idle
== CPU_NOT_IDLE
)
2308 load_idx
= sd
->busy_idx
;
2309 else if (idle
== CPU_NEWLY_IDLE
)
2310 load_idx
= sd
->newidle_idx
;
2312 load_idx
= sd
->idle_idx
;
2315 unsigned long load
, group_capacity
;
2318 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2319 unsigned long sum_nr_running
, sum_weighted_load
;
2321 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2324 balance_cpu
= first_cpu(group
->cpumask
);
2326 /* Tally up the load of all CPUs in the group */
2327 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2329 for_each_cpu_mask(i
, group
->cpumask
) {
2332 if (!cpu_isset(i
, *cpus
))
2337 if (*sd_idle
&& rq
->nr_running
)
2340 /* Bias balancing toward cpus of our domain */
2342 if (idle_cpu(i
) && !first_idle_cpu
) {
2347 load
= target_load(i
, load_idx
);
2349 load
= source_load(i
, load_idx
);
2352 sum_nr_running
+= rq
->nr_running
;
2353 sum_weighted_load
+= weighted_cpuload(i
);
2357 * First idle cpu or the first cpu(busiest) in this sched group
2358 * is eligible for doing load balancing at this and above
2359 * domains. In the newly idle case, we will allow all the cpu's
2360 * to do the newly idle load balance.
2362 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2363 balance_cpu
!= this_cpu
&& balance
) {
2368 total_load
+= avg_load
;
2369 total_pwr
+= group
->__cpu_power
;
2371 /* Adjust by relative CPU power of the group */
2372 avg_load
= sg_div_cpu_power(group
,
2373 avg_load
* SCHED_LOAD_SCALE
);
2375 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2378 this_load
= avg_load
;
2380 this_nr_running
= sum_nr_running
;
2381 this_load_per_task
= sum_weighted_load
;
2382 } else if (avg_load
> max_load
&&
2383 sum_nr_running
> group_capacity
) {
2384 max_load
= avg_load
;
2386 busiest_nr_running
= sum_nr_running
;
2387 busiest_load_per_task
= sum_weighted_load
;
2390 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2392 * Busy processors will not participate in power savings
2395 if (idle
== CPU_NOT_IDLE
||
2396 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2400 * If the local group is idle or completely loaded
2401 * no need to do power savings balance at this domain
2403 if (local_group
&& (this_nr_running
>= group_capacity
||
2405 power_savings_balance
= 0;
2408 * If a group is already running at full capacity or idle,
2409 * don't include that group in power savings calculations
2411 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2416 * Calculate the group which has the least non-idle load.
2417 * This is the group from where we need to pick up the load
2420 if ((sum_nr_running
< min_nr_running
) ||
2421 (sum_nr_running
== min_nr_running
&&
2422 first_cpu(group
->cpumask
) <
2423 first_cpu(group_min
->cpumask
))) {
2425 min_nr_running
= sum_nr_running
;
2426 min_load_per_task
= sum_weighted_load
/
2431 * Calculate the group which is almost near its
2432 * capacity but still has some space to pick up some load
2433 * from other group and save more power
2435 if (sum_nr_running
<= group_capacity
- 1) {
2436 if (sum_nr_running
> leader_nr_running
||
2437 (sum_nr_running
== leader_nr_running
&&
2438 first_cpu(group
->cpumask
) >
2439 first_cpu(group_leader
->cpumask
))) {
2440 group_leader
= group
;
2441 leader_nr_running
= sum_nr_running
;
2446 group
= group
->next
;
2447 } while (group
!= sd
->groups
);
2449 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2452 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2454 if (this_load
>= avg_load
||
2455 100*max_load
<= sd
->imbalance_pct
*this_load
)
2458 busiest_load_per_task
/= busiest_nr_running
;
2460 * We're trying to get all the cpus to the average_load, so we don't
2461 * want to push ourselves above the average load, nor do we wish to
2462 * reduce the max loaded cpu below the average load, as either of these
2463 * actions would just result in more rebalancing later, and ping-pong
2464 * tasks around. Thus we look for the minimum possible imbalance.
2465 * Negative imbalances (*we* are more loaded than anyone else) will
2466 * be counted as no imbalance for these purposes -- we can't fix that
2467 * by pulling tasks to us. Be careful of negative numbers as they'll
2468 * appear as very large values with unsigned longs.
2470 if (max_load
<= busiest_load_per_task
)
2474 * In the presence of smp nice balancing, certain scenarios can have
2475 * max load less than avg load(as we skip the groups at or below
2476 * its cpu_power, while calculating max_load..)
2478 if (max_load
< avg_load
) {
2480 goto small_imbalance
;
2483 /* Don't want to pull so many tasks that a group would go idle */
2484 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2486 /* How much load to actually move to equalise the imbalance */
2487 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2488 (avg_load
- this_load
) * this->__cpu_power
)
2492 * if *imbalance is less than the average load per runnable task
2493 * there is no gaurantee that any tasks will be moved so we'll have
2494 * a think about bumping its value to force at least one task to be
2497 if (*imbalance
+ SCHED_LOAD_SCALE_FUZZ
< busiest_load_per_task
/2) {
2498 unsigned long tmp
, pwr_now
, pwr_move
;
2502 pwr_move
= pwr_now
= 0;
2504 if (this_nr_running
) {
2505 this_load_per_task
/= this_nr_running
;
2506 if (busiest_load_per_task
> this_load_per_task
)
2509 this_load_per_task
= SCHED_LOAD_SCALE
;
2511 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2512 busiest_load_per_task
* imbn
) {
2513 *imbalance
= busiest_load_per_task
;
2518 * OK, we don't have enough imbalance to justify moving tasks,
2519 * however we may be able to increase total CPU power used by
2523 pwr_now
+= busiest
->__cpu_power
*
2524 min(busiest_load_per_task
, max_load
);
2525 pwr_now
+= this->__cpu_power
*
2526 min(this_load_per_task
, this_load
);
2527 pwr_now
/= SCHED_LOAD_SCALE
;
2529 /* Amount of load we'd subtract */
2530 tmp
= sg_div_cpu_power(busiest
,
2531 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2533 pwr_move
+= busiest
->__cpu_power
*
2534 min(busiest_load_per_task
, max_load
- tmp
);
2536 /* Amount of load we'd add */
2537 if (max_load
* busiest
->__cpu_power
<
2538 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2539 tmp
= sg_div_cpu_power(this,
2540 max_load
* busiest
->__cpu_power
);
2542 tmp
= sg_div_cpu_power(this,
2543 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2544 pwr_move
+= this->__cpu_power
*
2545 min(this_load_per_task
, this_load
+ tmp
);
2546 pwr_move
/= SCHED_LOAD_SCALE
;
2548 /* Move if we gain throughput */
2549 if (pwr_move
<= pwr_now
)
2552 *imbalance
= busiest_load_per_task
;
2558 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2559 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2562 if (this == group_leader
&& group_leader
!= group_min
) {
2563 *imbalance
= min_load_per_task
;
2573 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2576 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2577 unsigned long imbalance
, cpumask_t
*cpus
)
2579 struct rq
*busiest
= NULL
, *rq
;
2580 unsigned long max_load
= 0;
2583 for_each_cpu_mask(i
, group
->cpumask
) {
2586 if (!cpu_isset(i
, *cpus
))
2590 wl
= weighted_cpuload(i
);
2592 if (rq
->nr_running
== 1 && wl
> imbalance
)
2595 if (wl
> max_load
) {
2605 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2606 * so long as it is large enough.
2608 #define MAX_PINNED_INTERVAL 512
2611 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2612 * tasks if there is an imbalance.
2614 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2615 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2618 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2619 struct sched_group
*group
;
2620 unsigned long imbalance
;
2622 cpumask_t cpus
= CPU_MASK_ALL
;
2623 unsigned long flags
;
2626 * When power savings policy is enabled for the parent domain, idle
2627 * sibling can pick up load irrespective of busy siblings. In this case,
2628 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2629 * portraying it as CPU_NOT_IDLE.
2631 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2632 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2635 schedstat_inc(sd
, lb_cnt
[idle
]);
2638 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2645 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2649 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2651 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2655 BUG_ON(busiest
== this_rq
);
2657 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2660 if (busiest
->nr_running
> 1) {
2662 * Attempt to move tasks. If find_busiest_group has found
2663 * an imbalance but busiest->nr_running <= 1, the group is
2664 * still unbalanced. ld_moved simply stays zero, so it is
2665 * correctly treated as an imbalance.
2667 local_irq_save(flags
);
2668 double_rq_lock(this_rq
, busiest
);
2669 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2670 imbalance
, sd
, idle
, &all_pinned
);
2671 double_rq_unlock(this_rq
, busiest
);
2672 local_irq_restore(flags
);
2675 * some other cpu did the load balance for us.
2677 if (ld_moved
&& this_cpu
!= smp_processor_id())
2678 resched_cpu(this_cpu
);
2680 /* All tasks on this runqueue were pinned by CPU affinity */
2681 if (unlikely(all_pinned
)) {
2682 cpu_clear(cpu_of(busiest
), cpus
);
2683 if (!cpus_empty(cpus
))
2690 schedstat_inc(sd
, lb_failed
[idle
]);
2691 sd
->nr_balance_failed
++;
2693 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2695 spin_lock_irqsave(&busiest
->lock
, flags
);
2697 /* don't kick the migration_thread, if the curr
2698 * task on busiest cpu can't be moved to this_cpu
2700 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2701 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2703 goto out_one_pinned
;
2706 if (!busiest
->active_balance
) {
2707 busiest
->active_balance
= 1;
2708 busiest
->push_cpu
= this_cpu
;
2711 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2713 wake_up_process(busiest
->migration_thread
);
2716 * We've kicked active balancing, reset the failure
2719 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2722 sd
->nr_balance_failed
= 0;
2724 if (likely(!active_balance
)) {
2725 /* We were unbalanced, so reset the balancing interval */
2726 sd
->balance_interval
= sd
->min_interval
;
2729 * If we've begun active balancing, start to back off. This
2730 * case may not be covered by the all_pinned logic if there
2731 * is only 1 task on the busy runqueue (because we don't call
2734 if (sd
->balance_interval
< sd
->max_interval
)
2735 sd
->balance_interval
*= 2;
2738 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2739 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2744 schedstat_inc(sd
, lb_balanced
[idle
]);
2746 sd
->nr_balance_failed
= 0;
2749 /* tune up the balancing interval */
2750 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2751 (sd
->balance_interval
< sd
->max_interval
))
2752 sd
->balance_interval
*= 2;
2754 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2755 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2761 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2762 * tasks if there is an imbalance.
2764 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2765 * this_rq is locked.
2768 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2770 struct sched_group
*group
;
2771 struct rq
*busiest
= NULL
;
2772 unsigned long imbalance
;
2776 cpumask_t cpus
= CPU_MASK_ALL
;
2779 * When power savings policy is enabled for the parent domain, idle
2780 * sibling can pick up load irrespective of busy siblings. In this case,
2781 * let the state of idle sibling percolate up as IDLE, instead of
2782 * portraying it as CPU_NOT_IDLE.
2784 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2785 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2788 schedstat_inc(sd
, lb_cnt
[CPU_NEWLY_IDLE
]);
2790 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2791 &sd_idle
, &cpus
, NULL
);
2793 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2797 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2800 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2804 BUG_ON(busiest
== this_rq
);
2806 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2809 if (busiest
->nr_running
> 1) {
2810 /* Attempt to move tasks */
2811 double_lock_balance(this_rq
, busiest
);
2812 /* this_rq->clock is already updated */
2813 update_rq_clock(busiest
);
2814 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2815 imbalance
, sd
, CPU_NEWLY_IDLE
,
2817 spin_unlock(&busiest
->lock
);
2819 if (unlikely(all_pinned
)) {
2820 cpu_clear(cpu_of(busiest
), cpus
);
2821 if (!cpus_empty(cpus
))
2827 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2828 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2829 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2832 sd
->nr_balance_failed
= 0;
2837 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2838 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2839 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2841 sd
->nr_balance_failed
= 0;
2847 * idle_balance is called by schedule() if this_cpu is about to become
2848 * idle. Attempts to pull tasks from other CPUs.
2850 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2852 struct sched_domain
*sd
;
2853 int pulled_task
= -1;
2854 unsigned long next_balance
= jiffies
+ HZ
;
2856 for_each_domain(this_cpu
, sd
) {
2857 unsigned long interval
;
2859 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2862 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2863 /* If we've pulled tasks over stop searching: */
2864 pulled_task
= load_balance_newidle(this_cpu
,
2867 interval
= msecs_to_jiffies(sd
->balance_interval
);
2868 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2869 next_balance
= sd
->last_balance
+ interval
;
2873 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2875 * We are going idle. next_balance may be set based on
2876 * a busy processor. So reset next_balance.
2878 this_rq
->next_balance
= next_balance
;
2883 * active_load_balance is run by migration threads. It pushes running tasks
2884 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2885 * running on each physical CPU where possible, and avoids physical /
2886 * logical imbalances.
2888 * Called with busiest_rq locked.
2890 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2892 int target_cpu
= busiest_rq
->push_cpu
;
2893 struct sched_domain
*sd
;
2894 struct rq
*target_rq
;
2896 /* Is there any task to move? */
2897 if (busiest_rq
->nr_running
<= 1)
2900 target_rq
= cpu_rq(target_cpu
);
2903 * This condition is "impossible", if it occurs
2904 * we need to fix it. Originally reported by
2905 * Bjorn Helgaas on a 128-cpu setup.
2907 BUG_ON(busiest_rq
== target_rq
);
2909 /* move a task from busiest_rq to target_rq */
2910 double_lock_balance(busiest_rq
, target_rq
);
2911 update_rq_clock(busiest_rq
);
2912 update_rq_clock(target_rq
);
2914 /* Search for an sd spanning us and the target CPU. */
2915 for_each_domain(target_cpu
, sd
) {
2916 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2917 cpu_isset(busiest_cpu
, sd
->span
))
2922 schedstat_inc(sd
, alb_cnt
);
2924 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
2926 schedstat_inc(sd
, alb_pushed
);
2928 schedstat_inc(sd
, alb_failed
);
2930 spin_unlock(&target_rq
->lock
);
2935 atomic_t load_balancer
;
2937 } nohz ____cacheline_aligned
= {
2938 .load_balancer
= ATOMIC_INIT(-1),
2939 .cpu_mask
= CPU_MASK_NONE
,
2943 * This routine will try to nominate the ilb (idle load balancing)
2944 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2945 * load balancing on behalf of all those cpus. If all the cpus in the system
2946 * go into this tickless mode, then there will be no ilb owner (as there is
2947 * no need for one) and all the cpus will sleep till the next wakeup event
2950 * For the ilb owner, tick is not stopped. And this tick will be used
2951 * for idle load balancing. ilb owner will still be part of
2954 * While stopping the tick, this cpu will become the ilb owner if there
2955 * is no other owner. And will be the owner till that cpu becomes busy
2956 * or if all cpus in the system stop their ticks at which point
2957 * there is no need for ilb owner.
2959 * When the ilb owner becomes busy, it nominates another owner, during the
2960 * next busy scheduler_tick()
2962 int select_nohz_load_balancer(int stop_tick
)
2964 int cpu
= smp_processor_id();
2967 cpu_set(cpu
, nohz
.cpu_mask
);
2968 cpu_rq(cpu
)->in_nohz_recently
= 1;
2971 * If we are going offline and still the leader, give up!
2973 if (cpu_is_offline(cpu
) &&
2974 atomic_read(&nohz
.load_balancer
) == cpu
) {
2975 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2980 /* time for ilb owner also to sleep */
2981 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
2982 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2983 atomic_set(&nohz
.load_balancer
, -1);
2987 if (atomic_read(&nohz
.load_balancer
) == -1) {
2988 /* make me the ilb owner */
2989 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
2991 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
2994 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
2997 cpu_clear(cpu
, nohz
.cpu_mask
);
2999 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3000 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3007 static DEFINE_SPINLOCK(balancing
);
3010 * It checks each scheduling domain to see if it is due to be balanced,
3011 * and initiates a balancing operation if so.
3013 * Balancing parameters are set up in arch_init_sched_domains.
3015 static inline void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3018 struct rq
*rq
= cpu_rq(cpu
);
3019 unsigned long interval
;
3020 struct sched_domain
*sd
;
3021 /* Earliest time when we have to do rebalance again */
3022 unsigned long next_balance
= jiffies
+ 60*HZ
;
3024 for_each_domain(cpu
, sd
) {
3025 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3028 interval
= sd
->balance_interval
;
3029 if (idle
!= CPU_IDLE
)
3030 interval
*= sd
->busy_factor
;
3032 /* scale ms to jiffies */
3033 interval
= msecs_to_jiffies(interval
);
3034 if (unlikely(!interval
))
3036 if (interval
> HZ
*NR_CPUS
/10)
3037 interval
= HZ
*NR_CPUS
/10;
3040 if (sd
->flags
& SD_SERIALIZE
) {
3041 if (!spin_trylock(&balancing
))
3045 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3046 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3048 * We've pulled tasks over so either we're no
3049 * longer idle, or one of our SMT siblings is
3052 idle
= CPU_NOT_IDLE
;
3054 sd
->last_balance
= jiffies
;
3056 if (sd
->flags
& SD_SERIALIZE
)
3057 spin_unlock(&balancing
);
3059 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3060 next_balance
= sd
->last_balance
+ interval
;
3063 * Stop the load balance at this level. There is another
3064 * CPU in our sched group which is doing load balancing more
3070 rq
->next_balance
= next_balance
;
3074 * run_rebalance_domains is triggered when needed from the scheduler tick.
3075 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3076 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3078 static void run_rebalance_domains(struct softirq_action
*h
)
3080 int this_cpu
= smp_processor_id();
3081 struct rq
*this_rq
= cpu_rq(this_cpu
);
3082 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3083 CPU_IDLE
: CPU_NOT_IDLE
;
3085 rebalance_domains(this_cpu
, idle
);
3089 * If this cpu is the owner for idle load balancing, then do the
3090 * balancing on behalf of the other idle cpus whose ticks are
3093 if (this_rq
->idle_at_tick
&&
3094 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3095 cpumask_t cpus
= nohz
.cpu_mask
;
3099 cpu_clear(this_cpu
, cpus
);
3100 for_each_cpu_mask(balance_cpu
, cpus
) {
3102 * If this cpu gets work to do, stop the load balancing
3103 * work being done for other cpus. Next load
3104 * balancing owner will pick it up.
3109 rebalance_domains(balance_cpu
, CPU_IDLE
);
3111 rq
= cpu_rq(balance_cpu
);
3112 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3113 this_rq
->next_balance
= rq
->next_balance
;
3120 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3122 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3123 * idle load balancing owner or decide to stop the periodic load balancing,
3124 * if the whole system is idle.
3126 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3130 * If we were in the nohz mode recently and busy at the current
3131 * scheduler tick, then check if we need to nominate new idle
3134 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3135 rq
->in_nohz_recently
= 0;
3137 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3138 cpu_clear(cpu
, nohz
.cpu_mask
);
3139 atomic_set(&nohz
.load_balancer
, -1);
3142 if (atomic_read(&nohz
.load_balancer
) == -1) {
3144 * simple selection for now: Nominate the
3145 * first cpu in the nohz list to be the next
3148 * TBD: Traverse the sched domains and nominate
3149 * the nearest cpu in the nohz.cpu_mask.
3151 int ilb
= first_cpu(nohz
.cpu_mask
);
3159 * If this cpu is idle and doing idle load balancing for all the
3160 * cpus with ticks stopped, is it time for that to stop?
3162 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3163 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3169 * If this cpu is idle and the idle load balancing is done by
3170 * someone else, then no need raise the SCHED_SOFTIRQ
3172 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3173 cpu_isset(cpu
, nohz
.cpu_mask
))
3176 if (time_after_eq(jiffies
, rq
->next_balance
))
3177 raise_softirq(SCHED_SOFTIRQ
);
3180 #else /* CONFIG_SMP */
3183 * on UP we do not need to balance between CPUs:
3185 static inline void idle_balance(int cpu
, struct rq
*rq
)
3189 /* Avoid "used but not defined" warning on UP */
3190 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3191 unsigned long max_nr_move
, unsigned long max_load_move
,
3192 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3193 int *all_pinned
, unsigned long *load_moved
,
3194 int *this_best_prio
, struct rq_iterator
*iterator
)
3203 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3205 EXPORT_PER_CPU_SYMBOL(kstat
);
3208 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3209 * that have not yet been banked in case the task is currently running.
3211 unsigned long long task_sched_runtime(struct task_struct
*p
)
3213 unsigned long flags
;
3217 rq
= task_rq_lock(p
, &flags
);
3218 ns
= p
->se
.sum_exec_runtime
;
3219 if (rq
->curr
== p
) {
3220 update_rq_clock(rq
);
3221 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3222 if ((s64
)delta_exec
> 0)
3225 task_rq_unlock(rq
, &flags
);
3231 * Account user cpu time to a process.
3232 * @p: the process that the cpu time gets accounted to
3233 * @hardirq_offset: the offset to subtract from hardirq_count()
3234 * @cputime: the cpu time spent in user space since the last update
3236 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3238 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3241 p
->utime
= cputime_add(p
->utime
, cputime
);
3243 /* Add user time to cpustat. */
3244 tmp
= cputime_to_cputime64(cputime
);
3245 if (TASK_NICE(p
) > 0)
3246 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3248 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3252 * Account system cpu time to a process.
3253 * @p: the process that the cpu time gets accounted to
3254 * @hardirq_offset: the offset to subtract from hardirq_count()
3255 * @cputime: the cpu time spent in kernel space since the last update
3257 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3260 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3261 struct rq
*rq
= this_rq();
3264 p
->stime
= cputime_add(p
->stime
, cputime
);
3266 /* Add system time to cpustat. */
3267 tmp
= cputime_to_cputime64(cputime
);
3268 if (hardirq_count() - hardirq_offset
)
3269 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3270 else if (softirq_count())
3271 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3272 else if (p
!= rq
->idle
)
3273 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3274 else if (atomic_read(&rq
->nr_iowait
) > 0)
3275 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3277 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3278 /* Account for system time used */
3279 acct_update_integrals(p
);
3283 * Account for involuntary wait time.
3284 * @p: the process from which the cpu time has been stolen
3285 * @steal: the cpu time spent in involuntary wait
3287 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3289 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3290 cputime64_t tmp
= cputime_to_cputime64(steal
);
3291 struct rq
*rq
= this_rq();
3293 if (p
== rq
->idle
) {
3294 p
->stime
= cputime_add(p
->stime
, steal
);
3295 if (atomic_read(&rq
->nr_iowait
) > 0)
3296 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3298 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3300 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3304 * This function gets called by the timer code, with HZ frequency.
3305 * We call it with interrupts disabled.
3307 * It also gets called by the fork code, when changing the parent's
3310 void scheduler_tick(void)
3312 int cpu
= smp_processor_id();
3313 struct rq
*rq
= cpu_rq(cpu
);
3314 struct task_struct
*curr
= rq
->curr
;
3315 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3317 spin_lock(&rq
->lock
);
3318 __update_rq_clock(rq
);
3320 * Let rq->clock advance by at least TICK_NSEC:
3322 if (unlikely(rq
->clock
< next_tick
))
3323 rq
->clock
= next_tick
;
3324 rq
->tick_timestamp
= rq
->clock
;
3325 update_cpu_load(rq
);
3326 if (curr
!= rq
->idle
) /* FIXME: needed? */
3327 curr
->sched_class
->task_tick(rq
, curr
);
3328 spin_unlock(&rq
->lock
);
3331 rq
->idle_at_tick
= idle_cpu(cpu
);
3332 trigger_load_balance(rq
, cpu
);
3336 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3338 void fastcall
add_preempt_count(int val
)
3343 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3345 preempt_count() += val
;
3347 * Spinlock count overflowing soon?
3349 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3352 EXPORT_SYMBOL(add_preempt_count
);
3354 void fastcall
sub_preempt_count(int val
)
3359 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3362 * Is the spinlock portion underflowing?
3364 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3365 !(preempt_count() & PREEMPT_MASK
)))
3368 preempt_count() -= val
;
3370 EXPORT_SYMBOL(sub_preempt_count
);
3375 * Print scheduling while atomic bug:
3377 static noinline
void __schedule_bug(struct task_struct
*prev
)
3379 printk(KERN_ERR
"BUG: scheduling while atomic: %s/0x%08x/%d\n",
3380 prev
->comm
, preempt_count(), prev
->pid
);
3381 debug_show_held_locks(prev
);
3382 if (irqs_disabled())
3383 print_irqtrace_events(prev
);
3388 * Various schedule()-time debugging checks and statistics:
3390 static inline void schedule_debug(struct task_struct
*prev
)
3393 * Test if we are atomic. Since do_exit() needs to call into
3394 * schedule() atomically, we ignore that path for now.
3395 * Otherwise, whine if we are scheduling when we should not be.
3397 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3398 __schedule_bug(prev
);
3400 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3402 schedstat_inc(this_rq(), sched_cnt
);
3406 * Pick up the highest-prio task:
3408 static inline struct task_struct
*
3409 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3411 struct sched_class
*class;
3412 struct task_struct
*p
;
3415 * Optimization: we know that if all tasks are in
3416 * the fair class we can call that function directly:
3418 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3419 p
= fair_sched_class
.pick_next_task(rq
);
3424 class = sched_class_highest
;
3426 p
= class->pick_next_task(rq
);
3430 * Will never be NULL as the idle class always
3431 * returns a non-NULL p:
3433 class = class->next
;
3438 * schedule() is the main scheduler function.
3440 asmlinkage
void __sched
schedule(void)
3442 struct task_struct
*prev
, *next
;
3449 cpu
= smp_processor_id();
3453 switch_count
= &prev
->nivcsw
;
3455 release_kernel_lock(prev
);
3456 need_resched_nonpreemptible
:
3458 schedule_debug(prev
);
3460 spin_lock_irq(&rq
->lock
);
3461 clear_tsk_need_resched(prev
);
3462 __update_rq_clock(rq
);
3464 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3465 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3466 unlikely(signal_pending(prev
)))) {
3467 prev
->state
= TASK_RUNNING
;
3469 deactivate_task(rq
, prev
, 1);
3471 switch_count
= &prev
->nvcsw
;
3474 if (unlikely(!rq
->nr_running
))
3475 idle_balance(cpu
, rq
);
3477 prev
->sched_class
->put_prev_task(rq
, prev
);
3478 next
= pick_next_task(rq
, prev
);
3480 sched_info_switch(prev
, next
);
3482 if (likely(prev
!= next
)) {
3487 context_switch(rq
, prev
, next
); /* unlocks the rq */
3489 spin_unlock_irq(&rq
->lock
);
3491 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3492 cpu
= smp_processor_id();
3494 goto need_resched_nonpreemptible
;
3496 preempt_enable_no_resched();
3497 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3500 EXPORT_SYMBOL(schedule
);
3502 #ifdef CONFIG_PREEMPT
3504 * this is the entry point to schedule() from in-kernel preemption
3505 * off of preempt_enable. Kernel preemptions off return from interrupt
3506 * occur there and call schedule directly.
3508 asmlinkage
void __sched
preempt_schedule(void)
3510 struct thread_info
*ti
= current_thread_info();
3511 #ifdef CONFIG_PREEMPT_BKL
3512 struct task_struct
*task
= current
;
3513 int saved_lock_depth
;
3516 * If there is a non-zero preempt_count or interrupts are disabled,
3517 * we do not want to preempt the current task. Just return..
3519 if (likely(ti
->preempt_count
|| irqs_disabled()))
3523 add_preempt_count(PREEMPT_ACTIVE
);
3525 * We keep the big kernel semaphore locked, but we
3526 * clear ->lock_depth so that schedule() doesnt
3527 * auto-release the semaphore:
3529 #ifdef CONFIG_PREEMPT_BKL
3530 saved_lock_depth
= task
->lock_depth
;
3531 task
->lock_depth
= -1;
3534 #ifdef CONFIG_PREEMPT_BKL
3535 task
->lock_depth
= saved_lock_depth
;
3537 sub_preempt_count(PREEMPT_ACTIVE
);
3539 /* we could miss a preemption opportunity between schedule and now */
3541 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3544 EXPORT_SYMBOL(preempt_schedule
);
3547 * this is the entry point to schedule() from kernel preemption
3548 * off of irq context.
3549 * Note, that this is called and return with irqs disabled. This will
3550 * protect us against recursive calling from irq.
3552 asmlinkage
void __sched
preempt_schedule_irq(void)
3554 struct thread_info
*ti
= current_thread_info();
3555 #ifdef CONFIG_PREEMPT_BKL
3556 struct task_struct
*task
= current
;
3557 int saved_lock_depth
;
3559 /* Catch callers which need to be fixed */
3560 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3563 add_preempt_count(PREEMPT_ACTIVE
);
3565 * We keep the big kernel semaphore locked, but we
3566 * clear ->lock_depth so that schedule() doesnt
3567 * auto-release the semaphore:
3569 #ifdef CONFIG_PREEMPT_BKL
3570 saved_lock_depth
= task
->lock_depth
;
3571 task
->lock_depth
= -1;
3575 local_irq_disable();
3576 #ifdef CONFIG_PREEMPT_BKL
3577 task
->lock_depth
= saved_lock_depth
;
3579 sub_preempt_count(PREEMPT_ACTIVE
);
3581 /* we could miss a preemption opportunity between schedule and now */
3583 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3587 #endif /* CONFIG_PREEMPT */
3589 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3592 return try_to_wake_up(curr
->private, mode
, sync
);
3594 EXPORT_SYMBOL(default_wake_function
);
3597 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3598 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3599 * number) then we wake all the non-exclusive tasks and one exclusive task.
3601 * There are circumstances in which we can try to wake a task which has already
3602 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3603 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3605 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3606 int nr_exclusive
, int sync
, void *key
)
3608 struct list_head
*tmp
, *next
;
3610 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3611 wait_queue_t
*curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3612 unsigned flags
= curr
->flags
;
3614 if (curr
->func(curr
, mode
, sync
, key
) &&
3615 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3621 * __wake_up - wake up threads blocked on a waitqueue.
3623 * @mode: which threads
3624 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3625 * @key: is directly passed to the wakeup function
3627 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3628 int nr_exclusive
, void *key
)
3630 unsigned long flags
;
3632 spin_lock_irqsave(&q
->lock
, flags
);
3633 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3634 spin_unlock_irqrestore(&q
->lock
, flags
);
3636 EXPORT_SYMBOL(__wake_up
);
3639 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3641 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3643 __wake_up_common(q
, mode
, 1, 0, NULL
);
3647 * __wake_up_sync - wake up threads blocked on a waitqueue.
3649 * @mode: which threads
3650 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3652 * The sync wakeup differs that the waker knows that it will schedule
3653 * away soon, so while the target thread will be woken up, it will not
3654 * be migrated to another CPU - ie. the two threads are 'synchronized'
3655 * with each other. This can prevent needless bouncing between CPUs.
3657 * On UP it can prevent extra preemption.
3660 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3662 unsigned long flags
;
3668 if (unlikely(!nr_exclusive
))
3671 spin_lock_irqsave(&q
->lock
, flags
);
3672 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3673 spin_unlock_irqrestore(&q
->lock
, flags
);
3675 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3677 void fastcall
complete(struct completion
*x
)
3679 unsigned long flags
;
3681 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3683 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3685 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3687 EXPORT_SYMBOL(complete
);
3689 void fastcall
complete_all(struct completion
*x
)
3691 unsigned long flags
;
3693 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3694 x
->done
+= UINT_MAX
/2;
3695 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3697 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3699 EXPORT_SYMBOL(complete_all
);
3701 void fastcall __sched
wait_for_completion(struct completion
*x
)
3705 spin_lock_irq(&x
->wait
.lock
);
3707 DECLARE_WAITQUEUE(wait
, current
);
3709 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3710 __add_wait_queue_tail(&x
->wait
, &wait
);
3712 __set_current_state(TASK_UNINTERRUPTIBLE
);
3713 spin_unlock_irq(&x
->wait
.lock
);
3715 spin_lock_irq(&x
->wait
.lock
);
3717 __remove_wait_queue(&x
->wait
, &wait
);
3720 spin_unlock_irq(&x
->wait
.lock
);
3722 EXPORT_SYMBOL(wait_for_completion
);
3724 unsigned long fastcall __sched
3725 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3729 spin_lock_irq(&x
->wait
.lock
);
3731 DECLARE_WAITQUEUE(wait
, current
);
3733 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3734 __add_wait_queue_tail(&x
->wait
, &wait
);
3736 __set_current_state(TASK_UNINTERRUPTIBLE
);
3737 spin_unlock_irq(&x
->wait
.lock
);
3738 timeout
= schedule_timeout(timeout
);
3739 spin_lock_irq(&x
->wait
.lock
);
3741 __remove_wait_queue(&x
->wait
, &wait
);
3745 __remove_wait_queue(&x
->wait
, &wait
);
3749 spin_unlock_irq(&x
->wait
.lock
);
3752 EXPORT_SYMBOL(wait_for_completion_timeout
);
3754 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3760 spin_lock_irq(&x
->wait
.lock
);
3762 DECLARE_WAITQUEUE(wait
, current
);
3764 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3765 __add_wait_queue_tail(&x
->wait
, &wait
);
3767 if (signal_pending(current
)) {
3769 __remove_wait_queue(&x
->wait
, &wait
);
3772 __set_current_state(TASK_INTERRUPTIBLE
);
3773 spin_unlock_irq(&x
->wait
.lock
);
3775 spin_lock_irq(&x
->wait
.lock
);
3777 __remove_wait_queue(&x
->wait
, &wait
);
3781 spin_unlock_irq(&x
->wait
.lock
);
3785 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3787 unsigned long fastcall __sched
3788 wait_for_completion_interruptible_timeout(struct completion
*x
,
3789 unsigned long timeout
)
3793 spin_lock_irq(&x
->wait
.lock
);
3795 DECLARE_WAITQUEUE(wait
, current
);
3797 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3798 __add_wait_queue_tail(&x
->wait
, &wait
);
3800 if (signal_pending(current
)) {
3801 timeout
= -ERESTARTSYS
;
3802 __remove_wait_queue(&x
->wait
, &wait
);
3805 __set_current_state(TASK_INTERRUPTIBLE
);
3806 spin_unlock_irq(&x
->wait
.lock
);
3807 timeout
= schedule_timeout(timeout
);
3808 spin_lock_irq(&x
->wait
.lock
);
3810 __remove_wait_queue(&x
->wait
, &wait
);
3814 __remove_wait_queue(&x
->wait
, &wait
);
3818 spin_unlock_irq(&x
->wait
.lock
);
3821 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3824 sleep_on_head(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3826 spin_lock_irqsave(&q
->lock
, *flags
);
3827 __add_wait_queue(q
, wait
);
3828 spin_unlock(&q
->lock
);
3832 sleep_on_tail(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3834 spin_lock_irq(&q
->lock
);
3835 __remove_wait_queue(q
, wait
);
3836 spin_unlock_irqrestore(&q
->lock
, *flags
);
3839 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3841 unsigned long flags
;
3844 init_waitqueue_entry(&wait
, current
);
3846 current
->state
= TASK_INTERRUPTIBLE
;
3848 sleep_on_head(q
, &wait
, &flags
);
3850 sleep_on_tail(q
, &wait
, &flags
);
3852 EXPORT_SYMBOL(interruptible_sleep_on
);
3855 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3857 unsigned long flags
;
3860 init_waitqueue_entry(&wait
, current
);
3862 current
->state
= TASK_INTERRUPTIBLE
;
3864 sleep_on_head(q
, &wait
, &flags
);
3865 timeout
= schedule_timeout(timeout
);
3866 sleep_on_tail(q
, &wait
, &flags
);
3870 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3872 void __sched
sleep_on(wait_queue_head_t
*q
)
3874 unsigned long flags
;
3877 init_waitqueue_entry(&wait
, current
);
3879 current
->state
= TASK_UNINTERRUPTIBLE
;
3881 sleep_on_head(q
, &wait
, &flags
);
3883 sleep_on_tail(q
, &wait
, &flags
);
3885 EXPORT_SYMBOL(sleep_on
);
3887 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3889 unsigned long flags
;
3892 init_waitqueue_entry(&wait
, current
);
3894 current
->state
= TASK_UNINTERRUPTIBLE
;
3896 sleep_on_head(q
, &wait
, &flags
);
3897 timeout
= schedule_timeout(timeout
);
3898 sleep_on_tail(q
, &wait
, &flags
);
3902 EXPORT_SYMBOL(sleep_on_timeout
);
3904 #ifdef CONFIG_RT_MUTEXES
3907 * rt_mutex_setprio - set the current priority of a task
3909 * @prio: prio value (kernel-internal form)
3911 * This function changes the 'effective' priority of a task. It does
3912 * not touch ->normal_prio like __setscheduler().
3914 * Used by the rt_mutex code to implement priority inheritance logic.
3916 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3918 unsigned long flags
;
3922 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3924 rq
= task_rq_lock(p
, &flags
);
3925 update_rq_clock(rq
);
3928 on_rq
= p
->se
.on_rq
;
3930 dequeue_task(rq
, p
, 0);
3933 p
->sched_class
= &rt_sched_class
;
3935 p
->sched_class
= &fair_sched_class
;
3940 enqueue_task(rq
, p
, 0);
3942 * Reschedule if we are currently running on this runqueue and
3943 * our priority decreased, or if we are not currently running on
3944 * this runqueue and our priority is higher than the current's
3946 if (task_running(rq
, p
)) {
3947 if (p
->prio
> oldprio
)
3948 resched_task(rq
->curr
);
3950 check_preempt_curr(rq
, p
);
3953 task_rq_unlock(rq
, &flags
);
3958 void set_user_nice(struct task_struct
*p
, long nice
)
3960 int old_prio
, delta
, on_rq
;
3961 unsigned long flags
;
3964 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3967 * We have to be careful, if called from sys_setpriority(),
3968 * the task might be in the middle of scheduling on another CPU.
3970 rq
= task_rq_lock(p
, &flags
);
3971 update_rq_clock(rq
);
3973 * The RT priorities are set via sched_setscheduler(), but we still
3974 * allow the 'normal' nice value to be set - but as expected
3975 * it wont have any effect on scheduling until the task is
3976 * SCHED_FIFO/SCHED_RR:
3978 if (task_has_rt_policy(p
)) {
3979 p
->static_prio
= NICE_TO_PRIO(nice
);
3982 on_rq
= p
->se
.on_rq
;
3984 dequeue_task(rq
, p
, 0);
3988 p
->static_prio
= NICE_TO_PRIO(nice
);
3991 p
->prio
= effective_prio(p
);
3992 delta
= p
->prio
- old_prio
;
3995 enqueue_task(rq
, p
, 0);
3998 * If the task increased its priority or is running and
3999 * lowered its priority, then reschedule its CPU:
4001 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4002 resched_task(rq
->curr
);
4005 task_rq_unlock(rq
, &flags
);
4007 EXPORT_SYMBOL(set_user_nice
);
4010 * can_nice - check if a task can reduce its nice value
4014 int can_nice(const struct task_struct
*p
, const int nice
)
4016 /* convert nice value [19,-20] to rlimit style value [1,40] */
4017 int nice_rlim
= 20 - nice
;
4019 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4020 capable(CAP_SYS_NICE
));
4023 #ifdef __ARCH_WANT_SYS_NICE
4026 * sys_nice - change the priority of the current process.
4027 * @increment: priority increment
4029 * sys_setpriority is a more generic, but much slower function that
4030 * does similar things.
4032 asmlinkage
long sys_nice(int increment
)
4037 * Setpriority might change our priority at the same moment.
4038 * We don't have to worry. Conceptually one call occurs first
4039 * and we have a single winner.
4041 if (increment
< -40)
4046 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4052 if (increment
< 0 && !can_nice(current
, nice
))
4055 retval
= security_task_setnice(current
, nice
);
4059 set_user_nice(current
, nice
);
4066 * task_prio - return the priority value of a given task.
4067 * @p: the task in question.
4069 * This is the priority value as seen by users in /proc.
4070 * RT tasks are offset by -200. Normal tasks are centered
4071 * around 0, value goes from -16 to +15.
4073 int task_prio(const struct task_struct
*p
)
4075 return p
->prio
- MAX_RT_PRIO
;
4079 * task_nice - return the nice value of a given task.
4080 * @p: the task in question.
4082 int task_nice(const struct task_struct
*p
)
4084 return TASK_NICE(p
);
4086 EXPORT_SYMBOL_GPL(task_nice
);
4089 * idle_cpu - is a given cpu idle currently?
4090 * @cpu: the processor in question.
4092 int idle_cpu(int cpu
)
4094 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4098 * idle_task - return the idle task for a given cpu.
4099 * @cpu: the processor in question.
4101 struct task_struct
*idle_task(int cpu
)
4103 return cpu_rq(cpu
)->idle
;
4107 * find_process_by_pid - find a process with a matching PID value.
4108 * @pid: the pid in question.
4110 static inline struct task_struct
*find_process_by_pid(pid_t pid
)
4112 return pid
? find_task_by_pid(pid
) : current
;
4115 /* Actually do priority change: must hold rq lock. */
4117 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4119 BUG_ON(p
->se
.on_rq
);
4122 switch (p
->policy
) {
4126 p
->sched_class
= &fair_sched_class
;
4130 p
->sched_class
= &rt_sched_class
;
4134 p
->rt_priority
= prio
;
4135 p
->normal_prio
= normal_prio(p
);
4136 /* we are holding p->pi_lock already */
4137 p
->prio
= rt_mutex_getprio(p
);
4142 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4143 * @p: the task in question.
4144 * @policy: new policy.
4145 * @param: structure containing the new RT priority.
4147 * NOTE that the task may be already dead.
4149 int sched_setscheduler(struct task_struct
*p
, int policy
,
4150 struct sched_param
*param
)
4152 int retval
, oldprio
, oldpolicy
= -1, on_rq
;
4153 unsigned long flags
;
4156 /* may grab non-irq protected spin_locks */
4157 BUG_ON(in_interrupt());
4159 /* double check policy once rq lock held */
4161 policy
= oldpolicy
= p
->policy
;
4162 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4163 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4164 policy
!= SCHED_IDLE
)
4167 * Valid priorities for SCHED_FIFO and SCHED_RR are
4168 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4169 * SCHED_BATCH and SCHED_IDLE is 0.
4171 if (param
->sched_priority
< 0 ||
4172 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4173 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4175 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4179 * Allow unprivileged RT tasks to decrease priority:
4181 if (!capable(CAP_SYS_NICE
)) {
4182 if (rt_policy(policy
)) {
4183 unsigned long rlim_rtprio
;
4185 if (!lock_task_sighand(p
, &flags
))
4187 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4188 unlock_task_sighand(p
, &flags
);
4190 /* can't set/change the rt policy */
4191 if (policy
!= p
->policy
&& !rlim_rtprio
)
4194 /* can't increase priority */
4195 if (param
->sched_priority
> p
->rt_priority
&&
4196 param
->sched_priority
> rlim_rtprio
)
4200 * Like positive nice levels, dont allow tasks to
4201 * move out of SCHED_IDLE either:
4203 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4206 /* can't change other user's priorities */
4207 if ((current
->euid
!= p
->euid
) &&
4208 (current
->euid
!= p
->uid
))
4212 retval
= security_task_setscheduler(p
, policy
, param
);
4216 * make sure no PI-waiters arrive (or leave) while we are
4217 * changing the priority of the task:
4219 spin_lock_irqsave(&p
->pi_lock
, flags
);
4221 * To be able to change p->policy safely, the apropriate
4222 * runqueue lock must be held.
4224 rq
= __task_rq_lock(p
);
4225 /* recheck policy now with rq lock held */
4226 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4227 policy
= oldpolicy
= -1;
4228 __task_rq_unlock(rq
);
4229 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4232 update_rq_clock(rq
);
4233 on_rq
= p
->se
.on_rq
;
4235 deactivate_task(rq
, p
, 0);
4237 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4239 activate_task(rq
, p
, 0);
4241 * Reschedule if we are currently running on this runqueue and
4242 * our priority decreased, or if we are not currently running on
4243 * this runqueue and our priority is higher than the current's
4245 if (task_running(rq
, p
)) {
4246 if (p
->prio
> oldprio
)
4247 resched_task(rq
->curr
);
4249 check_preempt_curr(rq
, p
);
4252 __task_rq_unlock(rq
);
4253 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4255 rt_mutex_adjust_pi(p
);
4259 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4262 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4264 struct sched_param lparam
;
4265 struct task_struct
*p
;
4268 if (!param
|| pid
< 0)
4270 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4275 p
= find_process_by_pid(pid
);
4277 retval
= sched_setscheduler(p
, policy
, &lparam
);
4284 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4285 * @pid: the pid in question.
4286 * @policy: new policy.
4287 * @param: structure containing the new RT priority.
4289 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4290 struct sched_param __user
*param
)
4292 /* negative values for policy are not valid */
4296 return do_sched_setscheduler(pid
, policy
, param
);
4300 * sys_sched_setparam - set/change the RT priority of a thread
4301 * @pid: the pid in question.
4302 * @param: structure containing the new RT priority.
4304 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4306 return do_sched_setscheduler(pid
, -1, param
);
4310 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4311 * @pid: the pid in question.
4313 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4315 struct task_struct
*p
;
4316 int retval
= -EINVAL
;
4322 read_lock(&tasklist_lock
);
4323 p
= find_process_by_pid(pid
);
4325 retval
= security_task_getscheduler(p
);
4329 read_unlock(&tasklist_lock
);
4336 * sys_sched_getscheduler - get the RT priority of a thread
4337 * @pid: the pid in question.
4338 * @param: structure containing the RT priority.
4340 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4342 struct sched_param lp
;
4343 struct task_struct
*p
;
4344 int retval
= -EINVAL
;
4346 if (!param
|| pid
< 0)
4349 read_lock(&tasklist_lock
);
4350 p
= find_process_by_pid(pid
);
4355 retval
= security_task_getscheduler(p
);
4359 lp
.sched_priority
= p
->rt_priority
;
4360 read_unlock(&tasklist_lock
);
4363 * This one might sleep, we cannot do it with a spinlock held ...
4365 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4371 read_unlock(&tasklist_lock
);
4375 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4377 cpumask_t cpus_allowed
;
4378 struct task_struct
*p
;
4381 mutex_lock(&sched_hotcpu_mutex
);
4382 read_lock(&tasklist_lock
);
4384 p
= find_process_by_pid(pid
);
4386 read_unlock(&tasklist_lock
);
4387 mutex_unlock(&sched_hotcpu_mutex
);
4392 * It is not safe to call set_cpus_allowed with the
4393 * tasklist_lock held. We will bump the task_struct's
4394 * usage count and then drop tasklist_lock.
4397 read_unlock(&tasklist_lock
);
4400 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4401 !capable(CAP_SYS_NICE
))
4404 retval
= security_task_setscheduler(p
, 0, NULL
);
4408 cpus_allowed
= cpuset_cpus_allowed(p
);
4409 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4410 retval
= set_cpus_allowed(p
, new_mask
);
4414 mutex_unlock(&sched_hotcpu_mutex
);
4418 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4419 cpumask_t
*new_mask
)
4421 if (len
< sizeof(cpumask_t
)) {
4422 memset(new_mask
, 0, sizeof(cpumask_t
));
4423 } else if (len
> sizeof(cpumask_t
)) {
4424 len
= sizeof(cpumask_t
);
4426 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4430 * sys_sched_setaffinity - set the cpu affinity of a process
4431 * @pid: pid of the process
4432 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4433 * @user_mask_ptr: user-space pointer to the new cpu mask
4435 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4436 unsigned long __user
*user_mask_ptr
)
4441 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4445 return sched_setaffinity(pid
, new_mask
);
4449 * Represents all cpu's present in the system
4450 * In systems capable of hotplug, this map could dynamically grow
4451 * as new cpu's are detected in the system via any platform specific
4452 * method, such as ACPI for e.g.
4455 cpumask_t cpu_present_map __read_mostly
;
4456 EXPORT_SYMBOL(cpu_present_map
);
4459 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4460 EXPORT_SYMBOL(cpu_online_map
);
4462 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4463 EXPORT_SYMBOL(cpu_possible_map
);
4466 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4468 struct task_struct
*p
;
4471 mutex_lock(&sched_hotcpu_mutex
);
4472 read_lock(&tasklist_lock
);
4475 p
= find_process_by_pid(pid
);
4479 retval
= security_task_getscheduler(p
);
4483 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4486 read_unlock(&tasklist_lock
);
4487 mutex_unlock(&sched_hotcpu_mutex
);
4493 * sys_sched_getaffinity - get the cpu affinity of a process
4494 * @pid: pid of the process
4495 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4496 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4498 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4499 unsigned long __user
*user_mask_ptr
)
4504 if (len
< sizeof(cpumask_t
))
4507 ret
= sched_getaffinity(pid
, &mask
);
4511 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4514 return sizeof(cpumask_t
);
4518 * sys_sched_yield - yield the current processor to other threads.
4520 * This function yields the current CPU to other tasks. If there are no
4521 * other threads running on this CPU then this function will return.
4523 asmlinkage
long sys_sched_yield(void)
4525 struct rq
*rq
= this_rq_lock();
4527 schedstat_inc(rq
, yld_cnt
);
4528 if (unlikely(rq
->nr_running
== 1))
4529 schedstat_inc(rq
, yld_act_empty
);
4531 current
->sched_class
->yield_task(rq
, current
);
4534 * Since we are going to call schedule() anyway, there's
4535 * no need to preempt or enable interrupts:
4537 __release(rq
->lock
);
4538 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4539 _raw_spin_unlock(&rq
->lock
);
4540 preempt_enable_no_resched();
4547 static void __cond_resched(void)
4549 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4550 __might_sleep(__FILE__
, __LINE__
);
4553 * The BKS might be reacquired before we have dropped
4554 * PREEMPT_ACTIVE, which could trigger a second
4555 * cond_resched() call.
4558 add_preempt_count(PREEMPT_ACTIVE
);
4560 sub_preempt_count(PREEMPT_ACTIVE
);
4561 } while (need_resched());
4564 int __sched
cond_resched(void)
4566 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4567 system_state
== SYSTEM_RUNNING
) {
4573 EXPORT_SYMBOL(cond_resched
);
4576 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4577 * call schedule, and on return reacquire the lock.
4579 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4580 * operations here to prevent schedule() from being called twice (once via
4581 * spin_unlock(), once by hand).
4583 int cond_resched_lock(spinlock_t
*lock
)
4587 if (need_lockbreak(lock
)) {
4593 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4594 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4595 _raw_spin_unlock(lock
);
4596 preempt_enable_no_resched();
4603 EXPORT_SYMBOL(cond_resched_lock
);
4605 int __sched
cond_resched_softirq(void)
4607 BUG_ON(!in_softirq());
4609 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4617 EXPORT_SYMBOL(cond_resched_softirq
);
4620 * yield - yield the current processor to other threads.
4622 * This is a shortcut for kernel-space yielding - it marks the
4623 * thread runnable and calls sys_sched_yield().
4625 void __sched
yield(void)
4627 set_current_state(TASK_RUNNING
);
4630 EXPORT_SYMBOL(yield
);
4633 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4634 * that process accounting knows that this is a task in IO wait state.
4636 * But don't do that if it is a deliberate, throttling IO wait (this task
4637 * has set its backing_dev_info: the queue against which it should throttle)
4639 void __sched
io_schedule(void)
4641 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4643 delayacct_blkio_start();
4644 atomic_inc(&rq
->nr_iowait
);
4646 atomic_dec(&rq
->nr_iowait
);
4647 delayacct_blkio_end();
4649 EXPORT_SYMBOL(io_schedule
);
4651 long __sched
io_schedule_timeout(long timeout
)
4653 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4656 delayacct_blkio_start();
4657 atomic_inc(&rq
->nr_iowait
);
4658 ret
= schedule_timeout(timeout
);
4659 atomic_dec(&rq
->nr_iowait
);
4660 delayacct_blkio_end();
4665 * sys_sched_get_priority_max - return maximum RT priority.
4666 * @policy: scheduling class.
4668 * this syscall returns the maximum rt_priority that can be used
4669 * by a given scheduling class.
4671 asmlinkage
long sys_sched_get_priority_max(int policy
)
4678 ret
= MAX_USER_RT_PRIO
-1;
4690 * sys_sched_get_priority_min - return minimum RT priority.
4691 * @policy: scheduling class.
4693 * this syscall returns the minimum rt_priority that can be used
4694 * by a given scheduling class.
4696 asmlinkage
long sys_sched_get_priority_min(int policy
)
4714 * sys_sched_rr_get_interval - return the default timeslice of a process.
4715 * @pid: pid of the process.
4716 * @interval: userspace pointer to the timeslice value.
4718 * this syscall writes the default timeslice value of a given process
4719 * into the user-space timespec buffer. A value of '0' means infinity.
4722 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4724 struct task_struct
*p
;
4725 int retval
= -EINVAL
;
4732 read_lock(&tasklist_lock
);
4733 p
= find_process_by_pid(pid
);
4737 retval
= security_task_getscheduler(p
);
4741 jiffies_to_timespec(p
->policy
== SCHED_FIFO
?
4742 0 : static_prio_timeslice(p
->static_prio
), &t
);
4743 read_unlock(&tasklist_lock
);
4744 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4748 read_unlock(&tasklist_lock
);
4752 static const char stat_nam
[] = "RSDTtZX";
4754 static void show_task(struct task_struct
*p
)
4756 unsigned long free
= 0;
4759 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4760 printk("%-13.13s %c", p
->comm
,
4761 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4762 #if BITS_PER_LONG == 32
4763 if (state
== TASK_RUNNING
)
4764 printk(" running ");
4766 printk(" %08lx ", thread_saved_pc(p
));
4768 if (state
== TASK_RUNNING
)
4769 printk(" running task ");
4771 printk(" %016lx ", thread_saved_pc(p
));
4773 #ifdef CONFIG_DEBUG_STACK_USAGE
4775 unsigned long *n
= end_of_stack(p
);
4778 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4781 printk("%5lu %5d %6d\n", free
, p
->pid
, p
->parent
->pid
);
4783 if (state
!= TASK_RUNNING
)
4784 show_stack(p
, NULL
);
4787 void show_state_filter(unsigned long state_filter
)
4789 struct task_struct
*g
, *p
;
4791 #if BITS_PER_LONG == 32
4793 " task PC stack pid father\n");
4796 " task PC stack pid father\n");
4798 read_lock(&tasklist_lock
);
4799 do_each_thread(g
, p
) {
4801 * reset the NMI-timeout, listing all files on a slow
4802 * console might take alot of time:
4804 touch_nmi_watchdog();
4805 if (!state_filter
|| (p
->state
& state_filter
))
4807 } while_each_thread(g
, p
);
4809 touch_all_softlockup_watchdogs();
4811 #ifdef CONFIG_SCHED_DEBUG
4812 sysrq_sched_debug_show();
4814 read_unlock(&tasklist_lock
);
4816 * Only show locks if all tasks are dumped:
4818 if (state_filter
== -1)
4819 debug_show_all_locks();
4822 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4824 idle
->sched_class
= &idle_sched_class
;
4828 * init_idle - set up an idle thread for a given CPU
4829 * @idle: task in question
4830 * @cpu: cpu the idle task belongs to
4832 * NOTE: this function does not set the idle thread's NEED_RESCHED
4833 * flag, to make booting more robust.
4835 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4837 struct rq
*rq
= cpu_rq(cpu
);
4838 unsigned long flags
;
4841 idle
->se
.exec_start
= sched_clock();
4843 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4844 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4845 __set_task_cpu(idle
, cpu
);
4847 spin_lock_irqsave(&rq
->lock
, flags
);
4848 rq
->curr
= rq
->idle
= idle
;
4849 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4852 spin_unlock_irqrestore(&rq
->lock
, flags
);
4854 /* Set the preempt count _outside_ the spinlocks! */
4855 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4856 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4858 task_thread_info(idle
)->preempt_count
= 0;
4861 * The idle tasks have their own, simple scheduling class:
4863 idle
->sched_class
= &idle_sched_class
;
4867 * In a system that switches off the HZ timer nohz_cpu_mask
4868 * indicates which cpus entered this state. This is used
4869 * in the rcu update to wait only for active cpus. For system
4870 * which do not switch off the HZ timer nohz_cpu_mask should
4871 * always be CPU_MASK_NONE.
4873 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4876 * Increase the granularity value when there are more CPUs,
4877 * because with more CPUs the 'effective latency' as visible
4878 * to users decreases. But the relationship is not linear,
4879 * so pick a second-best guess by going with the log2 of the
4882 * This idea comes from the SD scheduler of Con Kolivas:
4884 static inline void sched_init_granularity(void)
4886 unsigned int factor
= 1 + ilog2(num_online_cpus());
4887 const unsigned long gran_limit
= 100000000;
4889 sysctl_sched_granularity
*= factor
;
4890 if (sysctl_sched_granularity
> gran_limit
)
4891 sysctl_sched_granularity
= gran_limit
;
4893 sysctl_sched_runtime_limit
= sysctl_sched_granularity
* 4;
4894 sysctl_sched_wakeup_granularity
= sysctl_sched_granularity
/ 2;
4899 * This is how migration works:
4901 * 1) we queue a struct migration_req structure in the source CPU's
4902 * runqueue and wake up that CPU's migration thread.
4903 * 2) we down() the locked semaphore => thread blocks.
4904 * 3) migration thread wakes up (implicitly it forces the migrated
4905 * thread off the CPU)
4906 * 4) it gets the migration request and checks whether the migrated
4907 * task is still in the wrong runqueue.
4908 * 5) if it's in the wrong runqueue then the migration thread removes
4909 * it and puts it into the right queue.
4910 * 6) migration thread up()s the semaphore.
4911 * 7) we wake up and the migration is done.
4915 * Change a given task's CPU affinity. Migrate the thread to a
4916 * proper CPU and schedule it away if the CPU it's executing on
4917 * is removed from the allowed bitmask.
4919 * NOTE: the caller must have a valid reference to the task, the
4920 * task must not exit() & deallocate itself prematurely. The
4921 * call is not atomic; no spinlocks may be held.
4923 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4925 struct migration_req req
;
4926 unsigned long flags
;
4930 rq
= task_rq_lock(p
, &flags
);
4931 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4936 p
->cpus_allowed
= new_mask
;
4937 /* Can the task run on the task's current CPU? If so, we're done */
4938 if (cpu_isset(task_cpu(p
), new_mask
))
4941 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4942 /* Need help from migration thread: drop lock and wait. */
4943 task_rq_unlock(rq
, &flags
);
4944 wake_up_process(rq
->migration_thread
);
4945 wait_for_completion(&req
.done
);
4946 tlb_migrate_finish(p
->mm
);
4950 task_rq_unlock(rq
, &flags
);
4954 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4957 * Move (not current) task off this cpu, onto dest cpu. We're doing
4958 * this because either it can't run here any more (set_cpus_allowed()
4959 * away from this CPU, or CPU going down), or because we're
4960 * attempting to rebalance this task on exec (sched_exec).
4962 * So we race with normal scheduler movements, but that's OK, as long
4963 * as the task is no longer on this CPU.
4965 * Returns non-zero if task was successfully migrated.
4967 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4969 struct rq
*rq_dest
, *rq_src
;
4972 if (unlikely(cpu_is_offline(dest_cpu
)))
4975 rq_src
= cpu_rq(src_cpu
);
4976 rq_dest
= cpu_rq(dest_cpu
);
4978 double_rq_lock(rq_src
, rq_dest
);
4979 /* Already moved. */
4980 if (task_cpu(p
) != src_cpu
)
4982 /* Affinity changed (again). */
4983 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4986 on_rq
= p
->se
.on_rq
;
4988 deactivate_task(rq_src
, p
, 0);
4990 set_task_cpu(p
, dest_cpu
);
4992 activate_task(rq_dest
, p
, 0);
4993 check_preempt_curr(rq_dest
, p
);
4997 double_rq_unlock(rq_src
, rq_dest
);
5002 * migration_thread - this is a highprio system thread that performs
5003 * thread migration by bumping thread off CPU then 'pushing' onto
5006 static int migration_thread(void *data
)
5008 int cpu
= (long)data
;
5012 BUG_ON(rq
->migration_thread
!= current
);
5014 set_current_state(TASK_INTERRUPTIBLE
);
5015 while (!kthread_should_stop()) {
5016 struct migration_req
*req
;
5017 struct list_head
*head
;
5019 spin_lock_irq(&rq
->lock
);
5021 if (cpu_is_offline(cpu
)) {
5022 spin_unlock_irq(&rq
->lock
);
5026 if (rq
->active_balance
) {
5027 active_load_balance(rq
, cpu
);
5028 rq
->active_balance
= 0;
5031 head
= &rq
->migration_queue
;
5033 if (list_empty(head
)) {
5034 spin_unlock_irq(&rq
->lock
);
5036 set_current_state(TASK_INTERRUPTIBLE
);
5039 req
= list_entry(head
->next
, struct migration_req
, list
);
5040 list_del_init(head
->next
);
5042 spin_unlock(&rq
->lock
);
5043 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5046 complete(&req
->done
);
5048 __set_current_state(TASK_RUNNING
);
5052 /* Wait for kthread_stop */
5053 set_current_state(TASK_INTERRUPTIBLE
);
5054 while (!kthread_should_stop()) {
5056 set_current_state(TASK_INTERRUPTIBLE
);
5058 __set_current_state(TASK_RUNNING
);
5062 #ifdef CONFIG_HOTPLUG_CPU
5064 * Figure out where task on dead CPU should go, use force if neccessary.
5065 * NOTE: interrupts should be disabled by the caller
5067 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5069 unsigned long flags
;
5076 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5077 cpus_and(mask
, mask
, p
->cpus_allowed
);
5078 dest_cpu
= any_online_cpu(mask
);
5080 /* On any allowed CPU? */
5081 if (dest_cpu
== NR_CPUS
)
5082 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5084 /* No more Mr. Nice Guy. */
5085 if (dest_cpu
== NR_CPUS
) {
5086 rq
= task_rq_lock(p
, &flags
);
5087 cpus_setall(p
->cpus_allowed
);
5088 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5089 task_rq_unlock(rq
, &flags
);
5092 * Don't tell them about moving exiting tasks or
5093 * kernel threads (both mm NULL), since they never
5096 if (p
->mm
&& printk_ratelimit())
5097 printk(KERN_INFO
"process %d (%s) no "
5098 "longer affine to cpu%d\n",
5099 p
->pid
, p
->comm
, dead_cpu
);
5101 if (!__migrate_task(p
, dead_cpu
, dest_cpu
))
5106 * While a dead CPU has no uninterruptible tasks queued at this point,
5107 * it might still have a nonzero ->nr_uninterruptible counter, because
5108 * for performance reasons the counter is not stricly tracking tasks to
5109 * their home CPUs. So we just add the counter to another CPU's counter,
5110 * to keep the global sum constant after CPU-down:
5112 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5114 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5115 unsigned long flags
;
5117 local_irq_save(flags
);
5118 double_rq_lock(rq_src
, rq_dest
);
5119 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5120 rq_src
->nr_uninterruptible
= 0;
5121 double_rq_unlock(rq_src
, rq_dest
);
5122 local_irq_restore(flags
);
5125 /* Run through task list and migrate tasks from the dead cpu. */
5126 static void migrate_live_tasks(int src_cpu
)
5128 struct task_struct
*p
, *t
;
5130 write_lock_irq(&tasklist_lock
);
5132 do_each_thread(t
, p
) {
5136 if (task_cpu(p
) == src_cpu
)
5137 move_task_off_dead_cpu(src_cpu
, p
);
5138 } while_each_thread(t
, p
);
5140 write_unlock_irq(&tasklist_lock
);
5144 * Schedules idle task to be the next runnable task on current CPU.
5145 * It does so by boosting its priority to highest possible and adding it to
5146 * the _front_ of the runqueue. Used by CPU offline code.
5148 void sched_idle_next(void)
5150 int this_cpu
= smp_processor_id();
5151 struct rq
*rq
= cpu_rq(this_cpu
);
5152 struct task_struct
*p
= rq
->idle
;
5153 unsigned long flags
;
5155 /* cpu has to be offline */
5156 BUG_ON(cpu_online(this_cpu
));
5159 * Strictly not necessary since rest of the CPUs are stopped by now
5160 * and interrupts disabled on the current cpu.
5162 spin_lock_irqsave(&rq
->lock
, flags
);
5164 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5166 /* Add idle task to the _front_ of its priority queue: */
5167 activate_idle_task(p
, rq
);
5169 spin_unlock_irqrestore(&rq
->lock
, flags
);
5173 * Ensures that the idle task is using init_mm right before its cpu goes
5176 void idle_task_exit(void)
5178 struct mm_struct
*mm
= current
->active_mm
;
5180 BUG_ON(cpu_online(smp_processor_id()));
5183 switch_mm(mm
, &init_mm
, current
);
5187 /* called under rq->lock with disabled interrupts */
5188 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5190 struct rq
*rq
= cpu_rq(dead_cpu
);
5192 /* Must be exiting, otherwise would be on tasklist. */
5193 BUG_ON(p
->exit_state
!= EXIT_ZOMBIE
&& p
->exit_state
!= EXIT_DEAD
);
5195 /* Cannot have done final schedule yet: would have vanished. */
5196 BUG_ON(p
->state
== TASK_DEAD
);
5201 * Drop lock around migration; if someone else moves it,
5202 * that's OK. No task can be added to this CPU, so iteration is
5204 * NOTE: interrupts should be left disabled --dev@
5206 spin_unlock(&rq
->lock
);
5207 move_task_off_dead_cpu(dead_cpu
, p
);
5208 spin_lock(&rq
->lock
);
5213 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5214 static void migrate_dead_tasks(unsigned int dead_cpu
)
5216 struct rq
*rq
= cpu_rq(dead_cpu
);
5217 struct task_struct
*next
;
5220 if (!rq
->nr_running
)
5222 update_rq_clock(rq
);
5223 next
= pick_next_task(rq
, rq
->curr
);
5226 migrate_dead(dead_cpu
, next
);
5230 #endif /* CONFIG_HOTPLUG_CPU */
5232 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5234 static struct ctl_table sd_ctl_dir
[] = {
5236 .procname
= "sched_domain",
5242 static struct ctl_table sd_ctl_root
[] = {
5244 .procname
= "kernel",
5246 .child
= sd_ctl_dir
,
5251 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5253 struct ctl_table
*entry
=
5254 kmalloc(n
* sizeof(struct ctl_table
), GFP_KERNEL
);
5257 memset(entry
, 0, n
* sizeof(struct ctl_table
));
5263 set_table_entry(struct ctl_table
*entry
,
5264 const char *procname
, void *data
, int maxlen
,
5265 mode_t mode
, proc_handler
*proc_handler
)
5267 entry
->procname
= procname
;
5269 entry
->maxlen
= maxlen
;
5271 entry
->proc_handler
= proc_handler
;
5274 static struct ctl_table
*
5275 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5277 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
5279 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5280 sizeof(long), 0644, proc_doulongvec_minmax
);
5281 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5282 sizeof(long), 0644, proc_doulongvec_minmax
);
5283 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5284 sizeof(int), 0644, proc_dointvec_minmax
);
5285 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5286 sizeof(int), 0644, proc_dointvec_minmax
);
5287 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5288 sizeof(int), 0644, proc_dointvec_minmax
);
5289 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5290 sizeof(int), 0644, proc_dointvec_minmax
);
5291 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5292 sizeof(int), 0644, proc_dointvec_minmax
);
5293 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5294 sizeof(int), 0644, proc_dointvec_minmax
);
5295 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5296 sizeof(int), 0644, proc_dointvec_minmax
);
5297 set_table_entry(&table
[10], "cache_nice_tries",
5298 &sd
->cache_nice_tries
,
5299 sizeof(int), 0644, proc_dointvec_minmax
);
5300 set_table_entry(&table
[12], "flags", &sd
->flags
,
5301 sizeof(int), 0644, proc_dointvec_minmax
);
5306 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5308 struct ctl_table
*entry
, *table
;
5309 struct sched_domain
*sd
;
5310 int domain_num
= 0, i
;
5313 for_each_domain(cpu
, sd
)
5315 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5318 for_each_domain(cpu
, sd
) {
5319 snprintf(buf
, 32, "domain%d", i
);
5320 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5322 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5329 static struct ctl_table_header
*sd_sysctl_header
;
5330 static void init_sched_domain_sysctl(void)
5332 int i
, cpu_num
= num_online_cpus();
5333 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5336 sd_ctl_dir
[0].child
= entry
;
5338 for (i
= 0; i
< cpu_num
; i
++, entry
++) {
5339 snprintf(buf
, 32, "cpu%d", i
);
5340 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5342 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5344 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5347 static void init_sched_domain_sysctl(void)
5353 * migration_call - callback that gets triggered when a CPU is added.
5354 * Here we can start up the necessary migration thread for the new CPU.
5356 static int __cpuinit
5357 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5359 struct task_struct
*p
;
5360 int cpu
= (long)hcpu
;
5361 unsigned long flags
;
5365 case CPU_LOCK_ACQUIRE
:
5366 mutex_lock(&sched_hotcpu_mutex
);
5369 case CPU_UP_PREPARE
:
5370 case CPU_UP_PREPARE_FROZEN
:
5371 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5374 kthread_bind(p
, cpu
);
5375 /* Must be high prio: stop_machine expects to yield to it. */
5376 rq
= task_rq_lock(p
, &flags
);
5377 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5378 task_rq_unlock(rq
, &flags
);
5379 cpu_rq(cpu
)->migration_thread
= p
;
5383 case CPU_ONLINE_FROZEN
:
5384 /* Strictly unneccessary, as first user will wake it. */
5385 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5388 #ifdef CONFIG_HOTPLUG_CPU
5389 case CPU_UP_CANCELED
:
5390 case CPU_UP_CANCELED_FROZEN
:
5391 if (!cpu_rq(cpu
)->migration_thread
)
5393 /* Unbind it from offline cpu so it can run. Fall thru. */
5394 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5395 any_online_cpu(cpu_online_map
));
5396 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5397 cpu_rq(cpu
)->migration_thread
= NULL
;
5401 case CPU_DEAD_FROZEN
:
5402 migrate_live_tasks(cpu
);
5404 kthread_stop(rq
->migration_thread
);
5405 rq
->migration_thread
= NULL
;
5406 /* Idle task back to normal (off runqueue, low prio) */
5407 rq
= task_rq_lock(rq
->idle
, &flags
);
5408 update_rq_clock(rq
);
5409 deactivate_task(rq
, rq
->idle
, 0);
5410 rq
->idle
->static_prio
= MAX_PRIO
;
5411 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5412 rq
->idle
->sched_class
= &idle_sched_class
;
5413 migrate_dead_tasks(cpu
);
5414 task_rq_unlock(rq
, &flags
);
5415 migrate_nr_uninterruptible(rq
);
5416 BUG_ON(rq
->nr_running
!= 0);
5418 /* No need to migrate the tasks: it was best-effort if
5419 * they didn't take sched_hotcpu_mutex. Just wake up
5420 * the requestors. */
5421 spin_lock_irq(&rq
->lock
);
5422 while (!list_empty(&rq
->migration_queue
)) {
5423 struct migration_req
*req
;
5425 req
= list_entry(rq
->migration_queue
.next
,
5426 struct migration_req
, list
);
5427 list_del_init(&req
->list
);
5428 complete(&req
->done
);
5430 spin_unlock_irq(&rq
->lock
);
5433 case CPU_LOCK_RELEASE
:
5434 mutex_unlock(&sched_hotcpu_mutex
);
5440 /* Register at highest priority so that task migration (migrate_all_tasks)
5441 * happens before everything else.
5443 static struct notifier_block __cpuinitdata migration_notifier
= {
5444 .notifier_call
= migration_call
,
5448 int __init
migration_init(void)
5450 void *cpu
= (void *)(long)smp_processor_id();
5453 /* Start one for the boot CPU: */
5454 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5455 BUG_ON(err
== NOTIFY_BAD
);
5456 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5457 register_cpu_notifier(&migration_notifier
);
5465 /* Number of possible processor ids */
5466 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5467 EXPORT_SYMBOL(nr_cpu_ids
);
5469 #undef SCHED_DOMAIN_DEBUG
5470 #ifdef SCHED_DOMAIN_DEBUG
5471 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5476 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5480 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5485 struct sched_group
*group
= sd
->groups
;
5486 cpumask_t groupmask
;
5488 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5489 cpus_clear(groupmask
);
5492 for (i
= 0; i
< level
+ 1; i
++)
5494 printk("domain %d: ", level
);
5496 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5497 printk("does not load-balance\n");
5499 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5504 printk("span %s\n", str
);
5506 if (!cpu_isset(cpu
, sd
->span
))
5507 printk(KERN_ERR
"ERROR: domain->span does not contain "
5509 if (!cpu_isset(cpu
, group
->cpumask
))
5510 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5514 for (i
= 0; i
< level
+ 2; i
++)
5520 printk(KERN_ERR
"ERROR: group is NULL\n");
5524 if (!group
->__cpu_power
) {
5526 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5530 if (!cpus_weight(group
->cpumask
)) {
5532 printk(KERN_ERR
"ERROR: empty group\n");
5535 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5537 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5540 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5542 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5545 group
= group
->next
;
5546 } while (group
!= sd
->groups
);
5549 if (!cpus_equal(sd
->span
, groupmask
))
5550 printk(KERN_ERR
"ERROR: groups don't span "
5558 if (!cpus_subset(groupmask
, sd
->span
))
5559 printk(KERN_ERR
"ERROR: parent span is not a superset "
5560 "of domain->span\n");
5565 # define sched_domain_debug(sd, cpu) do { } while (0)
5568 static int sd_degenerate(struct sched_domain
*sd
)
5570 if (cpus_weight(sd
->span
) == 1)
5573 /* Following flags need at least 2 groups */
5574 if (sd
->flags
& (SD_LOAD_BALANCE
|
5575 SD_BALANCE_NEWIDLE
|
5579 SD_SHARE_PKG_RESOURCES
)) {
5580 if (sd
->groups
!= sd
->groups
->next
)
5584 /* Following flags don't use groups */
5585 if (sd
->flags
& (SD_WAKE_IDLE
|
5594 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5596 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5598 if (sd_degenerate(parent
))
5601 if (!cpus_equal(sd
->span
, parent
->span
))
5604 /* Does parent contain flags not in child? */
5605 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5606 if (cflags
& SD_WAKE_AFFINE
)
5607 pflags
&= ~SD_WAKE_BALANCE
;
5608 /* Flags needing groups don't count if only 1 group in parent */
5609 if (parent
->groups
== parent
->groups
->next
) {
5610 pflags
&= ~(SD_LOAD_BALANCE
|
5611 SD_BALANCE_NEWIDLE
|
5615 SD_SHARE_PKG_RESOURCES
);
5617 if (~cflags
& pflags
)
5624 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5625 * hold the hotplug lock.
5627 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5629 struct rq
*rq
= cpu_rq(cpu
);
5630 struct sched_domain
*tmp
;
5632 /* Remove the sched domains which do not contribute to scheduling. */
5633 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5634 struct sched_domain
*parent
= tmp
->parent
;
5637 if (sd_parent_degenerate(tmp
, parent
)) {
5638 tmp
->parent
= parent
->parent
;
5640 parent
->parent
->child
= tmp
;
5644 if (sd
&& sd_degenerate(sd
)) {
5650 sched_domain_debug(sd
, cpu
);
5652 rcu_assign_pointer(rq
->sd
, sd
);
5655 /* cpus with isolated domains */
5656 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5658 /* Setup the mask of cpus configured for isolated domains */
5659 static int __init
isolated_cpu_setup(char *str
)
5661 int ints
[NR_CPUS
], i
;
5663 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5664 cpus_clear(cpu_isolated_map
);
5665 for (i
= 1; i
<= ints
[0]; i
++)
5666 if (ints
[i
] < NR_CPUS
)
5667 cpu_set(ints
[i
], cpu_isolated_map
);
5671 __setup ("isolcpus=", isolated_cpu_setup
);
5674 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5675 * to a function which identifies what group(along with sched group) a CPU
5676 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5677 * (due to the fact that we keep track of groups covered with a cpumask_t).
5679 * init_sched_build_groups will build a circular linked list of the groups
5680 * covered by the given span, and will set each group's ->cpumask correctly,
5681 * and ->cpu_power to 0.
5684 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5685 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5686 struct sched_group
**sg
))
5688 struct sched_group
*first
= NULL
, *last
= NULL
;
5689 cpumask_t covered
= CPU_MASK_NONE
;
5692 for_each_cpu_mask(i
, span
) {
5693 struct sched_group
*sg
;
5694 int group
= group_fn(i
, cpu_map
, &sg
);
5697 if (cpu_isset(i
, covered
))
5700 sg
->cpumask
= CPU_MASK_NONE
;
5701 sg
->__cpu_power
= 0;
5703 for_each_cpu_mask(j
, span
) {
5704 if (group_fn(j
, cpu_map
, NULL
) != group
)
5707 cpu_set(j
, covered
);
5708 cpu_set(j
, sg
->cpumask
);
5719 #define SD_NODES_PER_DOMAIN 16
5724 * find_next_best_node - find the next node to include in a sched_domain
5725 * @node: node whose sched_domain we're building
5726 * @used_nodes: nodes already in the sched_domain
5728 * Find the next node to include in a given scheduling domain. Simply
5729 * finds the closest node not already in the @used_nodes map.
5731 * Should use nodemask_t.
5733 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5735 int i
, n
, val
, min_val
, best_node
= 0;
5739 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5740 /* Start at @node */
5741 n
= (node
+ i
) % MAX_NUMNODES
;
5743 if (!nr_cpus_node(n
))
5746 /* Skip already used nodes */
5747 if (test_bit(n
, used_nodes
))
5750 /* Simple min distance search */
5751 val
= node_distance(node
, n
);
5753 if (val
< min_val
) {
5759 set_bit(best_node
, used_nodes
);
5764 * sched_domain_node_span - get a cpumask for a node's sched_domain
5765 * @node: node whose cpumask we're constructing
5766 * @size: number of nodes to include in this span
5768 * Given a node, construct a good cpumask for its sched_domain to span. It
5769 * should be one that prevents unnecessary balancing, but also spreads tasks
5772 static cpumask_t
sched_domain_node_span(int node
)
5774 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5775 cpumask_t span
, nodemask
;
5779 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5781 nodemask
= node_to_cpumask(node
);
5782 cpus_or(span
, span
, nodemask
);
5783 set_bit(node
, used_nodes
);
5785 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5786 int next_node
= find_next_best_node(node
, used_nodes
);
5788 nodemask
= node_to_cpumask(next_node
);
5789 cpus_or(span
, span
, nodemask
);
5796 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5799 * SMT sched-domains:
5801 #ifdef CONFIG_SCHED_SMT
5802 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5803 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5805 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5806 struct sched_group
**sg
)
5809 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5815 * multi-core sched-domains:
5817 #ifdef CONFIG_SCHED_MC
5818 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5819 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
5822 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5823 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5824 struct sched_group
**sg
)
5827 cpumask_t mask
= cpu_sibling_map
[cpu
];
5828 cpus_and(mask
, mask
, *cpu_map
);
5829 group
= first_cpu(mask
);
5831 *sg
= &per_cpu(sched_group_core
, group
);
5834 #elif defined(CONFIG_SCHED_MC)
5835 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5836 struct sched_group
**sg
)
5839 *sg
= &per_cpu(sched_group_core
, cpu
);
5844 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5845 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
5847 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
5848 struct sched_group
**sg
)
5851 #ifdef CONFIG_SCHED_MC
5852 cpumask_t mask
= cpu_coregroup_map(cpu
);
5853 cpus_and(mask
, mask
, *cpu_map
);
5854 group
= first_cpu(mask
);
5855 #elif defined(CONFIG_SCHED_SMT)
5856 cpumask_t mask
= cpu_sibling_map
[cpu
];
5857 cpus_and(mask
, mask
, *cpu_map
);
5858 group
= first_cpu(mask
);
5863 *sg
= &per_cpu(sched_group_phys
, group
);
5869 * The init_sched_build_groups can't handle what we want to do with node
5870 * groups, so roll our own. Now each node has its own list of groups which
5871 * gets dynamically allocated.
5873 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5874 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5876 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5877 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
5879 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
5880 struct sched_group
**sg
)
5882 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
5885 cpus_and(nodemask
, nodemask
, *cpu_map
);
5886 group
= first_cpu(nodemask
);
5889 *sg
= &per_cpu(sched_group_allnodes
, group
);
5893 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5895 struct sched_group
*sg
= group_head
;
5901 for_each_cpu_mask(j
, sg
->cpumask
) {
5902 struct sched_domain
*sd
;
5904 sd
= &per_cpu(phys_domains
, j
);
5905 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5907 * Only add "power" once for each
5913 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
5916 if (sg
!= group_head
)
5922 /* Free memory allocated for various sched_group structures */
5923 static void free_sched_groups(const cpumask_t
*cpu_map
)
5927 for_each_cpu_mask(cpu
, *cpu_map
) {
5928 struct sched_group
**sched_group_nodes
5929 = sched_group_nodes_bycpu
[cpu
];
5931 if (!sched_group_nodes
)
5934 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5935 cpumask_t nodemask
= node_to_cpumask(i
);
5936 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5938 cpus_and(nodemask
, nodemask
, *cpu_map
);
5939 if (cpus_empty(nodemask
))
5949 if (oldsg
!= sched_group_nodes
[i
])
5952 kfree(sched_group_nodes
);
5953 sched_group_nodes_bycpu
[cpu
] = NULL
;
5957 static void free_sched_groups(const cpumask_t
*cpu_map
)
5963 * Initialize sched groups cpu_power.
5965 * cpu_power indicates the capacity of sched group, which is used while
5966 * distributing the load between different sched groups in a sched domain.
5967 * Typically cpu_power for all the groups in a sched domain will be same unless
5968 * there are asymmetries in the topology. If there are asymmetries, group
5969 * having more cpu_power will pickup more load compared to the group having
5972 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5973 * the maximum number of tasks a group can handle in the presence of other idle
5974 * or lightly loaded groups in the same sched domain.
5976 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
5978 struct sched_domain
*child
;
5979 struct sched_group
*group
;
5981 WARN_ON(!sd
|| !sd
->groups
);
5983 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
5988 sd
->groups
->__cpu_power
= 0;
5991 * For perf policy, if the groups in child domain share resources
5992 * (for example cores sharing some portions of the cache hierarchy
5993 * or SMT), then set this domain groups cpu_power such that each group
5994 * can handle only one task, when there are other idle groups in the
5995 * same sched domain.
5997 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
5999 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6000 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6005 * add cpu_power of each child group to this groups cpu_power
6007 group
= child
->groups
;
6009 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6010 group
= group
->next
;
6011 } while (group
!= child
->groups
);
6015 * Build sched domains for a given set of cpus and attach the sched domains
6016 * to the individual cpus
6018 static int build_sched_domains(const cpumask_t
*cpu_map
)
6022 struct sched_group
**sched_group_nodes
= NULL
;
6023 int sd_allnodes
= 0;
6026 * Allocate the per-node list of sched groups
6028 sched_group_nodes
= kzalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
6030 if (!sched_group_nodes
) {
6031 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6034 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6038 * Set up domains for cpus specified by the cpu_map.
6040 for_each_cpu_mask(i
, *cpu_map
) {
6041 struct sched_domain
*sd
= NULL
, *p
;
6042 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6044 cpus_and(nodemask
, nodemask
, *cpu_map
);
6047 if (cpus_weight(*cpu_map
) >
6048 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6049 sd
= &per_cpu(allnodes_domains
, i
);
6050 *sd
= SD_ALLNODES_INIT
;
6051 sd
->span
= *cpu_map
;
6052 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6058 sd
= &per_cpu(node_domains
, i
);
6060 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6064 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6068 sd
= &per_cpu(phys_domains
, i
);
6070 sd
->span
= nodemask
;
6074 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6076 #ifdef CONFIG_SCHED_MC
6078 sd
= &per_cpu(core_domains
, i
);
6080 sd
->span
= cpu_coregroup_map(i
);
6081 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6084 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6087 #ifdef CONFIG_SCHED_SMT
6089 sd
= &per_cpu(cpu_domains
, i
);
6090 *sd
= SD_SIBLING_INIT
;
6091 sd
->span
= cpu_sibling_map
[i
];
6092 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6095 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6099 #ifdef CONFIG_SCHED_SMT
6100 /* Set up CPU (sibling) groups */
6101 for_each_cpu_mask(i
, *cpu_map
) {
6102 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
6103 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6104 if (i
!= first_cpu(this_sibling_map
))
6107 init_sched_build_groups(this_sibling_map
, cpu_map
,
6112 #ifdef CONFIG_SCHED_MC
6113 /* Set up multi-core groups */
6114 for_each_cpu_mask(i
, *cpu_map
) {
6115 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6116 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6117 if (i
!= first_cpu(this_core_map
))
6119 init_sched_build_groups(this_core_map
, cpu_map
,
6120 &cpu_to_core_group
);
6124 /* Set up physical groups */
6125 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6126 cpumask_t nodemask
= node_to_cpumask(i
);
6128 cpus_and(nodemask
, nodemask
, *cpu_map
);
6129 if (cpus_empty(nodemask
))
6132 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6136 /* Set up node groups */
6138 init_sched_build_groups(*cpu_map
, cpu_map
,
6139 &cpu_to_allnodes_group
);
6141 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6142 /* Set up node groups */
6143 struct sched_group
*sg
, *prev
;
6144 cpumask_t nodemask
= node_to_cpumask(i
);
6145 cpumask_t domainspan
;
6146 cpumask_t covered
= CPU_MASK_NONE
;
6149 cpus_and(nodemask
, nodemask
, *cpu_map
);
6150 if (cpus_empty(nodemask
)) {
6151 sched_group_nodes
[i
] = NULL
;
6155 domainspan
= sched_domain_node_span(i
);
6156 cpus_and(domainspan
, domainspan
, *cpu_map
);
6158 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6160 printk(KERN_WARNING
"Can not alloc domain group for "
6164 sched_group_nodes
[i
] = sg
;
6165 for_each_cpu_mask(j
, nodemask
) {
6166 struct sched_domain
*sd
;
6168 sd
= &per_cpu(node_domains
, j
);
6171 sg
->__cpu_power
= 0;
6172 sg
->cpumask
= nodemask
;
6174 cpus_or(covered
, covered
, nodemask
);
6177 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6178 cpumask_t tmp
, notcovered
;
6179 int n
= (i
+ j
) % MAX_NUMNODES
;
6181 cpus_complement(notcovered
, covered
);
6182 cpus_and(tmp
, notcovered
, *cpu_map
);
6183 cpus_and(tmp
, tmp
, domainspan
);
6184 if (cpus_empty(tmp
))
6187 nodemask
= node_to_cpumask(n
);
6188 cpus_and(tmp
, tmp
, nodemask
);
6189 if (cpus_empty(tmp
))
6192 sg
= kmalloc_node(sizeof(struct sched_group
),
6196 "Can not alloc domain group for node %d\n", j
);
6199 sg
->__cpu_power
= 0;
6201 sg
->next
= prev
->next
;
6202 cpus_or(covered
, covered
, tmp
);
6209 /* Calculate CPU power for physical packages and nodes */
6210 #ifdef CONFIG_SCHED_SMT
6211 for_each_cpu_mask(i
, *cpu_map
) {
6212 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6214 init_sched_groups_power(i
, sd
);
6217 #ifdef CONFIG_SCHED_MC
6218 for_each_cpu_mask(i
, *cpu_map
) {
6219 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6221 init_sched_groups_power(i
, sd
);
6225 for_each_cpu_mask(i
, *cpu_map
) {
6226 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6228 init_sched_groups_power(i
, sd
);
6232 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6233 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6236 struct sched_group
*sg
;
6238 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6239 init_numa_sched_groups_power(sg
);
6243 /* Attach the domains */
6244 for_each_cpu_mask(i
, *cpu_map
) {
6245 struct sched_domain
*sd
;
6246 #ifdef CONFIG_SCHED_SMT
6247 sd
= &per_cpu(cpu_domains
, i
);
6248 #elif defined(CONFIG_SCHED_MC)
6249 sd
= &per_cpu(core_domains
, i
);
6251 sd
= &per_cpu(phys_domains
, i
);
6253 cpu_attach_domain(sd
, i
);
6260 free_sched_groups(cpu_map
);
6265 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6267 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6269 cpumask_t cpu_default_map
;
6273 * Setup mask for cpus without special case scheduling requirements.
6274 * For now this just excludes isolated cpus, but could be used to
6275 * exclude other special cases in the future.
6277 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
6279 err
= build_sched_domains(&cpu_default_map
);
6284 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6286 free_sched_groups(cpu_map
);
6290 * Detach sched domains from a group of cpus specified in cpu_map
6291 * These cpus will now be attached to the NULL domain
6293 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6297 for_each_cpu_mask(i
, *cpu_map
)
6298 cpu_attach_domain(NULL
, i
);
6299 synchronize_sched();
6300 arch_destroy_sched_domains(cpu_map
);
6304 * Partition sched domains as specified by the cpumasks below.
6305 * This attaches all cpus from the cpumasks to the NULL domain,
6306 * waits for a RCU quiescent period, recalculates sched
6307 * domain information and then attaches them back to the
6308 * correct sched domains
6309 * Call with hotplug lock held
6311 int partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6313 cpumask_t change_map
;
6316 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6317 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6318 cpus_or(change_map
, *partition1
, *partition2
);
6320 /* Detach sched domains from all of the affected cpus */
6321 detach_destroy_domains(&change_map
);
6322 if (!cpus_empty(*partition1
))
6323 err
= build_sched_domains(partition1
);
6324 if (!err
&& !cpus_empty(*partition2
))
6325 err
= build_sched_domains(partition2
);
6330 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6331 static int arch_reinit_sched_domains(void)
6335 mutex_lock(&sched_hotcpu_mutex
);
6336 detach_destroy_domains(&cpu_online_map
);
6337 err
= arch_init_sched_domains(&cpu_online_map
);
6338 mutex_unlock(&sched_hotcpu_mutex
);
6343 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6347 if (buf
[0] != '0' && buf
[0] != '1')
6351 sched_smt_power_savings
= (buf
[0] == '1');
6353 sched_mc_power_savings
= (buf
[0] == '1');
6355 ret
= arch_reinit_sched_domains();
6357 return ret
? ret
: count
;
6360 #ifdef CONFIG_SCHED_MC
6361 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6363 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6365 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6366 const char *buf
, size_t count
)
6368 return sched_power_savings_store(buf
, count
, 0);
6370 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6371 sched_mc_power_savings_store
);
6374 #ifdef CONFIG_SCHED_SMT
6375 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6377 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6379 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6380 const char *buf
, size_t count
)
6382 return sched_power_savings_store(buf
, count
, 1);
6384 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6385 sched_smt_power_savings_store
);
6388 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6392 #ifdef CONFIG_SCHED_SMT
6394 err
= sysfs_create_file(&cls
->kset
.kobj
,
6395 &attr_sched_smt_power_savings
.attr
);
6397 #ifdef CONFIG_SCHED_MC
6398 if (!err
&& mc_capable())
6399 err
= sysfs_create_file(&cls
->kset
.kobj
,
6400 &attr_sched_mc_power_savings
.attr
);
6407 * Force a reinitialization of the sched domains hierarchy. The domains
6408 * and groups cannot be updated in place without racing with the balancing
6409 * code, so we temporarily attach all running cpus to the NULL domain
6410 * which will prevent rebalancing while the sched domains are recalculated.
6412 static int update_sched_domains(struct notifier_block
*nfb
,
6413 unsigned long action
, void *hcpu
)
6416 case CPU_UP_PREPARE
:
6417 case CPU_UP_PREPARE_FROZEN
:
6418 case CPU_DOWN_PREPARE
:
6419 case CPU_DOWN_PREPARE_FROZEN
:
6420 detach_destroy_domains(&cpu_online_map
);
6423 case CPU_UP_CANCELED
:
6424 case CPU_UP_CANCELED_FROZEN
:
6425 case CPU_DOWN_FAILED
:
6426 case CPU_DOWN_FAILED_FROZEN
:
6428 case CPU_ONLINE_FROZEN
:
6430 case CPU_DEAD_FROZEN
:
6432 * Fall through and re-initialise the domains.
6439 /* The hotplug lock is already held by cpu_up/cpu_down */
6440 arch_init_sched_domains(&cpu_online_map
);
6445 void __init
sched_init_smp(void)
6447 cpumask_t non_isolated_cpus
;
6449 mutex_lock(&sched_hotcpu_mutex
);
6450 arch_init_sched_domains(&cpu_online_map
);
6451 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6452 if (cpus_empty(non_isolated_cpus
))
6453 cpu_set(smp_processor_id(), non_isolated_cpus
);
6454 mutex_unlock(&sched_hotcpu_mutex
);
6455 /* XXX: Theoretical race here - CPU may be hotplugged now */
6456 hotcpu_notifier(update_sched_domains
, 0);
6458 init_sched_domain_sysctl();
6460 /* Move init over to a non-isolated CPU */
6461 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6463 sched_init_granularity();
6466 void __init
sched_init_smp(void)
6468 sched_init_granularity();
6470 #endif /* CONFIG_SMP */
6472 int in_sched_functions(unsigned long addr
)
6474 /* Linker adds these: start and end of __sched functions */
6475 extern char __sched_text_start
[], __sched_text_end
[];
6477 return in_lock_functions(addr
) ||
6478 (addr
>= (unsigned long)__sched_text_start
6479 && addr
< (unsigned long)__sched_text_end
);
6482 static inline void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6484 cfs_rq
->tasks_timeline
= RB_ROOT
;
6485 cfs_rq
->fair_clock
= 1;
6486 #ifdef CONFIG_FAIR_GROUP_SCHED
6491 void __init
sched_init(void)
6493 u64 now
= sched_clock();
6494 int highest_cpu
= 0;
6498 * Link up the scheduling class hierarchy:
6500 rt_sched_class
.next
= &fair_sched_class
;
6501 fair_sched_class
.next
= &idle_sched_class
;
6502 idle_sched_class
.next
= NULL
;
6504 for_each_possible_cpu(i
) {
6505 struct rt_prio_array
*array
;
6509 spin_lock_init(&rq
->lock
);
6510 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6513 init_cfs_rq(&rq
->cfs
, rq
);
6514 #ifdef CONFIG_FAIR_GROUP_SCHED
6515 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6516 list_add(&rq
->cfs
.leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
6518 rq
->ls
.load_update_last
= now
;
6519 rq
->ls
.load_update_start
= now
;
6521 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6522 rq
->cpu_load
[j
] = 0;
6525 rq
->active_balance
= 0;
6526 rq
->next_balance
= jiffies
;
6529 rq
->migration_thread
= NULL
;
6530 INIT_LIST_HEAD(&rq
->migration_queue
);
6532 atomic_set(&rq
->nr_iowait
, 0);
6534 array
= &rq
->rt
.active
;
6535 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6536 INIT_LIST_HEAD(array
->queue
+ j
);
6537 __clear_bit(j
, array
->bitmap
);
6540 /* delimiter for bitsearch: */
6541 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6544 set_load_weight(&init_task
);
6546 #ifdef CONFIG_PREEMPT_NOTIFIERS
6547 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6551 nr_cpu_ids
= highest_cpu
+ 1;
6552 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6555 #ifdef CONFIG_RT_MUTEXES
6556 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6560 * The boot idle thread does lazy MMU switching as well:
6562 atomic_inc(&init_mm
.mm_count
);
6563 enter_lazy_tlb(&init_mm
, current
);
6566 * Make us the idle thread. Technically, schedule() should not be
6567 * called from this thread, however somewhere below it might be,
6568 * but because we are the idle thread, we just pick up running again
6569 * when this runqueue becomes "idle".
6571 init_idle(current
, smp_processor_id());
6573 * During early bootup we pretend to be a normal task:
6575 current
->sched_class
= &fair_sched_class
;
6578 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6579 void __might_sleep(char *file
, int line
)
6582 static unsigned long prev_jiffy
; /* ratelimiting */
6584 if ((in_atomic() || irqs_disabled()) &&
6585 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6586 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6588 prev_jiffy
= jiffies
;
6589 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6590 " context at %s:%d\n", file
, line
);
6591 printk("in_atomic():%d, irqs_disabled():%d\n",
6592 in_atomic(), irqs_disabled());
6593 debug_show_held_locks(current
);
6594 if (irqs_disabled())
6595 print_irqtrace_events(current
);
6600 EXPORT_SYMBOL(__might_sleep
);
6603 #ifdef CONFIG_MAGIC_SYSRQ
6604 void normalize_rt_tasks(void)
6606 struct task_struct
*g
, *p
;
6607 unsigned long flags
;
6611 read_lock_irq(&tasklist_lock
);
6612 do_each_thread(g
, p
) {
6614 p
->se
.wait_runtime
= 0;
6615 p
->se
.exec_start
= 0;
6616 p
->se
.wait_start_fair
= 0;
6617 p
->se
.sleep_start_fair
= 0;
6618 #ifdef CONFIG_SCHEDSTATS
6619 p
->se
.wait_start
= 0;
6620 p
->se
.sleep_start
= 0;
6621 p
->se
.block_start
= 0;
6623 task_rq(p
)->cfs
.fair_clock
= 0;
6624 task_rq(p
)->clock
= 0;
6628 * Renice negative nice level userspace
6631 if (TASK_NICE(p
) < 0 && p
->mm
)
6632 set_user_nice(p
, 0);
6636 spin_lock_irqsave(&p
->pi_lock
, flags
);
6637 rq
= __task_rq_lock(p
);
6640 * Do not touch the migration thread:
6642 if (p
== rq
->migration_thread
)
6646 update_rq_clock(rq
);
6647 on_rq
= p
->se
.on_rq
;
6649 deactivate_task(rq
, p
, 0);
6650 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6652 activate_task(rq
, p
, 0);
6653 resched_task(rq
->curr
);
6658 __task_rq_unlock(rq
);
6659 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6660 } while_each_thread(g
, p
);
6662 read_unlock_irq(&tasklist_lock
);
6665 #endif /* CONFIG_MAGIC_SYSRQ */
6669 * These functions are only useful for the IA64 MCA handling.
6671 * They can only be called when the whole system has been
6672 * stopped - every CPU needs to be quiescent, and no scheduling
6673 * activity can take place. Using them for anything else would
6674 * be a serious bug, and as a result, they aren't even visible
6675 * under any other configuration.
6679 * curr_task - return the current task for a given cpu.
6680 * @cpu: the processor in question.
6682 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6684 struct task_struct
*curr_task(int cpu
)
6686 return cpu_curr(cpu
);
6690 * set_curr_task - set the current task for a given cpu.
6691 * @cpu: the processor in question.
6692 * @p: the task pointer to set.
6694 * Description: This function must only be used when non-maskable interrupts
6695 * are serviced on a separate stack. It allows the architecture to switch the
6696 * notion of the current task on a cpu in a non-blocking manner. This function
6697 * must be called with all CPU's synchronized, and interrupts disabled, the
6698 * and caller must save the original value of the current task (see
6699 * curr_task() above) and restore that value before reenabling interrupts and
6700 * re-starting the system.
6702 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6704 void set_curr_task(int cpu
, struct task_struct
*p
)