2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
65 * - Move a bunch of definitions to .h file
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
73 * - Fix typo when reading back fan speed on 2 CPU machines
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
98 * July. 06, 2006 : 1.3
99 * - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100 * - Add missing slots fan control loop for Xserve G5
101 * - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102 * still can't properly implement the control loop for these, so let's
103 * reduce the noise a little bit, it appears that 40% still gives us
104 * a pretty good air flow
105 * - Add code to "tickle" the FCU regulary so it doesn't think that
106 * we are gone while in fact, the machine just didn't need any fan
107 * speed change lately
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/slab.h>
118 #include <linux/init.h>
119 #include <linux/spinlock.h>
120 #include <linux/wait.h>
121 #include <linux/reboot.h>
122 #include <linux/kmod.h>
123 #include <linux/i2c.h>
124 #include <asm/prom.h>
125 #include <asm/machdep.h>
127 #include <asm/system.h>
128 #include <asm/sections.h>
129 #include <asm/of_device.h>
130 #include <asm/macio.h>
131 #include <asm/of_platform.h>
133 #include "therm_pm72.h"
135 #define VERSION "1.3"
140 #define DBG(args...) printk(args)
142 #define DBG(args...) do { } while(0)
150 static struct of_device
* of_dev
;
151 static struct i2c_adapter
* u3_0
;
152 static struct i2c_adapter
* u3_1
;
153 static struct i2c_adapter
* k2
;
154 static struct i2c_client
* fcu
;
155 static struct cpu_pid_state cpu_state
[2];
156 static struct basckside_pid_params backside_params
;
157 static struct backside_pid_state backside_state
;
158 static struct drives_pid_state drives_state
;
159 static struct dimm_pid_state dimms_state
;
160 static struct slots_pid_state slots_state
;
162 static int cpu_count
;
163 static int cpu_pid_type
;
164 static pid_t ctrl_task
;
165 static struct completion ctrl_complete
;
166 static int critical_state
;
168 static s32 dimm_output_clamp
;
169 static int fcu_rpm_shift
;
170 static int fcu_tickle_ticks
;
171 static DECLARE_MUTEX(driver_lock
);
174 * We have 3 types of CPU PID control. One is "split" old style control
175 * for intake & exhaust fans, the other is "combined" control for both
176 * CPUs that also deals with the pumps when present. To be "compatible"
177 * with OS X at this point, we only use "COMBINED" on the machines that
178 * are identified as having the pumps (though that identification is at
179 * least dodgy). Ultimately, we could probably switch completely to this
180 * algorithm provided we hack it to deal with the UP case
182 #define CPU_PID_TYPE_SPLIT 0
183 #define CPU_PID_TYPE_COMBINED 1
184 #define CPU_PID_TYPE_RACKMAC 2
187 * This table describes all fans in the FCU. The "id" and "type" values
188 * are defaults valid for all earlier machines. Newer machines will
189 * eventually override the table content based on the device-tree
193 char* loc
; /* location code */
194 int type
; /* 0 = rpm, 1 = pwm, 2 = pump */
195 int id
; /* id or -1 */
198 #define FCU_FAN_RPM 0
199 #define FCU_FAN_PWM 1
201 #define FCU_FAN_ABSENT_ID -1
203 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
205 struct fcu_fan_table fcu_fans
[] = {
206 [BACKSIDE_FAN_PWM_INDEX
] = {
207 .loc
= "BACKSIDE,SYS CTRLR FAN",
209 .id
= BACKSIDE_FAN_PWM_DEFAULT_ID
,
211 [DRIVES_FAN_RPM_INDEX
] = {
214 .id
= DRIVES_FAN_RPM_DEFAULT_ID
,
216 [SLOTS_FAN_PWM_INDEX
] = {
217 .loc
= "SLOT,PCI FAN",
219 .id
= SLOTS_FAN_PWM_DEFAULT_ID
,
221 [CPUA_INTAKE_FAN_RPM_INDEX
] = {
222 .loc
= "CPU A INTAKE",
224 .id
= CPUA_INTAKE_FAN_RPM_DEFAULT_ID
,
226 [CPUA_EXHAUST_FAN_RPM_INDEX
] = {
227 .loc
= "CPU A EXHAUST",
229 .id
= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID
,
231 [CPUB_INTAKE_FAN_RPM_INDEX
] = {
232 .loc
= "CPU B INTAKE",
234 .id
= CPUB_INTAKE_FAN_RPM_DEFAULT_ID
,
236 [CPUB_EXHAUST_FAN_RPM_INDEX
] = {
237 .loc
= "CPU B EXHAUST",
239 .id
= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID
,
241 /* pumps aren't present by default, have to be looked up in the
244 [CPUA_PUMP_RPM_INDEX
] = {
247 .id
= FCU_FAN_ABSENT_ID
,
249 [CPUB_PUMP_RPM_INDEX
] = {
252 .id
= FCU_FAN_ABSENT_ID
,
255 [CPU_A1_FAN_RPM_INDEX
] = {
258 .id
= FCU_FAN_ABSENT_ID
,
260 [CPU_A2_FAN_RPM_INDEX
] = {
263 .id
= FCU_FAN_ABSENT_ID
,
265 [CPU_A3_FAN_RPM_INDEX
] = {
268 .id
= FCU_FAN_ABSENT_ID
,
270 [CPU_B1_FAN_RPM_INDEX
] = {
273 .id
= FCU_FAN_ABSENT_ID
,
275 [CPU_B2_FAN_RPM_INDEX
] = {
278 .id
= FCU_FAN_ABSENT_ID
,
280 [CPU_B3_FAN_RPM_INDEX
] = {
283 .id
= FCU_FAN_ABSENT_ID
,
288 * i2c_driver structure to attach to the host i2c controller
291 static int therm_pm72_attach(struct i2c_adapter
*adapter
);
292 static int therm_pm72_detach(struct i2c_adapter
*adapter
);
294 static struct i2c_driver therm_pm72_driver
=
297 .name
= "therm_pm72",
299 .attach_adapter
= therm_pm72_attach
,
300 .detach_adapter
= therm_pm72_detach
,
304 * Utility function to create an i2c_client structure and
305 * attach it to one of u3 adapters
307 static struct i2c_client
*attach_i2c_chip(int id
, const char *name
)
309 struct i2c_client
*clt
;
310 struct i2c_adapter
*adap
;
321 clt
= kzalloc(sizeof(struct i2c_client
), GFP_KERNEL
);
325 clt
->addr
= (id
>> 1) & 0x7f;
327 clt
->driver
= &therm_pm72_driver
;
328 strncpy(clt
->name
, name
, I2C_NAME_SIZE
-1);
330 if (i2c_attach_client(clt
)) {
331 printk(KERN_ERR
"therm_pm72: Failed to attach to i2c ID 0x%x\n", id
);
339 * Utility function to get rid of the i2c_client structure
340 * (will also detach from the adapter hopepfully)
342 static void detach_i2c_chip(struct i2c_client
*clt
)
344 i2c_detach_client(clt
);
349 * Here are the i2c chip access wrappers
352 static void initialize_adc(struct cpu_pid_state
*state
)
357 /* Read ADC the configuration register and cache it. We
358 * also make sure Config2 contains proper values, I've seen
359 * cases where we got stale grabage in there, thus preventing
360 * proper reading of conv. values
366 i2c_master_send(state
->monitor
, buf
, 2);
368 /* Read & cache Config1 */
370 rc
= i2c_master_send(state
->monitor
, buf
, 1);
372 rc
= i2c_master_recv(state
->monitor
, buf
, 1);
374 state
->adc_config
= buf
[0];
375 DBG("ADC config reg: %02x\n", state
->adc_config
);
376 /* Disable shutdown mode */
377 state
->adc_config
&= 0xfe;
379 buf
[1] = state
->adc_config
;
380 rc
= i2c_master_send(state
->monitor
, buf
, 2);
384 printk(KERN_ERR
"therm_pm72: Error reading ADC config"
388 static int read_smon_adc(struct cpu_pid_state
*state
, int chan
)
390 int rc
, data
, tries
= 0;
396 buf
[1] = (state
->adc_config
& 0x1f) | (chan
<< 5);
397 rc
= i2c_master_send(state
->monitor
, buf
, 2);
400 /* Wait for convertion */
402 /* Switch to data register */
404 rc
= i2c_master_send(state
->monitor
, buf
, 1);
408 rc
= i2c_master_recv(state
->monitor
, buf
, 2);
411 data
= ((u16
)buf
[0]) << 8 | (u16
)buf
[1];
414 DBG("Error reading ADC, retrying...\n");
416 printk(KERN_ERR
"therm_pm72: Error reading ADC !\n");
423 static int read_lm87_reg(struct i2c_client
* chip
, int reg
)
431 rc
= i2c_master_send(chip
, &buf
, 1);
434 rc
= i2c_master_recv(chip
, &buf
, 1);
439 DBG("Error reading LM87, retrying...\n");
441 printk(KERN_ERR
"therm_pm72: Error reading LM87 !\n");
448 static int fan_read_reg(int reg
, unsigned char *buf
, int nb
)
455 nw
= i2c_master_send(fcu
, buf
, 1);
456 if (nw
> 0 || (nw
< 0 && nw
!= -EIO
) || tries
>= 100)
462 printk(KERN_ERR
"Failure writing address to FCU: %d", nw
);
467 nr
= i2c_master_recv(fcu
, buf
, nb
);
468 if (nr
> 0 || (nr
< 0 && nr
!= ENODEV
) || tries
>= 100)
474 printk(KERN_ERR
"Failure reading data from FCU: %d", nw
);
478 static int fan_write_reg(int reg
, const unsigned char *ptr
, int nb
)
481 unsigned char buf
[16];
484 memcpy(buf
+1, ptr
, nb
);
488 nw
= i2c_master_send(fcu
, buf
, nb
);
489 if (nw
> 0 || (nw
< 0 && nw
!= EIO
) || tries
>= 100)
495 printk(KERN_ERR
"Failure writing to FCU: %d", nw
);
499 static int start_fcu(void)
501 unsigned char buf
= 0xff;
504 rc
= fan_write_reg(0xe, &buf
, 1);
507 rc
= fan_write_reg(0x2e, &buf
, 1);
510 rc
= fan_read_reg(0, &buf
, 1);
513 fcu_rpm_shift
= (buf
== 1) ? 2 : 3;
514 printk(KERN_DEBUG
"FCU Initialized, RPM fan shift is %d\n",
520 static int set_rpm_fan(int fan_index
, int rpm
)
522 unsigned char buf
[2];
523 int rc
, id
, min
, max
;
525 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
527 id
= fcu_fans
[fan_index
].id
;
528 if (id
== FCU_FAN_ABSENT_ID
)
531 min
= 2400 >> fcu_rpm_shift
;
532 max
= 56000 >> fcu_rpm_shift
;
538 buf
[0] = rpm
>> (8 - fcu_rpm_shift
);
539 buf
[1] = rpm
<< fcu_rpm_shift
;
540 rc
= fan_write_reg(0x10 + (id
* 2), buf
, 2);
546 static int get_rpm_fan(int fan_index
, int programmed
)
548 unsigned char failure
;
549 unsigned char active
;
550 unsigned char buf
[2];
551 int rc
, id
, reg_base
;
553 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
555 id
= fcu_fans
[fan_index
].id
;
556 if (id
== FCU_FAN_ABSENT_ID
)
559 rc
= fan_read_reg(0xb, &failure
, 1);
562 if ((failure
& (1 << id
)) != 0)
564 rc
= fan_read_reg(0xd, &active
, 1);
567 if ((active
& (1 << id
)) == 0)
570 /* Programmed value or real current speed */
571 reg_base
= programmed
? 0x10 : 0x11;
572 rc
= fan_read_reg(reg_base
+ (id
* 2), buf
, 2);
576 return (buf
[0] << (8 - fcu_rpm_shift
)) | buf
[1] >> fcu_rpm_shift
;
579 static int set_pwm_fan(int fan_index
, int pwm
)
581 unsigned char buf
[2];
584 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
586 id
= fcu_fans
[fan_index
].id
;
587 if (id
== FCU_FAN_ABSENT_ID
)
594 pwm
= (pwm
* 2559) / 1000;
596 rc
= fan_write_reg(0x30 + (id
* 2), buf
, 1);
602 static int get_pwm_fan(int fan_index
)
604 unsigned char failure
;
605 unsigned char active
;
606 unsigned char buf
[2];
609 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
611 id
= fcu_fans
[fan_index
].id
;
612 if (id
== FCU_FAN_ABSENT_ID
)
615 rc
= fan_read_reg(0x2b, &failure
, 1);
618 if ((failure
& (1 << id
)) != 0)
620 rc
= fan_read_reg(0x2d, &active
, 1);
623 if ((active
& (1 << id
)) == 0)
626 /* Programmed value or real current speed */
627 rc
= fan_read_reg(0x30 + (id
* 2), buf
, 1);
631 return (buf
[0] * 1000) / 2559;
634 static void tickle_fcu(void)
638 pwm
= get_pwm_fan(SLOTS_FAN_PWM_INDEX
);
640 DBG("FCU Tickle, slots fan is: %d\n", pwm
);
645 pwm
= SLOTS_FAN_DEFAULT_PWM
;
646 } else if (pwm
< SLOTS_PID_OUTPUT_MIN
)
647 pwm
= SLOTS_PID_OUTPUT_MIN
;
649 /* That is hopefully enough to make the FCU happy */
650 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, pwm
);
655 * Utility routine to read the CPU calibration EEPROM data
656 * from the device-tree
658 static int read_eeprom(int cpu
, struct mpu_data
*out
)
660 struct device_node
*np
;
665 /* prom.c routine for finding a node by path is a bit brain dead
666 * and requires exact @xxx unit numbers. This is a bit ugly but
667 * will work for these machines
669 sprintf(nodename
, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu
? 2 : 0);
670 np
= of_find_node_by_path(nodename
);
672 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid node from device-tree\n");
675 data
= of_get_property(np
, "cpuid", &len
);
677 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid property from device-tree\n");
681 memcpy(out
, data
, sizeof(struct mpu_data
));
687 static void fetch_cpu_pumps_minmax(void)
689 struct cpu_pid_state
*state0
= &cpu_state
[0];
690 struct cpu_pid_state
*state1
= &cpu_state
[1];
691 u16 pump_min
= 0, pump_max
= 0xffff;
694 /* Try to fetch pumps min/max infos from eeprom */
696 memcpy(&tmp
, &state0
->mpu
.processor_part_num
, 8);
697 if (tmp
[0] != 0xffff && tmp
[1] != 0xffff) {
698 pump_min
= max(pump_min
, tmp
[0]);
699 pump_max
= min(pump_max
, tmp
[1]);
701 if (tmp
[2] != 0xffff && tmp
[3] != 0xffff) {
702 pump_min
= max(pump_min
, tmp
[2]);
703 pump_max
= min(pump_max
, tmp
[3]);
706 /* Double check the values, this _IS_ needed as the EEPROM on
707 * some dual 2.5Ghz G5s seem, at least, to have both min & max
708 * same to the same value ... (grrrr)
710 if (pump_min
== pump_max
|| pump_min
== 0 || pump_max
== 0xffff) {
711 pump_min
= CPU_PUMP_OUTPUT_MIN
;
712 pump_max
= CPU_PUMP_OUTPUT_MAX
;
715 state0
->pump_min
= state1
->pump_min
= pump_min
;
716 state0
->pump_max
= state1
->pump_max
= pump_max
;
720 * Now, unfortunately, sysfs doesn't give us a nice void * we could
721 * pass around to the attribute functions, so we don't really have
722 * choice but implement a bunch of them...
724 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
725 * the input twice... I accept patches :)
727 #define BUILD_SHOW_FUNC_FIX(name, data) \
728 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
731 down(&driver_lock); \
732 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
736 #define BUILD_SHOW_FUNC_INT(name, data) \
737 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
739 return sprintf(buf, "%d", data); \
742 BUILD_SHOW_FUNC_FIX(cpu0_temperature
, cpu_state
[0].last_temp
)
743 BUILD_SHOW_FUNC_FIX(cpu0_voltage
, cpu_state
[0].voltage
)
744 BUILD_SHOW_FUNC_FIX(cpu0_current
, cpu_state
[0].current_a
)
745 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm
, cpu_state
[0].rpm
)
746 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm
, cpu_state
[0].intake_rpm
)
748 BUILD_SHOW_FUNC_FIX(cpu1_temperature
, cpu_state
[1].last_temp
)
749 BUILD_SHOW_FUNC_FIX(cpu1_voltage
, cpu_state
[1].voltage
)
750 BUILD_SHOW_FUNC_FIX(cpu1_current
, cpu_state
[1].current_a
)
751 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm
, cpu_state
[1].rpm
)
752 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm
, cpu_state
[1].intake_rpm
)
754 BUILD_SHOW_FUNC_FIX(backside_temperature
, backside_state
.last_temp
)
755 BUILD_SHOW_FUNC_INT(backside_fan_pwm
, backside_state
.pwm
)
757 BUILD_SHOW_FUNC_FIX(drives_temperature
, drives_state
.last_temp
)
758 BUILD_SHOW_FUNC_INT(drives_fan_rpm
, drives_state
.rpm
)
760 BUILD_SHOW_FUNC_FIX(slots_temperature
, slots_state
.last_temp
)
761 BUILD_SHOW_FUNC_INT(slots_fan_pwm
, slots_state
.pwm
)
763 BUILD_SHOW_FUNC_FIX(dimms_temperature
, dimms_state
.last_temp
)
765 static DEVICE_ATTR(cpu0_temperature
,S_IRUGO
,show_cpu0_temperature
,NULL
);
766 static DEVICE_ATTR(cpu0_voltage
,S_IRUGO
,show_cpu0_voltage
,NULL
);
767 static DEVICE_ATTR(cpu0_current
,S_IRUGO
,show_cpu0_current
,NULL
);
768 static DEVICE_ATTR(cpu0_exhaust_fan_rpm
,S_IRUGO
,show_cpu0_exhaust_fan_rpm
,NULL
);
769 static DEVICE_ATTR(cpu0_intake_fan_rpm
,S_IRUGO
,show_cpu0_intake_fan_rpm
,NULL
);
771 static DEVICE_ATTR(cpu1_temperature
,S_IRUGO
,show_cpu1_temperature
,NULL
);
772 static DEVICE_ATTR(cpu1_voltage
,S_IRUGO
,show_cpu1_voltage
,NULL
);
773 static DEVICE_ATTR(cpu1_current
,S_IRUGO
,show_cpu1_current
,NULL
);
774 static DEVICE_ATTR(cpu1_exhaust_fan_rpm
,S_IRUGO
,show_cpu1_exhaust_fan_rpm
,NULL
);
775 static DEVICE_ATTR(cpu1_intake_fan_rpm
,S_IRUGO
,show_cpu1_intake_fan_rpm
,NULL
);
777 static DEVICE_ATTR(backside_temperature
,S_IRUGO
,show_backside_temperature
,NULL
);
778 static DEVICE_ATTR(backside_fan_pwm
,S_IRUGO
,show_backside_fan_pwm
,NULL
);
780 static DEVICE_ATTR(drives_temperature
,S_IRUGO
,show_drives_temperature
,NULL
);
781 static DEVICE_ATTR(drives_fan_rpm
,S_IRUGO
,show_drives_fan_rpm
,NULL
);
783 static DEVICE_ATTR(slots_temperature
,S_IRUGO
,show_slots_temperature
,NULL
);
784 static DEVICE_ATTR(slots_fan_pwm
,S_IRUGO
,show_slots_fan_pwm
,NULL
);
786 static DEVICE_ATTR(dimms_temperature
,S_IRUGO
,show_dimms_temperature
,NULL
);
789 * CPUs fans control loop
792 static int do_read_one_cpu_values(struct cpu_pid_state
*state
, s32
*temp
, s32
*power
)
794 s32 ltemp
, volts
, amps
;
797 /* Default (in case of error) */
798 *temp
= state
->cur_temp
;
799 *power
= state
->cur_power
;
801 if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
)
802 index
= (state
->index
== 0) ?
803 CPU_A1_FAN_RPM_INDEX
: CPU_B1_FAN_RPM_INDEX
;
805 index
= (state
->index
== 0) ?
806 CPUA_EXHAUST_FAN_RPM_INDEX
: CPUB_EXHAUST_FAN_RPM_INDEX
;
808 /* Read current fan status */
809 rc
= get_rpm_fan(index
, !RPM_PID_USE_ACTUAL_SPEED
);
811 /* XXX What do we do now ? Nothing for now, keep old value, but
812 * return error upstream
814 DBG(" cpu %d, fan reading error !\n", state
->index
);
817 DBG(" cpu %d, exhaust RPM: %d\n", state
->index
, state
->rpm
);
820 /* Get some sensor readings and scale it */
821 ltemp
= read_smon_adc(state
, 1);
823 /* XXX What do we do now ? */
827 DBG(" cpu %d, temp reading error !\n", state
->index
);
829 /* Fixup temperature according to diode calibration
831 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
833 ltemp
, state
->mpu
.mdiode
, state
->mpu
.bdiode
);
834 *temp
= ((s32
)ltemp
* (s32
)state
->mpu
.mdiode
+ ((s32
)state
->mpu
.bdiode
<< 12)) >> 2;
835 state
->last_temp
= *temp
;
836 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp
)));
840 * Read voltage & current and calculate power
842 volts
= read_smon_adc(state
, 3);
843 amps
= read_smon_adc(state
, 4);
845 /* Scale voltage and current raw sensor values according to fixed scales
846 * obtained in Darwin and calculate power from I and V
848 volts
*= ADC_CPU_VOLTAGE_SCALE
;
849 amps
*= ADC_CPU_CURRENT_SCALE
;
850 *power
= (((u64
)volts
) * ((u64
)amps
)) >> 16;
851 state
->voltage
= volts
;
852 state
->current_a
= amps
;
853 state
->last_power
= *power
;
855 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
856 state
->index
, FIX32TOPRINT(state
->current_a
),
857 FIX32TOPRINT(state
->voltage
), FIX32TOPRINT(*power
));
862 static void do_cpu_pid(struct cpu_pid_state
*state
, s32 temp
, s32 power
)
864 s32 power_target
, integral
, derivative
, proportional
, adj_in_target
, sval
;
865 s64 integ_p
, deriv_p
, prop_p
, sum
;
868 /* Calculate power target value (could be done once for all)
869 * and convert to a 16.16 fp number
871 power_target
= ((u32
)(state
->mpu
.pmaxh
- state
->mpu
.padjmax
)) << 16;
872 DBG(" power target: %d.%03d, error: %d.%03d\n",
873 FIX32TOPRINT(power_target
), FIX32TOPRINT(power_target
- power
));
875 /* Store temperature and power in history array */
876 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
877 state
->temp_history
[state
->cur_temp
] = temp
;
878 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
879 state
->power_history
[state
->cur_power
] = power
;
880 state
->error_history
[state
->cur_power
] = power_target
- power
;
882 /* If first loop, fill the history table */
884 for (i
= 0; i
< (state
->count_power
- 1); i
++) {
885 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
886 state
->power_history
[state
->cur_power
] = power
;
887 state
->error_history
[state
->cur_power
] = power_target
- power
;
889 for (i
= 0; i
< (CPU_TEMP_HISTORY_SIZE
- 1); i
++) {
890 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
891 state
->temp_history
[state
->cur_temp
] = temp
;
896 /* Calculate the integral term normally based on the "power" values */
899 for (i
= 0; i
< state
->count_power
; i
++)
900 integral
+= state
->error_history
[i
];
901 integral
*= CPU_PID_INTERVAL
;
902 DBG(" integral: %08x\n", integral
);
904 /* Calculate the adjusted input (sense value).
907 * so the result is 28.36
909 * input target is mpu.ttarget, input max is mpu.tmax
911 integ_p
= ((s64
)state
->mpu
.pid_gr
) * (s64
)integral
;
912 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
913 sval
= (state
->mpu
.tmax
<< 16) - ((integ_p
>> 20) & 0xffffffff);
914 adj_in_target
= (state
->mpu
.ttarget
<< 16);
915 if (adj_in_target
> sval
)
916 adj_in_target
= sval
;
917 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target
),
920 /* Calculate the derivative term */
921 derivative
= state
->temp_history
[state
->cur_temp
] -
922 state
->temp_history
[(state
->cur_temp
+ CPU_TEMP_HISTORY_SIZE
- 1)
923 % CPU_TEMP_HISTORY_SIZE
];
924 derivative
/= CPU_PID_INTERVAL
;
925 deriv_p
= ((s64
)state
->mpu
.pid_gd
) * (s64
)derivative
;
926 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
929 /* Calculate the proportional term */
930 proportional
= temp
- adj_in_target
;
931 prop_p
= ((s64
)state
->mpu
.pid_gp
) * (s64
)proportional
;
932 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
938 DBG(" sum: %d\n", (int)sum
);
939 state
->rpm
+= (s32
)sum
;
942 static void do_monitor_cpu_combined(void)
944 struct cpu_pid_state
*state0
= &cpu_state
[0];
945 struct cpu_pid_state
*state1
= &cpu_state
[1];
946 s32 temp0
, power0
, temp1
, power1
;
947 s32 temp_combi
, power_combi
;
948 int rc
, intake
, pump
;
950 rc
= do_read_one_cpu_values(state0
, &temp0
, &power0
);
952 /* XXX What do we do now ? */
954 state1
->overtemp
= 0;
955 rc
= do_read_one_cpu_values(state1
, &temp1
, &power1
);
957 /* XXX What do we do now ? */
959 if (state1
->overtemp
)
962 temp_combi
= max(temp0
, temp1
);
963 power_combi
= max(power0
, power1
);
965 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
966 * full blown immediately and try to trigger a shutdown
968 if (temp_combi
>= ((state0
->mpu
.tmax
+ 8) << 16)) {
969 printk(KERN_WARNING
"Warning ! Temperature way above maximum (%d) !\n",
971 state0
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
972 } else if (temp_combi
> (state0
->mpu
.tmax
<< 16))
975 state0
->overtemp
= 0;
976 if (state0
->overtemp
>= CPU_MAX_OVERTEMP
)
978 if (state0
->overtemp
> 0) {
979 state0
->rpm
= state0
->mpu
.rmaxn_exhaust_fan
;
980 state0
->intake_rpm
= intake
= state0
->mpu
.rmaxn_intake_fan
;
981 pump
= state0
->pump_max
;
986 do_cpu_pid(state0
, temp_combi
, power_combi
);
989 state0
->rpm
= max(state0
->rpm
, (int)state0
->mpu
.rminn_exhaust_fan
);
990 state0
->rpm
= min(state0
->rpm
, (int)state0
->mpu
.rmaxn_exhaust_fan
);
992 /* Calculate intake fan speed */
993 intake
= (state0
->rpm
* CPU_INTAKE_SCALE
) >> 16;
994 intake
= max(intake
, (int)state0
->mpu
.rminn_intake_fan
);
995 intake
= min(intake
, (int)state0
->mpu
.rmaxn_intake_fan
);
996 state0
->intake_rpm
= intake
;
998 /* Calculate pump speed */
999 pump
= (state0
->rpm
* state0
->pump_max
) /
1000 state0
->mpu
.rmaxn_exhaust_fan
;
1001 pump
= min(pump
, state0
->pump_max
);
1002 pump
= max(pump
, state0
->pump_min
);
1005 /* We copy values from state 0 to state 1 for /sysfs */
1006 state1
->rpm
= state0
->rpm
;
1007 state1
->intake_rpm
= state0
->intake_rpm
;
1009 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
1010 state1
->index
, (int)state1
->rpm
, intake
, pump
, state1
->overtemp
);
1012 /* We should check for errors, shouldn't we ? But then, what
1013 * do we do once the error occurs ? For FCU notified fan
1014 * failures (-EFAULT) we probably want to notify userland
1017 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
1018 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
1019 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
1020 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
1022 if (fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
1023 set_rpm_fan(CPUA_PUMP_RPM_INDEX
, pump
);
1024 if (fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
1025 set_rpm_fan(CPUB_PUMP_RPM_INDEX
, pump
);
1028 static void do_monitor_cpu_split(struct cpu_pid_state
*state
)
1033 /* Read current fan status */
1034 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
1036 /* XXX What do we do now ? */
1039 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1040 * full blown immediately and try to trigger a shutdown
1042 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
1043 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
1045 state
->index
, temp
>> 16);
1046 state
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
1047 } else if (temp
> (state
->mpu
.tmax
<< 16))
1050 state
->overtemp
= 0;
1051 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1053 if (state
->overtemp
> 0) {
1054 state
->rpm
= state
->mpu
.rmaxn_exhaust_fan
;
1055 state
->intake_rpm
= intake
= state
->mpu
.rmaxn_intake_fan
;
1060 do_cpu_pid(state
, temp
, power
);
1063 state
->rpm
= max(state
->rpm
, (int)state
->mpu
.rminn_exhaust_fan
);
1064 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_exhaust_fan
);
1066 /* Calculate intake fan */
1067 intake
= (state
->rpm
* CPU_INTAKE_SCALE
) >> 16;
1068 intake
= max(intake
, (int)state
->mpu
.rminn_intake_fan
);
1069 intake
= min(intake
, (int)state
->mpu
.rmaxn_intake_fan
);
1070 state
->intake_rpm
= intake
;
1073 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1074 state
->index
, (int)state
->rpm
, intake
, state
->overtemp
);
1076 /* We should check for errors, shouldn't we ? But then, what
1077 * do we do once the error occurs ? For FCU notified fan
1078 * failures (-EFAULT) we probably want to notify userland
1081 if (state
->index
== 0) {
1082 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
1083 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1085 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
1086 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1090 static void do_monitor_cpu_rack(struct cpu_pid_state
*state
)
1092 s32 temp
, power
, fan_min
;
1095 /* Read current fan status */
1096 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
1098 /* XXX What do we do now ? */
1101 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1102 * full blown immediately and try to trigger a shutdown
1104 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
1105 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
1107 state
->index
, temp
>> 16);
1108 state
->overtemp
= CPU_MAX_OVERTEMP
/ 4;
1109 } else if (temp
> (state
->mpu
.tmax
<< 16))
1112 state
->overtemp
= 0;
1113 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1115 if (state
->overtemp
> 0) {
1116 state
->rpm
= state
->intake_rpm
= state
->mpu
.rmaxn_intake_fan
;
1121 do_cpu_pid(state
, temp
, power
);
1123 /* Check clamp from dimms */
1124 fan_min
= dimm_output_clamp
;
1125 fan_min
= max(fan_min
, (int)state
->mpu
.rminn_intake_fan
);
1127 DBG(" CPU min mpu = %d, min dimm = %d\n",
1128 state
->mpu
.rminn_intake_fan
, dimm_output_clamp
);
1130 state
->rpm
= max(state
->rpm
, (int)fan_min
);
1131 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_intake_fan
);
1132 state
->intake_rpm
= state
->rpm
;
1135 DBG("** CPU %d RPM: %d overtemp: %d\n",
1136 state
->index
, (int)state
->rpm
, state
->overtemp
);
1138 /* We should check for errors, shouldn't we ? But then, what
1139 * do we do once the error occurs ? For FCU notified fan
1140 * failures (-EFAULT) we probably want to notify userland
1143 if (state
->index
== 0) {
1144 set_rpm_fan(CPU_A1_FAN_RPM_INDEX
, state
->rpm
);
1145 set_rpm_fan(CPU_A2_FAN_RPM_INDEX
, state
->rpm
);
1146 set_rpm_fan(CPU_A3_FAN_RPM_INDEX
, state
->rpm
);
1148 set_rpm_fan(CPU_B1_FAN_RPM_INDEX
, state
->rpm
);
1149 set_rpm_fan(CPU_B2_FAN_RPM_INDEX
, state
->rpm
);
1150 set_rpm_fan(CPU_B3_FAN_RPM_INDEX
, state
->rpm
);
1155 * Initialize the state structure for one CPU control loop
1157 static int init_cpu_state(struct cpu_pid_state
*state
, int index
)
1159 state
->index
= index
;
1161 state
->rpm
= (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) ? 4000 : 1000;
1162 state
->overtemp
= 0;
1163 state
->adc_config
= 0x00;
1167 state
->monitor
= attach_i2c_chip(SUPPLY_MONITOR_ID
, "CPU0_monitor");
1168 else if (index
== 1)
1169 state
->monitor
= attach_i2c_chip(SUPPLY_MONITORB_ID
, "CPU1_monitor");
1170 if (state
->monitor
== NULL
)
1173 if (read_eeprom(index
, &state
->mpu
))
1176 state
->count_power
= state
->mpu
.tguardband
;
1177 if (state
->count_power
> CPU_POWER_HISTORY_SIZE
) {
1178 printk(KERN_WARNING
"Warning ! too many power history slots\n");
1179 state
->count_power
= CPU_POWER_HISTORY_SIZE
;
1181 DBG("CPU %d Using %d power history entries\n", index
, state
->count_power
);
1184 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1185 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1186 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1187 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1188 device_create_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1190 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1191 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1192 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1193 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1194 device_create_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1200 detach_i2c_chip(state
->monitor
);
1201 state
->monitor
= NULL
;
1207 * Dispose of the state data for one CPU control loop
1209 static void dispose_cpu_state(struct cpu_pid_state
*state
)
1211 if (state
->monitor
== NULL
)
1214 if (state
->index
== 0) {
1215 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1216 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1217 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1218 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1219 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1221 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1222 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1223 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1224 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1225 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1228 detach_i2c_chip(state
->monitor
);
1229 state
->monitor
= NULL
;
1233 * Motherboard backside & U3 heatsink fan control loop
1235 static void do_monitor_backside(struct backside_pid_state
*state
)
1237 s32 temp
, integral
, derivative
, fan_min
;
1238 s64 integ_p
, deriv_p
, prop_p
, sum
;
1241 if (--state
->ticks
!= 0)
1243 state
->ticks
= backside_params
.interval
;
1247 /* Check fan status */
1248 rc
= get_pwm_fan(BACKSIDE_FAN_PWM_INDEX
);
1250 printk(KERN_WARNING
"Error %d reading backside fan !\n", rc
);
1251 /* XXX What do we do now ? */
1254 DBG(" current pwm: %d\n", state
->pwm
);
1256 /* Get some sensor readings */
1257 temp
= i2c_smbus_read_byte_data(state
->monitor
, MAX6690_EXT_TEMP
) << 16;
1258 state
->last_temp
= temp
;
1259 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1260 FIX32TOPRINT(backside_params
.input_target
));
1262 /* Store temperature and error in history array */
1263 state
->cur_sample
= (state
->cur_sample
+ 1) % BACKSIDE_PID_HISTORY_SIZE
;
1264 state
->sample_history
[state
->cur_sample
] = temp
;
1265 state
->error_history
[state
->cur_sample
] = temp
- backside_params
.input_target
;
1267 /* If first loop, fill the history table */
1269 for (i
= 0; i
< (BACKSIDE_PID_HISTORY_SIZE
- 1); i
++) {
1270 state
->cur_sample
= (state
->cur_sample
+ 1) %
1271 BACKSIDE_PID_HISTORY_SIZE
;
1272 state
->sample_history
[state
->cur_sample
] = temp
;
1273 state
->error_history
[state
->cur_sample
] =
1274 temp
- backside_params
.input_target
;
1279 /* Calculate the integral term */
1282 for (i
= 0; i
< BACKSIDE_PID_HISTORY_SIZE
; i
++)
1283 integral
+= state
->error_history
[i
];
1284 integral
*= backside_params
.interval
;
1285 DBG(" integral: %08x\n", integral
);
1286 integ_p
= ((s64
)backside_params
.G_r
) * (s64
)integral
;
1287 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1290 /* Calculate the derivative term */
1291 derivative
= state
->error_history
[state
->cur_sample
] -
1292 state
->error_history
[(state
->cur_sample
+ BACKSIDE_PID_HISTORY_SIZE
- 1)
1293 % BACKSIDE_PID_HISTORY_SIZE
];
1294 derivative
/= backside_params
.interval
;
1295 deriv_p
= ((s64
)backside_params
.G_d
) * (s64
)derivative
;
1296 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1299 /* Calculate the proportional term */
1300 prop_p
= ((s64
)backside_params
.G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1301 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1307 DBG(" sum: %d\n", (int)sum
);
1308 if (backside_params
.additive
)
1309 state
->pwm
+= (s32
)sum
;
1313 /* Check for clamp */
1314 fan_min
= (dimm_output_clamp
* 100) / 14000;
1315 fan_min
= max(fan_min
, backside_params
.output_min
);
1317 state
->pwm
= max(state
->pwm
, fan_min
);
1318 state
->pwm
= min(state
->pwm
, backside_params
.output_max
);
1320 DBG("** BACKSIDE PWM: %d\n", (int)state
->pwm
);
1321 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, state
->pwm
);
1325 * Initialize the state structure for the backside fan control loop
1327 static int init_backside_state(struct backside_pid_state
*state
)
1329 struct device_node
*u3
;
1330 int u3h
= 1; /* conservative by default */
1333 * There are different PID params for machines with U3 and machines
1334 * with U3H, pick the right ones now
1336 u3
= of_find_node_by_path("/u3@0,f8000000");
1338 const u32
*vers
= of_get_property(u3
, "device-rev", NULL
);
1340 if (((*vers
) & 0x3f) < 0x34)
1346 backside_params
.G_d
= BACKSIDE_PID_RACK_G_d
;
1347 backside_params
.input_target
= BACKSIDE_PID_RACK_INPUT_TARGET
;
1348 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1349 backside_params
.interval
= BACKSIDE_PID_RACK_INTERVAL
;
1350 backside_params
.G_p
= BACKSIDE_PID_RACK_G_p
;
1351 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1352 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1353 backside_params
.additive
= 0;
1355 backside_params
.G_d
= BACKSIDE_PID_U3H_G_d
;
1356 backside_params
.input_target
= BACKSIDE_PID_U3H_INPUT_TARGET
;
1357 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1358 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1359 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1360 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1361 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1362 backside_params
.additive
= 1;
1364 backside_params
.G_d
= BACKSIDE_PID_U3_G_d
;
1365 backside_params
.input_target
= BACKSIDE_PID_U3_INPUT_TARGET
;
1366 backside_params
.output_min
= BACKSIDE_PID_U3_OUTPUT_MIN
;
1367 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1368 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1369 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1370 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1371 backside_params
.additive
= 1;
1378 state
->monitor
= attach_i2c_chip(BACKSIDE_MAX_ID
, "backside_temp");
1379 if (state
->monitor
== NULL
)
1382 device_create_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1383 device_create_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1389 * Dispose of the state data for the backside control loop
1391 static void dispose_backside_state(struct backside_pid_state
*state
)
1393 if (state
->monitor
== NULL
)
1396 device_remove_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1397 device_remove_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1399 detach_i2c_chip(state
->monitor
);
1400 state
->monitor
= NULL
;
1404 * Drives bay fan control loop
1406 static void do_monitor_drives(struct drives_pid_state
*state
)
1408 s32 temp
, integral
, derivative
;
1409 s64 integ_p
, deriv_p
, prop_p
, sum
;
1412 if (--state
->ticks
!= 0)
1414 state
->ticks
= DRIVES_PID_INTERVAL
;
1418 /* Check fan status */
1419 rc
= get_rpm_fan(DRIVES_FAN_RPM_INDEX
, !RPM_PID_USE_ACTUAL_SPEED
);
1421 printk(KERN_WARNING
"Error %d reading drives fan !\n", rc
);
1422 /* XXX What do we do now ? */
1425 DBG(" current rpm: %d\n", state
->rpm
);
1427 /* Get some sensor readings */
1428 temp
= le16_to_cpu(i2c_smbus_read_word_data(state
->monitor
,
1430 state
->last_temp
= temp
;
1431 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1432 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET
));
1434 /* Store temperature and error in history array */
1435 state
->cur_sample
= (state
->cur_sample
+ 1) % DRIVES_PID_HISTORY_SIZE
;
1436 state
->sample_history
[state
->cur_sample
] = temp
;
1437 state
->error_history
[state
->cur_sample
] = temp
- DRIVES_PID_INPUT_TARGET
;
1439 /* If first loop, fill the history table */
1441 for (i
= 0; i
< (DRIVES_PID_HISTORY_SIZE
- 1); i
++) {
1442 state
->cur_sample
= (state
->cur_sample
+ 1) %
1443 DRIVES_PID_HISTORY_SIZE
;
1444 state
->sample_history
[state
->cur_sample
] = temp
;
1445 state
->error_history
[state
->cur_sample
] =
1446 temp
- DRIVES_PID_INPUT_TARGET
;
1451 /* Calculate the integral term */
1454 for (i
= 0; i
< DRIVES_PID_HISTORY_SIZE
; i
++)
1455 integral
+= state
->error_history
[i
];
1456 integral
*= DRIVES_PID_INTERVAL
;
1457 DBG(" integral: %08x\n", integral
);
1458 integ_p
= ((s64
)DRIVES_PID_G_r
) * (s64
)integral
;
1459 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1462 /* Calculate the derivative term */
1463 derivative
= state
->error_history
[state
->cur_sample
] -
1464 state
->error_history
[(state
->cur_sample
+ DRIVES_PID_HISTORY_SIZE
- 1)
1465 % DRIVES_PID_HISTORY_SIZE
];
1466 derivative
/= DRIVES_PID_INTERVAL
;
1467 deriv_p
= ((s64
)DRIVES_PID_G_d
) * (s64
)derivative
;
1468 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1471 /* Calculate the proportional term */
1472 prop_p
= ((s64
)DRIVES_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1473 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1479 DBG(" sum: %d\n", (int)sum
);
1480 state
->rpm
+= (s32
)sum
;
1482 state
->rpm
= max(state
->rpm
, DRIVES_PID_OUTPUT_MIN
);
1483 state
->rpm
= min(state
->rpm
, DRIVES_PID_OUTPUT_MAX
);
1485 DBG("** DRIVES RPM: %d\n", (int)state
->rpm
);
1486 set_rpm_fan(DRIVES_FAN_RPM_INDEX
, state
->rpm
);
1490 * Initialize the state structure for the drives bay fan control loop
1492 static int init_drives_state(struct drives_pid_state
*state
)
1498 state
->monitor
= attach_i2c_chip(DRIVES_DALLAS_ID
, "drives_temp");
1499 if (state
->monitor
== NULL
)
1502 device_create_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1503 device_create_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1509 * Dispose of the state data for the drives control loop
1511 static void dispose_drives_state(struct drives_pid_state
*state
)
1513 if (state
->monitor
== NULL
)
1516 device_remove_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1517 device_remove_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1519 detach_i2c_chip(state
->monitor
);
1520 state
->monitor
= NULL
;
1524 * DIMMs temp control loop
1526 static void do_monitor_dimms(struct dimm_pid_state
*state
)
1528 s32 temp
, integral
, derivative
, fan_min
;
1529 s64 integ_p
, deriv_p
, prop_p
, sum
;
1532 if (--state
->ticks
!= 0)
1534 state
->ticks
= DIMM_PID_INTERVAL
;
1538 DBG(" current value: %d\n", state
->output
);
1540 temp
= read_lm87_reg(state
->monitor
, LM87_INT_TEMP
);
1544 state
->last_temp
= temp
;
1545 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1546 FIX32TOPRINT(DIMM_PID_INPUT_TARGET
));
1548 /* Store temperature and error in history array */
1549 state
->cur_sample
= (state
->cur_sample
+ 1) % DIMM_PID_HISTORY_SIZE
;
1550 state
->sample_history
[state
->cur_sample
] = temp
;
1551 state
->error_history
[state
->cur_sample
] = temp
- DIMM_PID_INPUT_TARGET
;
1553 /* If first loop, fill the history table */
1555 for (i
= 0; i
< (DIMM_PID_HISTORY_SIZE
- 1); i
++) {
1556 state
->cur_sample
= (state
->cur_sample
+ 1) %
1557 DIMM_PID_HISTORY_SIZE
;
1558 state
->sample_history
[state
->cur_sample
] = temp
;
1559 state
->error_history
[state
->cur_sample
] =
1560 temp
- DIMM_PID_INPUT_TARGET
;
1565 /* Calculate the integral term */
1568 for (i
= 0; i
< DIMM_PID_HISTORY_SIZE
; i
++)
1569 integral
+= state
->error_history
[i
];
1570 integral
*= DIMM_PID_INTERVAL
;
1571 DBG(" integral: %08x\n", integral
);
1572 integ_p
= ((s64
)DIMM_PID_G_r
) * (s64
)integral
;
1573 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1576 /* Calculate the derivative term */
1577 derivative
= state
->error_history
[state
->cur_sample
] -
1578 state
->error_history
[(state
->cur_sample
+ DIMM_PID_HISTORY_SIZE
- 1)
1579 % DIMM_PID_HISTORY_SIZE
];
1580 derivative
/= DIMM_PID_INTERVAL
;
1581 deriv_p
= ((s64
)DIMM_PID_G_d
) * (s64
)derivative
;
1582 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1585 /* Calculate the proportional term */
1586 prop_p
= ((s64
)DIMM_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1587 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1593 DBG(" sum: %d\n", (int)sum
);
1594 state
->output
= (s32
)sum
;
1595 state
->output
= max(state
->output
, DIMM_PID_OUTPUT_MIN
);
1596 state
->output
= min(state
->output
, DIMM_PID_OUTPUT_MAX
);
1597 dimm_output_clamp
= state
->output
;
1599 DBG("** DIMM clamp value: %d\n", (int)state
->output
);
1601 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1602 fan_min
= (dimm_output_clamp
* 100) / 14000;
1603 fan_min
= max(fan_min
, backside_params
.output_min
);
1604 if (backside_state
.pwm
< fan_min
) {
1605 backside_state
.pwm
= fan_min
;
1606 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min
);
1607 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, fan_min
);
1612 * Initialize the state structure for the DIMM temp control loop
1614 static int init_dimms_state(struct dimm_pid_state
*state
)
1618 state
->output
= 4000;
1620 state
->monitor
= attach_i2c_chip(XSERVE_DIMMS_LM87
, "dimms_temp");
1621 if (state
->monitor
== NULL
)
1624 device_create_file(&of_dev
->dev
, &dev_attr_dimms_temperature
);
1630 * Dispose of the state data for the DIMM control loop
1632 static void dispose_dimms_state(struct dimm_pid_state
*state
)
1634 if (state
->monitor
== NULL
)
1637 device_remove_file(&of_dev
->dev
, &dev_attr_dimms_temperature
);
1639 detach_i2c_chip(state
->monitor
);
1640 state
->monitor
= NULL
;
1644 * Slots fan control loop
1646 static void do_monitor_slots(struct slots_pid_state
*state
)
1648 s32 temp
, integral
, derivative
;
1649 s64 integ_p
, deriv_p
, prop_p
, sum
;
1652 if (--state
->ticks
!= 0)
1654 state
->ticks
= SLOTS_PID_INTERVAL
;
1658 /* Check fan status */
1659 rc
= get_pwm_fan(SLOTS_FAN_PWM_INDEX
);
1661 printk(KERN_WARNING
"Error %d reading slots fan !\n", rc
);
1662 /* XXX What do we do now ? */
1665 DBG(" current pwm: %d\n", state
->pwm
);
1667 /* Get some sensor readings */
1668 temp
= le16_to_cpu(i2c_smbus_read_word_data(state
->monitor
,
1670 state
->last_temp
= temp
;
1671 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1672 FIX32TOPRINT(SLOTS_PID_INPUT_TARGET
));
1674 /* Store temperature and error in history array */
1675 state
->cur_sample
= (state
->cur_sample
+ 1) % SLOTS_PID_HISTORY_SIZE
;
1676 state
->sample_history
[state
->cur_sample
] = temp
;
1677 state
->error_history
[state
->cur_sample
] = temp
- SLOTS_PID_INPUT_TARGET
;
1679 /* If first loop, fill the history table */
1681 for (i
= 0; i
< (SLOTS_PID_HISTORY_SIZE
- 1); i
++) {
1682 state
->cur_sample
= (state
->cur_sample
+ 1) %
1683 SLOTS_PID_HISTORY_SIZE
;
1684 state
->sample_history
[state
->cur_sample
] = temp
;
1685 state
->error_history
[state
->cur_sample
] =
1686 temp
- SLOTS_PID_INPUT_TARGET
;
1691 /* Calculate the integral term */
1694 for (i
= 0; i
< SLOTS_PID_HISTORY_SIZE
; i
++)
1695 integral
+= state
->error_history
[i
];
1696 integral
*= SLOTS_PID_INTERVAL
;
1697 DBG(" integral: %08x\n", integral
);
1698 integ_p
= ((s64
)SLOTS_PID_G_r
) * (s64
)integral
;
1699 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1702 /* Calculate the derivative term */
1703 derivative
= state
->error_history
[state
->cur_sample
] -
1704 state
->error_history
[(state
->cur_sample
+ SLOTS_PID_HISTORY_SIZE
- 1)
1705 % SLOTS_PID_HISTORY_SIZE
];
1706 derivative
/= SLOTS_PID_INTERVAL
;
1707 deriv_p
= ((s64
)SLOTS_PID_G_d
) * (s64
)derivative
;
1708 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1711 /* Calculate the proportional term */
1712 prop_p
= ((s64
)SLOTS_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1713 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1719 DBG(" sum: %d\n", (int)sum
);
1720 state
->pwm
= (s32
)sum
;
1722 state
->pwm
= max(state
->pwm
, SLOTS_PID_OUTPUT_MIN
);
1723 state
->pwm
= min(state
->pwm
, SLOTS_PID_OUTPUT_MAX
);
1725 DBG("** DRIVES PWM: %d\n", (int)state
->pwm
);
1726 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, state
->pwm
);
1730 * Initialize the state structure for the slots bay fan control loop
1732 static int init_slots_state(struct slots_pid_state
*state
)
1738 state
->monitor
= attach_i2c_chip(XSERVE_SLOTS_LM75
, "slots_temp");
1739 if (state
->monitor
== NULL
)
1742 device_create_file(&of_dev
->dev
, &dev_attr_slots_temperature
);
1743 device_create_file(&of_dev
->dev
, &dev_attr_slots_fan_pwm
);
1749 * Dispose of the state data for the slots control loop
1751 static void dispose_slots_state(struct slots_pid_state
*state
)
1753 if (state
->monitor
== NULL
)
1756 device_remove_file(&of_dev
->dev
, &dev_attr_slots_temperature
);
1757 device_remove_file(&of_dev
->dev
, &dev_attr_slots_fan_pwm
);
1759 detach_i2c_chip(state
->monitor
);
1760 state
->monitor
= NULL
;
1764 static int call_critical_overtemp(void)
1766 char *argv
[] = { critical_overtemp_path
, NULL
};
1767 static char *envp
[] = { "HOME=/",
1769 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1772 return call_usermodehelper(critical_overtemp_path
,
1773 argv
, envp
, UMH_WAIT_EXEC
);
1778 * Here's the kernel thread that calls the various control loops
1780 static int main_control_loop(void *x
)
1784 DBG("main_control_loop started\n");
1788 if (start_fcu() < 0) {
1789 printk(KERN_ERR
"kfand: failed to start FCU\n");
1794 /* Set the PCI fan once for now on non-RackMac */
1796 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, SLOTS_FAN_DEFAULT_PWM
);
1798 /* Initialize ADCs */
1799 initialize_adc(&cpu_state
[0]);
1800 if (cpu_state
[1].monitor
!= NULL
)
1801 initialize_adc(&cpu_state
[1]);
1803 fcu_tickle_ticks
= FCU_TICKLE_TICKS
;
1807 while (state
== state_attached
) {
1808 unsigned long elapsed
, start
;
1814 /* Tickle the FCU just in case */
1815 if (--fcu_tickle_ticks
< 0) {
1816 fcu_tickle_ticks
= FCU_TICKLE_TICKS
;
1820 /* First, we always calculate the new DIMMs state on an Xserve */
1822 do_monitor_dimms(&dimms_state
);
1824 /* Then, the CPUs */
1825 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1826 do_monitor_cpu_combined();
1827 else if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) {
1828 do_monitor_cpu_rack(&cpu_state
[0]);
1829 if (cpu_state
[1].monitor
!= NULL
)
1830 do_monitor_cpu_rack(&cpu_state
[1]);
1831 // better deal with UP
1833 do_monitor_cpu_split(&cpu_state
[0]);
1834 if (cpu_state
[1].monitor
!= NULL
)
1835 do_monitor_cpu_split(&cpu_state
[1]);
1836 // better deal with UP
1838 /* Then, the rest */
1839 do_monitor_backside(&backside_state
);
1841 do_monitor_slots(&slots_state
);
1843 do_monitor_drives(&drives_state
);
1846 if (critical_state
== 1) {
1847 printk(KERN_WARNING
"Temperature control detected a critical condition\n");
1848 printk(KERN_WARNING
"Attempting to shut down...\n");
1849 if (call_critical_overtemp()) {
1850 printk(KERN_WARNING
"Can't call %s, power off now!\n",
1851 critical_overtemp_path
);
1852 machine_power_off();
1855 if (critical_state
> 0)
1857 if (critical_state
> MAX_CRITICAL_STATE
) {
1858 printk(KERN_WARNING
"Shutdown timed out, power off now !\n");
1859 machine_power_off();
1862 // FIXME: Deal with signals
1863 elapsed
= jiffies
- start
;
1865 schedule_timeout_interruptible(HZ
- elapsed
);
1869 DBG("main_control_loop ended\n");
1872 complete_and_exit(&ctrl_complete
, 0);
1876 * Dispose the control loops when tearing down
1878 static void dispose_control_loops(void)
1880 dispose_cpu_state(&cpu_state
[0]);
1881 dispose_cpu_state(&cpu_state
[1]);
1882 dispose_backside_state(&backside_state
);
1883 dispose_drives_state(&drives_state
);
1884 dispose_slots_state(&slots_state
);
1885 dispose_dimms_state(&dimms_state
);
1889 * Create the control loops. U3-0 i2c bus is up, so we can now
1890 * get to the various sensors
1892 static int create_control_loops(void)
1894 struct device_node
*np
;
1896 /* Count CPUs from the device-tree, we don't care how many are
1897 * actually used by Linux
1900 for (np
= NULL
; NULL
!= (np
= of_find_node_by_type(np
, "cpu"));)
1903 DBG("counted %d CPUs in the device-tree\n", cpu_count
);
1905 /* Decide the type of PID algorithm to use based on the presence of
1906 * the pumps, though that may not be the best way, that is good enough
1910 cpu_pid_type
= CPU_PID_TYPE_RACKMAC
;
1911 else if (machine_is_compatible("PowerMac7,3")
1913 && fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
1914 && fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
) {
1915 printk(KERN_INFO
"Liquid cooling pumps detected, using new algorithm !\n");
1916 cpu_pid_type
= CPU_PID_TYPE_COMBINED
;
1918 cpu_pid_type
= CPU_PID_TYPE_SPLIT
;
1920 /* Create control loops for everything. If any fail, everything
1923 if (init_cpu_state(&cpu_state
[0], 0))
1925 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1926 fetch_cpu_pumps_minmax();
1928 if (cpu_count
> 1 && init_cpu_state(&cpu_state
[1], 1))
1930 if (init_backside_state(&backside_state
))
1932 if (rackmac
&& init_dimms_state(&dimms_state
))
1934 if (rackmac
&& init_slots_state(&slots_state
))
1936 if (!rackmac
&& init_drives_state(&drives_state
))
1939 DBG("all control loops up !\n");
1944 DBG("failure creating control loops, disposing\n");
1946 dispose_control_loops();
1952 * Start the control loops after everything is up, that is create
1953 * the thread that will make them run
1955 static void start_control_loops(void)
1957 init_completion(&ctrl_complete
);
1959 ctrl_task
= kernel_thread(main_control_loop
, NULL
, SIGCHLD
| CLONE_KERNEL
);
1963 * Stop the control loops when tearing down
1965 static void stop_control_loops(void)
1968 wait_for_completion(&ctrl_complete
);
1972 * Attach to the i2c FCU after detecting U3-1 bus
1974 static int attach_fcu(void)
1976 fcu
= attach_i2c_chip(FAN_CTRLER_ID
, "fcu");
1980 DBG("FCU attached\n");
1986 * Detach from the i2c FCU when tearing down
1988 static void detach_fcu(void)
1991 detach_i2c_chip(fcu
);
1996 * Attach to the i2c controller. We probe the various chips based
1997 * on the device-tree nodes and build everything for the driver to
1998 * run, we then kick the driver monitoring thread
2000 static int therm_pm72_attach(struct i2c_adapter
*adapter
)
2005 if (state
== state_detached
)
2006 state
= state_attaching
;
2007 if (state
!= state_attaching
) {
2012 /* Check if we are looking for one of these */
2013 if (u3_0
== NULL
&& !strcmp(adapter
->name
, "u3 0")) {
2015 DBG("found U3-0\n");
2017 if (create_control_loops())
2019 } else if (u3_1
== NULL
&& !strcmp(adapter
->name
, "u3 1")) {
2021 DBG("found U3-1, attaching FCU\n");
2024 } else if (k2
== NULL
&& !strcmp(adapter
->name
, "mac-io 0")) {
2027 if (u3_0
&& rackmac
)
2028 if (create_control_loops())
2031 /* We got all we need, start control loops */
2032 if (u3_0
!= NULL
&& u3_1
!= NULL
&& (k2
|| !rackmac
)) {
2033 DBG("everything up, starting control loops\n");
2034 state
= state_attached
;
2035 start_control_loops();
2043 * Called on every adapter when the driver or the i2c controller
2046 static int therm_pm72_detach(struct i2c_adapter
*adapter
)
2050 if (state
!= state_detached
)
2051 state
= state_detaching
;
2053 /* Stop control loops if any */
2054 DBG("stopping control loops\n");
2056 stop_control_loops();
2059 if (u3_0
!= NULL
&& !strcmp(adapter
->name
, "u3 0")) {
2060 DBG("lost U3-0, disposing control loops\n");
2061 dispose_control_loops();
2065 if (u3_1
!= NULL
&& !strcmp(adapter
->name
, "u3 1")) {
2066 DBG("lost U3-1, detaching FCU\n");
2070 if (u3_0
== NULL
&& u3_1
== NULL
)
2071 state
= state_detached
;
2078 static int fan_check_loc_match(const char *loc
, int fan
)
2083 strlcpy(tmp
, fcu_fans
[fan
].loc
, 64);
2090 if (strcmp(loc
, c
) == 0)
2099 static void fcu_lookup_fans(struct device_node
*fcu_node
)
2101 struct device_node
*np
= NULL
;
2104 /* The table is filled by default with values that are suitable
2105 * for the old machines without device-tree informations. We scan
2106 * the device-tree and override those values with whatever is
2110 DBG("Looking up FCU controls in device-tree...\n");
2112 while ((np
= of_get_next_child(fcu_node
, np
)) != NULL
) {
2117 DBG(" control: %s, type: %s\n", np
->name
, np
->type
);
2119 /* Detect control type */
2120 if (!strcmp(np
->type
, "fan-rpm-control") ||
2121 !strcmp(np
->type
, "fan-rpm"))
2123 if (!strcmp(np
->type
, "fan-pwm-control") ||
2124 !strcmp(np
->type
, "fan-pwm"))
2126 /* Only care about fans for now */
2130 /* Lookup for a matching location */
2131 loc
= of_get_property(np
, "location", NULL
);
2132 reg
= of_get_property(np
, "reg", NULL
);
2133 if (loc
== NULL
|| reg
== NULL
)
2135 DBG(" matching location: %s, reg: 0x%08x\n", loc
, *reg
);
2137 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
2140 if (!fan_check_loc_match(loc
, i
))
2142 DBG(" location match, index: %d\n", i
);
2143 fcu_fans
[i
].id
= FCU_FAN_ABSENT_ID
;
2144 if (type
!= fcu_fans
[i
].type
) {
2145 printk(KERN_WARNING
"therm_pm72: Fan type mismatch "
2146 "in device-tree for %s\n", np
->full_name
);
2149 if (type
== FCU_FAN_RPM
)
2150 fan_id
= ((*reg
) - 0x10) / 2;
2152 fan_id
= ((*reg
) - 0x30) / 2;
2154 printk(KERN_WARNING
"therm_pm72: Can't parse "
2155 "fan ID in device-tree for %s\n", np
->full_name
);
2158 DBG(" fan id -> %d, type -> %d\n", fan_id
, type
);
2159 fcu_fans
[i
].id
= fan_id
;
2163 /* Now dump the array */
2164 printk(KERN_INFO
"Detected fan controls:\n");
2165 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
2166 if (fcu_fans
[i
].id
== FCU_FAN_ABSENT_ID
)
2168 printk(KERN_INFO
" %d: %s fan, id %d, location: %s\n", i
,
2169 fcu_fans
[i
].type
== FCU_FAN_RPM
? "RPM" : "PWM",
2170 fcu_fans
[i
].id
, fcu_fans
[i
].loc
);
2174 static int fcu_of_probe(struct of_device
* dev
, const struct of_device_id
*match
)
2176 state
= state_detached
;
2178 /* Lookup the fans in the device tree */
2179 fcu_lookup_fans(dev
->node
);
2181 /* Add the driver */
2182 return i2c_add_driver(&therm_pm72_driver
);
2185 static int fcu_of_remove(struct of_device
* dev
)
2187 i2c_del_driver(&therm_pm72_driver
);
2192 static struct of_device_id fcu_match
[] =
2200 static struct of_platform_driver fcu_of_platform_driver
=
2202 .name
= "temperature",
2203 .match_table
= fcu_match
,
2204 .probe
= fcu_of_probe
,
2205 .remove
= fcu_of_remove
2209 * Check machine type, attach to i2c controller
2211 static int __init
therm_pm72_init(void)
2213 struct device_node
*np
;
2215 rackmac
= machine_is_compatible("RackMac3,1");
2217 if (!machine_is_compatible("PowerMac7,2") &&
2218 !machine_is_compatible("PowerMac7,3") &&
2222 printk(KERN_INFO
"PowerMac G5 Thermal control driver %s\n", VERSION
);
2224 np
= of_find_node_by_type(NULL
, "fcu");
2226 /* Some machines have strangely broken device-tree */
2227 np
= of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2229 printk(KERN_ERR
"Can't find FCU in device-tree !\n");
2233 of_dev
= of_platform_device_create(np
, "temperature", NULL
);
2234 if (of_dev
== NULL
) {
2235 printk(KERN_ERR
"Can't register FCU platform device !\n");
2239 of_register_platform_driver(&fcu_of_platform_driver
);
2244 static void __exit
therm_pm72_exit(void)
2246 of_unregister_platform_driver(&fcu_of_platform_driver
);
2249 of_device_unregister(of_dev
);
2252 module_init(therm_pm72_init
);
2253 module_exit(therm_pm72_exit
);
2255 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2256 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2257 MODULE_LICENSE("GPL");