rt2x00: Add rt2x00dev->flags to debugfs
[linux-2.6/kmemtrace.git] / mm / slab.c
blob6f6abef83a1af82432305245755ab690c8363081
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
129 #define DEBUG 1
130 #define STATS 1
131 #define FORCED_DEBUG 1
132 #else
133 #define DEBUG 0
134 #define STATS 0
135 #define FORCED_DEBUG 0
136 #endif
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
140 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
142 #ifndef cache_line_size
143 #define cache_line_size() L1_CACHE_BYTES
144 #endif
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157 #endif
159 #ifndef ARCH_SLAB_MINALIGN
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
167 #define ARCH_SLAB_MINALIGN 0
168 #endif
170 #ifndef ARCH_KMALLOC_FLAGS
171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172 #endif
174 /* Legal flag mask for kmem_cache_create(). */
175 #if DEBUG
176 # define CREATE_MASK (SLAB_RED_ZONE | \
177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178 SLAB_CACHE_DMA | \
179 SLAB_STORE_USER | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
182 #else
183 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
184 SLAB_CACHE_DMA | \
185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
187 #endif
190 * kmem_bufctl_t:
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 typedef unsigned int kmem_bufctl_t;
209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
215 * struct slab
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct slab {
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
231 * struct slab_rcu
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
244 * We assume struct slab_rcu can overlay struct slab when destroying.
246 struct slab_rcu {
247 struct rcu_head head;
248 struct kmem_cache *cachep;
249 void *addr;
253 * struct array_cache
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
264 struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
269 spinlock_t lock;
270 void *entry[0]; /*
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
274 * [0] is for gcc 2.95. It should really be [].
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
282 #define BOOT_CPUCACHE_ENTRIES 1
283 struct arraycache_init {
284 struct array_cache cache;
285 void *entries[BOOT_CPUCACHE_ENTRIES];
289 * The slab lists for all objects.
291 struct kmem_list3 {
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
296 unsigned int free_limit;
297 unsigned int colour_next; /* Per-node cache coloring */
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
306 * Need this for bootstrapping a per node allocator.
308 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
309 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310 #define CACHE_CACHE 0
311 #define SIZE_AC 1
312 #define SIZE_L3 (1 + MAX_NUMNODES)
314 static int drain_freelist(struct kmem_cache *cache,
315 struct kmem_list3 *l3, int tofree);
316 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 int node);
318 static int enable_cpucache(struct kmem_cache *cachep);
319 static void cache_reap(struct work_struct *unused);
322 * This function must be completely optimized away if a constant is passed to
323 * it. Mostly the same as what is in linux/slab.h except it returns an index.
325 static __always_inline int index_of(const size_t size)
327 extern void __bad_size(void);
329 if (__builtin_constant_p(size)) {
330 int i = 0;
332 #define CACHE(x) \
333 if (size <=x) \
334 return i; \
335 else \
336 i++;
337 #include "linux/kmalloc_sizes.h"
338 #undef CACHE
339 __bad_size();
340 } else
341 __bad_size();
342 return 0;
345 static int slab_early_init = 1;
347 #define INDEX_AC index_of(sizeof(struct arraycache_init))
348 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
350 static void kmem_list3_init(struct kmem_list3 *parent)
352 INIT_LIST_HEAD(&parent->slabs_full);
353 INIT_LIST_HEAD(&parent->slabs_partial);
354 INIT_LIST_HEAD(&parent->slabs_free);
355 parent->shared = NULL;
356 parent->alien = NULL;
357 parent->colour_next = 0;
358 spin_lock_init(&parent->list_lock);
359 parent->free_objects = 0;
360 parent->free_touched = 0;
363 #define MAKE_LIST(cachep, listp, slab, nodeid) \
364 do { \
365 INIT_LIST_HEAD(listp); \
366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
367 } while (0)
369 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 do { \
371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
374 } while (0)
377 * struct kmem_cache
379 * manages a cache.
382 struct kmem_cache {
383 /* 1) per-cpu data, touched during every alloc/free */
384 struct array_cache *array[NR_CPUS];
385 /* 2) Cache tunables. Protected by cache_chain_mutex */
386 unsigned int batchcount;
387 unsigned int limit;
388 unsigned int shared;
390 unsigned int buffer_size;
391 u32 reciprocal_buffer_size;
392 /* 3) touched by every alloc & free from the backend */
394 unsigned int flags; /* constant flags */
395 unsigned int num; /* # of objs per slab */
397 /* 4) cache_grow/shrink */
398 /* order of pgs per slab (2^n) */
399 unsigned int gfporder;
401 /* force GFP flags, e.g. GFP_DMA */
402 gfp_t gfpflags;
404 size_t colour; /* cache colouring range */
405 unsigned int colour_off; /* colour offset */
406 struct kmem_cache *slabp_cache;
407 unsigned int slab_size;
408 unsigned int dflags; /* dynamic flags */
410 /* constructor func */
411 void (*ctor) (void *, struct kmem_cache *, unsigned long);
413 /* 5) cache creation/removal */
414 const char *name;
415 struct list_head next;
417 /* 6) statistics */
418 #if STATS
419 unsigned long num_active;
420 unsigned long num_allocations;
421 unsigned long high_mark;
422 unsigned long grown;
423 unsigned long reaped;
424 unsigned long errors;
425 unsigned long max_freeable;
426 unsigned long node_allocs;
427 unsigned long node_frees;
428 unsigned long node_overflow;
429 atomic_t allochit;
430 atomic_t allocmiss;
431 atomic_t freehit;
432 atomic_t freemiss;
433 #endif
434 #if DEBUG
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
441 int obj_offset;
442 int obj_size;
443 #endif
445 * We put nodelists[] at the end of kmem_cache, because we want to size
446 * this array to nr_node_ids slots instead of MAX_NUMNODES
447 * (see kmem_cache_init())
448 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
449 * is statically defined, so we reserve the max number of nodes.
451 struct kmem_list3 *nodelists[MAX_NUMNODES];
453 * Do not add fields after nodelists[]
457 #define CFLGS_OFF_SLAB (0x80000000UL)
458 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
460 #define BATCHREFILL_LIMIT 16
462 * Optimization question: fewer reaps means less probability for unnessary
463 * cpucache drain/refill cycles.
465 * OTOH the cpuarrays can contain lots of objects,
466 * which could lock up otherwise freeable slabs.
468 #define REAPTIMEOUT_CPUC (2*HZ)
469 #define REAPTIMEOUT_LIST3 (4*HZ)
471 #if STATS
472 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
473 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
474 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
475 #define STATS_INC_GROWN(x) ((x)->grown++)
476 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
477 #define STATS_SET_HIGH(x) \
478 do { \
479 if ((x)->num_active > (x)->high_mark) \
480 (x)->high_mark = (x)->num_active; \
481 } while (0)
482 #define STATS_INC_ERR(x) ((x)->errors++)
483 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
484 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
485 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
486 #define STATS_SET_FREEABLE(x, i) \
487 do { \
488 if ((x)->max_freeable < i) \
489 (x)->max_freeable = i; \
490 } while (0)
491 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
492 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
493 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
494 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
495 #else
496 #define STATS_INC_ACTIVE(x) do { } while (0)
497 #define STATS_DEC_ACTIVE(x) do { } while (0)
498 #define STATS_INC_ALLOCED(x) do { } while (0)
499 #define STATS_INC_GROWN(x) do { } while (0)
500 #define STATS_ADD_REAPED(x,y) do { } while (0)
501 #define STATS_SET_HIGH(x) do { } while (0)
502 #define STATS_INC_ERR(x) do { } while (0)
503 #define STATS_INC_NODEALLOCS(x) do { } while (0)
504 #define STATS_INC_NODEFREES(x) do { } while (0)
505 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
506 #define STATS_SET_FREEABLE(x, i) do { } while (0)
507 #define STATS_INC_ALLOCHIT(x) do { } while (0)
508 #define STATS_INC_ALLOCMISS(x) do { } while (0)
509 #define STATS_INC_FREEHIT(x) do { } while (0)
510 #define STATS_INC_FREEMISS(x) do { } while (0)
511 #endif
513 #if DEBUG
516 * memory layout of objects:
517 * 0 : objp
518 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
519 * the end of an object is aligned with the end of the real
520 * allocation. Catches writes behind the end of the allocation.
521 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
522 * redzone word.
523 * cachep->obj_offset: The real object.
524 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
525 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
526 * [BYTES_PER_WORD long]
528 static int obj_offset(struct kmem_cache *cachep)
530 return cachep->obj_offset;
533 static int obj_size(struct kmem_cache *cachep)
535 return cachep->obj_size;
538 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
540 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
541 return (unsigned long long*) (objp + obj_offset(cachep) -
542 sizeof(unsigned long long));
545 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
547 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548 if (cachep->flags & SLAB_STORE_USER)
549 return (unsigned long long *)(objp + cachep->buffer_size -
550 sizeof(unsigned long long) -
551 REDZONE_ALIGN);
552 return (unsigned long long *) (objp + cachep->buffer_size -
553 sizeof(unsigned long long));
556 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
558 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
559 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
562 #else
564 #define obj_offset(x) 0
565 #define obj_size(cachep) (cachep->buffer_size)
566 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
568 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
570 #endif
573 * Do not go above this order unless 0 objects fit into the slab.
575 #define BREAK_GFP_ORDER_HI 1
576 #define BREAK_GFP_ORDER_LO 0
577 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580 * Functions for storing/retrieving the cachep and or slab from the page
581 * allocator. These are used to find the slab an obj belongs to. With kfree(),
582 * these are used to find the cache which an obj belongs to.
584 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
586 page->lru.next = (struct list_head *)cache;
589 static inline struct kmem_cache *page_get_cache(struct page *page)
591 page = compound_head(page);
592 BUG_ON(!PageSlab(page));
593 return (struct kmem_cache *)page->lru.next;
596 static inline void page_set_slab(struct page *page, struct slab *slab)
598 page->lru.prev = (struct list_head *)slab;
601 static inline struct slab *page_get_slab(struct page *page)
603 BUG_ON(!PageSlab(page));
604 return (struct slab *)page->lru.prev;
607 static inline struct kmem_cache *virt_to_cache(const void *obj)
609 struct page *page = virt_to_head_page(obj);
610 return page_get_cache(page);
613 static inline struct slab *virt_to_slab(const void *obj)
615 struct page *page = virt_to_head_page(obj);
616 return page_get_slab(page);
619 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
620 unsigned int idx)
622 return slab->s_mem + cache->buffer_size * idx;
626 * We want to avoid an expensive divide : (offset / cache->buffer_size)
627 * Using the fact that buffer_size is a constant for a particular cache,
628 * we can replace (offset / cache->buffer_size) by
629 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
631 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
632 const struct slab *slab, void *obj)
634 u32 offset = (obj - slab->s_mem);
635 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
639 * These are the default caches for kmalloc. Custom caches can have other sizes.
641 struct cache_sizes malloc_sizes[] = {
642 #define CACHE(x) { .cs_size = (x) },
643 #include <linux/kmalloc_sizes.h>
644 CACHE(ULONG_MAX)
645 #undef CACHE
647 EXPORT_SYMBOL(malloc_sizes);
649 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
650 struct cache_names {
651 char *name;
652 char *name_dma;
655 static struct cache_names __initdata cache_names[] = {
656 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
657 #include <linux/kmalloc_sizes.h>
658 {NULL,}
659 #undef CACHE
662 static struct arraycache_init initarray_cache __initdata =
663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664 static struct arraycache_init initarray_generic =
665 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
667 /* internal cache of cache description objs */
668 static struct kmem_cache cache_cache = {
669 .batchcount = 1,
670 .limit = BOOT_CPUCACHE_ENTRIES,
671 .shared = 1,
672 .buffer_size = sizeof(struct kmem_cache),
673 .name = "kmem_cache",
676 #define BAD_ALIEN_MAGIC 0x01020304ul
678 #ifdef CONFIG_LOCKDEP
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
691 static struct lock_class_key on_slab_l3_key;
692 static struct lock_class_key on_slab_alc_key;
694 static inline void init_lock_keys(void)
697 int q;
698 struct cache_sizes *s = malloc_sizes;
700 while (s->cs_size != ULONG_MAX) {
701 for_each_node(q) {
702 struct array_cache **alc;
703 int r;
704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705 if (!l3 || OFF_SLAB(s->cs_cachep))
706 continue;
707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708 alc = l3->alien;
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717 continue;
718 for_each_node(r) {
719 if (alc[r])
720 lockdep_set_class(&alc[r]->lock,
721 &on_slab_alc_key);
724 s++;
727 #else
728 static inline void init_lock_keys(void)
731 #endif
734 * 1. Guard access to the cache-chain.
735 * 2. Protect sanity of cpu_online_map against cpu hotplug events
737 static DEFINE_MUTEX(cache_chain_mutex);
738 static struct list_head cache_chain;
741 * chicken and egg problem: delay the per-cpu array allocation
742 * until the general caches are up.
744 static enum {
745 NONE,
746 PARTIAL_AC,
747 PARTIAL_L3,
748 FULL
749 } g_cpucache_up;
752 * used by boot code to determine if it can use slab based allocator
754 int slab_is_available(void)
756 return g_cpucache_up == FULL;
759 static DEFINE_PER_CPU(struct delayed_work, reap_work);
761 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
763 return cachep->array[smp_processor_id()];
766 static inline struct kmem_cache *__find_general_cachep(size_t size,
767 gfp_t gfpflags)
769 struct cache_sizes *csizep = malloc_sizes;
771 #if DEBUG
772 /* This happens if someone tries to call
773 * kmem_cache_create(), or __kmalloc(), before
774 * the generic caches are initialized.
776 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
777 #endif
778 if (!size)
779 return ZERO_SIZE_PTR;
781 while (size > csizep->cs_size)
782 csizep++;
785 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
786 * has cs_{dma,}cachep==NULL. Thus no special case
787 * for large kmalloc calls required.
789 #ifdef CONFIG_ZONE_DMA
790 if (unlikely(gfpflags & GFP_DMA))
791 return csizep->cs_dmacachep;
792 #endif
793 return csizep->cs_cachep;
796 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
798 return __find_general_cachep(size, gfpflags);
801 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
803 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
807 * Calculate the number of objects and left-over bytes for a given buffer size.
809 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
810 size_t align, int flags, size_t *left_over,
811 unsigned int *num)
813 int nr_objs;
814 size_t mgmt_size;
815 size_t slab_size = PAGE_SIZE << gfporder;
818 * The slab management structure can be either off the slab or
819 * on it. For the latter case, the memory allocated for a
820 * slab is used for:
822 * - The struct slab
823 * - One kmem_bufctl_t for each object
824 * - Padding to respect alignment of @align
825 * - @buffer_size bytes for each object
827 * If the slab management structure is off the slab, then the
828 * alignment will already be calculated into the size. Because
829 * the slabs are all pages aligned, the objects will be at the
830 * correct alignment when allocated.
832 if (flags & CFLGS_OFF_SLAB) {
833 mgmt_size = 0;
834 nr_objs = slab_size / buffer_size;
836 if (nr_objs > SLAB_LIMIT)
837 nr_objs = SLAB_LIMIT;
838 } else {
840 * Ignore padding for the initial guess. The padding
841 * is at most @align-1 bytes, and @buffer_size is at
842 * least @align. In the worst case, this result will
843 * be one greater than the number of objects that fit
844 * into the memory allocation when taking the padding
845 * into account.
847 nr_objs = (slab_size - sizeof(struct slab)) /
848 (buffer_size + sizeof(kmem_bufctl_t));
851 * This calculated number will be either the right
852 * amount, or one greater than what we want.
854 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
855 > slab_size)
856 nr_objs--;
858 if (nr_objs > SLAB_LIMIT)
859 nr_objs = SLAB_LIMIT;
861 mgmt_size = slab_mgmt_size(nr_objs, align);
863 *num = nr_objs;
864 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
867 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
869 static void __slab_error(const char *function, struct kmem_cache *cachep,
870 char *msg)
872 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
873 function, cachep->name, msg);
874 dump_stack();
878 * By default on NUMA we use alien caches to stage the freeing of
879 * objects allocated from other nodes. This causes massive memory
880 * inefficiencies when using fake NUMA setup to split memory into a
881 * large number of small nodes, so it can be disabled on the command
882 * line
885 static int use_alien_caches __read_mostly = 1;
886 static int numa_platform __read_mostly = 1;
887 static int __init noaliencache_setup(char *s)
889 use_alien_caches = 0;
890 return 1;
892 __setup("noaliencache", noaliencache_setup);
894 #ifdef CONFIG_NUMA
896 * Special reaping functions for NUMA systems called from cache_reap().
897 * These take care of doing round robin flushing of alien caches (containing
898 * objects freed on different nodes from which they were allocated) and the
899 * flushing of remote pcps by calling drain_node_pages.
901 static DEFINE_PER_CPU(unsigned long, reap_node);
903 static void init_reap_node(int cpu)
905 int node;
907 node = next_node(cpu_to_node(cpu), node_online_map);
908 if (node == MAX_NUMNODES)
909 node = first_node(node_online_map);
911 per_cpu(reap_node, cpu) = node;
914 static void next_reap_node(void)
916 int node = __get_cpu_var(reap_node);
918 node = next_node(node, node_online_map);
919 if (unlikely(node >= MAX_NUMNODES))
920 node = first_node(node_online_map);
921 __get_cpu_var(reap_node) = node;
924 #else
925 #define init_reap_node(cpu) do { } while (0)
926 #define next_reap_node(void) do { } while (0)
927 #endif
930 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
931 * via the workqueue/eventd.
932 * Add the CPU number into the expiration time to minimize the possibility of
933 * the CPUs getting into lockstep and contending for the global cache chain
934 * lock.
936 static void __cpuinit start_cpu_timer(int cpu)
938 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
941 * When this gets called from do_initcalls via cpucache_init(),
942 * init_workqueues() has already run, so keventd will be setup
943 * at that time.
945 if (keventd_up() && reap_work->work.func == NULL) {
946 init_reap_node(cpu);
947 INIT_DELAYED_WORK(reap_work, cache_reap);
948 schedule_delayed_work_on(cpu, reap_work,
949 __round_jiffies_relative(HZ, cpu));
953 static struct array_cache *alloc_arraycache(int node, int entries,
954 int batchcount)
956 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
957 struct array_cache *nc = NULL;
959 nc = kmalloc_node(memsize, GFP_KERNEL, node);
960 if (nc) {
961 nc->avail = 0;
962 nc->limit = entries;
963 nc->batchcount = batchcount;
964 nc->touched = 0;
965 spin_lock_init(&nc->lock);
967 return nc;
971 * Transfer objects in one arraycache to another.
972 * Locking must be handled by the caller.
974 * Return the number of entries transferred.
976 static int transfer_objects(struct array_cache *to,
977 struct array_cache *from, unsigned int max)
979 /* Figure out how many entries to transfer */
980 int nr = min(min(from->avail, max), to->limit - to->avail);
982 if (!nr)
983 return 0;
985 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
986 sizeof(void *) *nr);
988 from->avail -= nr;
989 to->avail += nr;
990 to->touched = 1;
991 return nr;
994 #ifndef CONFIG_NUMA
996 #define drain_alien_cache(cachep, alien) do { } while (0)
997 #define reap_alien(cachep, l3) do { } while (0)
999 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1001 return (struct array_cache **)BAD_ALIEN_MAGIC;
1004 static inline void free_alien_cache(struct array_cache **ac_ptr)
1008 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1010 return 0;
1013 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1014 gfp_t flags)
1016 return NULL;
1019 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1020 gfp_t flags, int nodeid)
1022 return NULL;
1025 #else /* CONFIG_NUMA */
1027 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1028 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1030 static struct array_cache **alloc_alien_cache(int node, int limit)
1032 struct array_cache **ac_ptr;
1033 int memsize = sizeof(void *) * nr_node_ids;
1034 int i;
1036 if (limit > 1)
1037 limit = 12;
1038 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1039 if (ac_ptr) {
1040 for_each_node(i) {
1041 if (i == node || !node_online(i)) {
1042 ac_ptr[i] = NULL;
1043 continue;
1045 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1046 if (!ac_ptr[i]) {
1047 for (i--; i <= 0; i--)
1048 kfree(ac_ptr[i]);
1049 kfree(ac_ptr);
1050 return NULL;
1054 return ac_ptr;
1057 static void free_alien_cache(struct array_cache **ac_ptr)
1059 int i;
1061 if (!ac_ptr)
1062 return;
1063 for_each_node(i)
1064 kfree(ac_ptr[i]);
1065 kfree(ac_ptr);
1068 static void __drain_alien_cache(struct kmem_cache *cachep,
1069 struct array_cache *ac, int node)
1071 struct kmem_list3 *rl3 = cachep->nodelists[node];
1073 if (ac->avail) {
1074 spin_lock(&rl3->list_lock);
1076 * Stuff objects into the remote nodes shared array first.
1077 * That way we could avoid the overhead of putting the objects
1078 * into the free lists and getting them back later.
1080 if (rl3->shared)
1081 transfer_objects(rl3->shared, ac, ac->limit);
1083 free_block(cachep, ac->entry, ac->avail, node);
1084 ac->avail = 0;
1085 spin_unlock(&rl3->list_lock);
1090 * Called from cache_reap() to regularly drain alien caches round robin.
1092 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1094 int node = __get_cpu_var(reap_node);
1096 if (l3->alien) {
1097 struct array_cache *ac = l3->alien[node];
1099 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1100 __drain_alien_cache(cachep, ac, node);
1101 spin_unlock_irq(&ac->lock);
1106 static void drain_alien_cache(struct kmem_cache *cachep,
1107 struct array_cache **alien)
1109 int i = 0;
1110 struct array_cache *ac;
1111 unsigned long flags;
1113 for_each_online_node(i) {
1114 ac = alien[i];
1115 if (ac) {
1116 spin_lock_irqsave(&ac->lock, flags);
1117 __drain_alien_cache(cachep, ac, i);
1118 spin_unlock_irqrestore(&ac->lock, flags);
1123 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1125 struct slab *slabp = virt_to_slab(objp);
1126 int nodeid = slabp->nodeid;
1127 struct kmem_list3 *l3;
1128 struct array_cache *alien = NULL;
1129 int node;
1131 node = numa_node_id();
1134 * Make sure we are not freeing a object from another node to the array
1135 * cache on this cpu.
1137 if (likely(slabp->nodeid == node))
1138 return 0;
1140 l3 = cachep->nodelists[node];
1141 STATS_INC_NODEFREES(cachep);
1142 if (l3->alien && l3->alien[nodeid]) {
1143 alien = l3->alien[nodeid];
1144 spin_lock(&alien->lock);
1145 if (unlikely(alien->avail == alien->limit)) {
1146 STATS_INC_ACOVERFLOW(cachep);
1147 __drain_alien_cache(cachep, alien, nodeid);
1149 alien->entry[alien->avail++] = objp;
1150 spin_unlock(&alien->lock);
1151 } else {
1152 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1153 free_block(cachep, &objp, 1, nodeid);
1154 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1156 return 1;
1158 #endif
1160 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1161 unsigned long action, void *hcpu)
1163 long cpu = (long)hcpu;
1164 struct kmem_cache *cachep;
1165 struct kmem_list3 *l3 = NULL;
1166 int node = cpu_to_node(cpu);
1167 const int memsize = sizeof(struct kmem_list3);
1169 switch (action) {
1170 case CPU_LOCK_ACQUIRE:
1171 mutex_lock(&cache_chain_mutex);
1172 break;
1173 case CPU_UP_PREPARE:
1174 case CPU_UP_PREPARE_FROZEN:
1176 * We need to do this right in the beginning since
1177 * alloc_arraycache's are going to use this list.
1178 * kmalloc_node allows us to add the slab to the right
1179 * kmem_list3 and not this cpu's kmem_list3
1182 list_for_each_entry(cachep, &cache_chain, next) {
1184 * Set up the size64 kmemlist for cpu before we can
1185 * begin anything. Make sure some other cpu on this
1186 * node has not already allocated this
1188 if (!cachep->nodelists[node]) {
1189 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1190 if (!l3)
1191 goto bad;
1192 kmem_list3_init(l3);
1193 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1194 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1197 * The l3s don't come and go as CPUs come and
1198 * go. cache_chain_mutex is sufficient
1199 * protection here.
1201 cachep->nodelists[node] = l3;
1204 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1205 cachep->nodelists[node]->free_limit =
1206 (1 + nr_cpus_node(node)) *
1207 cachep->batchcount + cachep->num;
1208 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1212 * Now we can go ahead with allocating the shared arrays and
1213 * array caches
1215 list_for_each_entry(cachep, &cache_chain, next) {
1216 struct array_cache *nc;
1217 struct array_cache *shared = NULL;
1218 struct array_cache **alien = NULL;
1220 nc = alloc_arraycache(node, cachep->limit,
1221 cachep->batchcount);
1222 if (!nc)
1223 goto bad;
1224 if (cachep->shared) {
1225 shared = alloc_arraycache(node,
1226 cachep->shared * cachep->batchcount,
1227 0xbaadf00d);
1228 if (!shared)
1229 goto bad;
1231 if (use_alien_caches) {
1232 alien = alloc_alien_cache(node, cachep->limit);
1233 if (!alien)
1234 goto bad;
1236 cachep->array[cpu] = nc;
1237 l3 = cachep->nodelists[node];
1238 BUG_ON(!l3);
1240 spin_lock_irq(&l3->list_lock);
1241 if (!l3->shared) {
1243 * We are serialised from CPU_DEAD or
1244 * CPU_UP_CANCELLED by the cpucontrol lock
1246 l3->shared = shared;
1247 shared = NULL;
1249 #ifdef CONFIG_NUMA
1250 if (!l3->alien) {
1251 l3->alien = alien;
1252 alien = NULL;
1254 #endif
1255 spin_unlock_irq(&l3->list_lock);
1256 kfree(shared);
1257 free_alien_cache(alien);
1259 break;
1260 case CPU_ONLINE:
1261 case CPU_ONLINE_FROZEN:
1262 start_cpu_timer(cpu);
1263 break;
1264 #ifdef CONFIG_HOTPLUG_CPU
1265 case CPU_DOWN_PREPARE:
1266 case CPU_DOWN_PREPARE_FROZEN:
1268 * Shutdown cache reaper. Note that the cache_chain_mutex is
1269 * held so that if cache_reap() is invoked it cannot do
1270 * anything expensive but will only modify reap_work
1271 * and reschedule the timer.
1273 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1274 /* Now the cache_reaper is guaranteed to be not running. */
1275 per_cpu(reap_work, cpu).work.func = NULL;
1276 break;
1277 case CPU_DOWN_FAILED:
1278 case CPU_DOWN_FAILED_FROZEN:
1279 start_cpu_timer(cpu);
1280 break;
1281 case CPU_DEAD:
1282 case CPU_DEAD_FROZEN:
1284 * Even if all the cpus of a node are down, we don't free the
1285 * kmem_list3 of any cache. This to avoid a race between
1286 * cpu_down, and a kmalloc allocation from another cpu for
1287 * memory from the node of the cpu going down. The list3
1288 * structure is usually allocated from kmem_cache_create() and
1289 * gets destroyed at kmem_cache_destroy().
1291 /* fall thru */
1292 #endif
1293 case CPU_UP_CANCELED:
1294 case CPU_UP_CANCELED_FROZEN:
1295 list_for_each_entry(cachep, &cache_chain, next) {
1296 struct array_cache *nc;
1297 struct array_cache *shared;
1298 struct array_cache **alien;
1299 cpumask_t mask;
1301 mask = node_to_cpumask(node);
1302 /* cpu is dead; no one can alloc from it. */
1303 nc = cachep->array[cpu];
1304 cachep->array[cpu] = NULL;
1305 l3 = cachep->nodelists[node];
1307 if (!l3)
1308 goto free_array_cache;
1310 spin_lock_irq(&l3->list_lock);
1312 /* Free limit for this kmem_list3 */
1313 l3->free_limit -= cachep->batchcount;
1314 if (nc)
1315 free_block(cachep, nc->entry, nc->avail, node);
1317 if (!cpus_empty(mask)) {
1318 spin_unlock_irq(&l3->list_lock);
1319 goto free_array_cache;
1322 shared = l3->shared;
1323 if (shared) {
1324 free_block(cachep, shared->entry,
1325 shared->avail, node);
1326 l3->shared = NULL;
1329 alien = l3->alien;
1330 l3->alien = NULL;
1332 spin_unlock_irq(&l3->list_lock);
1334 kfree(shared);
1335 if (alien) {
1336 drain_alien_cache(cachep, alien);
1337 free_alien_cache(alien);
1339 free_array_cache:
1340 kfree(nc);
1343 * In the previous loop, all the objects were freed to
1344 * the respective cache's slabs, now we can go ahead and
1345 * shrink each nodelist to its limit.
1347 list_for_each_entry(cachep, &cache_chain, next) {
1348 l3 = cachep->nodelists[node];
1349 if (!l3)
1350 continue;
1351 drain_freelist(cachep, l3, l3->free_objects);
1353 break;
1354 case CPU_LOCK_RELEASE:
1355 mutex_unlock(&cache_chain_mutex);
1356 break;
1358 return NOTIFY_OK;
1359 bad:
1360 return NOTIFY_BAD;
1363 static struct notifier_block __cpuinitdata cpucache_notifier = {
1364 &cpuup_callback, NULL, 0
1368 * swap the static kmem_list3 with kmalloced memory
1370 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1371 int nodeid)
1373 struct kmem_list3 *ptr;
1375 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1376 BUG_ON(!ptr);
1378 local_irq_disable();
1379 memcpy(ptr, list, sizeof(struct kmem_list3));
1381 * Do not assume that spinlocks can be initialized via memcpy:
1383 spin_lock_init(&ptr->list_lock);
1385 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1386 cachep->nodelists[nodeid] = ptr;
1387 local_irq_enable();
1391 * Initialisation. Called after the page allocator have been initialised and
1392 * before smp_init().
1394 void __init kmem_cache_init(void)
1396 size_t left_over;
1397 struct cache_sizes *sizes;
1398 struct cache_names *names;
1399 int i;
1400 int order;
1401 int node;
1403 if (num_possible_nodes() == 1) {
1404 use_alien_caches = 0;
1405 numa_platform = 0;
1408 for (i = 0; i < NUM_INIT_LISTS; i++) {
1409 kmem_list3_init(&initkmem_list3[i]);
1410 if (i < MAX_NUMNODES)
1411 cache_cache.nodelists[i] = NULL;
1415 * Fragmentation resistance on low memory - only use bigger
1416 * page orders on machines with more than 32MB of memory.
1418 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1419 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1421 /* Bootstrap is tricky, because several objects are allocated
1422 * from caches that do not exist yet:
1423 * 1) initialize the cache_cache cache: it contains the struct
1424 * kmem_cache structures of all caches, except cache_cache itself:
1425 * cache_cache is statically allocated.
1426 * Initially an __init data area is used for the head array and the
1427 * kmem_list3 structures, it's replaced with a kmalloc allocated
1428 * array at the end of the bootstrap.
1429 * 2) Create the first kmalloc cache.
1430 * The struct kmem_cache for the new cache is allocated normally.
1431 * An __init data area is used for the head array.
1432 * 3) Create the remaining kmalloc caches, with minimally sized
1433 * head arrays.
1434 * 4) Replace the __init data head arrays for cache_cache and the first
1435 * kmalloc cache with kmalloc allocated arrays.
1436 * 5) Replace the __init data for kmem_list3 for cache_cache and
1437 * the other cache's with kmalloc allocated memory.
1438 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1441 node = numa_node_id();
1443 /* 1) create the cache_cache */
1444 INIT_LIST_HEAD(&cache_chain);
1445 list_add(&cache_cache.next, &cache_chain);
1446 cache_cache.colour_off = cache_line_size();
1447 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1448 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1451 * struct kmem_cache size depends on nr_node_ids, which
1452 * can be less than MAX_NUMNODES.
1454 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1455 nr_node_ids * sizeof(struct kmem_list3 *);
1456 #if DEBUG
1457 cache_cache.obj_size = cache_cache.buffer_size;
1458 #endif
1459 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1460 cache_line_size());
1461 cache_cache.reciprocal_buffer_size =
1462 reciprocal_value(cache_cache.buffer_size);
1464 for (order = 0; order < MAX_ORDER; order++) {
1465 cache_estimate(order, cache_cache.buffer_size,
1466 cache_line_size(), 0, &left_over, &cache_cache.num);
1467 if (cache_cache.num)
1468 break;
1470 BUG_ON(!cache_cache.num);
1471 cache_cache.gfporder = order;
1472 cache_cache.colour = left_over / cache_cache.colour_off;
1473 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1474 sizeof(struct slab), cache_line_size());
1476 /* 2+3) create the kmalloc caches */
1477 sizes = malloc_sizes;
1478 names = cache_names;
1481 * Initialize the caches that provide memory for the array cache and the
1482 * kmem_list3 structures first. Without this, further allocations will
1483 * bug.
1486 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1487 sizes[INDEX_AC].cs_size,
1488 ARCH_KMALLOC_MINALIGN,
1489 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1490 NULL);
1492 if (INDEX_AC != INDEX_L3) {
1493 sizes[INDEX_L3].cs_cachep =
1494 kmem_cache_create(names[INDEX_L3].name,
1495 sizes[INDEX_L3].cs_size,
1496 ARCH_KMALLOC_MINALIGN,
1497 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1498 NULL);
1501 slab_early_init = 0;
1503 while (sizes->cs_size != ULONG_MAX) {
1505 * For performance, all the general caches are L1 aligned.
1506 * This should be particularly beneficial on SMP boxes, as it
1507 * eliminates "false sharing".
1508 * Note for systems short on memory removing the alignment will
1509 * allow tighter packing of the smaller caches.
1511 if (!sizes->cs_cachep) {
1512 sizes->cs_cachep = kmem_cache_create(names->name,
1513 sizes->cs_size,
1514 ARCH_KMALLOC_MINALIGN,
1515 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1516 NULL);
1518 #ifdef CONFIG_ZONE_DMA
1519 sizes->cs_dmacachep = kmem_cache_create(
1520 names->name_dma,
1521 sizes->cs_size,
1522 ARCH_KMALLOC_MINALIGN,
1523 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1524 SLAB_PANIC,
1525 NULL);
1526 #endif
1527 sizes++;
1528 names++;
1530 /* 4) Replace the bootstrap head arrays */
1532 struct array_cache *ptr;
1534 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1536 local_irq_disable();
1537 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1538 memcpy(ptr, cpu_cache_get(&cache_cache),
1539 sizeof(struct arraycache_init));
1541 * Do not assume that spinlocks can be initialized via memcpy:
1543 spin_lock_init(&ptr->lock);
1545 cache_cache.array[smp_processor_id()] = ptr;
1546 local_irq_enable();
1548 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1550 local_irq_disable();
1551 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1552 != &initarray_generic.cache);
1553 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1554 sizeof(struct arraycache_init));
1556 * Do not assume that spinlocks can be initialized via memcpy:
1558 spin_lock_init(&ptr->lock);
1560 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1561 ptr;
1562 local_irq_enable();
1564 /* 5) Replace the bootstrap kmem_list3's */
1566 int nid;
1568 /* Replace the static kmem_list3 structures for the boot cpu */
1569 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1571 for_each_online_node(nid) {
1572 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1573 &initkmem_list3[SIZE_AC + nid], nid);
1575 if (INDEX_AC != INDEX_L3) {
1576 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1577 &initkmem_list3[SIZE_L3 + nid], nid);
1582 /* 6) resize the head arrays to their final sizes */
1584 struct kmem_cache *cachep;
1585 mutex_lock(&cache_chain_mutex);
1586 list_for_each_entry(cachep, &cache_chain, next)
1587 if (enable_cpucache(cachep))
1588 BUG();
1589 mutex_unlock(&cache_chain_mutex);
1592 /* Annotate slab for lockdep -- annotate the malloc caches */
1593 init_lock_keys();
1596 /* Done! */
1597 g_cpucache_up = FULL;
1600 * Register a cpu startup notifier callback that initializes
1601 * cpu_cache_get for all new cpus
1603 register_cpu_notifier(&cpucache_notifier);
1606 * The reap timers are started later, with a module init call: That part
1607 * of the kernel is not yet operational.
1611 static int __init cpucache_init(void)
1613 int cpu;
1616 * Register the timers that return unneeded pages to the page allocator
1618 for_each_online_cpu(cpu)
1619 start_cpu_timer(cpu);
1620 return 0;
1622 __initcall(cpucache_init);
1625 * Interface to system's page allocator. No need to hold the cache-lock.
1627 * If we requested dmaable memory, we will get it. Even if we
1628 * did not request dmaable memory, we might get it, but that
1629 * would be relatively rare and ignorable.
1631 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1633 struct page *page;
1634 int nr_pages;
1635 int i;
1637 #ifndef CONFIG_MMU
1639 * Nommu uses slab's for process anonymous memory allocations, and thus
1640 * requires __GFP_COMP to properly refcount higher order allocations
1642 flags |= __GFP_COMP;
1643 #endif
1645 flags |= cachep->gfpflags;
1647 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1648 if (!page)
1649 return NULL;
1651 nr_pages = (1 << cachep->gfporder);
1652 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1653 add_zone_page_state(page_zone(page),
1654 NR_SLAB_RECLAIMABLE, nr_pages);
1655 else
1656 add_zone_page_state(page_zone(page),
1657 NR_SLAB_UNRECLAIMABLE, nr_pages);
1658 for (i = 0; i < nr_pages; i++)
1659 __SetPageSlab(page + i);
1660 return page_address(page);
1664 * Interface to system's page release.
1666 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1668 unsigned long i = (1 << cachep->gfporder);
1669 struct page *page = virt_to_page(addr);
1670 const unsigned long nr_freed = i;
1672 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1673 sub_zone_page_state(page_zone(page),
1674 NR_SLAB_RECLAIMABLE, nr_freed);
1675 else
1676 sub_zone_page_state(page_zone(page),
1677 NR_SLAB_UNRECLAIMABLE, nr_freed);
1678 while (i--) {
1679 BUG_ON(!PageSlab(page));
1680 __ClearPageSlab(page);
1681 page++;
1683 if (current->reclaim_state)
1684 current->reclaim_state->reclaimed_slab += nr_freed;
1685 free_pages((unsigned long)addr, cachep->gfporder);
1688 static void kmem_rcu_free(struct rcu_head *head)
1690 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1691 struct kmem_cache *cachep = slab_rcu->cachep;
1693 kmem_freepages(cachep, slab_rcu->addr);
1694 if (OFF_SLAB(cachep))
1695 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1698 #if DEBUG
1700 #ifdef CONFIG_DEBUG_PAGEALLOC
1701 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1702 unsigned long caller)
1704 int size = obj_size(cachep);
1706 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1708 if (size < 5 * sizeof(unsigned long))
1709 return;
1711 *addr++ = 0x12345678;
1712 *addr++ = caller;
1713 *addr++ = smp_processor_id();
1714 size -= 3 * sizeof(unsigned long);
1716 unsigned long *sptr = &caller;
1717 unsigned long svalue;
1719 while (!kstack_end(sptr)) {
1720 svalue = *sptr++;
1721 if (kernel_text_address(svalue)) {
1722 *addr++ = svalue;
1723 size -= sizeof(unsigned long);
1724 if (size <= sizeof(unsigned long))
1725 break;
1730 *addr++ = 0x87654321;
1732 #endif
1734 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1736 int size = obj_size(cachep);
1737 addr = &((char *)addr)[obj_offset(cachep)];
1739 memset(addr, val, size);
1740 *(unsigned char *)(addr + size - 1) = POISON_END;
1743 static void dump_line(char *data, int offset, int limit)
1745 int i;
1746 unsigned char error = 0;
1747 int bad_count = 0;
1749 printk(KERN_ERR "%03x:", offset);
1750 for (i = 0; i < limit; i++) {
1751 if (data[offset + i] != POISON_FREE) {
1752 error = data[offset + i];
1753 bad_count++;
1755 printk(" %02x", (unsigned char)data[offset + i]);
1757 printk("\n");
1759 if (bad_count == 1) {
1760 error ^= POISON_FREE;
1761 if (!(error & (error - 1))) {
1762 printk(KERN_ERR "Single bit error detected. Probably "
1763 "bad RAM.\n");
1764 #ifdef CONFIG_X86
1765 printk(KERN_ERR "Run memtest86+ or a similar memory "
1766 "test tool.\n");
1767 #else
1768 printk(KERN_ERR "Run a memory test tool.\n");
1769 #endif
1773 #endif
1775 #if DEBUG
1777 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1779 int i, size;
1780 char *realobj;
1782 if (cachep->flags & SLAB_RED_ZONE) {
1783 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1784 *dbg_redzone1(cachep, objp),
1785 *dbg_redzone2(cachep, objp));
1788 if (cachep->flags & SLAB_STORE_USER) {
1789 printk(KERN_ERR "Last user: [<%p>]",
1790 *dbg_userword(cachep, objp));
1791 print_symbol("(%s)",
1792 (unsigned long)*dbg_userword(cachep, objp));
1793 printk("\n");
1795 realobj = (char *)objp + obj_offset(cachep);
1796 size = obj_size(cachep);
1797 for (i = 0; i < size && lines; i += 16, lines--) {
1798 int limit;
1799 limit = 16;
1800 if (i + limit > size)
1801 limit = size - i;
1802 dump_line(realobj, i, limit);
1806 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1808 char *realobj;
1809 int size, i;
1810 int lines = 0;
1812 realobj = (char *)objp + obj_offset(cachep);
1813 size = obj_size(cachep);
1815 for (i = 0; i < size; i++) {
1816 char exp = POISON_FREE;
1817 if (i == size - 1)
1818 exp = POISON_END;
1819 if (realobj[i] != exp) {
1820 int limit;
1821 /* Mismatch ! */
1822 /* Print header */
1823 if (lines == 0) {
1824 printk(KERN_ERR
1825 "Slab corruption: %s start=%p, len=%d\n",
1826 cachep->name, realobj, size);
1827 print_objinfo(cachep, objp, 0);
1829 /* Hexdump the affected line */
1830 i = (i / 16) * 16;
1831 limit = 16;
1832 if (i + limit > size)
1833 limit = size - i;
1834 dump_line(realobj, i, limit);
1835 i += 16;
1836 lines++;
1837 /* Limit to 5 lines */
1838 if (lines > 5)
1839 break;
1842 if (lines != 0) {
1843 /* Print some data about the neighboring objects, if they
1844 * exist:
1846 struct slab *slabp = virt_to_slab(objp);
1847 unsigned int objnr;
1849 objnr = obj_to_index(cachep, slabp, objp);
1850 if (objnr) {
1851 objp = index_to_obj(cachep, slabp, objnr - 1);
1852 realobj = (char *)objp + obj_offset(cachep);
1853 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1854 realobj, size);
1855 print_objinfo(cachep, objp, 2);
1857 if (objnr + 1 < cachep->num) {
1858 objp = index_to_obj(cachep, slabp, objnr + 1);
1859 realobj = (char *)objp + obj_offset(cachep);
1860 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1861 realobj, size);
1862 print_objinfo(cachep, objp, 2);
1866 #endif
1868 #if DEBUG
1870 * slab_destroy_objs - destroy a slab and its objects
1871 * @cachep: cache pointer being destroyed
1872 * @slabp: slab pointer being destroyed
1874 * Call the registered destructor for each object in a slab that is being
1875 * destroyed.
1877 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1879 int i;
1880 for (i = 0; i < cachep->num; i++) {
1881 void *objp = index_to_obj(cachep, slabp, i);
1883 if (cachep->flags & SLAB_POISON) {
1884 #ifdef CONFIG_DEBUG_PAGEALLOC
1885 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1886 OFF_SLAB(cachep))
1887 kernel_map_pages(virt_to_page(objp),
1888 cachep->buffer_size / PAGE_SIZE, 1);
1889 else
1890 check_poison_obj(cachep, objp);
1891 #else
1892 check_poison_obj(cachep, objp);
1893 #endif
1895 if (cachep->flags & SLAB_RED_ZONE) {
1896 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1897 slab_error(cachep, "start of a freed object "
1898 "was overwritten");
1899 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1900 slab_error(cachep, "end of a freed object "
1901 "was overwritten");
1905 #else
1906 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1909 #endif
1912 * slab_destroy - destroy and release all objects in a slab
1913 * @cachep: cache pointer being destroyed
1914 * @slabp: slab pointer being destroyed
1916 * Destroy all the objs in a slab, and release the mem back to the system.
1917 * Before calling the slab must have been unlinked from the cache. The
1918 * cache-lock is not held/needed.
1920 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1922 void *addr = slabp->s_mem - slabp->colouroff;
1924 slab_destroy_objs(cachep, slabp);
1925 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1926 struct slab_rcu *slab_rcu;
1928 slab_rcu = (struct slab_rcu *)slabp;
1929 slab_rcu->cachep = cachep;
1930 slab_rcu->addr = addr;
1931 call_rcu(&slab_rcu->head, kmem_rcu_free);
1932 } else {
1933 kmem_freepages(cachep, addr);
1934 if (OFF_SLAB(cachep))
1935 kmem_cache_free(cachep->slabp_cache, slabp);
1940 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1941 * size of kmem_list3.
1943 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1945 int node;
1947 for_each_online_node(node) {
1948 cachep->nodelists[node] = &initkmem_list3[index + node];
1949 cachep->nodelists[node]->next_reap = jiffies +
1950 REAPTIMEOUT_LIST3 +
1951 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1955 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1957 int i;
1958 struct kmem_list3 *l3;
1960 for_each_online_cpu(i)
1961 kfree(cachep->array[i]);
1963 /* NUMA: free the list3 structures */
1964 for_each_online_node(i) {
1965 l3 = cachep->nodelists[i];
1966 if (l3) {
1967 kfree(l3->shared);
1968 free_alien_cache(l3->alien);
1969 kfree(l3);
1972 kmem_cache_free(&cache_cache, cachep);
1977 * calculate_slab_order - calculate size (page order) of slabs
1978 * @cachep: pointer to the cache that is being created
1979 * @size: size of objects to be created in this cache.
1980 * @align: required alignment for the objects.
1981 * @flags: slab allocation flags
1983 * Also calculates the number of objects per slab.
1985 * This could be made much more intelligent. For now, try to avoid using
1986 * high order pages for slabs. When the gfp() functions are more friendly
1987 * towards high-order requests, this should be changed.
1989 static size_t calculate_slab_order(struct kmem_cache *cachep,
1990 size_t size, size_t align, unsigned long flags)
1992 unsigned long offslab_limit;
1993 size_t left_over = 0;
1994 int gfporder;
1996 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1997 unsigned int num;
1998 size_t remainder;
2000 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2001 if (!num)
2002 continue;
2004 if (flags & CFLGS_OFF_SLAB) {
2006 * Max number of objs-per-slab for caches which
2007 * use off-slab slabs. Needed to avoid a possible
2008 * looping condition in cache_grow().
2010 offslab_limit = size - sizeof(struct slab);
2011 offslab_limit /= sizeof(kmem_bufctl_t);
2013 if (num > offslab_limit)
2014 break;
2017 /* Found something acceptable - save it away */
2018 cachep->num = num;
2019 cachep->gfporder = gfporder;
2020 left_over = remainder;
2023 * A VFS-reclaimable slab tends to have most allocations
2024 * as GFP_NOFS and we really don't want to have to be allocating
2025 * higher-order pages when we are unable to shrink dcache.
2027 if (flags & SLAB_RECLAIM_ACCOUNT)
2028 break;
2031 * Large number of objects is good, but very large slabs are
2032 * currently bad for the gfp()s.
2034 if (gfporder >= slab_break_gfp_order)
2035 break;
2038 * Acceptable internal fragmentation?
2040 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2041 break;
2043 return left_over;
2046 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2048 if (g_cpucache_up == FULL)
2049 return enable_cpucache(cachep);
2051 if (g_cpucache_up == NONE) {
2053 * Note: the first kmem_cache_create must create the cache
2054 * that's used by kmalloc(24), otherwise the creation of
2055 * further caches will BUG().
2057 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2060 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2061 * the first cache, then we need to set up all its list3s,
2062 * otherwise the creation of further caches will BUG().
2064 set_up_list3s(cachep, SIZE_AC);
2065 if (INDEX_AC == INDEX_L3)
2066 g_cpucache_up = PARTIAL_L3;
2067 else
2068 g_cpucache_up = PARTIAL_AC;
2069 } else {
2070 cachep->array[smp_processor_id()] =
2071 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2073 if (g_cpucache_up == PARTIAL_AC) {
2074 set_up_list3s(cachep, SIZE_L3);
2075 g_cpucache_up = PARTIAL_L3;
2076 } else {
2077 int node;
2078 for_each_online_node(node) {
2079 cachep->nodelists[node] =
2080 kmalloc_node(sizeof(struct kmem_list3),
2081 GFP_KERNEL, node);
2082 BUG_ON(!cachep->nodelists[node]);
2083 kmem_list3_init(cachep->nodelists[node]);
2087 cachep->nodelists[numa_node_id()]->next_reap =
2088 jiffies + REAPTIMEOUT_LIST3 +
2089 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2091 cpu_cache_get(cachep)->avail = 0;
2092 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2093 cpu_cache_get(cachep)->batchcount = 1;
2094 cpu_cache_get(cachep)->touched = 0;
2095 cachep->batchcount = 1;
2096 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2097 return 0;
2101 * kmem_cache_create - Create a cache.
2102 * @name: A string which is used in /proc/slabinfo to identify this cache.
2103 * @size: The size of objects to be created in this cache.
2104 * @align: The required alignment for the objects.
2105 * @flags: SLAB flags
2106 * @ctor: A constructor for the objects.
2108 * Returns a ptr to the cache on success, NULL on failure.
2109 * Cannot be called within a int, but can be interrupted.
2110 * The @ctor is run when new pages are allocated by the cache.
2112 * @name must be valid until the cache is destroyed. This implies that
2113 * the module calling this has to destroy the cache before getting unloaded.
2115 * The flags are
2117 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2118 * to catch references to uninitialised memory.
2120 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2121 * for buffer overruns.
2123 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2124 * cacheline. This can be beneficial if you're counting cycles as closely
2125 * as davem.
2127 struct kmem_cache *
2128 kmem_cache_create (const char *name, size_t size, size_t align,
2129 unsigned long flags,
2130 void (*ctor)(void*, struct kmem_cache *, unsigned long))
2132 size_t left_over, slab_size, ralign;
2133 struct kmem_cache *cachep = NULL, *pc;
2136 * Sanity checks... these are all serious usage bugs.
2138 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2139 size > KMALLOC_MAX_SIZE) {
2140 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2141 name);
2142 BUG();
2146 * We use cache_chain_mutex to ensure a consistent view of
2147 * cpu_online_map as well. Please see cpuup_callback
2149 mutex_lock(&cache_chain_mutex);
2151 list_for_each_entry(pc, &cache_chain, next) {
2152 char tmp;
2153 int res;
2156 * This happens when the module gets unloaded and doesn't
2157 * destroy its slab cache and no-one else reuses the vmalloc
2158 * area of the module. Print a warning.
2160 res = probe_kernel_address(pc->name, tmp);
2161 if (res) {
2162 printk(KERN_ERR
2163 "SLAB: cache with size %d has lost its name\n",
2164 pc->buffer_size);
2165 continue;
2168 if (!strcmp(pc->name, name)) {
2169 printk(KERN_ERR
2170 "kmem_cache_create: duplicate cache %s\n", name);
2171 dump_stack();
2172 goto oops;
2176 #if DEBUG
2177 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2178 #if FORCED_DEBUG
2180 * Enable redzoning and last user accounting, except for caches with
2181 * large objects, if the increased size would increase the object size
2182 * above the next power of two: caches with object sizes just above a
2183 * power of two have a significant amount of internal fragmentation.
2185 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2186 2 * sizeof(unsigned long long)))
2187 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2188 if (!(flags & SLAB_DESTROY_BY_RCU))
2189 flags |= SLAB_POISON;
2190 #endif
2191 if (flags & SLAB_DESTROY_BY_RCU)
2192 BUG_ON(flags & SLAB_POISON);
2193 #endif
2195 * Always checks flags, a caller might be expecting debug support which
2196 * isn't available.
2198 BUG_ON(flags & ~CREATE_MASK);
2201 * Check that size is in terms of words. This is needed to avoid
2202 * unaligned accesses for some archs when redzoning is used, and makes
2203 * sure any on-slab bufctl's are also correctly aligned.
2205 if (size & (BYTES_PER_WORD - 1)) {
2206 size += (BYTES_PER_WORD - 1);
2207 size &= ~(BYTES_PER_WORD - 1);
2210 /* calculate the final buffer alignment: */
2212 /* 1) arch recommendation: can be overridden for debug */
2213 if (flags & SLAB_HWCACHE_ALIGN) {
2215 * Default alignment: as specified by the arch code. Except if
2216 * an object is really small, then squeeze multiple objects into
2217 * one cacheline.
2219 ralign = cache_line_size();
2220 while (size <= ralign / 2)
2221 ralign /= 2;
2222 } else {
2223 ralign = BYTES_PER_WORD;
2227 * Redzoning and user store require word alignment or possibly larger.
2228 * Note this will be overridden by architecture or caller mandated
2229 * alignment if either is greater than BYTES_PER_WORD.
2231 if (flags & SLAB_STORE_USER)
2232 ralign = BYTES_PER_WORD;
2234 if (flags & SLAB_RED_ZONE) {
2235 ralign = REDZONE_ALIGN;
2236 /* If redzoning, ensure that the second redzone is suitably
2237 * aligned, by adjusting the object size accordingly. */
2238 size += REDZONE_ALIGN - 1;
2239 size &= ~(REDZONE_ALIGN - 1);
2242 /* 2) arch mandated alignment */
2243 if (ralign < ARCH_SLAB_MINALIGN) {
2244 ralign = ARCH_SLAB_MINALIGN;
2246 /* 3) caller mandated alignment */
2247 if (ralign < align) {
2248 ralign = align;
2250 /* disable debug if necessary */
2251 if (ralign > __alignof__(unsigned long long))
2252 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2254 * 4) Store it.
2256 align = ralign;
2258 /* Get cache's description obj. */
2259 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2260 if (!cachep)
2261 goto oops;
2263 #if DEBUG
2264 cachep->obj_size = size;
2267 * Both debugging options require word-alignment which is calculated
2268 * into align above.
2270 if (flags & SLAB_RED_ZONE) {
2271 /* add space for red zone words */
2272 cachep->obj_offset += sizeof(unsigned long long);
2273 size += 2 * sizeof(unsigned long long);
2275 if (flags & SLAB_STORE_USER) {
2276 /* user store requires one word storage behind the end of
2277 * the real object. But if the second red zone needs to be
2278 * aligned to 64 bits, we must allow that much space.
2280 if (flags & SLAB_RED_ZONE)
2281 size += REDZONE_ALIGN;
2282 else
2283 size += BYTES_PER_WORD;
2285 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2286 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2287 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2288 cachep->obj_offset += PAGE_SIZE - size;
2289 size = PAGE_SIZE;
2291 #endif
2292 #endif
2295 * Determine if the slab management is 'on' or 'off' slab.
2296 * (bootstrapping cannot cope with offslab caches so don't do
2297 * it too early on.)
2299 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2301 * Size is large, assume best to place the slab management obj
2302 * off-slab (should allow better packing of objs).
2304 flags |= CFLGS_OFF_SLAB;
2306 size = ALIGN(size, align);
2308 left_over = calculate_slab_order(cachep, size, align, flags);
2310 if (!cachep->num) {
2311 printk(KERN_ERR
2312 "kmem_cache_create: couldn't create cache %s.\n", name);
2313 kmem_cache_free(&cache_cache, cachep);
2314 cachep = NULL;
2315 goto oops;
2317 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2318 + sizeof(struct slab), align);
2321 * If the slab has been placed off-slab, and we have enough space then
2322 * move it on-slab. This is at the expense of any extra colouring.
2324 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2325 flags &= ~CFLGS_OFF_SLAB;
2326 left_over -= slab_size;
2329 if (flags & CFLGS_OFF_SLAB) {
2330 /* really off slab. No need for manual alignment */
2331 slab_size =
2332 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2335 cachep->colour_off = cache_line_size();
2336 /* Offset must be a multiple of the alignment. */
2337 if (cachep->colour_off < align)
2338 cachep->colour_off = align;
2339 cachep->colour = left_over / cachep->colour_off;
2340 cachep->slab_size = slab_size;
2341 cachep->flags = flags;
2342 cachep->gfpflags = 0;
2343 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2344 cachep->gfpflags |= GFP_DMA;
2345 cachep->buffer_size = size;
2346 cachep->reciprocal_buffer_size = reciprocal_value(size);
2348 if (flags & CFLGS_OFF_SLAB) {
2349 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2351 * This is a possibility for one of the malloc_sizes caches.
2352 * But since we go off slab only for object size greater than
2353 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2354 * this should not happen at all.
2355 * But leave a BUG_ON for some lucky dude.
2357 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2359 cachep->ctor = ctor;
2360 cachep->name = name;
2362 if (setup_cpu_cache(cachep)) {
2363 __kmem_cache_destroy(cachep);
2364 cachep = NULL;
2365 goto oops;
2368 /* cache setup completed, link it into the list */
2369 list_add(&cachep->next, &cache_chain);
2370 oops:
2371 if (!cachep && (flags & SLAB_PANIC))
2372 panic("kmem_cache_create(): failed to create slab `%s'\n",
2373 name);
2374 mutex_unlock(&cache_chain_mutex);
2375 return cachep;
2377 EXPORT_SYMBOL(kmem_cache_create);
2379 #if DEBUG
2380 static void check_irq_off(void)
2382 BUG_ON(!irqs_disabled());
2385 static void check_irq_on(void)
2387 BUG_ON(irqs_disabled());
2390 static void check_spinlock_acquired(struct kmem_cache *cachep)
2392 #ifdef CONFIG_SMP
2393 check_irq_off();
2394 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2395 #endif
2398 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2400 #ifdef CONFIG_SMP
2401 check_irq_off();
2402 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2403 #endif
2406 #else
2407 #define check_irq_off() do { } while(0)
2408 #define check_irq_on() do { } while(0)
2409 #define check_spinlock_acquired(x) do { } while(0)
2410 #define check_spinlock_acquired_node(x, y) do { } while(0)
2411 #endif
2413 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2414 struct array_cache *ac,
2415 int force, int node);
2417 static void do_drain(void *arg)
2419 struct kmem_cache *cachep = arg;
2420 struct array_cache *ac;
2421 int node = numa_node_id();
2423 check_irq_off();
2424 ac = cpu_cache_get(cachep);
2425 spin_lock(&cachep->nodelists[node]->list_lock);
2426 free_block(cachep, ac->entry, ac->avail, node);
2427 spin_unlock(&cachep->nodelists[node]->list_lock);
2428 ac->avail = 0;
2431 static void drain_cpu_caches(struct kmem_cache *cachep)
2433 struct kmem_list3 *l3;
2434 int node;
2436 on_each_cpu(do_drain, cachep, 1, 1);
2437 check_irq_on();
2438 for_each_online_node(node) {
2439 l3 = cachep->nodelists[node];
2440 if (l3 && l3->alien)
2441 drain_alien_cache(cachep, l3->alien);
2444 for_each_online_node(node) {
2445 l3 = cachep->nodelists[node];
2446 if (l3)
2447 drain_array(cachep, l3, l3->shared, 1, node);
2452 * Remove slabs from the list of free slabs.
2453 * Specify the number of slabs to drain in tofree.
2455 * Returns the actual number of slabs released.
2457 static int drain_freelist(struct kmem_cache *cache,
2458 struct kmem_list3 *l3, int tofree)
2460 struct list_head *p;
2461 int nr_freed;
2462 struct slab *slabp;
2464 nr_freed = 0;
2465 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2467 spin_lock_irq(&l3->list_lock);
2468 p = l3->slabs_free.prev;
2469 if (p == &l3->slabs_free) {
2470 spin_unlock_irq(&l3->list_lock);
2471 goto out;
2474 slabp = list_entry(p, struct slab, list);
2475 #if DEBUG
2476 BUG_ON(slabp->inuse);
2477 #endif
2478 list_del(&slabp->list);
2480 * Safe to drop the lock. The slab is no longer linked
2481 * to the cache.
2483 l3->free_objects -= cache->num;
2484 spin_unlock_irq(&l3->list_lock);
2485 slab_destroy(cache, slabp);
2486 nr_freed++;
2488 out:
2489 return nr_freed;
2492 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2493 static int __cache_shrink(struct kmem_cache *cachep)
2495 int ret = 0, i = 0;
2496 struct kmem_list3 *l3;
2498 drain_cpu_caches(cachep);
2500 check_irq_on();
2501 for_each_online_node(i) {
2502 l3 = cachep->nodelists[i];
2503 if (!l3)
2504 continue;
2506 drain_freelist(cachep, l3, l3->free_objects);
2508 ret += !list_empty(&l3->slabs_full) ||
2509 !list_empty(&l3->slabs_partial);
2511 return (ret ? 1 : 0);
2515 * kmem_cache_shrink - Shrink a cache.
2516 * @cachep: The cache to shrink.
2518 * Releases as many slabs as possible for a cache.
2519 * To help debugging, a zero exit status indicates all slabs were released.
2521 int kmem_cache_shrink(struct kmem_cache *cachep)
2523 int ret;
2524 BUG_ON(!cachep || in_interrupt());
2526 mutex_lock(&cache_chain_mutex);
2527 ret = __cache_shrink(cachep);
2528 mutex_unlock(&cache_chain_mutex);
2529 return ret;
2531 EXPORT_SYMBOL(kmem_cache_shrink);
2534 * kmem_cache_destroy - delete a cache
2535 * @cachep: the cache to destroy
2537 * Remove a &struct kmem_cache object from the slab cache.
2539 * It is expected this function will be called by a module when it is
2540 * unloaded. This will remove the cache completely, and avoid a duplicate
2541 * cache being allocated each time a module is loaded and unloaded, if the
2542 * module doesn't have persistent in-kernel storage across loads and unloads.
2544 * The cache must be empty before calling this function.
2546 * The caller must guarantee that noone will allocate memory from the cache
2547 * during the kmem_cache_destroy().
2549 void kmem_cache_destroy(struct kmem_cache *cachep)
2551 BUG_ON(!cachep || in_interrupt());
2553 /* Find the cache in the chain of caches. */
2554 mutex_lock(&cache_chain_mutex);
2556 * the chain is never empty, cache_cache is never destroyed
2558 list_del(&cachep->next);
2559 if (__cache_shrink(cachep)) {
2560 slab_error(cachep, "Can't free all objects");
2561 list_add(&cachep->next, &cache_chain);
2562 mutex_unlock(&cache_chain_mutex);
2563 return;
2566 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2567 synchronize_rcu();
2569 __kmem_cache_destroy(cachep);
2570 mutex_unlock(&cache_chain_mutex);
2572 EXPORT_SYMBOL(kmem_cache_destroy);
2575 * Get the memory for a slab management obj.
2576 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2577 * always come from malloc_sizes caches. The slab descriptor cannot
2578 * come from the same cache which is getting created because,
2579 * when we are searching for an appropriate cache for these
2580 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2581 * If we are creating a malloc_sizes cache here it would not be visible to
2582 * kmem_find_general_cachep till the initialization is complete.
2583 * Hence we cannot have slabp_cache same as the original cache.
2585 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2586 int colour_off, gfp_t local_flags,
2587 int nodeid)
2589 struct slab *slabp;
2591 if (OFF_SLAB(cachep)) {
2592 /* Slab management obj is off-slab. */
2593 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2594 local_flags & ~GFP_THISNODE, nodeid);
2595 if (!slabp)
2596 return NULL;
2597 } else {
2598 slabp = objp + colour_off;
2599 colour_off += cachep->slab_size;
2601 slabp->inuse = 0;
2602 slabp->colouroff = colour_off;
2603 slabp->s_mem = objp + colour_off;
2604 slabp->nodeid = nodeid;
2605 return slabp;
2608 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2610 return (kmem_bufctl_t *) (slabp + 1);
2613 static void cache_init_objs(struct kmem_cache *cachep,
2614 struct slab *slabp)
2616 int i;
2618 for (i = 0; i < cachep->num; i++) {
2619 void *objp = index_to_obj(cachep, slabp, i);
2620 #if DEBUG
2621 /* need to poison the objs? */
2622 if (cachep->flags & SLAB_POISON)
2623 poison_obj(cachep, objp, POISON_FREE);
2624 if (cachep->flags & SLAB_STORE_USER)
2625 *dbg_userword(cachep, objp) = NULL;
2627 if (cachep->flags & SLAB_RED_ZONE) {
2628 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2629 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2632 * Constructors are not allowed to allocate memory from the same
2633 * cache which they are a constructor for. Otherwise, deadlock.
2634 * They must also be threaded.
2636 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2637 cachep->ctor(objp + obj_offset(cachep), cachep,
2640 if (cachep->flags & SLAB_RED_ZONE) {
2641 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2642 slab_error(cachep, "constructor overwrote the"
2643 " end of an object");
2644 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2645 slab_error(cachep, "constructor overwrote the"
2646 " start of an object");
2648 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2649 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2650 kernel_map_pages(virt_to_page(objp),
2651 cachep->buffer_size / PAGE_SIZE, 0);
2652 #else
2653 if (cachep->ctor)
2654 cachep->ctor(objp, cachep, 0);
2655 #endif
2656 slab_bufctl(slabp)[i] = i + 1;
2658 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2659 slabp->free = 0;
2662 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2664 if (CONFIG_ZONE_DMA_FLAG) {
2665 if (flags & GFP_DMA)
2666 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2667 else
2668 BUG_ON(cachep->gfpflags & GFP_DMA);
2672 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2673 int nodeid)
2675 void *objp = index_to_obj(cachep, slabp, slabp->free);
2676 kmem_bufctl_t next;
2678 slabp->inuse++;
2679 next = slab_bufctl(slabp)[slabp->free];
2680 #if DEBUG
2681 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2682 WARN_ON(slabp->nodeid != nodeid);
2683 #endif
2684 slabp->free = next;
2686 return objp;
2689 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2690 void *objp, int nodeid)
2692 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2694 #if DEBUG
2695 /* Verify that the slab belongs to the intended node */
2696 WARN_ON(slabp->nodeid != nodeid);
2698 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2699 printk(KERN_ERR "slab: double free detected in cache "
2700 "'%s', objp %p\n", cachep->name, objp);
2701 BUG();
2703 #endif
2704 slab_bufctl(slabp)[objnr] = slabp->free;
2705 slabp->free = objnr;
2706 slabp->inuse--;
2710 * Map pages beginning at addr to the given cache and slab. This is required
2711 * for the slab allocator to be able to lookup the cache and slab of a
2712 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2714 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2715 void *addr)
2717 int nr_pages;
2718 struct page *page;
2720 page = virt_to_page(addr);
2722 nr_pages = 1;
2723 if (likely(!PageCompound(page)))
2724 nr_pages <<= cache->gfporder;
2726 do {
2727 page_set_cache(page, cache);
2728 page_set_slab(page, slab);
2729 page++;
2730 } while (--nr_pages);
2734 * Grow (by 1) the number of slabs within a cache. This is called by
2735 * kmem_cache_alloc() when there are no active objs left in a cache.
2737 static int cache_grow(struct kmem_cache *cachep,
2738 gfp_t flags, int nodeid, void *objp)
2740 struct slab *slabp;
2741 size_t offset;
2742 gfp_t local_flags;
2743 struct kmem_list3 *l3;
2746 * Be lazy and only check for valid flags here, keeping it out of the
2747 * critical path in kmem_cache_alloc().
2749 BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
2751 local_flags = (flags & GFP_LEVEL_MASK);
2752 /* Take the l3 list lock to change the colour_next on this node */
2753 check_irq_off();
2754 l3 = cachep->nodelists[nodeid];
2755 spin_lock(&l3->list_lock);
2757 /* Get colour for the slab, and cal the next value. */
2758 offset = l3->colour_next;
2759 l3->colour_next++;
2760 if (l3->colour_next >= cachep->colour)
2761 l3->colour_next = 0;
2762 spin_unlock(&l3->list_lock);
2764 offset *= cachep->colour_off;
2766 if (local_flags & __GFP_WAIT)
2767 local_irq_enable();
2770 * The test for missing atomic flag is performed here, rather than
2771 * the more obvious place, simply to reduce the critical path length
2772 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2773 * will eventually be caught here (where it matters).
2775 kmem_flagcheck(cachep, flags);
2778 * Get mem for the objs. Attempt to allocate a physical page from
2779 * 'nodeid'.
2781 if (!objp)
2782 objp = kmem_getpages(cachep, local_flags, nodeid);
2783 if (!objp)
2784 goto failed;
2786 /* Get slab management. */
2787 slabp = alloc_slabmgmt(cachep, objp, offset,
2788 local_flags & ~GFP_THISNODE, nodeid);
2789 if (!slabp)
2790 goto opps1;
2792 slabp->nodeid = nodeid;
2793 slab_map_pages(cachep, slabp, objp);
2795 cache_init_objs(cachep, slabp);
2797 if (local_flags & __GFP_WAIT)
2798 local_irq_disable();
2799 check_irq_off();
2800 spin_lock(&l3->list_lock);
2802 /* Make slab active. */
2803 list_add_tail(&slabp->list, &(l3->slabs_free));
2804 STATS_INC_GROWN(cachep);
2805 l3->free_objects += cachep->num;
2806 spin_unlock(&l3->list_lock);
2807 return 1;
2808 opps1:
2809 kmem_freepages(cachep, objp);
2810 failed:
2811 if (local_flags & __GFP_WAIT)
2812 local_irq_disable();
2813 return 0;
2816 #if DEBUG
2819 * Perform extra freeing checks:
2820 * - detect bad pointers.
2821 * - POISON/RED_ZONE checking
2823 static void kfree_debugcheck(const void *objp)
2825 if (!virt_addr_valid(objp)) {
2826 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2827 (unsigned long)objp);
2828 BUG();
2832 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2834 unsigned long long redzone1, redzone2;
2836 redzone1 = *dbg_redzone1(cache, obj);
2837 redzone2 = *dbg_redzone2(cache, obj);
2840 * Redzone is ok.
2842 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2843 return;
2845 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2846 slab_error(cache, "double free detected");
2847 else
2848 slab_error(cache, "memory outside object was overwritten");
2850 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2851 obj, redzone1, redzone2);
2854 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2855 void *caller)
2857 struct page *page;
2858 unsigned int objnr;
2859 struct slab *slabp;
2861 objp -= obj_offset(cachep);
2862 kfree_debugcheck(objp);
2863 page = virt_to_head_page(objp);
2865 slabp = page_get_slab(page);
2867 if (cachep->flags & SLAB_RED_ZONE) {
2868 verify_redzone_free(cachep, objp);
2869 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2870 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2872 if (cachep->flags & SLAB_STORE_USER)
2873 *dbg_userword(cachep, objp) = caller;
2875 objnr = obj_to_index(cachep, slabp, objp);
2877 BUG_ON(objnr >= cachep->num);
2878 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2880 #ifdef CONFIG_DEBUG_SLAB_LEAK
2881 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2882 #endif
2883 if (cachep->flags & SLAB_POISON) {
2884 #ifdef CONFIG_DEBUG_PAGEALLOC
2885 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2886 store_stackinfo(cachep, objp, (unsigned long)caller);
2887 kernel_map_pages(virt_to_page(objp),
2888 cachep->buffer_size / PAGE_SIZE, 0);
2889 } else {
2890 poison_obj(cachep, objp, POISON_FREE);
2892 #else
2893 poison_obj(cachep, objp, POISON_FREE);
2894 #endif
2896 return objp;
2899 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2901 kmem_bufctl_t i;
2902 int entries = 0;
2904 /* Check slab's freelist to see if this obj is there. */
2905 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2906 entries++;
2907 if (entries > cachep->num || i >= cachep->num)
2908 goto bad;
2910 if (entries != cachep->num - slabp->inuse) {
2911 bad:
2912 printk(KERN_ERR "slab: Internal list corruption detected in "
2913 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2914 cachep->name, cachep->num, slabp, slabp->inuse);
2915 for (i = 0;
2916 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2917 i++) {
2918 if (i % 16 == 0)
2919 printk("\n%03x:", i);
2920 printk(" %02x", ((unsigned char *)slabp)[i]);
2922 printk("\n");
2923 BUG();
2926 #else
2927 #define kfree_debugcheck(x) do { } while(0)
2928 #define cache_free_debugcheck(x,objp,z) (objp)
2929 #define check_slabp(x,y) do { } while(0)
2930 #endif
2932 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2934 int batchcount;
2935 struct kmem_list3 *l3;
2936 struct array_cache *ac;
2937 int node;
2939 node = numa_node_id();
2941 check_irq_off();
2942 ac = cpu_cache_get(cachep);
2943 retry:
2944 batchcount = ac->batchcount;
2945 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2947 * If there was little recent activity on this cache, then
2948 * perform only a partial refill. Otherwise we could generate
2949 * refill bouncing.
2951 batchcount = BATCHREFILL_LIMIT;
2953 l3 = cachep->nodelists[node];
2955 BUG_ON(ac->avail > 0 || !l3);
2956 spin_lock(&l3->list_lock);
2958 /* See if we can refill from the shared array */
2959 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2960 goto alloc_done;
2962 while (batchcount > 0) {
2963 struct list_head *entry;
2964 struct slab *slabp;
2965 /* Get slab alloc is to come from. */
2966 entry = l3->slabs_partial.next;
2967 if (entry == &l3->slabs_partial) {
2968 l3->free_touched = 1;
2969 entry = l3->slabs_free.next;
2970 if (entry == &l3->slabs_free)
2971 goto must_grow;
2974 slabp = list_entry(entry, struct slab, list);
2975 check_slabp(cachep, slabp);
2976 check_spinlock_acquired(cachep);
2979 * The slab was either on partial or free list so
2980 * there must be at least one object available for
2981 * allocation.
2983 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2985 while (slabp->inuse < cachep->num && batchcount--) {
2986 STATS_INC_ALLOCED(cachep);
2987 STATS_INC_ACTIVE(cachep);
2988 STATS_SET_HIGH(cachep);
2990 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2991 node);
2993 check_slabp(cachep, slabp);
2995 /* move slabp to correct slabp list: */
2996 list_del(&slabp->list);
2997 if (slabp->free == BUFCTL_END)
2998 list_add(&slabp->list, &l3->slabs_full);
2999 else
3000 list_add(&slabp->list, &l3->slabs_partial);
3003 must_grow:
3004 l3->free_objects -= ac->avail;
3005 alloc_done:
3006 spin_unlock(&l3->list_lock);
3008 if (unlikely(!ac->avail)) {
3009 int x;
3010 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3012 /* cache_grow can reenable interrupts, then ac could change. */
3013 ac = cpu_cache_get(cachep);
3014 if (!x && ac->avail == 0) /* no objects in sight? abort */
3015 return NULL;
3017 if (!ac->avail) /* objects refilled by interrupt? */
3018 goto retry;
3020 ac->touched = 1;
3021 return ac->entry[--ac->avail];
3024 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3025 gfp_t flags)
3027 might_sleep_if(flags & __GFP_WAIT);
3028 #if DEBUG
3029 kmem_flagcheck(cachep, flags);
3030 #endif
3033 #if DEBUG
3034 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3035 gfp_t flags, void *objp, void *caller)
3037 if (!objp)
3038 return objp;
3039 if (cachep->flags & SLAB_POISON) {
3040 #ifdef CONFIG_DEBUG_PAGEALLOC
3041 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3042 kernel_map_pages(virt_to_page(objp),
3043 cachep->buffer_size / PAGE_SIZE, 1);
3044 else
3045 check_poison_obj(cachep, objp);
3046 #else
3047 check_poison_obj(cachep, objp);
3048 #endif
3049 poison_obj(cachep, objp, POISON_INUSE);
3051 if (cachep->flags & SLAB_STORE_USER)
3052 *dbg_userword(cachep, objp) = caller;
3054 if (cachep->flags & SLAB_RED_ZONE) {
3055 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3056 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3057 slab_error(cachep, "double free, or memory outside"
3058 " object was overwritten");
3059 printk(KERN_ERR
3060 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3061 objp, *dbg_redzone1(cachep, objp),
3062 *dbg_redzone2(cachep, objp));
3064 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3065 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3067 #ifdef CONFIG_DEBUG_SLAB_LEAK
3069 struct slab *slabp;
3070 unsigned objnr;
3072 slabp = page_get_slab(virt_to_head_page(objp));
3073 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3074 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3076 #endif
3077 objp += obj_offset(cachep);
3078 if (cachep->ctor && cachep->flags & SLAB_POISON)
3079 cachep->ctor(objp, cachep, 0);
3080 #if ARCH_SLAB_MINALIGN
3081 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3082 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3083 objp, ARCH_SLAB_MINALIGN);
3085 #endif
3086 return objp;
3088 #else
3089 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3090 #endif
3092 #ifdef CONFIG_FAILSLAB
3094 static struct failslab_attr {
3096 struct fault_attr attr;
3098 u32 ignore_gfp_wait;
3099 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3100 struct dentry *ignore_gfp_wait_file;
3101 #endif
3103 } failslab = {
3104 .attr = FAULT_ATTR_INITIALIZER,
3105 .ignore_gfp_wait = 1,
3108 static int __init setup_failslab(char *str)
3110 return setup_fault_attr(&failslab.attr, str);
3112 __setup("failslab=", setup_failslab);
3114 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3116 if (cachep == &cache_cache)
3117 return 0;
3118 if (flags & __GFP_NOFAIL)
3119 return 0;
3120 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3121 return 0;
3123 return should_fail(&failslab.attr, obj_size(cachep));
3126 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3128 static int __init failslab_debugfs(void)
3130 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3131 struct dentry *dir;
3132 int err;
3134 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3135 if (err)
3136 return err;
3137 dir = failslab.attr.dentries.dir;
3139 failslab.ignore_gfp_wait_file =
3140 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3141 &failslab.ignore_gfp_wait);
3143 if (!failslab.ignore_gfp_wait_file) {
3144 err = -ENOMEM;
3145 debugfs_remove(failslab.ignore_gfp_wait_file);
3146 cleanup_fault_attr_dentries(&failslab.attr);
3149 return err;
3152 late_initcall(failslab_debugfs);
3154 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3156 #else /* CONFIG_FAILSLAB */
3158 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3160 return 0;
3163 #endif /* CONFIG_FAILSLAB */
3165 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3167 void *objp;
3168 struct array_cache *ac;
3170 check_irq_off();
3172 ac = cpu_cache_get(cachep);
3173 if (likely(ac->avail)) {
3174 STATS_INC_ALLOCHIT(cachep);
3175 ac->touched = 1;
3176 objp = ac->entry[--ac->avail];
3177 } else {
3178 STATS_INC_ALLOCMISS(cachep);
3179 objp = cache_alloc_refill(cachep, flags);
3181 return objp;
3184 #ifdef CONFIG_NUMA
3186 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3188 * If we are in_interrupt, then process context, including cpusets and
3189 * mempolicy, may not apply and should not be used for allocation policy.
3191 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3193 int nid_alloc, nid_here;
3195 if (in_interrupt() || (flags & __GFP_THISNODE))
3196 return NULL;
3197 nid_alloc = nid_here = numa_node_id();
3198 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3199 nid_alloc = cpuset_mem_spread_node();
3200 else if (current->mempolicy)
3201 nid_alloc = slab_node(current->mempolicy);
3202 if (nid_alloc != nid_here)
3203 return ____cache_alloc_node(cachep, flags, nid_alloc);
3204 return NULL;
3208 * Fallback function if there was no memory available and no objects on a
3209 * certain node and fall back is permitted. First we scan all the
3210 * available nodelists for available objects. If that fails then we
3211 * perform an allocation without specifying a node. This allows the page
3212 * allocator to do its reclaim / fallback magic. We then insert the
3213 * slab into the proper nodelist and then allocate from it.
3215 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3217 struct zonelist *zonelist;
3218 gfp_t local_flags;
3219 struct zone **z;
3220 void *obj = NULL;
3221 int nid;
3223 if (flags & __GFP_THISNODE)
3224 return NULL;
3226 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3227 ->node_zonelists[gfp_zone(flags)];
3228 local_flags = (flags & GFP_LEVEL_MASK);
3230 retry:
3232 * Look through allowed nodes for objects available
3233 * from existing per node queues.
3235 for (z = zonelist->zones; *z && !obj; z++) {
3236 nid = zone_to_nid(*z);
3238 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3239 cache->nodelists[nid] &&
3240 cache->nodelists[nid]->free_objects)
3241 obj = ____cache_alloc_node(cache,
3242 flags | GFP_THISNODE, nid);
3245 if (!obj) {
3247 * This allocation will be performed within the constraints
3248 * of the current cpuset / memory policy requirements.
3249 * We may trigger various forms of reclaim on the allowed
3250 * set and go into memory reserves if necessary.
3252 if (local_flags & __GFP_WAIT)
3253 local_irq_enable();
3254 kmem_flagcheck(cache, flags);
3255 obj = kmem_getpages(cache, flags, -1);
3256 if (local_flags & __GFP_WAIT)
3257 local_irq_disable();
3258 if (obj) {
3260 * Insert into the appropriate per node queues
3262 nid = page_to_nid(virt_to_page(obj));
3263 if (cache_grow(cache, flags, nid, obj)) {
3264 obj = ____cache_alloc_node(cache,
3265 flags | GFP_THISNODE, nid);
3266 if (!obj)
3268 * Another processor may allocate the
3269 * objects in the slab since we are
3270 * not holding any locks.
3272 goto retry;
3273 } else {
3274 /* cache_grow already freed obj */
3275 obj = NULL;
3279 return obj;
3283 * A interface to enable slab creation on nodeid
3285 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3286 int nodeid)
3288 struct list_head *entry;
3289 struct slab *slabp;
3290 struct kmem_list3 *l3;
3291 void *obj;
3292 int x;
3294 l3 = cachep->nodelists[nodeid];
3295 BUG_ON(!l3);
3297 retry:
3298 check_irq_off();
3299 spin_lock(&l3->list_lock);
3300 entry = l3->slabs_partial.next;
3301 if (entry == &l3->slabs_partial) {
3302 l3->free_touched = 1;
3303 entry = l3->slabs_free.next;
3304 if (entry == &l3->slabs_free)
3305 goto must_grow;
3308 slabp = list_entry(entry, struct slab, list);
3309 check_spinlock_acquired_node(cachep, nodeid);
3310 check_slabp(cachep, slabp);
3312 STATS_INC_NODEALLOCS(cachep);
3313 STATS_INC_ACTIVE(cachep);
3314 STATS_SET_HIGH(cachep);
3316 BUG_ON(slabp->inuse == cachep->num);
3318 obj = slab_get_obj(cachep, slabp, nodeid);
3319 check_slabp(cachep, slabp);
3320 l3->free_objects--;
3321 /* move slabp to correct slabp list: */
3322 list_del(&slabp->list);
3324 if (slabp->free == BUFCTL_END)
3325 list_add(&slabp->list, &l3->slabs_full);
3326 else
3327 list_add(&slabp->list, &l3->slabs_partial);
3329 spin_unlock(&l3->list_lock);
3330 goto done;
3332 must_grow:
3333 spin_unlock(&l3->list_lock);
3334 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3335 if (x)
3336 goto retry;
3338 return fallback_alloc(cachep, flags);
3340 done:
3341 return obj;
3345 * kmem_cache_alloc_node - Allocate an object on the specified node
3346 * @cachep: The cache to allocate from.
3347 * @flags: See kmalloc().
3348 * @nodeid: node number of the target node.
3349 * @caller: return address of caller, used for debug information
3351 * Identical to kmem_cache_alloc but it will allocate memory on the given
3352 * node, which can improve the performance for cpu bound structures.
3354 * Fallback to other node is possible if __GFP_THISNODE is not set.
3356 static __always_inline void *
3357 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3358 void *caller)
3360 unsigned long save_flags;
3361 void *ptr;
3363 if (should_failslab(cachep, flags))
3364 return NULL;
3366 cache_alloc_debugcheck_before(cachep, flags);
3367 local_irq_save(save_flags);
3369 if (unlikely(nodeid == -1))
3370 nodeid = numa_node_id();
3372 if (unlikely(!cachep->nodelists[nodeid])) {
3373 /* Node not bootstrapped yet */
3374 ptr = fallback_alloc(cachep, flags);
3375 goto out;
3378 if (nodeid == numa_node_id()) {
3380 * Use the locally cached objects if possible.
3381 * However ____cache_alloc does not allow fallback
3382 * to other nodes. It may fail while we still have
3383 * objects on other nodes available.
3385 ptr = ____cache_alloc(cachep, flags);
3386 if (ptr)
3387 goto out;
3389 /* ___cache_alloc_node can fall back to other nodes */
3390 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3391 out:
3392 local_irq_restore(save_flags);
3393 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3395 if (unlikely((flags & __GFP_ZERO) && ptr))
3396 memset(ptr, 0, obj_size(cachep));
3398 return ptr;
3401 static __always_inline void *
3402 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3404 void *objp;
3406 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3407 objp = alternate_node_alloc(cache, flags);
3408 if (objp)
3409 goto out;
3411 objp = ____cache_alloc(cache, flags);
3414 * We may just have run out of memory on the local node.
3415 * ____cache_alloc_node() knows how to locate memory on other nodes
3417 if (!objp)
3418 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3420 out:
3421 return objp;
3423 #else
3425 static __always_inline void *
3426 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3428 return ____cache_alloc(cachep, flags);
3431 #endif /* CONFIG_NUMA */
3433 static __always_inline void *
3434 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3436 unsigned long save_flags;
3437 void *objp;
3439 if (should_failslab(cachep, flags))
3440 return NULL;
3442 cache_alloc_debugcheck_before(cachep, flags);
3443 local_irq_save(save_flags);
3444 objp = __do_cache_alloc(cachep, flags);
3445 local_irq_restore(save_flags);
3446 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3447 prefetchw(objp);
3449 if (unlikely((flags & __GFP_ZERO) && objp))
3450 memset(objp, 0, obj_size(cachep));
3452 return objp;
3456 * Caller needs to acquire correct kmem_list's list_lock
3458 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3459 int node)
3461 int i;
3462 struct kmem_list3 *l3;
3464 for (i = 0; i < nr_objects; i++) {
3465 void *objp = objpp[i];
3466 struct slab *slabp;
3468 slabp = virt_to_slab(objp);
3469 l3 = cachep->nodelists[node];
3470 list_del(&slabp->list);
3471 check_spinlock_acquired_node(cachep, node);
3472 check_slabp(cachep, slabp);
3473 slab_put_obj(cachep, slabp, objp, node);
3474 STATS_DEC_ACTIVE(cachep);
3475 l3->free_objects++;
3476 check_slabp(cachep, slabp);
3478 /* fixup slab chains */
3479 if (slabp->inuse == 0) {
3480 if (l3->free_objects > l3->free_limit) {
3481 l3->free_objects -= cachep->num;
3482 /* No need to drop any previously held
3483 * lock here, even if we have a off-slab slab
3484 * descriptor it is guaranteed to come from
3485 * a different cache, refer to comments before
3486 * alloc_slabmgmt.
3488 slab_destroy(cachep, slabp);
3489 } else {
3490 list_add(&slabp->list, &l3->slabs_free);
3492 } else {
3493 /* Unconditionally move a slab to the end of the
3494 * partial list on free - maximum time for the
3495 * other objects to be freed, too.
3497 list_add_tail(&slabp->list, &l3->slabs_partial);
3502 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3504 int batchcount;
3505 struct kmem_list3 *l3;
3506 int node = numa_node_id();
3508 batchcount = ac->batchcount;
3509 #if DEBUG
3510 BUG_ON(!batchcount || batchcount > ac->avail);
3511 #endif
3512 check_irq_off();
3513 l3 = cachep->nodelists[node];
3514 spin_lock(&l3->list_lock);
3515 if (l3->shared) {
3516 struct array_cache *shared_array = l3->shared;
3517 int max = shared_array->limit - shared_array->avail;
3518 if (max) {
3519 if (batchcount > max)
3520 batchcount = max;
3521 memcpy(&(shared_array->entry[shared_array->avail]),
3522 ac->entry, sizeof(void *) * batchcount);
3523 shared_array->avail += batchcount;
3524 goto free_done;
3528 free_block(cachep, ac->entry, batchcount, node);
3529 free_done:
3530 #if STATS
3532 int i = 0;
3533 struct list_head *p;
3535 p = l3->slabs_free.next;
3536 while (p != &(l3->slabs_free)) {
3537 struct slab *slabp;
3539 slabp = list_entry(p, struct slab, list);
3540 BUG_ON(slabp->inuse);
3542 i++;
3543 p = p->next;
3545 STATS_SET_FREEABLE(cachep, i);
3547 #endif
3548 spin_unlock(&l3->list_lock);
3549 ac->avail -= batchcount;
3550 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3554 * Release an obj back to its cache. If the obj has a constructed state, it must
3555 * be in this state _before_ it is released. Called with disabled ints.
3557 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3559 struct array_cache *ac = cpu_cache_get(cachep);
3561 check_irq_off();
3562 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3565 * Skip calling cache_free_alien() when the platform is not numa.
3566 * This will avoid cache misses that happen while accessing slabp (which
3567 * is per page memory reference) to get nodeid. Instead use a global
3568 * variable to skip the call, which is mostly likely to be present in
3569 * the cache.
3571 if (numa_platform && cache_free_alien(cachep, objp))
3572 return;
3574 if (likely(ac->avail < ac->limit)) {
3575 STATS_INC_FREEHIT(cachep);
3576 ac->entry[ac->avail++] = objp;
3577 return;
3578 } else {
3579 STATS_INC_FREEMISS(cachep);
3580 cache_flusharray(cachep, ac);
3581 ac->entry[ac->avail++] = objp;
3586 * kmem_cache_alloc - Allocate an object
3587 * @cachep: The cache to allocate from.
3588 * @flags: See kmalloc().
3590 * Allocate an object from this cache. The flags are only relevant
3591 * if the cache has no available objects.
3593 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3595 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3597 EXPORT_SYMBOL(kmem_cache_alloc);
3600 * kmem_ptr_validate - check if an untrusted pointer might
3601 * be a slab entry.
3602 * @cachep: the cache we're checking against
3603 * @ptr: pointer to validate
3605 * This verifies that the untrusted pointer looks sane:
3606 * it is _not_ a guarantee that the pointer is actually
3607 * part of the slab cache in question, but it at least
3608 * validates that the pointer can be dereferenced and
3609 * looks half-way sane.
3611 * Currently only used for dentry validation.
3613 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3615 unsigned long addr = (unsigned long)ptr;
3616 unsigned long min_addr = PAGE_OFFSET;
3617 unsigned long align_mask = BYTES_PER_WORD - 1;
3618 unsigned long size = cachep->buffer_size;
3619 struct page *page;
3621 if (unlikely(addr < min_addr))
3622 goto out;
3623 if (unlikely(addr > (unsigned long)high_memory - size))
3624 goto out;
3625 if (unlikely(addr & align_mask))
3626 goto out;
3627 if (unlikely(!kern_addr_valid(addr)))
3628 goto out;
3629 if (unlikely(!kern_addr_valid(addr + size - 1)))
3630 goto out;
3631 page = virt_to_page(ptr);
3632 if (unlikely(!PageSlab(page)))
3633 goto out;
3634 if (unlikely(page_get_cache(page) != cachep))
3635 goto out;
3636 return 1;
3637 out:
3638 return 0;
3641 #ifdef CONFIG_NUMA
3642 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3644 return __cache_alloc_node(cachep, flags, nodeid,
3645 __builtin_return_address(0));
3647 EXPORT_SYMBOL(kmem_cache_alloc_node);
3649 static __always_inline void *
3650 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3652 struct kmem_cache *cachep;
3654 cachep = kmem_find_general_cachep(size, flags);
3655 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3656 return cachep;
3657 return kmem_cache_alloc_node(cachep, flags, node);
3660 #ifdef CONFIG_DEBUG_SLAB
3661 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3663 return __do_kmalloc_node(size, flags, node,
3664 __builtin_return_address(0));
3666 EXPORT_SYMBOL(__kmalloc_node);
3668 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3669 int node, void *caller)
3671 return __do_kmalloc_node(size, flags, node, caller);
3673 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3674 #else
3675 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3677 return __do_kmalloc_node(size, flags, node, NULL);
3679 EXPORT_SYMBOL(__kmalloc_node);
3680 #endif /* CONFIG_DEBUG_SLAB */
3681 #endif /* CONFIG_NUMA */
3684 * __do_kmalloc - allocate memory
3685 * @size: how many bytes of memory are required.
3686 * @flags: the type of memory to allocate (see kmalloc).
3687 * @caller: function caller for debug tracking of the caller
3689 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3690 void *caller)
3692 struct kmem_cache *cachep;
3694 /* If you want to save a few bytes .text space: replace
3695 * __ with kmem_.
3696 * Then kmalloc uses the uninlined functions instead of the inline
3697 * functions.
3699 cachep = __find_general_cachep(size, flags);
3700 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3701 return cachep;
3702 return __cache_alloc(cachep, flags, caller);
3706 #ifdef CONFIG_DEBUG_SLAB
3707 void *__kmalloc(size_t size, gfp_t flags)
3709 return __do_kmalloc(size, flags, __builtin_return_address(0));
3711 EXPORT_SYMBOL(__kmalloc);
3713 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3715 return __do_kmalloc(size, flags, caller);
3717 EXPORT_SYMBOL(__kmalloc_track_caller);
3719 #else
3720 void *__kmalloc(size_t size, gfp_t flags)
3722 return __do_kmalloc(size, flags, NULL);
3724 EXPORT_SYMBOL(__kmalloc);
3725 #endif
3728 * kmem_cache_free - Deallocate an object
3729 * @cachep: The cache the allocation was from.
3730 * @objp: The previously allocated object.
3732 * Free an object which was previously allocated from this
3733 * cache.
3735 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3737 unsigned long flags;
3739 BUG_ON(virt_to_cache(objp) != cachep);
3741 local_irq_save(flags);
3742 debug_check_no_locks_freed(objp, obj_size(cachep));
3743 __cache_free(cachep, objp);
3744 local_irq_restore(flags);
3746 EXPORT_SYMBOL(kmem_cache_free);
3749 * kfree - free previously allocated memory
3750 * @objp: pointer returned by kmalloc.
3752 * If @objp is NULL, no operation is performed.
3754 * Don't free memory not originally allocated by kmalloc()
3755 * or you will run into trouble.
3757 void kfree(const void *objp)
3759 struct kmem_cache *c;
3760 unsigned long flags;
3762 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3763 return;
3764 local_irq_save(flags);
3765 kfree_debugcheck(objp);
3766 c = virt_to_cache(objp);
3767 debug_check_no_locks_freed(objp, obj_size(c));
3768 __cache_free(c, (void *)objp);
3769 local_irq_restore(flags);
3771 EXPORT_SYMBOL(kfree);
3773 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3775 return obj_size(cachep);
3777 EXPORT_SYMBOL(kmem_cache_size);
3779 const char *kmem_cache_name(struct kmem_cache *cachep)
3781 return cachep->name;
3783 EXPORT_SYMBOL_GPL(kmem_cache_name);
3786 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3788 static int alloc_kmemlist(struct kmem_cache *cachep)
3790 int node;
3791 struct kmem_list3 *l3;
3792 struct array_cache *new_shared;
3793 struct array_cache **new_alien = NULL;
3795 for_each_online_node(node) {
3797 if (use_alien_caches) {
3798 new_alien = alloc_alien_cache(node, cachep->limit);
3799 if (!new_alien)
3800 goto fail;
3803 new_shared = NULL;
3804 if (cachep->shared) {
3805 new_shared = alloc_arraycache(node,
3806 cachep->shared*cachep->batchcount,
3807 0xbaadf00d);
3808 if (!new_shared) {
3809 free_alien_cache(new_alien);
3810 goto fail;
3814 l3 = cachep->nodelists[node];
3815 if (l3) {
3816 struct array_cache *shared = l3->shared;
3818 spin_lock_irq(&l3->list_lock);
3820 if (shared)
3821 free_block(cachep, shared->entry,
3822 shared->avail, node);
3824 l3->shared = new_shared;
3825 if (!l3->alien) {
3826 l3->alien = new_alien;
3827 new_alien = NULL;
3829 l3->free_limit = (1 + nr_cpus_node(node)) *
3830 cachep->batchcount + cachep->num;
3831 spin_unlock_irq(&l3->list_lock);
3832 kfree(shared);
3833 free_alien_cache(new_alien);
3834 continue;
3836 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3837 if (!l3) {
3838 free_alien_cache(new_alien);
3839 kfree(new_shared);
3840 goto fail;
3843 kmem_list3_init(l3);
3844 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3845 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3846 l3->shared = new_shared;
3847 l3->alien = new_alien;
3848 l3->free_limit = (1 + nr_cpus_node(node)) *
3849 cachep->batchcount + cachep->num;
3850 cachep->nodelists[node] = l3;
3852 return 0;
3854 fail:
3855 if (!cachep->next.next) {
3856 /* Cache is not active yet. Roll back what we did */
3857 node--;
3858 while (node >= 0) {
3859 if (cachep->nodelists[node]) {
3860 l3 = cachep->nodelists[node];
3862 kfree(l3->shared);
3863 free_alien_cache(l3->alien);
3864 kfree(l3);
3865 cachep->nodelists[node] = NULL;
3867 node--;
3870 return -ENOMEM;
3873 struct ccupdate_struct {
3874 struct kmem_cache *cachep;
3875 struct array_cache *new[NR_CPUS];
3878 static void do_ccupdate_local(void *info)
3880 struct ccupdate_struct *new = info;
3881 struct array_cache *old;
3883 check_irq_off();
3884 old = cpu_cache_get(new->cachep);
3886 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3887 new->new[smp_processor_id()] = old;
3890 /* Always called with the cache_chain_mutex held */
3891 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3892 int batchcount, int shared)
3894 struct ccupdate_struct *new;
3895 int i;
3897 new = kzalloc(sizeof(*new), GFP_KERNEL);
3898 if (!new)
3899 return -ENOMEM;
3901 for_each_online_cpu(i) {
3902 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3903 batchcount);
3904 if (!new->new[i]) {
3905 for (i--; i >= 0; i--)
3906 kfree(new->new[i]);
3907 kfree(new);
3908 return -ENOMEM;
3911 new->cachep = cachep;
3913 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3915 check_irq_on();
3916 cachep->batchcount = batchcount;
3917 cachep->limit = limit;
3918 cachep->shared = shared;
3920 for_each_online_cpu(i) {
3921 struct array_cache *ccold = new->new[i];
3922 if (!ccold)
3923 continue;
3924 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3925 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3926 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3927 kfree(ccold);
3929 kfree(new);
3930 return alloc_kmemlist(cachep);
3933 /* Called with cache_chain_mutex held always */
3934 static int enable_cpucache(struct kmem_cache *cachep)
3936 int err;
3937 int limit, shared;
3940 * The head array serves three purposes:
3941 * - create a LIFO ordering, i.e. return objects that are cache-warm
3942 * - reduce the number of spinlock operations.
3943 * - reduce the number of linked list operations on the slab and
3944 * bufctl chains: array operations are cheaper.
3945 * The numbers are guessed, we should auto-tune as described by
3946 * Bonwick.
3948 if (cachep->buffer_size > 131072)
3949 limit = 1;
3950 else if (cachep->buffer_size > PAGE_SIZE)
3951 limit = 8;
3952 else if (cachep->buffer_size > 1024)
3953 limit = 24;
3954 else if (cachep->buffer_size > 256)
3955 limit = 54;
3956 else
3957 limit = 120;
3960 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3961 * allocation behaviour: Most allocs on one cpu, most free operations
3962 * on another cpu. For these cases, an efficient object passing between
3963 * cpus is necessary. This is provided by a shared array. The array
3964 * replaces Bonwick's magazine layer.
3965 * On uniprocessor, it's functionally equivalent (but less efficient)
3966 * to a larger limit. Thus disabled by default.
3968 shared = 0;
3969 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
3970 shared = 8;
3972 #if DEBUG
3974 * With debugging enabled, large batchcount lead to excessively long
3975 * periods with disabled local interrupts. Limit the batchcount
3977 if (limit > 32)
3978 limit = 32;
3979 #endif
3980 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3981 if (err)
3982 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3983 cachep->name, -err);
3984 return err;
3988 * Drain an array if it contains any elements taking the l3 lock only if
3989 * necessary. Note that the l3 listlock also protects the array_cache
3990 * if drain_array() is used on the shared array.
3992 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3993 struct array_cache *ac, int force, int node)
3995 int tofree;
3997 if (!ac || !ac->avail)
3998 return;
3999 if (ac->touched && !force) {
4000 ac->touched = 0;
4001 } else {
4002 spin_lock_irq(&l3->list_lock);
4003 if (ac->avail) {
4004 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4005 if (tofree > ac->avail)
4006 tofree = (ac->avail + 1) / 2;
4007 free_block(cachep, ac->entry, tofree, node);
4008 ac->avail -= tofree;
4009 memmove(ac->entry, &(ac->entry[tofree]),
4010 sizeof(void *) * ac->avail);
4012 spin_unlock_irq(&l3->list_lock);
4017 * cache_reap - Reclaim memory from caches.
4018 * @w: work descriptor
4020 * Called from workqueue/eventd every few seconds.
4021 * Purpose:
4022 * - clear the per-cpu caches for this CPU.
4023 * - return freeable pages to the main free memory pool.
4025 * If we cannot acquire the cache chain mutex then just give up - we'll try
4026 * again on the next iteration.
4028 static void cache_reap(struct work_struct *w)
4030 struct kmem_cache *searchp;
4031 struct kmem_list3 *l3;
4032 int node = numa_node_id();
4033 struct delayed_work *work =
4034 container_of(w, struct delayed_work, work);
4036 if (!mutex_trylock(&cache_chain_mutex))
4037 /* Give up. Setup the next iteration. */
4038 goto out;
4040 list_for_each_entry(searchp, &cache_chain, next) {
4041 check_irq_on();
4044 * We only take the l3 lock if absolutely necessary and we
4045 * have established with reasonable certainty that
4046 * we can do some work if the lock was obtained.
4048 l3 = searchp->nodelists[node];
4050 reap_alien(searchp, l3);
4052 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4055 * These are racy checks but it does not matter
4056 * if we skip one check or scan twice.
4058 if (time_after(l3->next_reap, jiffies))
4059 goto next;
4061 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4063 drain_array(searchp, l3, l3->shared, 0, node);
4065 if (l3->free_touched)
4066 l3->free_touched = 0;
4067 else {
4068 int freed;
4070 freed = drain_freelist(searchp, l3, (l3->free_limit +
4071 5 * searchp->num - 1) / (5 * searchp->num));
4072 STATS_ADD_REAPED(searchp, freed);
4074 next:
4075 cond_resched();
4077 check_irq_on();
4078 mutex_unlock(&cache_chain_mutex);
4079 next_reap_node();
4080 out:
4081 /* Set up the next iteration */
4082 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4085 #ifdef CONFIG_PROC_FS
4087 static void print_slabinfo_header(struct seq_file *m)
4090 * Output format version, so at least we can change it
4091 * without _too_ many complaints.
4093 #if STATS
4094 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4095 #else
4096 seq_puts(m, "slabinfo - version: 2.1\n");
4097 #endif
4098 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4099 "<objperslab> <pagesperslab>");
4100 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4101 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4102 #if STATS
4103 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4104 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4105 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4106 #endif
4107 seq_putc(m, '\n');
4110 static void *s_start(struct seq_file *m, loff_t *pos)
4112 loff_t n = *pos;
4114 mutex_lock(&cache_chain_mutex);
4115 if (!n)
4116 print_slabinfo_header(m);
4118 return seq_list_start(&cache_chain, *pos);
4121 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4123 return seq_list_next(p, &cache_chain, pos);
4126 static void s_stop(struct seq_file *m, void *p)
4128 mutex_unlock(&cache_chain_mutex);
4131 static int s_show(struct seq_file *m, void *p)
4133 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4134 struct slab *slabp;
4135 unsigned long active_objs;
4136 unsigned long num_objs;
4137 unsigned long active_slabs = 0;
4138 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4139 const char *name;
4140 char *error = NULL;
4141 int node;
4142 struct kmem_list3 *l3;
4144 active_objs = 0;
4145 num_slabs = 0;
4146 for_each_online_node(node) {
4147 l3 = cachep->nodelists[node];
4148 if (!l3)
4149 continue;
4151 check_irq_on();
4152 spin_lock_irq(&l3->list_lock);
4154 list_for_each_entry(slabp, &l3->slabs_full, list) {
4155 if (slabp->inuse != cachep->num && !error)
4156 error = "slabs_full accounting error";
4157 active_objs += cachep->num;
4158 active_slabs++;
4160 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4161 if (slabp->inuse == cachep->num && !error)
4162 error = "slabs_partial inuse accounting error";
4163 if (!slabp->inuse && !error)
4164 error = "slabs_partial/inuse accounting error";
4165 active_objs += slabp->inuse;
4166 active_slabs++;
4168 list_for_each_entry(slabp, &l3->slabs_free, list) {
4169 if (slabp->inuse && !error)
4170 error = "slabs_free/inuse accounting error";
4171 num_slabs++;
4173 free_objects += l3->free_objects;
4174 if (l3->shared)
4175 shared_avail += l3->shared->avail;
4177 spin_unlock_irq(&l3->list_lock);
4179 num_slabs += active_slabs;
4180 num_objs = num_slabs * cachep->num;
4181 if (num_objs - active_objs != free_objects && !error)
4182 error = "free_objects accounting error";
4184 name = cachep->name;
4185 if (error)
4186 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4188 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4189 name, active_objs, num_objs, cachep->buffer_size,
4190 cachep->num, (1 << cachep->gfporder));
4191 seq_printf(m, " : tunables %4u %4u %4u",
4192 cachep->limit, cachep->batchcount, cachep->shared);
4193 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4194 active_slabs, num_slabs, shared_avail);
4195 #if STATS
4196 { /* list3 stats */
4197 unsigned long high = cachep->high_mark;
4198 unsigned long allocs = cachep->num_allocations;
4199 unsigned long grown = cachep->grown;
4200 unsigned long reaped = cachep->reaped;
4201 unsigned long errors = cachep->errors;
4202 unsigned long max_freeable = cachep->max_freeable;
4203 unsigned long node_allocs = cachep->node_allocs;
4204 unsigned long node_frees = cachep->node_frees;
4205 unsigned long overflows = cachep->node_overflow;
4207 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4208 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4209 reaped, errors, max_freeable, node_allocs,
4210 node_frees, overflows);
4212 /* cpu stats */
4214 unsigned long allochit = atomic_read(&cachep->allochit);
4215 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4216 unsigned long freehit = atomic_read(&cachep->freehit);
4217 unsigned long freemiss = atomic_read(&cachep->freemiss);
4219 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4220 allochit, allocmiss, freehit, freemiss);
4222 #endif
4223 seq_putc(m, '\n');
4224 return 0;
4228 * slabinfo_op - iterator that generates /proc/slabinfo
4230 * Output layout:
4231 * cache-name
4232 * num-active-objs
4233 * total-objs
4234 * object size
4235 * num-active-slabs
4236 * total-slabs
4237 * num-pages-per-slab
4238 * + further values on SMP and with statistics enabled
4241 const struct seq_operations slabinfo_op = {
4242 .start = s_start,
4243 .next = s_next,
4244 .stop = s_stop,
4245 .show = s_show,
4248 #define MAX_SLABINFO_WRITE 128
4250 * slabinfo_write - Tuning for the slab allocator
4251 * @file: unused
4252 * @buffer: user buffer
4253 * @count: data length
4254 * @ppos: unused
4256 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4257 size_t count, loff_t *ppos)
4259 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4260 int limit, batchcount, shared, res;
4261 struct kmem_cache *cachep;
4263 if (count > MAX_SLABINFO_WRITE)
4264 return -EINVAL;
4265 if (copy_from_user(&kbuf, buffer, count))
4266 return -EFAULT;
4267 kbuf[MAX_SLABINFO_WRITE] = '\0';
4269 tmp = strchr(kbuf, ' ');
4270 if (!tmp)
4271 return -EINVAL;
4272 *tmp = '\0';
4273 tmp++;
4274 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4275 return -EINVAL;
4277 /* Find the cache in the chain of caches. */
4278 mutex_lock(&cache_chain_mutex);
4279 res = -EINVAL;
4280 list_for_each_entry(cachep, &cache_chain, next) {
4281 if (!strcmp(cachep->name, kbuf)) {
4282 if (limit < 1 || batchcount < 1 ||
4283 batchcount > limit || shared < 0) {
4284 res = 0;
4285 } else {
4286 res = do_tune_cpucache(cachep, limit,
4287 batchcount, shared);
4289 break;
4292 mutex_unlock(&cache_chain_mutex);
4293 if (res >= 0)
4294 res = count;
4295 return res;
4298 #ifdef CONFIG_DEBUG_SLAB_LEAK
4300 static void *leaks_start(struct seq_file *m, loff_t *pos)
4302 mutex_lock(&cache_chain_mutex);
4303 return seq_list_start(&cache_chain, *pos);
4306 static inline int add_caller(unsigned long *n, unsigned long v)
4308 unsigned long *p;
4309 int l;
4310 if (!v)
4311 return 1;
4312 l = n[1];
4313 p = n + 2;
4314 while (l) {
4315 int i = l/2;
4316 unsigned long *q = p + 2 * i;
4317 if (*q == v) {
4318 q[1]++;
4319 return 1;
4321 if (*q > v) {
4322 l = i;
4323 } else {
4324 p = q + 2;
4325 l -= i + 1;
4328 if (++n[1] == n[0])
4329 return 0;
4330 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4331 p[0] = v;
4332 p[1] = 1;
4333 return 1;
4336 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4338 void *p;
4339 int i;
4340 if (n[0] == n[1])
4341 return;
4342 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4343 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4344 continue;
4345 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4346 return;
4350 static void show_symbol(struct seq_file *m, unsigned long address)
4352 #ifdef CONFIG_KALLSYMS
4353 unsigned long offset, size;
4354 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4356 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4357 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4358 if (modname[0])
4359 seq_printf(m, " [%s]", modname);
4360 return;
4362 #endif
4363 seq_printf(m, "%p", (void *)address);
4366 static int leaks_show(struct seq_file *m, void *p)
4368 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4369 struct slab *slabp;
4370 struct kmem_list3 *l3;
4371 const char *name;
4372 unsigned long *n = m->private;
4373 int node;
4374 int i;
4376 if (!(cachep->flags & SLAB_STORE_USER))
4377 return 0;
4378 if (!(cachep->flags & SLAB_RED_ZONE))
4379 return 0;
4381 /* OK, we can do it */
4383 n[1] = 0;
4385 for_each_online_node(node) {
4386 l3 = cachep->nodelists[node];
4387 if (!l3)
4388 continue;
4390 check_irq_on();
4391 spin_lock_irq(&l3->list_lock);
4393 list_for_each_entry(slabp, &l3->slabs_full, list)
4394 handle_slab(n, cachep, slabp);
4395 list_for_each_entry(slabp, &l3->slabs_partial, list)
4396 handle_slab(n, cachep, slabp);
4397 spin_unlock_irq(&l3->list_lock);
4399 name = cachep->name;
4400 if (n[0] == n[1]) {
4401 /* Increase the buffer size */
4402 mutex_unlock(&cache_chain_mutex);
4403 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4404 if (!m->private) {
4405 /* Too bad, we are really out */
4406 m->private = n;
4407 mutex_lock(&cache_chain_mutex);
4408 return -ENOMEM;
4410 *(unsigned long *)m->private = n[0] * 2;
4411 kfree(n);
4412 mutex_lock(&cache_chain_mutex);
4413 /* Now make sure this entry will be retried */
4414 m->count = m->size;
4415 return 0;
4417 for (i = 0; i < n[1]; i++) {
4418 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4419 show_symbol(m, n[2*i+2]);
4420 seq_putc(m, '\n');
4423 return 0;
4426 const struct seq_operations slabstats_op = {
4427 .start = leaks_start,
4428 .next = s_next,
4429 .stop = s_stop,
4430 .show = leaks_show,
4432 #endif
4433 #endif
4436 * ksize - get the actual amount of memory allocated for a given object
4437 * @objp: Pointer to the object
4439 * kmalloc may internally round up allocations and return more memory
4440 * than requested. ksize() can be used to determine the actual amount of
4441 * memory allocated. The caller may use this additional memory, even though
4442 * a smaller amount of memory was initially specified with the kmalloc call.
4443 * The caller must guarantee that objp points to a valid object previously
4444 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4445 * must not be freed during the duration of the call.
4447 size_t ksize(const void *objp)
4449 if (unlikely(ZERO_OR_NULL_PTR(objp)))
4450 return 0;
4452 return obj_size(virt_to_cache(objp));