[PATCH] md: Improve detection of lack of barrier support in raid1
[linux-2.6/kmemtrace.git] / drivers / md / raid1.c
blobb8c13c897ccbb0d9a1ff08a5ffe686d559a4e5fb
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
46 * Number of guaranteed r1bios in case of extreme VM load:
48 #define NR_RAID1_BIOS 256
51 static void unplug_slaves(mddev_t *mddev);
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
58 struct pool_info *pi = data;
59 r1bio_t *r1_bio;
60 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
62 /* allocate a r1bio with room for raid_disks entries in the bios array */
63 r1_bio = kzalloc(size, gfp_flags);
64 if (!r1_bio)
65 unplug_slaves(pi->mddev);
67 return r1_bio;
70 static void r1bio_pool_free(void *r1_bio, void *data)
72 kfree(r1_bio);
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
83 struct pool_info *pi = data;
84 struct page *page;
85 r1bio_t *r1_bio;
86 struct bio *bio;
87 int i, j;
89 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 if (!r1_bio) {
91 unplug_slaves(pi->mddev);
92 return NULL;
96 * Allocate bios : 1 for reading, n-1 for writing
98 for (j = pi->raid_disks ; j-- ; ) {
99 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 if (!bio)
101 goto out_free_bio;
102 r1_bio->bios[j] = bio;
105 * Allocate RESYNC_PAGES data pages and attach them to
106 * the first bio.
107 * If this is a user-requested check/repair, allocate
108 * RESYNC_PAGES for each bio.
110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 j = pi->raid_disks;
112 else
113 j = 1;
114 while(j--) {
115 bio = r1_bio->bios[j];
116 for (i = 0; i < RESYNC_PAGES; i++) {
117 page = alloc_page(gfp_flags);
118 if (unlikely(!page))
119 goto out_free_pages;
121 bio->bi_io_vec[i].bv_page = page;
124 /* If not user-requests, copy the page pointers to all bios */
125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 for (i=0; i<RESYNC_PAGES ; i++)
127 for (j=1; j<pi->raid_disks; j++)
128 r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 r1_bio->bios[0]->bi_io_vec[i].bv_page;
132 r1_bio->master_bio = NULL;
134 return r1_bio;
136 out_free_pages:
137 for (i=0; i < RESYNC_PAGES ; i++)
138 for (j=0 ; j < pi->raid_disks; j++)
139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140 j = -1;
141 out_free_bio:
142 while ( ++j < pi->raid_disks )
143 bio_put(r1_bio->bios[j]);
144 r1bio_pool_free(r1_bio, data);
145 return NULL;
148 static void r1buf_pool_free(void *__r1_bio, void *data)
150 struct pool_info *pi = data;
151 int i,j;
152 r1bio_t *r1bio = __r1_bio;
154 for (i = 0; i < RESYNC_PAGES; i++)
155 for (j = pi->raid_disks; j-- ;) {
156 if (j == 0 ||
157 r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 r1bio->bios[0]->bi_io_vec[i].bv_page)
159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
161 for (i=0 ; i < pi->raid_disks; i++)
162 bio_put(r1bio->bios[i]);
164 r1bio_pool_free(r1bio, data);
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
169 int i;
171 for (i = 0; i < conf->raid_disks; i++) {
172 struct bio **bio = r1_bio->bios + i;
173 if (*bio && *bio != IO_BLOCKED)
174 bio_put(*bio);
175 *bio = NULL;
179 static void free_r1bio(r1bio_t *r1_bio)
181 conf_t *conf = mddev_to_conf(r1_bio->mddev);
184 * Wake up any possible resync thread that waits for the device
185 * to go idle.
187 allow_barrier(conf);
189 put_all_bios(conf, r1_bio);
190 mempool_free(r1_bio, conf->r1bio_pool);
193 static void put_buf(r1bio_t *r1_bio)
195 conf_t *conf = mddev_to_conf(r1_bio->mddev);
196 int i;
198 for (i=0; i<conf->raid_disks; i++) {
199 struct bio *bio = r1_bio->bios[i];
200 if (bio->bi_end_io)
201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
204 mempool_free(r1_bio, conf->r1buf_pool);
206 lower_barrier(conf);
209 static void reschedule_retry(r1bio_t *r1_bio)
211 unsigned long flags;
212 mddev_t *mddev = r1_bio->mddev;
213 conf_t *conf = mddev_to_conf(mddev);
215 spin_lock_irqsave(&conf->device_lock, flags);
216 list_add(&r1_bio->retry_list, &conf->retry_list);
217 conf->nr_queued ++;
218 spin_unlock_irqrestore(&conf->device_lock, flags);
220 wake_up(&conf->wait_barrier);
221 md_wakeup_thread(mddev->thread);
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
229 static void raid_end_bio_io(r1bio_t *r1_bio)
231 struct bio *bio = r1_bio->master_bio;
233 /* if nobody has done the final endio yet, do it now */
234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 (bio_data_dir(bio) == WRITE) ? "write" : "read",
237 (unsigned long long) bio->bi_sector,
238 (unsigned long long) bio->bi_sector +
239 (bio->bi_size >> 9) - 1);
241 bio_endio(bio, bio->bi_size,
242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
244 free_r1bio(r1_bio);
248 * Update disk head position estimator based on IRQ completion info.
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
252 conf_t *conf = mddev_to_conf(r1_bio->mddev);
254 conf->mirrors[disk].head_position =
255 r1_bio->sector + (r1_bio->sectors);
258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 int mirror;
263 conf_t *conf = mddev_to_conf(r1_bio->mddev);
265 if (bio->bi_size)
266 return 1;
268 mirror = r1_bio->read_disk;
270 * this branch is our 'one mirror IO has finished' event handler:
272 update_head_pos(mirror, r1_bio);
274 if (uptodate || conf->working_disks <= 1) {
276 * Set R1BIO_Uptodate in our master bio, so that
277 * we will return a good error code for to the higher
278 * levels even if IO on some other mirrored buffer fails.
280 * The 'master' represents the composite IO operation to
281 * user-side. So if something waits for IO, then it will
282 * wait for the 'master' bio.
284 if (uptodate)
285 set_bit(R1BIO_Uptodate, &r1_bio->state);
287 raid_end_bio_io(r1_bio);
288 } else {
290 * oops, read error:
292 char b[BDEVNAME_SIZE];
293 if (printk_ratelimit())
294 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
295 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
296 reschedule_retry(r1_bio);
299 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
300 return 0;
303 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308 conf_t *conf = mddev_to_conf(r1_bio->mddev);
309 struct bio *to_put = NULL;
311 if (bio->bi_size)
312 return 1;
314 for (mirror = 0; mirror < conf->raid_disks; mirror++)
315 if (r1_bio->bios[mirror] == bio)
316 break;
318 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
319 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
320 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
321 r1_bio->mddev->barriers_work = 0;
322 } else {
324 * this branch is our 'one mirror IO has finished' event handler:
326 r1_bio->bios[mirror] = NULL;
327 to_put = bio;
328 if (!uptodate) {
329 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
330 /* an I/O failed, we can't clear the bitmap */
331 set_bit(R1BIO_Degraded, &r1_bio->state);
332 } else
334 * Set R1BIO_Uptodate in our master bio, so that
335 * we will return a good error code for to the higher
336 * levels even if IO on some other mirrored buffer fails.
338 * The 'master' represents the composite IO operation to
339 * user-side. So if something waits for IO, then it will
340 * wait for the 'master' bio.
342 set_bit(R1BIO_Uptodate, &r1_bio->state);
344 update_head_pos(mirror, r1_bio);
346 if (behind) {
347 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
348 atomic_dec(&r1_bio->behind_remaining);
350 /* In behind mode, we ACK the master bio once the I/O has safely
351 * reached all non-writemostly disks. Setting the Returned bit
352 * ensures that this gets done only once -- we don't ever want to
353 * return -EIO here, instead we'll wait */
355 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
356 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
357 /* Maybe we can return now */
358 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
359 struct bio *mbio = r1_bio->master_bio;
360 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
361 (unsigned long long) mbio->bi_sector,
362 (unsigned long long) mbio->bi_sector +
363 (mbio->bi_size >> 9) - 1);
364 bio_endio(mbio, mbio->bi_size, 0);
371 * Let's see if all mirrored write operations have finished
372 * already.
374 if (atomic_dec_and_test(&r1_bio->remaining)) {
375 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
376 reschedule_retry(r1_bio);
377 /* Don't dec_pending yet, we want to hold
378 * the reference over the retry
380 goto out;
382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383 /* free extra copy of the data pages */
384 int i = bio->bi_vcnt;
385 while (i--)
386 safe_put_page(bio->bi_io_vec[i].bv_page);
388 /* clear the bitmap if all writes complete successfully */
389 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
390 r1_bio->sectors,
391 !test_bit(R1BIO_Degraded, &r1_bio->state),
392 behind);
393 md_write_end(r1_bio->mddev);
394 raid_end_bio_io(r1_bio);
397 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
398 out:
399 if (to_put)
400 bio_put(to_put);
402 return 0;
407 * This routine returns the disk from which the requested read should
408 * be done. There is a per-array 'next expected sequential IO' sector
409 * number - if this matches on the next IO then we use the last disk.
410 * There is also a per-disk 'last know head position' sector that is
411 * maintained from IRQ contexts, both the normal and the resync IO
412 * completion handlers update this position correctly. If there is no
413 * perfect sequential match then we pick the disk whose head is closest.
415 * If there are 2 mirrors in the same 2 devices, performance degrades
416 * because position is mirror, not device based.
418 * The rdev for the device selected will have nr_pending incremented.
420 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
422 const unsigned long this_sector = r1_bio->sector;
423 int new_disk = conf->last_used, disk = new_disk;
424 int wonly_disk = -1;
425 const int sectors = r1_bio->sectors;
426 sector_t new_distance, current_distance;
427 mdk_rdev_t *rdev;
429 rcu_read_lock();
431 * Check if we can balance. We can balance on the whole
432 * device if no resync is going on, or below the resync window.
433 * We take the first readable disk when above the resync window.
435 retry:
436 if (conf->mddev->recovery_cp < MaxSector &&
437 (this_sector + sectors >= conf->next_resync)) {
438 /* Choose the first operation device, for consistancy */
439 new_disk = 0;
441 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
442 r1_bio->bios[new_disk] == IO_BLOCKED ||
443 !rdev || !test_bit(In_sync, &rdev->flags)
444 || test_bit(WriteMostly, &rdev->flags);
445 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
447 if (rdev && test_bit(In_sync, &rdev->flags) &&
448 r1_bio->bios[new_disk] != IO_BLOCKED)
449 wonly_disk = new_disk;
451 if (new_disk == conf->raid_disks - 1) {
452 new_disk = wonly_disk;
453 break;
456 goto rb_out;
460 /* make sure the disk is operational */
461 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
462 r1_bio->bios[new_disk] == IO_BLOCKED ||
463 !rdev || !test_bit(In_sync, &rdev->flags) ||
464 test_bit(WriteMostly, &rdev->flags);
465 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
467 if (rdev && test_bit(In_sync, &rdev->flags) &&
468 r1_bio->bios[new_disk] != IO_BLOCKED)
469 wonly_disk = new_disk;
471 if (new_disk <= 0)
472 new_disk = conf->raid_disks;
473 new_disk--;
474 if (new_disk == disk) {
475 new_disk = wonly_disk;
476 break;
480 if (new_disk < 0)
481 goto rb_out;
483 disk = new_disk;
484 /* now disk == new_disk == starting point for search */
487 * Don't change to another disk for sequential reads:
489 if (conf->next_seq_sect == this_sector)
490 goto rb_out;
491 if (this_sector == conf->mirrors[new_disk].head_position)
492 goto rb_out;
494 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
496 /* Find the disk whose head is closest */
498 do {
499 if (disk <= 0)
500 disk = conf->raid_disks;
501 disk--;
503 rdev = rcu_dereference(conf->mirrors[disk].rdev);
505 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
506 !test_bit(In_sync, &rdev->flags) ||
507 test_bit(WriteMostly, &rdev->flags))
508 continue;
510 if (!atomic_read(&rdev->nr_pending)) {
511 new_disk = disk;
512 break;
514 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
515 if (new_distance < current_distance) {
516 current_distance = new_distance;
517 new_disk = disk;
519 } while (disk != conf->last_used);
521 rb_out:
524 if (new_disk >= 0) {
525 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
526 if (!rdev)
527 goto retry;
528 atomic_inc(&rdev->nr_pending);
529 if (!test_bit(In_sync, &rdev->flags)) {
530 /* cannot risk returning a device that failed
531 * before we inc'ed nr_pending
533 rdev_dec_pending(rdev, conf->mddev);
534 goto retry;
536 conf->next_seq_sect = this_sector + sectors;
537 conf->last_used = new_disk;
539 rcu_read_unlock();
541 return new_disk;
544 static void unplug_slaves(mddev_t *mddev)
546 conf_t *conf = mddev_to_conf(mddev);
547 int i;
549 rcu_read_lock();
550 for (i=0; i<mddev->raid_disks; i++) {
551 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
552 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
553 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
555 atomic_inc(&rdev->nr_pending);
556 rcu_read_unlock();
558 if (r_queue->unplug_fn)
559 r_queue->unplug_fn(r_queue);
561 rdev_dec_pending(rdev, mddev);
562 rcu_read_lock();
565 rcu_read_unlock();
568 static void raid1_unplug(request_queue_t *q)
570 mddev_t *mddev = q->queuedata;
572 unplug_slaves(mddev);
573 md_wakeup_thread(mddev->thread);
576 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
577 sector_t *error_sector)
579 mddev_t *mddev = q->queuedata;
580 conf_t *conf = mddev_to_conf(mddev);
581 int i, ret = 0;
583 rcu_read_lock();
584 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
585 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
586 if (rdev && !test_bit(Faulty, &rdev->flags)) {
587 struct block_device *bdev = rdev->bdev;
588 request_queue_t *r_queue = bdev_get_queue(bdev);
590 if (!r_queue->issue_flush_fn)
591 ret = -EOPNOTSUPP;
592 else {
593 atomic_inc(&rdev->nr_pending);
594 rcu_read_unlock();
595 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
596 error_sector);
597 rdev_dec_pending(rdev, mddev);
598 rcu_read_lock();
602 rcu_read_unlock();
603 return ret;
606 /* Barriers....
607 * Sometimes we need to suspend IO while we do something else,
608 * either some resync/recovery, or reconfigure the array.
609 * To do this we raise a 'barrier'.
610 * The 'barrier' is a counter that can be raised multiple times
611 * to count how many activities are happening which preclude
612 * normal IO.
613 * We can only raise the barrier if there is no pending IO.
614 * i.e. if nr_pending == 0.
615 * We choose only to raise the barrier if no-one is waiting for the
616 * barrier to go down. This means that as soon as an IO request
617 * is ready, no other operations which require a barrier will start
618 * until the IO request has had a chance.
620 * So: regular IO calls 'wait_barrier'. When that returns there
621 * is no backgroup IO happening, It must arrange to call
622 * allow_barrier when it has finished its IO.
623 * backgroup IO calls must call raise_barrier. Once that returns
624 * there is no normal IO happeing. It must arrange to call
625 * lower_barrier when the particular background IO completes.
627 #define RESYNC_DEPTH 32
629 static void raise_barrier(conf_t *conf)
631 spin_lock_irq(&conf->resync_lock);
633 /* Wait until no block IO is waiting */
634 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
635 conf->resync_lock,
636 raid1_unplug(conf->mddev->queue));
638 /* block any new IO from starting */
639 conf->barrier++;
641 /* No wait for all pending IO to complete */
642 wait_event_lock_irq(conf->wait_barrier,
643 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
644 conf->resync_lock,
645 raid1_unplug(conf->mddev->queue));
647 spin_unlock_irq(&conf->resync_lock);
650 static void lower_barrier(conf_t *conf)
652 unsigned long flags;
653 spin_lock_irqsave(&conf->resync_lock, flags);
654 conf->barrier--;
655 spin_unlock_irqrestore(&conf->resync_lock, flags);
656 wake_up(&conf->wait_barrier);
659 static void wait_barrier(conf_t *conf)
661 spin_lock_irq(&conf->resync_lock);
662 if (conf->barrier) {
663 conf->nr_waiting++;
664 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
665 conf->resync_lock,
666 raid1_unplug(conf->mddev->queue));
667 conf->nr_waiting--;
669 conf->nr_pending++;
670 spin_unlock_irq(&conf->resync_lock);
673 static void allow_barrier(conf_t *conf)
675 unsigned long flags;
676 spin_lock_irqsave(&conf->resync_lock, flags);
677 conf->nr_pending--;
678 spin_unlock_irqrestore(&conf->resync_lock, flags);
679 wake_up(&conf->wait_barrier);
682 static void freeze_array(conf_t *conf)
684 /* stop syncio and normal IO and wait for everything to
685 * go quite.
686 * We increment barrier and nr_waiting, and then
687 * wait until barrier+nr_pending match nr_queued+2
689 spin_lock_irq(&conf->resync_lock);
690 conf->barrier++;
691 conf->nr_waiting++;
692 wait_event_lock_irq(conf->wait_barrier,
693 conf->barrier+conf->nr_pending == conf->nr_queued+2,
694 conf->resync_lock,
695 raid1_unplug(conf->mddev->queue));
696 spin_unlock_irq(&conf->resync_lock);
698 static void unfreeze_array(conf_t *conf)
700 /* reverse the effect of the freeze */
701 spin_lock_irq(&conf->resync_lock);
702 conf->barrier--;
703 conf->nr_waiting--;
704 wake_up(&conf->wait_barrier);
705 spin_unlock_irq(&conf->resync_lock);
709 /* duplicate the data pages for behind I/O */
710 static struct page **alloc_behind_pages(struct bio *bio)
712 int i;
713 struct bio_vec *bvec;
714 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
715 GFP_NOIO);
716 if (unlikely(!pages))
717 goto do_sync_io;
719 bio_for_each_segment(bvec, bio, i) {
720 pages[i] = alloc_page(GFP_NOIO);
721 if (unlikely(!pages[i]))
722 goto do_sync_io;
723 memcpy(kmap(pages[i]) + bvec->bv_offset,
724 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
725 kunmap(pages[i]);
726 kunmap(bvec->bv_page);
729 return pages;
731 do_sync_io:
732 if (pages)
733 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
734 put_page(pages[i]);
735 kfree(pages);
736 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
737 return NULL;
740 static int make_request(request_queue_t *q, struct bio * bio)
742 mddev_t *mddev = q->queuedata;
743 conf_t *conf = mddev_to_conf(mddev);
744 mirror_info_t *mirror;
745 r1bio_t *r1_bio;
746 struct bio *read_bio;
747 int i, targets = 0, disks;
748 mdk_rdev_t *rdev;
749 struct bitmap *bitmap = mddev->bitmap;
750 unsigned long flags;
751 struct bio_list bl;
752 struct page **behind_pages = NULL;
753 const int rw = bio_data_dir(bio);
754 int do_barriers;
757 * Register the new request and wait if the reconstruction
758 * thread has put up a bar for new requests.
759 * Continue immediately if no resync is active currently.
760 * We test barriers_work *after* md_write_start as md_write_start
761 * may cause the first superblock write, and that will check out
762 * if barriers work.
765 md_write_start(mddev, bio); /* wait on superblock update early */
767 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
768 if (rw == WRITE)
769 md_write_end(mddev);
770 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
771 return 0;
774 wait_barrier(conf);
776 disk_stat_inc(mddev->gendisk, ios[rw]);
777 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
780 * make_request() can abort the operation when READA is being
781 * used and no empty request is available.
784 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
786 r1_bio->master_bio = bio;
787 r1_bio->sectors = bio->bi_size >> 9;
788 r1_bio->state = 0;
789 r1_bio->mddev = mddev;
790 r1_bio->sector = bio->bi_sector;
792 if (rw == READ) {
794 * read balancing logic:
796 int rdisk = read_balance(conf, r1_bio);
798 if (rdisk < 0) {
799 /* couldn't find anywhere to read from */
800 raid_end_bio_io(r1_bio);
801 return 0;
803 mirror = conf->mirrors + rdisk;
805 r1_bio->read_disk = rdisk;
807 read_bio = bio_clone(bio, GFP_NOIO);
809 r1_bio->bios[rdisk] = read_bio;
811 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
812 read_bio->bi_bdev = mirror->rdev->bdev;
813 read_bio->bi_end_io = raid1_end_read_request;
814 read_bio->bi_rw = READ;
815 read_bio->bi_private = r1_bio;
817 generic_make_request(read_bio);
818 return 0;
822 * WRITE:
824 /* first select target devices under spinlock and
825 * inc refcount on their rdev. Record them by setting
826 * bios[x] to bio
828 disks = conf->raid_disks;
829 #if 0
830 { static int first=1;
831 if (first) printk("First Write sector %llu disks %d\n",
832 (unsigned long long)r1_bio->sector, disks);
833 first = 0;
835 #endif
836 rcu_read_lock();
837 for (i = 0; i < disks; i++) {
838 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
839 !test_bit(Faulty, &rdev->flags)) {
840 atomic_inc(&rdev->nr_pending);
841 if (test_bit(Faulty, &rdev->flags)) {
842 rdev_dec_pending(rdev, mddev);
843 r1_bio->bios[i] = NULL;
844 } else
845 r1_bio->bios[i] = bio;
846 targets++;
847 } else
848 r1_bio->bios[i] = NULL;
850 rcu_read_unlock();
852 BUG_ON(targets == 0); /* we never fail the last device */
854 if (targets < conf->raid_disks) {
855 /* array is degraded, we will not clear the bitmap
856 * on I/O completion (see raid1_end_write_request) */
857 set_bit(R1BIO_Degraded, &r1_bio->state);
860 /* do behind I/O ? */
861 if (bitmap &&
862 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
863 (behind_pages = alloc_behind_pages(bio)) != NULL)
864 set_bit(R1BIO_BehindIO, &r1_bio->state);
866 atomic_set(&r1_bio->remaining, 0);
867 atomic_set(&r1_bio->behind_remaining, 0);
869 do_barriers = bio_barrier(bio);
870 if (do_barriers)
871 set_bit(R1BIO_Barrier, &r1_bio->state);
873 bio_list_init(&bl);
874 for (i = 0; i < disks; i++) {
875 struct bio *mbio;
876 if (!r1_bio->bios[i])
877 continue;
879 mbio = bio_clone(bio, GFP_NOIO);
880 r1_bio->bios[i] = mbio;
882 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
883 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
884 mbio->bi_end_io = raid1_end_write_request;
885 mbio->bi_rw = WRITE | do_barriers;
886 mbio->bi_private = r1_bio;
888 if (behind_pages) {
889 struct bio_vec *bvec;
890 int j;
892 /* Yes, I really want the '__' version so that
893 * we clear any unused pointer in the io_vec, rather
894 * than leave them unchanged. This is important
895 * because when we come to free the pages, we won't
896 * know the originial bi_idx, so we just free
897 * them all
899 __bio_for_each_segment(bvec, mbio, j, 0)
900 bvec->bv_page = behind_pages[j];
901 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
902 atomic_inc(&r1_bio->behind_remaining);
905 atomic_inc(&r1_bio->remaining);
907 bio_list_add(&bl, mbio);
909 kfree(behind_pages); /* the behind pages are attached to the bios now */
911 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
912 test_bit(R1BIO_BehindIO, &r1_bio->state));
913 spin_lock_irqsave(&conf->device_lock, flags);
914 bio_list_merge(&conf->pending_bio_list, &bl);
915 bio_list_init(&bl);
917 blk_plug_device(mddev->queue);
918 spin_unlock_irqrestore(&conf->device_lock, flags);
920 #if 0
921 while ((bio = bio_list_pop(&bl)) != NULL)
922 generic_make_request(bio);
923 #endif
925 return 0;
928 static void status(struct seq_file *seq, mddev_t *mddev)
930 conf_t *conf = mddev_to_conf(mddev);
931 int i;
933 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
934 conf->working_disks);
935 for (i = 0; i < conf->raid_disks; i++)
936 seq_printf(seq, "%s",
937 conf->mirrors[i].rdev &&
938 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
939 seq_printf(seq, "]");
943 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
945 char b[BDEVNAME_SIZE];
946 conf_t *conf = mddev_to_conf(mddev);
949 * If it is not operational, then we have already marked it as dead
950 * else if it is the last working disks, ignore the error, let the
951 * next level up know.
952 * else mark the drive as failed
954 if (test_bit(In_sync, &rdev->flags)
955 && conf->working_disks == 1)
957 * Don't fail the drive, act as though we were just a
958 * normal single drive
960 return;
961 if (test_bit(In_sync, &rdev->flags)) {
962 mddev->degraded++;
963 conf->working_disks--;
965 * if recovery is running, make sure it aborts.
967 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
969 clear_bit(In_sync, &rdev->flags);
970 set_bit(Faulty, &rdev->flags);
971 mddev->sb_dirty = 1;
972 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
973 " Operation continuing on %d devices\n",
974 bdevname(rdev->bdev,b), conf->working_disks);
977 static void print_conf(conf_t *conf)
979 int i;
980 mirror_info_t *tmp;
982 printk("RAID1 conf printout:\n");
983 if (!conf) {
984 printk("(!conf)\n");
985 return;
987 printk(" --- wd:%d rd:%d\n", conf->working_disks,
988 conf->raid_disks);
990 for (i = 0; i < conf->raid_disks; i++) {
991 char b[BDEVNAME_SIZE];
992 tmp = conf->mirrors + i;
993 if (tmp->rdev)
994 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
995 i, !test_bit(In_sync, &tmp->rdev->flags), !test_bit(Faulty, &tmp->rdev->flags),
996 bdevname(tmp->rdev->bdev,b));
1000 static void close_sync(conf_t *conf)
1002 wait_barrier(conf);
1003 allow_barrier(conf);
1005 mempool_destroy(conf->r1buf_pool);
1006 conf->r1buf_pool = NULL;
1009 static int raid1_spare_active(mddev_t *mddev)
1011 int i;
1012 conf_t *conf = mddev->private;
1013 mirror_info_t *tmp;
1016 * Find all failed disks within the RAID1 configuration
1017 * and mark them readable
1019 for (i = 0; i < conf->raid_disks; i++) {
1020 tmp = conf->mirrors + i;
1021 if (tmp->rdev
1022 && !test_bit(Faulty, &tmp->rdev->flags)
1023 && !test_bit(In_sync, &tmp->rdev->flags)) {
1024 conf->working_disks++;
1025 mddev->degraded--;
1026 set_bit(In_sync, &tmp->rdev->flags);
1030 print_conf(conf);
1031 return 0;
1035 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1037 conf_t *conf = mddev->private;
1038 int found = 0;
1039 int mirror = 0;
1040 mirror_info_t *p;
1042 for (mirror=0; mirror < mddev->raid_disks; mirror++)
1043 if ( !(p=conf->mirrors+mirror)->rdev) {
1045 blk_queue_stack_limits(mddev->queue,
1046 rdev->bdev->bd_disk->queue);
1047 /* as we don't honour merge_bvec_fn, we must never risk
1048 * violating it, so limit ->max_sector to one PAGE, as
1049 * a one page request is never in violation.
1051 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1052 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1053 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1055 p->head_position = 0;
1056 rdev->raid_disk = mirror;
1057 found = 1;
1058 /* As all devices are equivalent, we don't need a full recovery
1059 * if this was recently any drive of the array
1061 if (rdev->saved_raid_disk < 0)
1062 conf->fullsync = 1;
1063 rcu_assign_pointer(p->rdev, rdev);
1064 break;
1067 print_conf(conf);
1068 return found;
1071 static int raid1_remove_disk(mddev_t *mddev, int number)
1073 conf_t *conf = mddev->private;
1074 int err = 0;
1075 mdk_rdev_t *rdev;
1076 mirror_info_t *p = conf->mirrors+ number;
1078 print_conf(conf);
1079 rdev = p->rdev;
1080 if (rdev) {
1081 if (test_bit(In_sync, &rdev->flags) ||
1082 atomic_read(&rdev->nr_pending)) {
1083 err = -EBUSY;
1084 goto abort;
1086 p->rdev = NULL;
1087 synchronize_rcu();
1088 if (atomic_read(&rdev->nr_pending)) {
1089 /* lost the race, try later */
1090 err = -EBUSY;
1091 p->rdev = rdev;
1094 abort:
1096 print_conf(conf);
1097 return err;
1101 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1103 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1104 int i;
1106 if (bio->bi_size)
1107 return 1;
1109 for (i=r1_bio->mddev->raid_disks; i--; )
1110 if (r1_bio->bios[i] == bio)
1111 break;
1112 BUG_ON(i < 0);
1113 update_head_pos(i, r1_bio);
1115 * we have read a block, now it needs to be re-written,
1116 * or re-read if the read failed.
1117 * We don't do much here, just schedule handling by raid1d
1119 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1120 set_bit(R1BIO_Uptodate, &r1_bio->state);
1122 if (atomic_dec_and_test(&r1_bio->remaining))
1123 reschedule_retry(r1_bio);
1124 return 0;
1127 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1129 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1130 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1131 mddev_t *mddev = r1_bio->mddev;
1132 conf_t *conf = mddev_to_conf(mddev);
1133 int i;
1134 int mirror=0;
1136 if (bio->bi_size)
1137 return 1;
1139 for (i = 0; i < conf->raid_disks; i++)
1140 if (r1_bio->bios[i] == bio) {
1141 mirror = i;
1142 break;
1144 if (!uptodate) {
1145 int sync_blocks = 0;
1146 sector_t s = r1_bio->sector;
1147 long sectors_to_go = r1_bio->sectors;
1148 /* make sure these bits doesn't get cleared. */
1149 do {
1150 bitmap_end_sync(mddev->bitmap, r1_bio->sector,
1151 &sync_blocks, 1);
1152 s += sync_blocks;
1153 sectors_to_go -= sync_blocks;
1154 } while (sectors_to_go > 0);
1155 md_error(mddev, conf->mirrors[mirror].rdev);
1158 update_head_pos(mirror, r1_bio);
1160 if (atomic_dec_and_test(&r1_bio->remaining)) {
1161 md_done_sync(mddev, r1_bio->sectors, uptodate);
1162 put_buf(r1_bio);
1164 return 0;
1167 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1169 conf_t *conf = mddev_to_conf(mddev);
1170 int i;
1171 int disks = conf->raid_disks;
1172 struct bio *bio, *wbio;
1174 bio = r1_bio->bios[r1_bio->read_disk];
1177 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1178 /* We have read all readable devices. If we haven't
1179 * got the block, then there is no hope left.
1180 * If we have, then we want to do a comparison
1181 * and skip the write if everything is the same.
1182 * If any blocks failed to read, then we need to
1183 * attempt an over-write
1185 int primary;
1186 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1187 for (i=0; i<mddev->raid_disks; i++)
1188 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1189 md_error(mddev, conf->mirrors[i].rdev);
1191 md_done_sync(mddev, r1_bio->sectors, 1);
1192 put_buf(r1_bio);
1193 return;
1195 for (primary=0; primary<mddev->raid_disks; primary++)
1196 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1197 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1198 r1_bio->bios[primary]->bi_end_io = NULL;
1199 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1200 break;
1202 r1_bio->read_disk = primary;
1203 for (i=0; i<mddev->raid_disks; i++)
1204 if (r1_bio->bios[i]->bi_end_io == end_sync_read &&
1205 test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) {
1206 int j;
1207 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1208 struct bio *pbio = r1_bio->bios[primary];
1209 struct bio *sbio = r1_bio->bios[i];
1210 for (j = vcnt; j-- ; )
1211 if (memcmp(page_address(pbio->bi_io_vec[j].bv_page),
1212 page_address(sbio->bi_io_vec[j].bv_page),
1213 PAGE_SIZE))
1214 break;
1215 if (j >= 0)
1216 mddev->resync_mismatches += r1_bio->sectors;
1217 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
1218 sbio->bi_end_io = NULL;
1219 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1220 } else {
1221 /* fixup the bio for reuse */
1222 sbio->bi_vcnt = vcnt;
1223 sbio->bi_size = r1_bio->sectors << 9;
1224 sbio->bi_idx = 0;
1225 sbio->bi_phys_segments = 0;
1226 sbio->bi_hw_segments = 0;
1227 sbio->bi_hw_front_size = 0;
1228 sbio->bi_hw_back_size = 0;
1229 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1230 sbio->bi_flags |= 1 << BIO_UPTODATE;
1231 sbio->bi_next = NULL;
1232 sbio->bi_sector = r1_bio->sector +
1233 conf->mirrors[i].rdev->data_offset;
1234 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1238 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1239 /* ouch - failed to read all of that.
1240 * Try some synchronous reads of other devices to get
1241 * good data, much like with normal read errors. Only
1242 * read into the pages we already have so they we don't
1243 * need to re-issue the read request.
1244 * We don't need to freeze the array, because being in an
1245 * active sync request, there is no normal IO, and
1246 * no overlapping syncs.
1248 sector_t sect = r1_bio->sector;
1249 int sectors = r1_bio->sectors;
1250 int idx = 0;
1252 while(sectors) {
1253 int s = sectors;
1254 int d = r1_bio->read_disk;
1255 int success = 0;
1256 mdk_rdev_t *rdev;
1258 if (s > (PAGE_SIZE>>9))
1259 s = PAGE_SIZE >> 9;
1260 do {
1261 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1262 rdev = conf->mirrors[d].rdev;
1263 if (sync_page_io(rdev->bdev,
1264 sect + rdev->data_offset,
1265 s<<9,
1266 bio->bi_io_vec[idx].bv_page,
1267 READ)) {
1268 success = 1;
1269 break;
1272 d++;
1273 if (d == conf->raid_disks)
1274 d = 0;
1275 } while (!success && d != r1_bio->read_disk);
1277 if (success) {
1278 int start = d;
1279 /* write it back and re-read */
1280 set_bit(R1BIO_Uptodate, &r1_bio->state);
1281 while (d != r1_bio->read_disk) {
1282 if (d == 0)
1283 d = conf->raid_disks;
1284 d--;
1285 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1286 continue;
1287 rdev = conf->mirrors[d].rdev;
1288 atomic_add(s, &rdev->corrected_errors);
1289 if (sync_page_io(rdev->bdev,
1290 sect + rdev->data_offset,
1291 s<<9,
1292 bio->bi_io_vec[idx].bv_page,
1293 WRITE) == 0)
1294 md_error(mddev, rdev);
1296 d = start;
1297 while (d != r1_bio->read_disk) {
1298 if (d == 0)
1299 d = conf->raid_disks;
1300 d--;
1301 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1302 continue;
1303 rdev = conf->mirrors[d].rdev;
1304 if (sync_page_io(rdev->bdev,
1305 sect + rdev->data_offset,
1306 s<<9,
1307 bio->bi_io_vec[idx].bv_page,
1308 READ) == 0)
1309 md_error(mddev, rdev);
1311 } else {
1312 char b[BDEVNAME_SIZE];
1313 /* Cannot read from anywhere, array is toast */
1314 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1315 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1316 " for block %llu\n",
1317 bdevname(bio->bi_bdev,b),
1318 (unsigned long long)r1_bio->sector);
1319 md_done_sync(mddev, r1_bio->sectors, 0);
1320 put_buf(r1_bio);
1321 return;
1323 sectors -= s;
1324 sect += s;
1325 idx ++;
1330 * schedule writes
1332 atomic_set(&r1_bio->remaining, 1);
1333 for (i = 0; i < disks ; i++) {
1334 wbio = r1_bio->bios[i];
1335 if (wbio->bi_end_io == NULL ||
1336 (wbio->bi_end_io == end_sync_read &&
1337 (i == r1_bio->read_disk ||
1338 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1339 continue;
1341 wbio->bi_rw = WRITE;
1342 wbio->bi_end_io = end_sync_write;
1343 atomic_inc(&r1_bio->remaining);
1344 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1346 generic_make_request(wbio);
1349 if (atomic_dec_and_test(&r1_bio->remaining)) {
1350 /* if we're here, all write(s) have completed, so clean up */
1351 md_done_sync(mddev, r1_bio->sectors, 1);
1352 put_buf(r1_bio);
1357 * This is a kernel thread which:
1359 * 1. Retries failed read operations on working mirrors.
1360 * 2. Updates the raid superblock when problems encounter.
1361 * 3. Performs writes following reads for array syncronising.
1364 static void raid1d(mddev_t *mddev)
1366 r1bio_t *r1_bio;
1367 struct bio *bio;
1368 unsigned long flags;
1369 conf_t *conf = mddev_to_conf(mddev);
1370 struct list_head *head = &conf->retry_list;
1371 int unplug=0;
1372 mdk_rdev_t *rdev;
1374 md_check_recovery(mddev);
1376 for (;;) {
1377 char b[BDEVNAME_SIZE];
1378 spin_lock_irqsave(&conf->device_lock, flags);
1380 if (conf->pending_bio_list.head) {
1381 bio = bio_list_get(&conf->pending_bio_list);
1382 blk_remove_plug(mddev->queue);
1383 spin_unlock_irqrestore(&conf->device_lock, flags);
1384 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1385 if (bitmap_unplug(mddev->bitmap) != 0)
1386 printk("%s: bitmap file write failed!\n", mdname(mddev));
1388 while (bio) { /* submit pending writes */
1389 struct bio *next = bio->bi_next;
1390 bio->bi_next = NULL;
1391 generic_make_request(bio);
1392 bio = next;
1394 unplug = 1;
1396 continue;
1399 if (list_empty(head))
1400 break;
1401 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1402 list_del(head->prev);
1403 conf->nr_queued--;
1404 spin_unlock_irqrestore(&conf->device_lock, flags);
1406 mddev = r1_bio->mddev;
1407 conf = mddev_to_conf(mddev);
1408 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1409 sync_request_write(mddev, r1_bio);
1410 unplug = 1;
1411 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1412 /* some requests in the r1bio were BIO_RW_BARRIER
1413 * requests which failed with -EOPNOTSUPP. Hohumm..
1414 * Better resubmit without the barrier.
1415 * We know which devices to resubmit for, because
1416 * all others have had their bios[] entry cleared.
1418 int i;
1419 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1420 clear_bit(R1BIO_Barrier, &r1_bio->state);
1421 for (i=0; i < conf->raid_disks; i++)
1422 if (r1_bio->bios[i])
1423 atomic_inc(&r1_bio->remaining);
1424 for (i=0; i < conf->raid_disks; i++)
1425 if (r1_bio->bios[i]) {
1426 struct bio_vec *bvec;
1427 int j;
1429 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1430 /* copy pages from the failed bio, as
1431 * this might be a write-behind device */
1432 __bio_for_each_segment(bvec, bio, j, 0)
1433 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1434 bio_put(r1_bio->bios[i]);
1435 bio->bi_sector = r1_bio->sector +
1436 conf->mirrors[i].rdev->data_offset;
1437 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1438 bio->bi_end_io = raid1_end_write_request;
1439 bio->bi_rw = WRITE;
1440 bio->bi_private = r1_bio;
1441 r1_bio->bios[i] = bio;
1442 generic_make_request(bio);
1444 } else {
1445 int disk;
1447 /* we got a read error. Maybe the drive is bad. Maybe just
1448 * the block and we can fix it.
1449 * We freeze all other IO, and try reading the block from
1450 * other devices. When we find one, we re-write
1451 * and check it that fixes the read error.
1452 * This is all done synchronously while the array is
1453 * frozen
1455 sector_t sect = r1_bio->sector;
1456 int sectors = r1_bio->sectors;
1457 freeze_array(conf);
1458 if (mddev->ro == 0) while(sectors) {
1459 int s = sectors;
1460 int d = r1_bio->read_disk;
1461 int success = 0;
1463 if (s > (PAGE_SIZE>>9))
1464 s = PAGE_SIZE >> 9;
1466 do {
1467 rdev = conf->mirrors[d].rdev;
1468 if (rdev &&
1469 test_bit(In_sync, &rdev->flags) &&
1470 sync_page_io(rdev->bdev,
1471 sect + rdev->data_offset,
1472 s<<9,
1473 conf->tmppage, READ))
1474 success = 1;
1475 else {
1476 d++;
1477 if (d == conf->raid_disks)
1478 d = 0;
1480 } while (!success && d != r1_bio->read_disk);
1482 if (success) {
1483 /* write it back and re-read */
1484 int start = d;
1485 while (d != r1_bio->read_disk) {
1486 if (d==0)
1487 d = conf->raid_disks;
1488 d--;
1489 rdev = conf->mirrors[d].rdev;
1490 atomic_add(s, &rdev->corrected_errors);
1491 if (rdev &&
1492 test_bit(In_sync, &rdev->flags)) {
1493 if (sync_page_io(rdev->bdev,
1494 sect + rdev->data_offset,
1495 s<<9, conf->tmppage, WRITE) == 0)
1496 /* Well, this device is dead */
1497 md_error(mddev, rdev);
1500 d = start;
1501 while (d != r1_bio->read_disk) {
1502 if (d==0)
1503 d = conf->raid_disks;
1504 d--;
1505 rdev = conf->mirrors[d].rdev;
1506 if (rdev &&
1507 test_bit(In_sync, &rdev->flags)) {
1508 if (sync_page_io(rdev->bdev,
1509 sect + rdev->data_offset,
1510 s<<9, conf->tmppage, READ) == 0)
1511 /* Well, this device is dead */
1512 md_error(mddev, rdev);
1515 } else {
1516 /* Cannot read from anywhere -- bye bye array */
1517 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1518 break;
1520 sectors -= s;
1521 sect += s;
1524 unfreeze_array(conf);
1526 bio = r1_bio->bios[r1_bio->read_disk];
1527 if ((disk=read_balance(conf, r1_bio)) == -1) {
1528 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1529 " read error for block %llu\n",
1530 bdevname(bio->bi_bdev,b),
1531 (unsigned long long)r1_bio->sector);
1532 raid_end_bio_io(r1_bio);
1533 } else {
1534 r1_bio->bios[r1_bio->read_disk] =
1535 mddev->ro ? IO_BLOCKED : NULL;
1536 r1_bio->read_disk = disk;
1537 bio_put(bio);
1538 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1539 r1_bio->bios[r1_bio->read_disk] = bio;
1540 rdev = conf->mirrors[disk].rdev;
1541 if (printk_ratelimit())
1542 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1543 " another mirror\n",
1544 bdevname(rdev->bdev,b),
1545 (unsigned long long)r1_bio->sector);
1546 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1547 bio->bi_bdev = rdev->bdev;
1548 bio->bi_end_io = raid1_end_read_request;
1549 bio->bi_rw = READ;
1550 bio->bi_private = r1_bio;
1551 unplug = 1;
1552 generic_make_request(bio);
1556 spin_unlock_irqrestore(&conf->device_lock, flags);
1557 if (unplug)
1558 unplug_slaves(mddev);
1562 static int init_resync(conf_t *conf)
1564 int buffs;
1566 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1567 BUG_ON(conf->r1buf_pool);
1568 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1569 conf->poolinfo);
1570 if (!conf->r1buf_pool)
1571 return -ENOMEM;
1572 conf->next_resync = 0;
1573 return 0;
1577 * perform a "sync" on one "block"
1579 * We need to make sure that no normal I/O request - particularly write
1580 * requests - conflict with active sync requests.
1582 * This is achieved by tracking pending requests and a 'barrier' concept
1583 * that can be installed to exclude normal IO requests.
1586 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1588 conf_t *conf = mddev_to_conf(mddev);
1589 r1bio_t *r1_bio;
1590 struct bio *bio;
1591 sector_t max_sector, nr_sectors;
1592 int disk = -1;
1593 int i;
1594 int wonly = -1;
1595 int write_targets = 0, read_targets = 0;
1596 int sync_blocks;
1597 int still_degraded = 0;
1599 if (!conf->r1buf_pool)
1602 printk("sync start - bitmap %p\n", mddev->bitmap);
1604 if (init_resync(conf))
1605 return 0;
1608 max_sector = mddev->size << 1;
1609 if (sector_nr >= max_sector) {
1610 /* If we aborted, we need to abort the
1611 * sync on the 'current' bitmap chunk (there will
1612 * only be one in raid1 resync.
1613 * We can find the current addess in mddev->curr_resync
1615 if (mddev->curr_resync < max_sector) /* aborted */
1616 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1617 &sync_blocks, 1);
1618 else /* completed sync */
1619 conf->fullsync = 0;
1621 bitmap_close_sync(mddev->bitmap);
1622 close_sync(conf);
1623 return 0;
1626 /* before building a request, check if we can skip these blocks..
1627 * This call the bitmap_start_sync doesn't actually record anything
1629 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1630 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1631 /* We can skip this block, and probably several more */
1632 *skipped = 1;
1633 return sync_blocks;
1636 * If there is non-resync activity waiting for a turn,
1637 * and resync is going fast enough,
1638 * then let it though before starting on this new sync request.
1640 if (!go_faster && conf->nr_waiting)
1641 msleep_interruptible(1000);
1643 raise_barrier(conf);
1645 conf->next_resync = sector_nr;
1647 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1648 rcu_read_lock();
1650 * If we get a correctably read error during resync or recovery,
1651 * we might want to read from a different device. So we
1652 * flag all drives that could conceivably be read from for READ,
1653 * and any others (which will be non-In_sync devices) for WRITE.
1654 * If a read fails, we try reading from something else for which READ
1655 * is OK.
1658 r1_bio->mddev = mddev;
1659 r1_bio->sector = sector_nr;
1660 r1_bio->state = 0;
1661 set_bit(R1BIO_IsSync, &r1_bio->state);
1663 for (i=0; i < conf->raid_disks; i++) {
1664 mdk_rdev_t *rdev;
1665 bio = r1_bio->bios[i];
1667 /* take from bio_init */
1668 bio->bi_next = NULL;
1669 bio->bi_flags |= 1 << BIO_UPTODATE;
1670 bio->bi_rw = 0;
1671 bio->bi_vcnt = 0;
1672 bio->bi_idx = 0;
1673 bio->bi_phys_segments = 0;
1674 bio->bi_hw_segments = 0;
1675 bio->bi_size = 0;
1676 bio->bi_end_io = NULL;
1677 bio->bi_private = NULL;
1679 rdev = rcu_dereference(conf->mirrors[i].rdev);
1680 if (rdev == NULL ||
1681 test_bit(Faulty, &rdev->flags)) {
1682 still_degraded = 1;
1683 continue;
1684 } else if (!test_bit(In_sync, &rdev->flags)) {
1685 bio->bi_rw = WRITE;
1686 bio->bi_end_io = end_sync_write;
1687 write_targets ++;
1688 } else {
1689 /* may need to read from here */
1690 bio->bi_rw = READ;
1691 bio->bi_end_io = end_sync_read;
1692 if (test_bit(WriteMostly, &rdev->flags)) {
1693 if (wonly < 0)
1694 wonly = i;
1695 } else {
1696 if (disk < 0)
1697 disk = i;
1699 read_targets++;
1701 atomic_inc(&rdev->nr_pending);
1702 bio->bi_sector = sector_nr + rdev->data_offset;
1703 bio->bi_bdev = rdev->bdev;
1704 bio->bi_private = r1_bio;
1706 rcu_read_unlock();
1707 if (disk < 0)
1708 disk = wonly;
1709 r1_bio->read_disk = disk;
1711 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1712 /* extra read targets are also write targets */
1713 write_targets += read_targets-1;
1715 if (write_targets == 0 || read_targets == 0) {
1716 /* There is nowhere to write, so all non-sync
1717 * drives must be failed - so we are finished
1719 sector_t rv = max_sector - sector_nr;
1720 *skipped = 1;
1721 put_buf(r1_bio);
1722 return rv;
1725 nr_sectors = 0;
1726 sync_blocks = 0;
1727 do {
1728 struct page *page;
1729 int len = PAGE_SIZE;
1730 if (sector_nr + (len>>9) > max_sector)
1731 len = (max_sector - sector_nr) << 9;
1732 if (len == 0)
1733 break;
1734 if (sync_blocks == 0) {
1735 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1736 &sync_blocks, still_degraded) &&
1737 !conf->fullsync &&
1738 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1739 break;
1740 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1741 if (len > (sync_blocks<<9))
1742 len = sync_blocks<<9;
1745 for (i=0 ; i < conf->raid_disks; i++) {
1746 bio = r1_bio->bios[i];
1747 if (bio->bi_end_io) {
1748 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1749 if (bio_add_page(bio, page, len, 0) == 0) {
1750 /* stop here */
1751 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1752 while (i > 0) {
1753 i--;
1754 bio = r1_bio->bios[i];
1755 if (bio->bi_end_io==NULL)
1756 continue;
1757 /* remove last page from this bio */
1758 bio->bi_vcnt--;
1759 bio->bi_size -= len;
1760 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1762 goto bio_full;
1766 nr_sectors += len>>9;
1767 sector_nr += len>>9;
1768 sync_blocks -= (len>>9);
1769 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1770 bio_full:
1771 r1_bio->sectors = nr_sectors;
1773 /* For a user-requested sync, we read all readable devices and do a
1774 * compare
1776 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1777 atomic_set(&r1_bio->remaining, read_targets);
1778 for (i=0; i<conf->raid_disks; i++) {
1779 bio = r1_bio->bios[i];
1780 if (bio->bi_end_io == end_sync_read) {
1781 md_sync_acct(conf->mirrors[i].rdev->bdev, nr_sectors);
1782 generic_make_request(bio);
1785 } else {
1786 atomic_set(&r1_bio->remaining, 1);
1787 bio = r1_bio->bios[r1_bio->read_disk];
1788 md_sync_acct(conf->mirrors[r1_bio->read_disk].rdev->bdev,
1789 nr_sectors);
1790 generic_make_request(bio);
1794 return nr_sectors;
1797 static int run(mddev_t *mddev)
1799 conf_t *conf;
1800 int i, j, disk_idx;
1801 mirror_info_t *disk;
1802 mdk_rdev_t *rdev;
1803 struct list_head *tmp;
1805 if (mddev->level != 1) {
1806 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1807 mdname(mddev), mddev->level);
1808 goto out;
1810 if (mddev->reshape_position != MaxSector) {
1811 printk("raid1: %s: reshape_position set but not supported\n",
1812 mdname(mddev));
1813 goto out;
1816 * copy the already verified devices into our private RAID1
1817 * bookkeeping area. [whatever we allocate in run(),
1818 * should be freed in stop()]
1820 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1821 mddev->private = conf;
1822 if (!conf)
1823 goto out_no_mem;
1825 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1826 GFP_KERNEL);
1827 if (!conf->mirrors)
1828 goto out_no_mem;
1830 conf->tmppage = alloc_page(GFP_KERNEL);
1831 if (!conf->tmppage)
1832 goto out_no_mem;
1834 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1835 if (!conf->poolinfo)
1836 goto out_no_mem;
1837 conf->poolinfo->mddev = mddev;
1838 conf->poolinfo->raid_disks = mddev->raid_disks;
1839 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1840 r1bio_pool_free,
1841 conf->poolinfo);
1842 if (!conf->r1bio_pool)
1843 goto out_no_mem;
1845 ITERATE_RDEV(mddev, rdev, tmp) {
1846 disk_idx = rdev->raid_disk;
1847 if (disk_idx >= mddev->raid_disks
1848 || disk_idx < 0)
1849 continue;
1850 disk = conf->mirrors + disk_idx;
1852 disk->rdev = rdev;
1854 blk_queue_stack_limits(mddev->queue,
1855 rdev->bdev->bd_disk->queue);
1856 /* as we don't honour merge_bvec_fn, we must never risk
1857 * violating it, so limit ->max_sector to one PAGE, as
1858 * a one page request is never in violation.
1860 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1861 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1862 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1864 disk->head_position = 0;
1865 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1866 conf->working_disks++;
1868 conf->raid_disks = mddev->raid_disks;
1869 conf->mddev = mddev;
1870 spin_lock_init(&conf->device_lock);
1871 INIT_LIST_HEAD(&conf->retry_list);
1872 if (conf->working_disks == 1)
1873 mddev->recovery_cp = MaxSector;
1875 spin_lock_init(&conf->resync_lock);
1876 init_waitqueue_head(&conf->wait_barrier);
1878 bio_list_init(&conf->pending_bio_list);
1879 bio_list_init(&conf->flushing_bio_list);
1881 if (!conf->working_disks) {
1882 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1883 mdname(mddev));
1884 goto out_free_conf;
1887 mddev->degraded = 0;
1888 for (i = 0; i < conf->raid_disks; i++) {
1890 disk = conf->mirrors + i;
1892 if (!disk->rdev) {
1893 disk->head_position = 0;
1894 mddev->degraded++;
1899 * find the first working one and use it as a starting point
1900 * to read balancing.
1902 for (j = 0; j < conf->raid_disks &&
1903 (!conf->mirrors[j].rdev ||
1904 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1905 /* nothing */;
1906 conf->last_used = j;
1909 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1910 if (!mddev->thread) {
1911 printk(KERN_ERR
1912 "raid1: couldn't allocate thread for %s\n",
1913 mdname(mddev));
1914 goto out_free_conf;
1917 printk(KERN_INFO
1918 "raid1: raid set %s active with %d out of %d mirrors\n",
1919 mdname(mddev), mddev->raid_disks - mddev->degraded,
1920 mddev->raid_disks);
1922 * Ok, everything is just fine now
1924 mddev->array_size = mddev->size;
1926 mddev->queue->unplug_fn = raid1_unplug;
1927 mddev->queue->issue_flush_fn = raid1_issue_flush;
1929 return 0;
1931 out_no_mem:
1932 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1933 mdname(mddev));
1935 out_free_conf:
1936 if (conf) {
1937 if (conf->r1bio_pool)
1938 mempool_destroy(conf->r1bio_pool);
1939 kfree(conf->mirrors);
1940 safe_put_page(conf->tmppage);
1941 kfree(conf->poolinfo);
1942 kfree(conf);
1943 mddev->private = NULL;
1945 out:
1946 return -EIO;
1949 static int stop(mddev_t *mddev)
1951 conf_t *conf = mddev_to_conf(mddev);
1952 struct bitmap *bitmap = mddev->bitmap;
1953 int behind_wait = 0;
1955 /* wait for behind writes to complete */
1956 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
1957 behind_wait++;
1958 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
1959 set_current_state(TASK_UNINTERRUPTIBLE);
1960 schedule_timeout(HZ); /* wait a second */
1961 /* need to kick something here to make sure I/O goes? */
1964 md_unregister_thread(mddev->thread);
1965 mddev->thread = NULL;
1966 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1967 if (conf->r1bio_pool)
1968 mempool_destroy(conf->r1bio_pool);
1969 kfree(conf->mirrors);
1970 kfree(conf->poolinfo);
1971 kfree(conf);
1972 mddev->private = NULL;
1973 return 0;
1976 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1978 /* no resync is happening, and there is enough space
1979 * on all devices, so we can resize.
1980 * We need to make sure resync covers any new space.
1981 * If the array is shrinking we should possibly wait until
1982 * any io in the removed space completes, but it hardly seems
1983 * worth it.
1985 mddev->array_size = sectors>>1;
1986 set_capacity(mddev->gendisk, mddev->array_size << 1);
1987 mddev->changed = 1;
1988 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1989 mddev->recovery_cp = mddev->size << 1;
1990 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1992 mddev->size = mddev->array_size;
1993 mddev->resync_max_sectors = sectors;
1994 return 0;
1997 static int raid1_reshape(mddev_t *mddev)
1999 /* We need to:
2000 * 1/ resize the r1bio_pool
2001 * 2/ resize conf->mirrors
2003 * We allocate a new r1bio_pool if we can.
2004 * Then raise a device barrier and wait until all IO stops.
2005 * Then resize conf->mirrors and swap in the new r1bio pool.
2007 * At the same time, we "pack" the devices so that all the missing
2008 * devices have the higher raid_disk numbers.
2010 mempool_t *newpool, *oldpool;
2011 struct pool_info *newpoolinfo;
2012 mirror_info_t *newmirrors;
2013 conf_t *conf = mddev_to_conf(mddev);
2014 int cnt, raid_disks;
2016 int d, d2;
2018 /* Cannot change chunk_size, layout, or level */
2019 if (mddev->chunk_size != mddev->new_chunk ||
2020 mddev->layout != mddev->new_layout ||
2021 mddev->level != mddev->new_level) {
2022 mddev->new_chunk = mddev->chunk_size;
2023 mddev->new_layout = mddev->layout;
2024 mddev->new_level = mddev->level;
2025 return -EINVAL;
2028 raid_disks = mddev->raid_disks + mddev->delta_disks;
2030 if (raid_disks < conf->raid_disks) {
2031 cnt=0;
2032 for (d= 0; d < conf->raid_disks; d++)
2033 if (conf->mirrors[d].rdev)
2034 cnt++;
2035 if (cnt > raid_disks)
2036 return -EBUSY;
2039 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2040 if (!newpoolinfo)
2041 return -ENOMEM;
2042 newpoolinfo->mddev = mddev;
2043 newpoolinfo->raid_disks = raid_disks;
2045 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2046 r1bio_pool_free, newpoolinfo);
2047 if (!newpool) {
2048 kfree(newpoolinfo);
2049 return -ENOMEM;
2051 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2052 if (!newmirrors) {
2053 kfree(newpoolinfo);
2054 mempool_destroy(newpool);
2055 return -ENOMEM;
2058 raise_barrier(conf);
2060 /* ok, everything is stopped */
2061 oldpool = conf->r1bio_pool;
2062 conf->r1bio_pool = newpool;
2064 for (d=d2=0; d < conf->raid_disks; d++)
2065 if (conf->mirrors[d].rdev) {
2066 conf->mirrors[d].rdev->raid_disk = d2;
2067 newmirrors[d2++].rdev = conf->mirrors[d].rdev;
2069 kfree(conf->mirrors);
2070 conf->mirrors = newmirrors;
2071 kfree(conf->poolinfo);
2072 conf->poolinfo = newpoolinfo;
2074 mddev->degraded += (raid_disks - conf->raid_disks);
2075 conf->raid_disks = mddev->raid_disks = raid_disks;
2076 mddev->delta_disks = 0;
2078 conf->last_used = 0; /* just make sure it is in-range */
2079 lower_barrier(conf);
2081 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2082 md_wakeup_thread(mddev->thread);
2084 mempool_destroy(oldpool);
2085 return 0;
2088 static void raid1_quiesce(mddev_t *mddev, int state)
2090 conf_t *conf = mddev_to_conf(mddev);
2092 switch(state) {
2093 case 1:
2094 raise_barrier(conf);
2095 break;
2096 case 0:
2097 lower_barrier(conf);
2098 break;
2103 static struct mdk_personality raid1_personality =
2105 .name = "raid1",
2106 .level = 1,
2107 .owner = THIS_MODULE,
2108 .make_request = make_request,
2109 .run = run,
2110 .stop = stop,
2111 .status = status,
2112 .error_handler = error,
2113 .hot_add_disk = raid1_add_disk,
2114 .hot_remove_disk= raid1_remove_disk,
2115 .spare_active = raid1_spare_active,
2116 .sync_request = sync_request,
2117 .resize = raid1_resize,
2118 .check_reshape = raid1_reshape,
2119 .quiesce = raid1_quiesce,
2122 static int __init raid_init(void)
2124 return register_md_personality(&raid1_personality);
2127 static void raid_exit(void)
2129 unregister_md_personality(&raid1_personality);
2132 module_init(raid_init);
2133 module_exit(raid_exit);
2134 MODULE_LICENSE("GPL");
2135 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2136 MODULE_ALIAS("md-raid1");
2137 MODULE_ALIAS("md-level-1");