[MIPS] Reformat all of signal32.c with tabs instead of space for consistency
[linux-2.6/kmemtrace.git] / drivers / cpufreq / cpufreq_ondemand.c
blob9ee9411f186f9b8738f4a7320991f058576733d7
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/smp.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/cpufreq.h>
20 #include <linux/sysctl.h>
21 #include <linux/types.h>
22 #include <linux/fs.h>
23 #include <linux/sysfs.h>
24 #include <linux/sched.h>
25 #include <linux/kmod.h>
26 #include <linux/workqueue.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/percpu.h>
30 #include <linux/mutex.h>
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
37 #define DEF_FREQUENCY_UP_THRESHOLD (80)
38 #define MIN_FREQUENCY_UP_THRESHOLD (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD (100)
41 /*
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
51 static unsigned int def_sampling_rate;
52 #define MIN_SAMPLING_RATE_RATIO (2)
53 /* for correct statistics, we need at least 10 ticks between each measure */
54 #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
56 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
57 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
58 #define DEF_SAMPLING_DOWN_FACTOR (1)
59 #define MAX_SAMPLING_DOWN_FACTOR (10)
60 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
62 static void do_dbs_timer(void *data);
64 struct cpu_dbs_info_s {
65 struct cpufreq_policy *cur_policy;
66 unsigned int prev_cpu_idle_up;
67 unsigned int prev_cpu_idle_down;
68 unsigned int enable;
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
72 static unsigned int dbs_enable; /* number of CPUs using this policy */
74 static DEFINE_MUTEX (dbs_mutex);
75 static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
77 struct dbs_tuners {
78 unsigned int sampling_rate;
79 unsigned int sampling_down_factor;
80 unsigned int up_threshold;
81 unsigned int ignore_nice;
84 static struct dbs_tuners dbs_tuners_ins = {
85 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
86 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
89 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
91 return kstat_cpu(cpu).cpustat.idle +
92 kstat_cpu(cpu).cpustat.iowait +
93 ( dbs_tuners_ins.ignore_nice ?
94 kstat_cpu(cpu).cpustat.nice :
95 0);
98 /************************** sysfs interface ************************/
99 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
101 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
104 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
106 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
109 #define define_one_ro(_name) \
110 static struct freq_attr _name = \
111 __ATTR(_name, 0444, show_##_name, NULL)
113 define_one_ro(sampling_rate_max);
114 define_one_ro(sampling_rate_min);
116 /* cpufreq_ondemand Governor Tunables */
117 #define show_one(file_name, object) \
118 static ssize_t show_##file_name \
119 (struct cpufreq_policy *unused, char *buf) \
121 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
123 show_one(sampling_rate, sampling_rate);
124 show_one(sampling_down_factor, sampling_down_factor);
125 show_one(up_threshold, up_threshold);
126 show_one(ignore_nice_load, ignore_nice);
128 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
129 const char *buf, size_t count)
131 unsigned int input;
132 int ret;
133 ret = sscanf (buf, "%u", &input);
134 if (ret != 1 )
135 return -EINVAL;
137 if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
138 return -EINVAL;
140 mutex_lock(&dbs_mutex);
141 dbs_tuners_ins.sampling_down_factor = input;
142 mutex_unlock(&dbs_mutex);
144 return count;
147 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
148 const char *buf, size_t count)
150 unsigned int input;
151 int ret;
152 ret = sscanf (buf, "%u", &input);
154 mutex_lock(&dbs_mutex);
155 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
156 mutex_unlock(&dbs_mutex);
157 return -EINVAL;
160 dbs_tuners_ins.sampling_rate = input;
161 mutex_unlock(&dbs_mutex);
163 return count;
166 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
167 const char *buf, size_t count)
169 unsigned int input;
170 int ret;
171 ret = sscanf (buf, "%u", &input);
173 mutex_lock(&dbs_mutex);
174 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
175 input < MIN_FREQUENCY_UP_THRESHOLD) {
176 mutex_unlock(&dbs_mutex);
177 return -EINVAL;
180 dbs_tuners_ins.up_threshold = input;
181 mutex_unlock(&dbs_mutex);
183 return count;
186 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
187 const char *buf, size_t count)
189 unsigned int input;
190 int ret;
192 unsigned int j;
194 ret = sscanf (buf, "%u", &input);
195 if ( ret != 1 )
196 return -EINVAL;
198 if ( input > 1 )
199 input = 1;
201 mutex_lock(&dbs_mutex);
202 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
203 mutex_unlock(&dbs_mutex);
204 return count;
206 dbs_tuners_ins.ignore_nice = input;
208 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
209 for_each_online_cpu(j) {
210 struct cpu_dbs_info_s *j_dbs_info;
211 j_dbs_info = &per_cpu(cpu_dbs_info, j);
212 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
213 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
215 mutex_unlock(&dbs_mutex);
217 return count;
220 #define define_one_rw(_name) \
221 static struct freq_attr _name = \
222 __ATTR(_name, 0644, show_##_name, store_##_name)
224 define_one_rw(sampling_rate);
225 define_one_rw(sampling_down_factor);
226 define_one_rw(up_threshold);
227 define_one_rw(ignore_nice_load);
229 static struct attribute * dbs_attributes[] = {
230 &sampling_rate_max.attr,
231 &sampling_rate_min.attr,
232 &sampling_rate.attr,
233 &sampling_down_factor.attr,
234 &up_threshold.attr,
235 &ignore_nice_load.attr,
236 NULL
239 static struct attribute_group dbs_attr_group = {
240 .attrs = dbs_attributes,
241 .name = "ondemand",
244 /************************** sysfs end ************************/
246 static void dbs_check_cpu(int cpu)
248 unsigned int idle_ticks, up_idle_ticks, total_ticks;
249 unsigned int freq_next;
250 unsigned int freq_down_sampling_rate;
251 static int down_skip[NR_CPUS];
252 struct cpu_dbs_info_s *this_dbs_info;
254 struct cpufreq_policy *policy;
255 unsigned int j;
257 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
258 if (!this_dbs_info->enable)
259 return;
261 policy = this_dbs_info->cur_policy;
263 * Every sampling_rate, we check, if current idle time is less
264 * than 20% (default), then we try to increase frequency
265 * Every sampling_rate*sampling_down_factor, we look for a the lowest
266 * frequency which can sustain the load while keeping idle time over
267 * 30%. If such a frequency exist, we try to decrease to this frequency.
269 * Any frequency increase takes it to the maximum frequency.
270 * Frequency reduction happens at minimum steps of
271 * 5% (default) of current frequency
274 /* Check for frequency increase */
275 idle_ticks = UINT_MAX;
276 for_each_cpu_mask(j, policy->cpus) {
277 unsigned int tmp_idle_ticks, total_idle_ticks;
278 struct cpu_dbs_info_s *j_dbs_info;
280 j_dbs_info = &per_cpu(cpu_dbs_info, j);
281 total_idle_ticks = get_cpu_idle_time(j);
282 tmp_idle_ticks = total_idle_ticks -
283 j_dbs_info->prev_cpu_idle_up;
284 j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
286 if (tmp_idle_ticks < idle_ticks)
287 idle_ticks = tmp_idle_ticks;
290 /* Scale idle ticks by 100 and compare with up and down ticks */
291 idle_ticks *= 100;
292 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
293 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
295 if (idle_ticks < up_idle_ticks) {
296 down_skip[cpu] = 0;
297 for_each_cpu_mask(j, policy->cpus) {
298 struct cpu_dbs_info_s *j_dbs_info;
300 j_dbs_info = &per_cpu(cpu_dbs_info, j);
301 j_dbs_info->prev_cpu_idle_down =
302 j_dbs_info->prev_cpu_idle_up;
304 /* if we are already at full speed then break out early */
305 if (policy->cur == policy->max)
306 return;
308 __cpufreq_driver_target(policy, policy->max,
309 CPUFREQ_RELATION_H);
310 return;
313 /* Check for frequency decrease */
314 down_skip[cpu]++;
315 if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
316 return;
318 idle_ticks = UINT_MAX;
319 for_each_cpu_mask(j, policy->cpus) {
320 unsigned int tmp_idle_ticks, total_idle_ticks;
321 struct cpu_dbs_info_s *j_dbs_info;
323 j_dbs_info = &per_cpu(cpu_dbs_info, j);
324 /* Check for frequency decrease */
325 total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
326 tmp_idle_ticks = total_idle_ticks -
327 j_dbs_info->prev_cpu_idle_down;
328 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
330 if (tmp_idle_ticks < idle_ticks)
331 idle_ticks = tmp_idle_ticks;
334 down_skip[cpu] = 0;
335 /* if we cannot reduce the frequency anymore, break out early */
336 if (policy->cur == policy->min)
337 return;
339 /* Compute how many ticks there are between two measurements */
340 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
341 dbs_tuners_ins.sampling_down_factor;
342 total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
345 * The optimal frequency is the frequency that is the lowest that
346 * can support the current CPU usage without triggering the up
347 * policy. To be safe, we focus 10 points under the threshold.
349 freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
350 freq_next = (freq_next * policy->cur) /
351 (dbs_tuners_ins.up_threshold - 10);
353 if (freq_next <= ((policy->cur * 95) / 100))
354 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
357 static void do_dbs_timer(void *data)
359 int i;
360 mutex_lock(&dbs_mutex);
361 for_each_online_cpu(i)
362 dbs_check_cpu(i);
363 schedule_delayed_work(&dbs_work,
364 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
365 mutex_unlock(&dbs_mutex);
368 static inline void dbs_timer_init(void)
370 INIT_WORK(&dbs_work, do_dbs_timer, NULL);
371 schedule_delayed_work(&dbs_work,
372 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
373 return;
376 static inline void dbs_timer_exit(void)
378 cancel_delayed_work(&dbs_work);
379 return;
382 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
383 unsigned int event)
385 unsigned int cpu = policy->cpu;
386 struct cpu_dbs_info_s *this_dbs_info;
387 unsigned int j;
389 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
391 switch (event) {
392 case CPUFREQ_GOV_START:
393 if ((!cpu_online(cpu)) ||
394 (!policy->cur))
395 return -EINVAL;
397 if (policy->cpuinfo.transition_latency >
398 (TRANSITION_LATENCY_LIMIT * 1000))
399 return -EINVAL;
400 if (this_dbs_info->enable) /* Already enabled */
401 break;
403 mutex_lock(&dbs_mutex);
404 for_each_cpu_mask(j, policy->cpus) {
405 struct cpu_dbs_info_s *j_dbs_info;
406 j_dbs_info = &per_cpu(cpu_dbs_info, j);
407 j_dbs_info->cur_policy = policy;
409 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
410 j_dbs_info->prev_cpu_idle_down
411 = j_dbs_info->prev_cpu_idle_up;
413 this_dbs_info->enable = 1;
414 sysfs_create_group(&policy->kobj, &dbs_attr_group);
415 dbs_enable++;
417 * Start the timerschedule work, when this governor
418 * is used for first time
420 if (dbs_enable == 1) {
421 unsigned int latency;
422 /* policy latency is in nS. Convert it to uS first */
423 latency = policy->cpuinfo.transition_latency / 1000;
424 if (latency == 0)
425 latency = 1;
427 def_sampling_rate = latency *
428 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
430 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
431 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
433 dbs_tuners_ins.sampling_rate = def_sampling_rate;
434 dbs_tuners_ins.ignore_nice = 0;
436 dbs_timer_init();
439 mutex_unlock(&dbs_mutex);
440 break;
442 case CPUFREQ_GOV_STOP:
443 mutex_lock(&dbs_mutex);
444 this_dbs_info->enable = 0;
445 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
446 dbs_enable--;
448 * Stop the timerschedule work, when this governor
449 * is used for first time
451 if (dbs_enable == 0)
452 dbs_timer_exit();
454 mutex_unlock(&dbs_mutex);
456 break;
458 case CPUFREQ_GOV_LIMITS:
459 mutex_lock(&dbs_mutex);
460 if (policy->max < this_dbs_info->cur_policy->cur)
461 __cpufreq_driver_target(
462 this_dbs_info->cur_policy,
463 policy->max, CPUFREQ_RELATION_H);
464 else if (policy->min > this_dbs_info->cur_policy->cur)
465 __cpufreq_driver_target(
466 this_dbs_info->cur_policy,
467 policy->min, CPUFREQ_RELATION_L);
468 mutex_unlock(&dbs_mutex);
469 break;
471 return 0;
474 static struct cpufreq_governor cpufreq_gov_dbs = {
475 .name = "ondemand",
476 .governor = cpufreq_governor_dbs,
477 .owner = THIS_MODULE,
480 static int __init cpufreq_gov_dbs_init(void)
482 return cpufreq_register_governor(&cpufreq_gov_dbs);
485 static void __exit cpufreq_gov_dbs_exit(void)
487 /* Make sure that the scheduled work is indeed not running */
488 flush_scheduled_work();
490 cpufreq_unregister_governor(&cpufreq_gov_dbs);
494 MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
495 MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
496 "Low Latency Frequency Transition capable processors");
497 MODULE_LICENSE ("GPL");
499 module_init(cpufreq_gov_dbs_init);
500 module_exit(cpufreq_gov_dbs_exit);