1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
5 * Copyright 1992, Linus Torvalds.
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
23 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24 /* Technically wrong, but this avoids compilation errors on some gcc
26 #define ADDR "=m" (*(volatile long *) addr)
28 #define ADDR "+m" (*(volatile long *) addr)
32 * set_bit - Atomically set a bit in memory
34 * @addr: the address to start counting from
36 * This function is atomic and may not be reordered. See __set_bit()
37 * if you do not require the atomic guarantees.
39 * Note: there are no guarantees that this function will not be reordered
40 * on non x86 architectures, so if you are writing portable code,
41 * make sure not to rely on its reordering guarantees.
43 * Note that @nr may be almost arbitrarily large; this function is not
44 * restricted to acting on a single-word quantity.
46 static inline void set_bit(int nr
, volatile void *addr
)
48 asm volatile(LOCK_PREFIX
"bts %1,%0" : ADDR
: "Ir" (nr
) : "memory");
52 * __set_bit - Set a bit in memory
54 * @addr: the address to start counting from
56 * Unlike set_bit(), this function is non-atomic and may be reordered.
57 * If it's called on the same region of memory simultaneously, the effect
58 * may be that only one operation succeeds.
60 static inline void __set_bit(int nr
, volatile void *addr
)
62 asm volatile("bts %1,%0" : ADDR
: "Ir" (nr
) : "memory");
66 * clear_bit - Clears a bit in memory
68 * @addr: Address to start counting from
70 * clear_bit() is atomic and may not be reordered. However, it does
71 * not contain a memory barrier, so if it is used for locking purposes,
72 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
73 * in order to ensure changes are visible on other processors.
75 static inline void clear_bit(int nr
, volatile void *addr
)
77 asm volatile(LOCK_PREFIX
"btr %1,%0" : ADDR
: "Ir" (nr
));
81 * clear_bit_unlock - Clears a bit in memory
83 * @addr: Address to start counting from
85 * clear_bit() is atomic and implies release semantics before the memory
86 * operation. It can be used for an unlock.
88 static inline void clear_bit_unlock(unsigned nr
, volatile void *addr
)
94 static inline void __clear_bit(int nr
, volatile void *addr
)
96 asm volatile("btr %1,%0" : ADDR
: "Ir" (nr
));
100 * __clear_bit_unlock - Clears a bit in memory
102 * @addr: Address to start counting from
104 * __clear_bit() is non-atomic and implies release semantics before the memory
105 * operation. It can be used for an unlock if no other CPUs can concurrently
106 * modify other bits in the word.
108 * No memory barrier is required here, because x86 cannot reorder stores past
109 * older loads. Same principle as spin_unlock.
111 static inline void __clear_bit_unlock(unsigned nr
, volatile void *addr
)
114 __clear_bit(nr
, addr
);
117 #define smp_mb__before_clear_bit() barrier()
118 #define smp_mb__after_clear_bit() barrier()
121 * __change_bit - Toggle a bit in memory
122 * @nr: the bit to change
123 * @addr: the address to start counting from
125 * Unlike change_bit(), this function is non-atomic and may be reordered.
126 * If it's called on the same region of memory simultaneously, the effect
127 * may be that only one operation succeeds.
129 static inline void __change_bit(int nr
, volatile void *addr
)
131 asm volatile("btc %1,%0" : ADDR
: "Ir" (nr
));
135 * change_bit - Toggle a bit in memory
137 * @addr: Address to start counting from
139 * change_bit() is atomic and may not be reordered.
140 * Note that @nr may be almost arbitrarily large; this function is not
141 * restricted to acting on a single-word quantity.
143 static inline void change_bit(int nr
, volatile void *addr
)
145 asm volatile(LOCK_PREFIX
"btc %1,%0" : ADDR
: "Ir" (nr
));
149 * test_and_set_bit - Set a bit and return its old value
151 * @addr: Address to count from
153 * This operation is atomic and cannot be reordered.
154 * It also implies a memory barrier.
156 static inline int test_and_set_bit(int nr
, volatile void *addr
)
160 asm volatile(LOCK_PREFIX
"bts %2,%1\n\t"
161 "sbb %0,%0" : "=r" (oldbit
), ADDR
: "Ir" (nr
) : "memory");
167 * test_and_set_bit_lock - Set a bit and return its old value for lock
169 * @addr: Address to count from
171 * This is the same as test_and_set_bit on x86.
173 static inline int test_and_set_bit_lock(int nr
, volatile void *addr
)
175 return test_and_set_bit(nr
, addr
);
179 * __test_and_set_bit - Set a bit and return its old value
181 * @addr: Address to count from
183 * This operation is non-atomic and can be reordered.
184 * If two examples of this operation race, one can appear to succeed
185 * but actually fail. You must protect multiple accesses with a lock.
187 static inline int __test_and_set_bit(int nr
, volatile void *addr
)
193 : "=r" (oldbit
), ADDR
199 * test_and_clear_bit - Clear a bit and return its old value
201 * @addr: Address to count from
203 * This operation is atomic and cannot be reordered.
204 * It also implies a memory barrier.
206 static inline int test_and_clear_bit(int nr
, volatile void *addr
)
210 asm volatile(LOCK_PREFIX
"btr %2,%1\n\t"
212 : "=r" (oldbit
), ADDR
: "Ir" (nr
) : "memory");
218 * __test_and_clear_bit - Clear a bit and return its old value
220 * @addr: Address to count from
222 * This operation is non-atomic and can be reordered.
223 * If two examples of this operation race, one can appear to succeed
224 * but actually fail. You must protect multiple accesses with a lock.
226 static inline int __test_and_clear_bit(int nr
, volatile void *addr
)
230 asm volatile("btr %2,%1\n\t"
232 : "=r" (oldbit
), ADDR
237 /* WARNING: non atomic and it can be reordered! */
238 static inline int __test_and_change_bit(int nr
, volatile void *addr
)
242 asm volatile("btc %2,%1\n\t"
244 : "=r" (oldbit
), ADDR
245 : "Ir" (nr
) : "memory");
251 * test_and_change_bit - Change a bit and return its old value
253 * @addr: Address to count from
255 * This operation is atomic and cannot be reordered.
256 * It also implies a memory barrier.
258 static inline int test_and_change_bit(int nr
, volatile void *addr
)
262 asm volatile(LOCK_PREFIX
"btc %2,%1\n\t"
264 : "=r" (oldbit
), ADDR
: "Ir" (nr
) : "memory");
269 static inline int constant_test_bit(int nr
, const volatile void *addr
)
271 return ((1UL << (nr
% BITS_PER_LONG
)) &
272 (((unsigned long *)addr
)[nr
/ BITS_PER_LONG
])) != 0;
275 static inline int variable_test_bit(int nr
, volatile const void *addr
)
279 asm volatile("bt %2,%1\n\t"
282 : "m" (*(unsigned long *)addr
), "Ir" (nr
));
287 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
289 * test_bit - Determine whether a bit is set
290 * @nr: bit number to test
291 * @addr: Address to start counting from
293 static int test_bit(int nr
, const volatile unsigned long *addr
);
296 #define test_bit(nr, addr) \
297 (__builtin_constant_p((nr)) \
298 ? constant_test_bit((nr), (addr)) \
299 : variable_test_bit((nr), (addr)))
302 * __ffs - find first set bit in word
303 * @word: The word to search
305 * Undefined if no bit exists, so code should check against 0 first.
307 static inline unsigned long __ffs(unsigned long word
)
316 * ffz - find first zero bit in word
317 * @word: The word to search
319 * Undefined if no zero exists, so code should check against ~0UL first.
321 static inline unsigned long ffz(unsigned long word
)
330 * __fls: find last set bit in word
331 * @word: The word to search
333 * Undefined if no zero exists, so code should check against ~0UL first.
335 static inline unsigned long __fls(unsigned long word
)
345 * ffs - find first set bit in word
346 * @x: the word to search
348 * This is defined the same way as the libc and compiler builtin ffs
349 * routines, therefore differs in spirit from the other bitops.
351 * ffs(value) returns 0 if value is 0 or the position of the first
352 * set bit if value is nonzero. The first (least significant) bit
355 static inline int ffs(int x
)
358 #ifdef CONFIG_X86_CMOV
361 : "=r" (r
) : "rm" (x
), "r" (-1));
366 "1:" : "=r" (r
) : "rm" (x
));
372 * fls - find last set bit in word
373 * @x: the word to search
375 * This is defined in a similar way as the libc and compiler builtin
376 * ffs, but returns the position of the most significant set bit.
378 * fls(value) returns 0 if value is 0 or the position of the last
379 * set bit if value is nonzero. The last (most significant) bit is
382 static inline int fls(int x
)
385 #ifdef CONFIG_X86_CMOV
388 : "=&r" (r
) : "rm" (x
), "rm" (-1));
393 "1:" : "=r" (r
) : "rm" (x
));
397 #endif /* __KERNEL__ */
401 static inline void set_bit_string(unsigned long *bitmap
,
402 unsigned long i
, int len
)
404 unsigned long end
= i
+ len
;
406 __set_bit(i
, bitmap
);
413 #include <asm-generic/bitops/sched.h>
415 #define ARCH_HAS_FAST_MULTIPLIER 1
417 #include <asm-generic/bitops/hweight.h>
419 #endif /* __KERNEL__ */
421 #include <asm-generic/bitops/fls64.h>
425 #include <asm-generic/bitops/ext2-non-atomic.h>
427 #define ext2_set_bit_atomic(lock, nr, addr) \
428 test_and_set_bit((nr), (unsigned long *)(addr))
429 #define ext2_clear_bit_atomic(lock, nr, addr) \
430 test_and_clear_bit((nr), (unsigned long *)(addr))
432 #include <asm-generic/bitops/minix.h>
434 #endif /* __KERNEL__ */
435 #endif /* _ASM_X86_BITOPS_H */