4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr
;
69 EXPORT_SYMBOL(max_mapnr
);
70 EXPORT_SYMBOL(mem_map
);
73 unsigned long num_physpages
;
75 * A number of key systems in x86 including ioremap() rely on the assumption
76 * that high_memory defines the upper bound on direct map memory, then end
77 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
83 EXPORT_SYMBOL(num_physpages
);
84 EXPORT_SYMBOL(high_memory
);
87 * Randomize the address space (stacks, mmaps, brk, etc.).
89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90 * as ancient (libc5 based) binaries can segfault. )
92 int randomize_va_space __read_mostly
=
93 #ifdef CONFIG_COMPAT_BRK
99 static int __init
disable_randmaps(char *s
)
101 randomize_va_space
= 0;
104 __setup("norandmaps", disable_randmaps
);
108 * If a p?d_bad entry is found while walking page tables, report
109 * the error, before resetting entry to p?d_none. Usually (but
110 * very seldom) called out from the p?d_none_or_clear_bad macros.
113 void pgd_clear_bad(pgd_t
*pgd
)
119 void pud_clear_bad(pud_t
*pud
)
125 void pmd_clear_bad(pmd_t
*pmd
)
132 * Note: this doesn't free the actual pages themselves. That
133 * has been handled earlier when unmapping all the memory regions.
135 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
)
137 pgtable_t token
= pmd_pgtable(*pmd
);
139 pte_free_tlb(tlb
, token
);
143 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
144 unsigned long addr
, unsigned long end
,
145 unsigned long floor
, unsigned long ceiling
)
152 pmd
= pmd_offset(pud
, addr
);
154 next
= pmd_addr_end(addr
, end
);
155 if (pmd_none_or_clear_bad(pmd
))
157 free_pte_range(tlb
, pmd
);
158 } while (pmd
++, addr
= next
, addr
!= end
);
168 if (end
- 1 > ceiling
- 1)
171 pmd
= pmd_offset(pud
, start
);
173 pmd_free_tlb(tlb
, pmd
);
176 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
177 unsigned long addr
, unsigned long end
,
178 unsigned long floor
, unsigned long ceiling
)
185 pud
= pud_offset(pgd
, addr
);
187 next
= pud_addr_end(addr
, end
);
188 if (pud_none_or_clear_bad(pud
))
190 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
191 } while (pud
++, addr
= next
, addr
!= end
);
197 ceiling
&= PGDIR_MASK
;
201 if (end
- 1 > ceiling
- 1)
204 pud
= pud_offset(pgd
, start
);
206 pud_free_tlb(tlb
, pud
);
210 * This function frees user-level page tables of a process.
212 * Must be called with pagetable lock held.
214 void free_pgd_range(struct mmu_gather
**tlb
,
215 unsigned long addr
, unsigned long end
,
216 unsigned long floor
, unsigned long ceiling
)
223 * The next few lines have given us lots of grief...
225 * Why are we testing PMD* at this top level? Because often
226 * there will be no work to do at all, and we'd prefer not to
227 * go all the way down to the bottom just to discover that.
229 * Why all these "- 1"s? Because 0 represents both the bottom
230 * of the address space and the top of it (using -1 for the
231 * top wouldn't help much: the masks would do the wrong thing).
232 * The rule is that addr 0 and floor 0 refer to the bottom of
233 * the address space, but end 0 and ceiling 0 refer to the top
234 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235 * that end 0 case should be mythical).
237 * Wherever addr is brought up or ceiling brought down, we must
238 * be careful to reject "the opposite 0" before it confuses the
239 * subsequent tests. But what about where end is brought down
240 * by PMD_SIZE below? no, end can't go down to 0 there.
242 * Whereas we round start (addr) and ceiling down, by different
243 * masks at different levels, in order to test whether a table
244 * now has no other vmas using it, so can be freed, we don't
245 * bother to round floor or end up - the tests don't need that.
259 if (end
- 1 > ceiling
- 1)
265 pgd
= pgd_offset((*tlb
)->mm
, addr
);
267 next
= pgd_addr_end(addr
, end
);
268 if (pgd_none_or_clear_bad(pgd
))
270 free_pud_range(*tlb
, pgd
, addr
, next
, floor
, ceiling
);
271 } while (pgd
++, addr
= next
, addr
!= end
);
274 void free_pgtables(struct mmu_gather
**tlb
, struct vm_area_struct
*vma
,
275 unsigned long floor
, unsigned long ceiling
)
278 struct vm_area_struct
*next
= vma
->vm_next
;
279 unsigned long addr
= vma
->vm_start
;
282 * Hide vma from rmap and vmtruncate before freeing pgtables
284 anon_vma_unlink(vma
);
285 unlink_file_vma(vma
);
287 if (is_vm_hugetlb_page(vma
)) {
288 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
289 floor
, next
? next
->vm_start
: ceiling
);
292 * Optimization: gather nearby vmas into one call down
294 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
295 && !is_vm_hugetlb_page(next
)) {
298 anon_vma_unlink(vma
);
299 unlink_file_vma(vma
);
301 free_pgd_range(tlb
, addr
, vma
->vm_end
,
302 floor
, next
? next
->vm_start
: ceiling
);
308 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
310 pgtable_t
new = pte_alloc_one(mm
, address
);
315 * Ensure all pte setup (eg. pte page lock and page clearing) are
316 * visible before the pte is made visible to other CPUs by being
317 * put into page tables.
319 * The other side of the story is the pointer chasing in the page
320 * table walking code (when walking the page table without locking;
321 * ie. most of the time). Fortunately, these data accesses consist
322 * of a chain of data-dependent loads, meaning most CPUs (alpha
323 * being the notable exception) will already guarantee loads are
324 * seen in-order. See the alpha page table accessors for the
325 * smp_read_barrier_depends() barriers in page table walking code.
327 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
329 spin_lock(&mm
->page_table_lock
);
330 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
332 pmd_populate(mm
, pmd
, new);
335 spin_unlock(&mm
->page_table_lock
);
341 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
343 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
347 smp_wmb(); /* See comment in __pte_alloc */
349 spin_lock(&init_mm
.page_table_lock
);
350 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
351 pmd_populate_kernel(&init_mm
, pmd
, new);
354 spin_unlock(&init_mm
.page_table_lock
);
356 pte_free_kernel(&init_mm
, new);
360 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
363 add_mm_counter(mm
, file_rss
, file_rss
);
365 add_mm_counter(mm
, anon_rss
, anon_rss
);
369 * This function is called to print an error when a bad pte
370 * is found. For example, we might have a PFN-mapped pte in
371 * a region that doesn't allow it.
373 * The calling function must still handle the error.
375 void print_bad_pte(struct vm_area_struct
*vma
, pte_t pte
, unsigned long vaddr
)
377 printk(KERN_ERR
"Bad pte = %08llx, process = %s, "
378 "vm_flags = %lx, vaddr = %lx\n",
379 (long long)pte_val(pte
),
380 (vma
->vm_mm
== current
->mm
? current
->comm
: "???"),
381 vma
->vm_flags
, vaddr
);
385 static inline int is_cow_mapping(unsigned int flags
)
387 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
391 * vm_normal_page -- This function gets the "struct page" associated with a pte.
393 * "Special" mappings do not wish to be associated with a "struct page" (either
394 * it doesn't exist, or it exists but they don't want to touch it). In this
395 * case, NULL is returned here. "Normal" mappings do have a struct page.
397 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
398 * pte bit, in which case this function is trivial. Secondly, an architecture
399 * may not have a spare pte bit, which requires a more complicated scheme,
402 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
403 * special mapping (even if there are underlying and valid "struct pages").
404 * COWed pages of a VM_PFNMAP are always normal.
406 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
407 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
408 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
409 * mapping will always honor the rule
411 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
413 * And for normal mappings this is false.
415 * This restricts such mappings to be a linear translation from virtual address
416 * to pfn. To get around this restriction, we allow arbitrary mappings so long
417 * as the vma is not a COW mapping; in that case, we know that all ptes are
418 * special (because none can have been COWed).
421 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
423 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
424 * page" backing, however the difference is that _all_ pages with a struct
425 * page (that is, those where pfn_valid is true) are refcounted and considered
426 * normal pages by the VM. The disadvantage is that pages are refcounted
427 * (which can be slower and simply not an option for some PFNMAP users). The
428 * advantage is that we don't have to follow the strict linearity rule of
429 * PFNMAP mappings in order to support COWable mappings.
432 #ifdef __HAVE_ARCH_PTE_SPECIAL
433 # define HAVE_PTE_SPECIAL 1
435 # define HAVE_PTE_SPECIAL 0
437 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
442 if (HAVE_PTE_SPECIAL
) {
443 if (likely(!pte_special(pte
))) {
444 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
445 return pte_page(pte
);
447 VM_BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
)));
451 /* !HAVE_PTE_SPECIAL case follows: */
455 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
456 if (vma
->vm_flags
& VM_MIXEDMAP
) {
462 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
463 if (pfn
== vma
->vm_pgoff
+ off
)
465 if (!is_cow_mapping(vma
->vm_flags
))
470 VM_BUG_ON(!pfn_valid(pfn
));
473 * NOTE! We still have PageReserved() pages in the page tables.
475 * eg. VDSO mappings can cause them to exist.
478 return pfn_to_page(pfn
);
482 * copy one vm_area from one task to the other. Assumes the page tables
483 * already present in the new task to be cleared in the whole range
484 * covered by this vma.
488 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
489 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
490 unsigned long addr
, int *rss
)
492 unsigned long vm_flags
= vma
->vm_flags
;
493 pte_t pte
= *src_pte
;
496 /* pte contains position in swap or file, so copy. */
497 if (unlikely(!pte_present(pte
))) {
498 if (!pte_file(pte
)) {
499 swp_entry_t entry
= pte_to_swp_entry(pte
);
501 swap_duplicate(entry
);
502 /* make sure dst_mm is on swapoff's mmlist. */
503 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
504 spin_lock(&mmlist_lock
);
505 if (list_empty(&dst_mm
->mmlist
))
506 list_add(&dst_mm
->mmlist
,
508 spin_unlock(&mmlist_lock
);
510 if (is_write_migration_entry(entry
) &&
511 is_cow_mapping(vm_flags
)) {
513 * COW mappings require pages in both parent
514 * and child to be set to read.
516 make_migration_entry_read(&entry
);
517 pte
= swp_entry_to_pte(entry
);
518 set_pte_at(src_mm
, addr
, src_pte
, pte
);
525 * If it's a COW mapping, write protect it both
526 * in the parent and the child
528 if (is_cow_mapping(vm_flags
)) {
529 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
530 pte
= pte_wrprotect(pte
);
534 * If it's a shared mapping, mark it clean in
537 if (vm_flags
& VM_SHARED
)
538 pte
= pte_mkclean(pte
);
539 pte
= pte_mkold(pte
);
541 page
= vm_normal_page(vma
, addr
, pte
);
544 page_dup_rmap(page
, vma
, addr
);
545 rss
[!!PageAnon(page
)]++;
549 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
552 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
553 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
554 unsigned long addr
, unsigned long end
)
556 pte_t
*src_pte
, *dst_pte
;
557 spinlock_t
*src_ptl
, *dst_ptl
;
563 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
566 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
567 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
568 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
569 arch_enter_lazy_mmu_mode();
573 * We are holding two locks at this point - either of them
574 * could generate latencies in another task on another CPU.
576 if (progress
>= 32) {
578 if (need_resched() ||
579 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
582 if (pte_none(*src_pte
)) {
586 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
588 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
590 arch_leave_lazy_mmu_mode();
591 spin_unlock(src_ptl
);
592 pte_unmap_nested(src_pte
- 1);
593 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
594 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
601 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
602 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
603 unsigned long addr
, unsigned long end
)
605 pmd_t
*src_pmd
, *dst_pmd
;
608 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
611 src_pmd
= pmd_offset(src_pud
, addr
);
613 next
= pmd_addr_end(addr
, end
);
614 if (pmd_none_or_clear_bad(src_pmd
))
616 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
619 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
623 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
624 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
625 unsigned long addr
, unsigned long end
)
627 pud_t
*src_pud
, *dst_pud
;
630 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
633 src_pud
= pud_offset(src_pgd
, addr
);
635 next
= pud_addr_end(addr
, end
);
636 if (pud_none_or_clear_bad(src_pud
))
638 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
641 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
645 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
646 struct vm_area_struct
*vma
)
648 pgd_t
*src_pgd
, *dst_pgd
;
650 unsigned long addr
= vma
->vm_start
;
651 unsigned long end
= vma
->vm_end
;
654 * Don't copy ptes where a page fault will fill them correctly.
655 * Fork becomes much lighter when there are big shared or private
656 * readonly mappings. The tradeoff is that copy_page_range is more
657 * efficient than faulting.
659 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
664 if (is_vm_hugetlb_page(vma
))
665 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
667 dst_pgd
= pgd_offset(dst_mm
, addr
);
668 src_pgd
= pgd_offset(src_mm
, addr
);
670 next
= pgd_addr_end(addr
, end
);
671 if (pgd_none_or_clear_bad(src_pgd
))
673 if (copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
676 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
680 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
681 struct vm_area_struct
*vma
, pmd_t
*pmd
,
682 unsigned long addr
, unsigned long end
,
683 long *zap_work
, struct zap_details
*details
)
685 struct mm_struct
*mm
= tlb
->mm
;
691 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
692 arch_enter_lazy_mmu_mode();
695 if (pte_none(ptent
)) {
700 (*zap_work
) -= PAGE_SIZE
;
702 if (pte_present(ptent
)) {
705 page
= vm_normal_page(vma
, addr
, ptent
);
706 if (unlikely(details
) && page
) {
708 * unmap_shared_mapping_pages() wants to
709 * invalidate cache without truncating:
710 * unmap shared but keep private pages.
712 if (details
->check_mapping
&&
713 details
->check_mapping
!= page
->mapping
)
716 * Each page->index must be checked when
717 * invalidating or truncating nonlinear.
719 if (details
->nonlinear_vma
&&
720 (page
->index
< details
->first_index
||
721 page
->index
> details
->last_index
))
724 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
726 tlb_remove_tlb_entry(tlb
, pte
, addr
);
729 if (unlikely(details
) && details
->nonlinear_vma
730 && linear_page_index(details
->nonlinear_vma
,
731 addr
) != page
->index
)
732 set_pte_at(mm
, addr
, pte
,
733 pgoff_to_pte(page
->index
));
737 if (pte_dirty(ptent
))
738 set_page_dirty(page
);
739 if (pte_young(ptent
))
740 SetPageReferenced(page
);
743 page_remove_rmap(page
, vma
);
744 tlb_remove_page(tlb
, page
);
748 * If details->check_mapping, we leave swap entries;
749 * if details->nonlinear_vma, we leave file entries.
751 if (unlikely(details
))
753 if (!pte_file(ptent
))
754 free_swap_and_cache(pte_to_swp_entry(ptent
));
755 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
756 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
758 add_mm_rss(mm
, file_rss
, anon_rss
);
759 arch_leave_lazy_mmu_mode();
760 pte_unmap_unlock(pte
- 1, ptl
);
765 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
766 struct vm_area_struct
*vma
, pud_t
*pud
,
767 unsigned long addr
, unsigned long end
,
768 long *zap_work
, struct zap_details
*details
)
773 pmd
= pmd_offset(pud
, addr
);
775 next
= pmd_addr_end(addr
, end
);
776 if (pmd_none_or_clear_bad(pmd
)) {
780 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
782 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
787 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
788 struct vm_area_struct
*vma
, pgd_t
*pgd
,
789 unsigned long addr
, unsigned long end
,
790 long *zap_work
, struct zap_details
*details
)
795 pud
= pud_offset(pgd
, addr
);
797 next
= pud_addr_end(addr
, end
);
798 if (pud_none_or_clear_bad(pud
)) {
802 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
804 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
809 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
810 struct vm_area_struct
*vma
,
811 unsigned long addr
, unsigned long end
,
812 long *zap_work
, struct zap_details
*details
)
817 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
821 tlb_start_vma(tlb
, vma
);
822 pgd
= pgd_offset(vma
->vm_mm
, addr
);
824 next
= pgd_addr_end(addr
, end
);
825 if (pgd_none_or_clear_bad(pgd
)) {
829 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
831 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
832 tlb_end_vma(tlb
, vma
);
837 #ifdef CONFIG_PREEMPT
838 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
840 /* No preempt: go for improved straight-line efficiency */
841 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
845 * unmap_vmas - unmap a range of memory covered by a list of vma's
846 * @tlbp: address of the caller's struct mmu_gather
847 * @vma: the starting vma
848 * @start_addr: virtual address at which to start unmapping
849 * @end_addr: virtual address at which to end unmapping
850 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
851 * @details: details of nonlinear truncation or shared cache invalidation
853 * Returns the end address of the unmapping (restart addr if interrupted).
855 * Unmap all pages in the vma list.
857 * We aim to not hold locks for too long (for scheduling latency reasons).
858 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
859 * return the ending mmu_gather to the caller.
861 * Only addresses between `start' and `end' will be unmapped.
863 * The VMA list must be sorted in ascending virtual address order.
865 * unmap_vmas() assumes that the caller will flush the whole unmapped address
866 * range after unmap_vmas() returns. So the only responsibility here is to
867 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
868 * drops the lock and schedules.
870 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
871 struct vm_area_struct
*vma
, unsigned long start_addr
,
872 unsigned long end_addr
, unsigned long *nr_accounted
,
873 struct zap_details
*details
)
875 long zap_work
= ZAP_BLOCK_SIZE
;
876 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
877 int tlb_start_valid
= 0;
878 unsigned long start
= start_addr
;
879 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
880 int fullmm
= (*tlbp
)->fullmm
;
882 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
885 start
= max(vma
->vm_start
, start_addr
);
886 if (start
>= vma
->vm_end
)
888 end
= min(vma
->vm_end
, end_addr
);
889 if (end
<= vma
->vm_start
)
892 if (vma
->vm_flags
& VM_ACCOUNT
)
893 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
895 while (start
!= end
) {
896 if (!tlb_start_valid
) {
901 if (unlikely(is_vm_hugetlb_page(vma
))) {
902 unmap_hugepage_range(vma
, start
, end
);
903 zap_work
-= (end
- start
) /
904 (HPAGE_SIZE
/ PAGE_SIZE
);
907 start
= unmap_page_range(*tlbp
, vma
,
908 start
, end
, &zap_work
, details
);
911 BUG_ON(start
!= end
);
915 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
917 if (need_resched() ||
918 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
926 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
928 zap_work
= ZAP_BLOCK_SIZE
;
932 return start
; /* which is now the end (or restart) address */
936 * zap_page_range - remove user pages in a given range
937 * @vma: vm_area_struct holding the applicable pages
938 * @address: starting address of pages to zap
939 * @size: number of bytes to zap
940 * @details: details of nonlinear truncation or shared cache invalidation
942 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
943 unsigned long size
, struct zap_details
*details
)
945 struct mm_struct
*mm
= vma
->vm_mm
;
946 struct mmu_gather
*tlb
;
947 unsigned long end
= address
+ size
;
948 unsigned long nr_accounted
= 0;
951 tlb
= tlb_gather_mmu(mm
, 0);
952 update_hiwater_rss(mm
);
953 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
955 tlb_finish_mmu(tlb
, address
, end
);
960 * Do a quick page-table lookup for a single page.
962 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
971 struct mm_struct
*mm
= vma
->vm_mm
;
973 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
975 BUG_ON(flags
& FOLL_GET
);
980 pgd
= pgd_offset(mm
, address
);
981 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
984 pud
= pud_offset(pgd
, address
);
985 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
988 pmd
= pmd_offset(pud
, address
);
992 if (pmd_huge(*pmd
)) {
993 BUG_ON(flags
& FOLL_GET
);
994 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
998 if (unlikely(pmd_bad(*pmd
)))
1001 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1004 if (!pte_present(pte
))
1006 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1008 page
= vm_normal_page(vma
, address
, pte
);
1009 if (unlikely(!page
))
1012 if (flags
& FOLL_GET
)
1014 if (flags
& FOLL_TOUCH
) {
1015 if ((flags
& FOLL_WRITE
) &&
1016 !pte_dirty(pte
) && !PageDirty(page
))
1017 set_page_dirty(page
);
1018 mark_page_accessed(page
);
1021 pte_unmap_unlock(ptep
, ptl
);
1026 pte_unmap_unlock(ptep
, ptl
);
1027 return ERR_PTR(-EFAULT
);
1030 pte_unmap_unlock(ptep
, ptl
);
1033 /* Fall through to ZERO_PAGE handling */
1036 * When core dumping an enormous anonymous area that nobody
1037 * has touched so far, we don't want to allocate page tables.
1039 if (flags
& FOLL_ANON
) {
1040 page
= ZERO_PAGE(0);
1041 if (flags
& FOLL_GET
)
1043 BUG_ON(flags
& FOLL_WRITE
);
1048 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1049 unsigned long start
, int len
, int write
, int force
,
1050 struct page
**pages
, struct vm_area_struct
**vmas
)
1053 unsigned int vm_flags
;
1058 * Require read or write permissions.
1059 * If 'force' is set, we only require the "MAY" flags.
1061 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1062 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1066 struct vm_area_struct
*vma
;
1067 unsigned int foll_flags
;
1069 vma
= find_extend_vma(mm
, start
);
1070 if (!vma
&& in_gate_area(tsk
, start
)) {
1071 unsigned long pg
= start
& PAGE_MASK
;
1072 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1077 if (write
) /* user gate pages are read-only */
1078 return i
? : -EFAULT
;
1080 pgd
= pgd_offset_k(pg
);
1082 pgd
= pgd_offset_gate(mm
, pg
);
1083 BUG_ON(pgd_none(*pgd
));
1084 pud
= pud_offset(pgd
, pg
);
1085 BUG_ON(pud_none(*pud
));
1086 pmd
= pmd_offset(pud
, pg
);
1088 return i
? : -EFAULT
;
1089 pte
= pte_offset_map(pmd
, pg
);
1090 if (pte_none(*pte
)) {
1092 return i
? : -EFAULT
;
1095 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1109 if (!vma
|| (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1110 || !(vm_flags
& vma
->vm_flags
))
1111 return i
? : -EFAULT
;
1113 if (is_vm_hugetlb_page(vma
)) {
1114 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1115 &start
, &len
, i
, write
);
1119 foll_flags
= FOLL_TOUCH
;
1121 foll_flags
|= FOLL_GET
;
1122 if (!write
&& !(vma
->vm_flags
& VM_LOCKED
) &&
1123 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1124 foll_flags
|= FOLL_ANON
;
1130 * If tsk is ooming, cut off its access to large memory
1131 * allocations. It has a pending SIGKILL, but it can't
1132 * be processed until returning to user space.
1134 if (unlikely(test_tsk_thread_flag(tsk
, TIF_MEMDIE
)))
1138 foll_flags
|= FOLL_WRITE
;
1141 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1143 ret
= handle_mm_fault(mm
, vma
, start
,
1144 foll_flags
& FOLL_WRITE
);
1145 if (ret
& VM_FAULT_ERROR
) {
1146 if (ret
& VM_FAULT_OOM
)
1147 return i
? i
: -ENOMEM
;
1148 else if (ret
& VM_FAULT_SIGBUS
)
1149 return i
? i
: -EFAULT
;
1152 if (ret
& VM_FAULT_MAJOR
)
1158 * The VM_FAULT_WRITE bit tells us that
1159 * do_wp_page has broken COW when necessary,
1160 * even if maybe_mkwrite decided not to set
1161 * pte_write. We can thus safely do subsequent
1162 * page lookups as if they were reads.
1164 if (ret
& VM_FAULT_WRITE
)
1165 foll_flags
&= ~FOLL_WRITE
;
1170 return i
? i
: PTR_ERR(page
);
1174 flush_anon_page(vma
, page
, start
);
1175 flush_dcache_page(page
);
1182 } while (len
&& start
< vma
->vm_end
);
1186 EXPORT_SYMBOL(get_user_pages
);
1188 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1191 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1192 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1194 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1196 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1202 * This is the old fallback for page remapping.
1204 * For historical reasons, it only allows reserved pages. Only
1205 * old drivers should use this, and they needed to mark their
1206 * pages reserved for the old functions anyway.
1208 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1209 struct page
*page
, pgprot_t prot
)
1211 struct mm_struct
*mm
= vma
->vm_mm
;
1216 retval
= mem_cgroup_charge(page
, mm
, GFP_KERNEL
);
1224 flush_dcache_page(page
);
1225 pte
= get_locked_pte(mm
, addr
, &ptl
);
1229 if (!pte_none(*pte
))
1232 /* Ok, finally just insert the thing.. */
1234 inc_mm_counter(mm
, file_rss
);
1235 page_add_file_rmap(page
);
1236 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1239 pte_unmap_unlock(pte
, ptl
);
1242 pte_unmap_unlock(pte
, ptl
);
1244 mem_cgroup_uncharge_page(page
);
1250 * vm_insert_page - insert single page into user vma
1251 * @vma: user vma to map to
1252 * @addr: target user address of this page
1253 * @page: source kernel page
1255 * This allows drivers to insert individual pages they've allocated
1258 * The page has to be a nice clean _individual_ kernel allocation.
1259 * If you allocate a compound page, you need to have marked it as
1260 * such (__GFP_COMP), or manually just split the page up yourself
1261 * (see split_page()).
1263 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1264 * took an arbitrary page protection parameter. This doesn't allow
1265 * that. Your vma protection will have to be set up correctly, which
1266 * means that if you want a shared writable mapping, you'd better
1267 * ask for a shared writable mapping!
1269 * The page does not need to be reserved.
1271 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1274 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1276 if (!page_count(page
))
1278 vma
->vm_flags
|= VM_INSERTPAGE
;
1279 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1281 EXPORT_SYMBOL(vm_insert_page
);
1283 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1284 unsigned long pfn
, pgprot_t prot
)
1286 struct mm_struct
*mm
= vma
->vm_mm
;
1292 pte
= get_locked_pte(mm
, addr
, &ptl
);
1296 if (!pte_none(*pte
))
1299 /* Ok, finally just insert the thing.. */
1300 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1301 set_pte_at(mm
, addr
, pte
, entry
);
1302 update_mmu_cache(vma
, addr
, entry
); /* XXX: why not for insert_page? */
1306 pte_unmap_unlock(pte
, ptl
);
1312 * vm_insert_pfn - insert single pfn into user vma
1313 * @vma: user vma to map to
1314 * @addr: target user address of this page
1315 * @pfn: source kernel pfn
1317 * Similar to vm_inert_page, this allows drivers to insert individual pages
1318 * they've allocated into a user vma. Same comments apply.
1320 * This function should only be called from a vm_ops->fault handler, and
1321 * in that case the handler should return NULL.
1323 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1327 * Technically, architectures with pte_special can avoid all these
1328 * restrictions (same for remap_pfn_range). However we would like
1329 * consistency in testing and feature parity among all, so we should
1330 * try to keep these invariants in place for everybody.
1332 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1333 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1334 (VM_PFNMAP
|VM_MIXEDMAP
));
1335 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1336 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1338 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1340 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1342 EXPORT_SYMBOL(vm_insert_pfn
);
1344 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1347 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1349 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1353 * If we don't have pte special, then we have to use the pfn_valid()
1354 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1355 * refcount the page if pfn_valid is true (hence insert_page rather
1358 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1361 page
= pfn_to_page(pfn
);
1362 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1364 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1366 EXPORT_SYMBOL(vm_insert_mixed
);
1369 * maps a range of physical memory into the requested pages. the old
1370 * mappings are removed. any references to nonexistent pages results
1371 * in null mappings (currently treated as "copy-on-access")
1373 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1374 unsigned long addr
, unsigned long end
,
1375 unsigned long pfn
, pgprot_t prot
)
1380 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1383 arch_enter_lazy_mmu_mode();
1385 BUG_ON(!pte_none(*pte
));
1386 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1388 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1389 arch_leave_lazy_mmu_mode();
1390 pte_unmap_unlock(pte
- 1, ptl
);
1394 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1395 unsigned long addr
, unsigned long end
,
1396 unsigned long pfn
, pgprot_t prot
)
1401 pfn
-= addr
>> PAGE_SHIFT
;
1402 pmd
= pmd_alloc(mm
, pud
, addr
);
1406 next
= pmd_addr_end(addr
, end
);
1407 if (remap_pte_range(mm
, pmd
, addr
, next
,
1408 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1410 } while (pmd
++, addr
= next
, addr
!= end
);
1414 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1415 unsigned long addr
, unsigned long end
,
1416 unsigned long pfn
, pgprot_t prot
)
1421 pfn
-= addr
>> PAGE_SHIFT
;
1422 pud
= pud_alloc(mm
, pgd
, addr
);
1426 next
= pud_addr_end(addr
, end
);
1427 if (remap_pmd_range(mm
, pud
, addr
, next
,
1428 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1430 } while (pud
++, addr
= next
, addr
!= end
);
1435 * remap_pfn_range - remap kernel memory to userspace
1436 * @vma: user vma to map to
1437 * @addr: target user address to start at
1438 * @pfn: physical address of kernel memory
1439 * @size: size of map area
1440 * @prot: page protection flags for this mapping
1442 * Note: this is only safe if the mm semaphore is held when called.
1444 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1445 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1449 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1450 struct mm_struct
*mm
= vma
->vm_mm
;
1454 * Physically remapped pages are special. Tell the
1455 * rest of the world about it:
1456 * VM_IO tells people not to look at these pages
1457 * (accesses can have side effects).
1458 * VM_RESERVED is specified all over the place, because
1459 * in 2.4 it kept swapout's vma scan off this vma; but
1460 * in 2.6 the LRU scan won't even find its pages, so this
1461 * flag means no more than count its pages in reserved_vm,
1462 * and omit it from core dump, even when VM_IO turned off.
1463 * VM_PFNMAP tells the core MM that the base pages are just
1464 * raw PFN mappings, and do not have a "struct page" associated
1467 * There's a horrible special case to handle copy-on-write
1468 * behaviour that some programs depend on. We mark the "original"
1469 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1471 if (is_cow_mapping(vma
->vm_flags
)) {
1472 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1474 vma
->vm_pgoff
= pfn
;
1477 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1479 BUG_ON(addr
>= end
);
1480 pfn
-= addr
>> PAGE_SHIFT
;
1481 pgd
= pgd_offset(mm
, addr
);
1482 flush_cache_range(vma
, addr
, end
);
1484 next
= pgd_addr_end(addr
, end
);
1485 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1486 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1489 } while (pgd
++, addr
= next
, addr
!= end
);
1492 EXPORT_SYMBOL(remap_pfn_range
);
1494 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1495 unsigned long addr
, unsigned long end
,
1496 pte_fn_t fn
, void *data
)
1501 spinlock_t
*uninitialized_var(ptl
);
1503 pte
= (mm
== &init_mm
) ?
1504 pte_alloc_kernel(pmd
, addr
) :
1505 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1509 BUG_ON(pmd_huge(*pmd
));
1511 token
= pmd_pgtable(*pmd
);
1514 err
= fn(pte
, token
, addr
, data
);
1517 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1520 pte_unmap_unlock(pte
-1, ptl
);
1524 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1525 unsigned long addr
, unsigned long end
,
1526 pte_fn_t fn
, void *data
)
1532 pmd
= pmd_alloc(mm
, pud
, addr
);
1536 next
= pmd_addr_end(addr
, end
);
1537 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1540 } while (pmd
++, addr
= next
, addr
!= end
);
1544 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1545 unsigned long addr
, unsigned long end
,
1546 pte_fn_t fn
, void *data
)
1552 pud
= pud_alloc(mm
, pgd
, addr
);
1556 next
= pud_addr_end(addr
, end
);
1557 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1560 } while (pud
++, addr
= next
, addr
!= end
);
1565 * Scan a region of virtual memory, filling in page tables as necessary
1566 * and calling a provided function on each leaf page table.
1568 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1569 unsigned long size
, pte_fn_t fn
, void *data
)
1573 unsigned long end
= addr
+ size
;
1576 BUG_ON(addr
>= end
);
1577 pgd
= pgd_offset(mm
, addr
);
1579 next
= pgd_addr_end(addr
, end
);
1580 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1583 } while (pgd
++, addr
= next
, addr
!= end
);
1586 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1589 * handle_pte_fault chooses page fault handler according to an entry
1590 * which was read non-atomically. Before making any commitment, on
1591 * those architectures or configurations (e.g. i386 with PAE) which
1592 * might give a mix of unmatched parts, do_swap_page and do_file_page
1593 * must check under lock before unmapping the pte and proceeding
1594 * (but do_wp_page is only called after already making such a check;
1595 * and do_anonymous_page and do_no_page can safely check later on).
1597 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1598 pte_t
*page_table
, pte_t orig_pte
)
1601 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1602 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1603 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1605 same
= pte_same(*page_table
, orig_pte
);
1609 pte_unmap(page_table
);
1614 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1615 * servicing faults for write access. In the normal case, do always want
1616 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1617 * that do not have writing enabled, when used by access_process_vm.
1619 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1621 if (likely(vma
->vm_flags
& VM_WRITE
))
1622 pte
= pte_mkwrite(pte
);
1626 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1629 * If the source page was a PFN mapping, we don't have
1630 * a "struct page" for it. We do a best-effort copy by
1631 * just copying from the original user address. If that
1632 * fails, we just zero-fill it. Live with it.
1634 if (unlikely(!src
)) {
1635 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1636 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1639 * This really shouldn't fail, because the page is there
1640 * in the page tables. But it might just be unreadable,
1641 * in which case we just give up and fill the result with
1644 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1645 memset(kaddr
, 0, PAGE_SIZE
);
1646 kunmap_atomic(kaddr
, KM_USER0
);
1647 flush_dcache_page(dst
);
1649 copy_user_highpage(dst
, src
, va
, vma
);
1653 * This routine handles present pages, when users try to write
1654 * to a shared page. It is done by copying the page to a new address
1655 * and decrementing the shared-page counter for the old page.
1657 * Note that this routine assumes that the protection checks have been
1658 * done by the caller (the low-level page fault routine in most cases).
1659 * Thus we can safely just mark it writable once we've done any necessary
1662 * We also mark the page dirty at this point even though the page will
1663 * change only once the write actually happens. This avoids a few races,
1664 * and potentially makes it more efficient.
1666 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1667 * but allow concurrent faults), with pte both mapped and locked.
1668 * We return with mmap_sem still held, but pte unmapped and unlocked.
1670 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1671 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1672 spinlock_t
*ptl
, pte_t orig_pte
)
1674 struct page
*old_page
, *new_page
;
1676 int reuse
= 0, ret
= 0;
1677 int page_mkwrite
= 0;
1678 struct page
*dirty_page
= NULL
;
1680 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1685 * Take out anonymous pages first, anonymous shared vmas are
1686 * not dirty accountable.
1688 if (PageAnon(old_page
)) {
1689 if (!TestSetPageLocked(old_page
)) {
1690 reuse
= can_share_swap_page(old_page
);
1691 unlock_page(old_page
);
1693 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1694 (VM_WRITE
|VM_SHARED
))) {
1696 * Only catch write-faults on shared writable pages,
1697 * read-only shared pages can get COWed by
1698 * get_user_pages(.write=1, .force=1).
1700 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
1702 * Notify the address space that the page is about to
1703 * become writable so that it can prohibit this or wait
1704 * for the page to get into an appropriate state.
1706 * We do this without the lock held, so that it can
1707 * sleep if it needs to.
1709 page_cache_get(old_page
);
1710 pte_unmap_unlock(page_table
, ptl
);
1712 if (vma
->vm_ops
->page_mkwrite(vma
, old_page
) < 0)
1713 goto unwritable_page
;
1716 * Since we dropped the lock we need to revalidate
1717 * the PTE as someone else may have changed it. If
1718 * they did, we just return, as we can count on the
1719 * MMU to tell us if they didn't also make it writable.
1721 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1723 page_cache_release(old_page
);
1724 if (!pte_same(*page_table
, orig_pte
))
1729 dirty_page
= old_page
;
1730 get_page(dirty_page
);
1735 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1736 entry
= pte_mkyoung(orig_pte
);
1737 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1738 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
1739 update_mmu_cache(vma
, address
, entry
);
1740 ret
|= VM_FAULT_WRITE
;
1745 * Ok, we need to copy. Oh, well..
1747 page_cache_get(old_page
);
1749 pte_unmap_unlock(page_table
, ptl
);
1751 if (unlikely(anon_vma_prepare(vma
)))
1753 VM_BUG_ON(old_page
== ZERO_PAGE(0));
1754 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1757 cow_user_page(new_page
, old_page
, address
, vma
);
1758 __SetPageUptodate(new_page
);
1760 if (mem_cgroup_charge(new_page
, mm
, GFP_KERNEL
))
1764 * Re-check the pte - we dropped the lock
1766 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1767 if (likely(pte_same(*page_table
, orig_pte
))) {
1769 page_remove_rmap(old_page
, vma
);
1770 if (!PageAnon(old_page
)) {
1771 dec_mm_counter(mm
, file_rss
);
1772 inc_mm_counter(mm
, anon_rss
);
1775 inc_mm_counter(mm
, anon_rss
);
1776 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1777 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
1778 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1780 * Clear the pte entry and flush it first, before updating the
1781 * pte with the new entry. This will avoid a race condition
1782 * seen in the presence of one thread doing SMC and another
1785 ptep_clear_flush(vma
, address
, page_table
);
1786 set_pte_at(mm
, address
, page_table
, entry
);
1787 update_mmu_cache(vma
, address
, entry
);
1788 lru_cache_add_active(new_page
);
1789 page_add_new_anon_rmap(new_page
, vma
, address
);
1791 /* Free the old page.. */
1792 new_page
= old_page
;
1793 ret
|= VM_FAULT_WRITE
;
1795 mem_cgroup_uncharge_page(new_page
);
1798 page_cache_release(new_page
);
1800 page_cache_release(old_page
);
1802 pte_unmap_unlock(page_table
, ptl
);
1805 file_update_time(vma
->vm_file
);
1808 * Yes, Virginia, this is actually required to prevent a race
1809 * with clear_page_dirty_for_io() from clearing the page dirty
1810 * bit after it clear all dirty ptes, but before a racing
1811 * do_wp_page installs a dirty pte.
1813 * do_no_page is protected similarly.
1815 wait_on_page_locked(dirty_page
);
1816 set_page_dirty_balance(dirty_page
, page_mkwrite
);
1817 put_page(dirty_page
);
1821 page_cache_release(new_page
);
1824 page_cache_release(old_page
);
1825 return VM_FAULT_OOM
;
1828 page_cache_release(old_page
);
1829 return VM_FAULT_SIGBUS
;
1833 * Helper functions for unmap_mapping_range().
1835 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1837 * We have to restart searching the prio_tree whenever we drop the lock,
1838 * since the iterator is only valid while the lock is held, and anyway
1839 * a later vma might be split and reinserted earlier while lock dropped.
1841 * The list of nonlinear vmas could be handled more efficiently, using
1842 * a placeholder, but handle it in the same way until a need is shown.
1843 * It is important to search the prio_tree before nonlinear list: a vma
1844 * may become nonlinear and be shifted from prio_tree to nonlinear list
1845 * while the lock is dropped; but never shifted from list to prio_tree.
1847 * In order to make forward progress despite restarting the search,
1848 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1849 * quickly skip it next time around. Since the prio_tree search only
1850 * shows us those vmas affected by unmapping the range in question, we
1851 * can't efficiently keep all vmas in step with mapping->truncate_count:
1852 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1853 * mapping->truncate_count and vma->vm_truncate_count are protected by
1856 * In order to make forward progress despite repeatedly restarting some
1857 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1858 * and restart from that address when we reach that vma again. It might
1859 * have been split or merged, shrunk or extended, but never shifted: so
1860 * restart_addr remains valid so long as it remains in the vma's range.
1861 * unmap_mapping_range forces truncate_count to leap over page-aligned
1862 * values so we can save vma's restart_addr in its truncate_count field.
1864 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1866 static void reset_vma_truncate_counts(struct address_space
*mapping
)
1868 struct vm_area_struct
*vma
;
1869 struct prio_tree_iter iter
;
1871 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
1872 vma
->vm_truncate_count
= 0;
1873 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1874 vma
->vm_truncate_count
= 0;
1877 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
1878 unsigned long start_addr
, unsigned long end_addr
,
1879 struct zap_details
*details
)
1881 unsigned long restart_addr
;
1885 * files that support invalidating or truncating portions of the
1886 * file from under mmaped areas must have their ->fault function
1887 * return a locked page (and set VM_FAULT_LOCKED in the return).
1888 * This provides synchronisation against concurrent unmapping here.
1892 restart_addr
= vma
->vm_truncate_count
;
1893 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
1894 start_addr
= restart_addr
;
1895 if (start_addr
>= end_addr
) {
1896 /* Top of vma has been split off since last time */
1897 vma
->vm_truncate_count
= details
->truncate_count
;
1902 restart_addr
= zap_page_range(vma
, start_addr
,
1903 end_addr
- start_addr
, details
);
1904 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
1906 if (restart_addr
>= end_addr
) {
1907 /* We have now completed this vma: mark it so */
1908 vma
->vm_truncate_count
= details
->truncate_count
;
1912 /* Note restart_addr in vma's truncate_count field */
1913 vma
->vm_truncate_count
= restart_addr
;
1918 spin_unlock(details
->i_mmap_lock
);
1920 spin_lock(details
->i_mmap_lock
);
1924 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
1925 struct zap_details
*details
)
1927 struct vm_area_struct
*vma
;
1928 struct prio_tree_iter iter
;
1929 pgoff_t vba
, vea
, zba
, zea
;
1932 vma_prio_tree_foreach(vma
, &iter
, root
,
1933 details
->first_index
, details
->last_index
) {
1934 /* Skip quickly over those we have already dealt with */
1935 if (vma
->vm_truncate_count
== details
->truncate_count
)
1938 vba
= vma
->vm_pgoff
;
1939 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
1940 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1941 zba
= details
->first_index
;
1944 zea
= details
->last_index
;
1948 if (unmap_mapping_range_vma(vma
,
1949 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
1950 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
1956 static inline void unmap_mapping_range_list(struct list_head
*head
,
1957 struct zap_details
*details
)
1959 struct vm_area_struct
*vma
;
1962 * In nonlinear VMAs there is no correspondence between virtual address
1963 * offset and file offset. So we must perform an exhaustive search
1964 * across *all* the pages in each nonlinear VMA, not just the pages
1965 * whose virtual address lies outside the file truncation point.
1968 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
1969 /* Skip quickly over those we have already dealt with */
1970 if (vma
->vm_truncate_count
== details
->truncate_count
)
1972 details
->nonlinear_vma
= vma
;
1973 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
1974 vma
->vm_end
, details
) < 0)
1980 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1981 * @mapping: the address space containing mmaps to be unmapped.
1982 * @holebegin: byte in first page to unmap, relative to the start of
1983 * the underlying file. This will be rounded down to a PAGE_SIZE
1984 * boundary. Note that this is different from vmtruncate(), which
1985 * must keep the partial page. In contrast, we must get rid of
1987 * @holelen: size of prospective hole in bytes. This will be rounded
1988 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1990 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1991 * but 0 when invalidating pagecache, don't throw away private data.
1993 void unmap_mapping_range(struct address_space
*mapping
,
1994 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
1996 struct zap_details details
;
1997 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
1998 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2000 /* Check for overflow. */
2001 if (sizeof(holelen
) > sizeof(hlen
)) {
2003 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2004 if (holeend
& ~(long long)ULONG_MAX
)
2005 hlen
= ULONG_MAX
- hba
+ 1;
2008 details
.check_mapping
= even_cows
? NULL
: mapping
;
2009 details
.nonlinear_vma
= NULL
;
2010 details
.first_index
= hba
;
2011 details
.last_index
= hba
+ hlen
- 1;
2012 if (details
.last_index
< details
.first_index
)
2013 details
.last_index
= ULONG_MAX
;
2014 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2016 spin_lock(&mapping
->i_mmap_lock
);
2018 /* Protect against endless unmapping loops */
2019 mapping
->truncate_count
++;
2020 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2021 if (mapping
->truncate_count
== 0)
2022 reset_vma_truncate_counts(mapping
);
2023 mapping
->truncate_count
++;
2025 details
.truncate_count
= mapping
->truncate_count
;
2027 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2028 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2029 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2030 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2031 spin_unlock(&mapping
->i_mmap_lock
);
2033 EXPORT_SYMBOL(unmap_mapping_range
);
2036 * vmtruncate - unmap mappings "freed" by truncate() syscall
2037 * @inode: inode of the file used
2038 * @offset: file offset to start truncating
2040 * NOTE! We have to be ready to update the memory sharing
2041 * between the file and the memory map for a potential last
2042 * incomplete page. Ugly, but necessary.
2044 int vmtruncate(struct inode
* inode
, loff_t offset
)
2046 if (inode
->i_size
< offset
) {
2047 unsigned long limit
;
2049 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2050 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
2052 if (offset
> inode
->i_sb
->s_maxbytes
)
2054 i_size_write(inode
, offset
);
2056 struct address_space
*mapping
= inode
->i_mapping
;
2059 * truncation of in-use swapfiles is disallowed - it would
2060 * cause subsequent swapout to scribble on the now-freed
2063 if (IS_SWAPFILE(inode
))
2065 i_size_write(inode
, offset
);
2068 * unmap_mapping_range is called twice, first simply for
2069 * efficiency so that truncate_inode_pages does fewer
2070 * single-page unmaps. However after this first call, and
2071 * before truncate_inode_pages finishes, it is possible for
2072 * private pages to be COWed, which remain after
2073 * truncate_inode_pages finishes, hence the second
2074 * unmap_mapping_range call must be made for correctness.
2076 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2077 truncate_inode_pages(mapping
, offset
);
2078 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2081 if (inode
->i_op
&& inode
->i_op
->truncate
)
2082 inode
->i_op
->truncate(inode
);
2086 send_sig(SIGXFSZ
, current
, 0);
2090 EXPORT_SYMBOL(vmtruncate
);
2092 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2094 struct address_space
*mapping
= inode
->i_mapping
;
2097 * If the underlying filesystem is not going to provide
2098 * a way to truncate a range of blocks (punch a hole) -
2099 * we should return failure right now.
2101 if (!inode
->i_op
|| !inode
->i_op
->truncate_range
)
2104 mutex_lock(&inode
->i_mutex
);
2105 down_write(&inode
->i_alloc_sem
);
2106 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2107 truncate_inode_pages_range(mapping
, offset
, end
);
2108 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2109 inode
->i_op
->truncate_range(inode
, offset
, end
);
2110 up_write(&inode
->i_alloc_sem
);
2111 mutex_unlock(&inode
->i_mutex
);
2117 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2118 * but allow concurrent faults), and pte mapped but not yet locked.
2119 * We return with mmap_sem still held, but pte unmapped and unlocked.
2121 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2122 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2123 int write_access
, pte_t orig_pte
)
2131 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2134 entry
= pte_to_swp_entry(orig_pte
);
2135 if (is_migration_entry(entry
)) {
2136 migration_entry_wait(mm
, pmd
, address
);
2139 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2140 page
= lookup_swap_cache(entry
);
2142 grab_swap_token(); /* Contend for token _before_ read-in */
2143 page
= swapin_readahead(entry
,
2144 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2147 * Back out if somebody else faulted in this pte
2148 * while we released the pte lock.
2150 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2151 if (likely(pte_same(*page_table
, orig_pte
)))
2153 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2157 /* Had to read the page from swap area: Major fault */
2158 ret
= VM_FAULT_MAJOR
;
2159 count_vm_event(PGMAJFAULT
);
2162 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
)) {
2163 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2168 mark_page_accessed(page
);
2170 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2173 * Back out if somebody else already faulted in this pte.
2175 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2176 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2179 if (unlikely(!PageUptodate(page
))) {
2180 ret
= VM_FAULT_SIGBUS
;
2184 /* The page isn't present yet, go ahead with the fault. */
2186 inc_mm_counter(mm
, anon_rss
);
2187 pte
= mk_pte(page
, vma
->vm_page_prot
);
2188 if (write_access
&& can_share_swap_page(page
)) {
2189 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2193 flush_icache_page(vma
, page
);
2194 set_pte_at(mm
, address
, page_table
, pte
);
2195 page_add_anon_rmap(page
, vma
, address
);
2199 remove_exclusive_swap_page(page
);
2203 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2204 if (ret
& VM_FAULT_ERROR
)
2205 ret
&= VM_FAULT_ERROR
;
2209 /* No need to invalidate - it was non-present before */
2210 update_mmu_cache(vma
, address
, pte
);
2212 pte_unmap_unlock(page_table
, ptl
);
2216 mem_cgroup_uncharge_page(page
);
2217 pte_unmap_unlock(page_table
, ptl
);
2219 page_cache_release(page
);
2224 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2225 * but allow concurrent faults), and pte mapped but not yet locked.
2226 * We return with mmap_sem still held, but pte unmapped and unlocked.
2228 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2229 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2236 /* Allocate our own private page. */
2237 pte_unmap(page_table
);
2239 if (unlikely(anon_vma_prepare(vma
)))
2241 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2244 __SetPageUptodate(page
);
2246 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
))
2249 entry
= mk_pte(page
, vma
->vm_page_prot
);
2250 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2252 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2253 if (!pte_none(*page_table
))
2255 inc_mm_counter(mm
, anon_rss
);
2256 lru_cache_add_active(page
);
2257 page_add_new_anon_rmap(page
, vma
, address
);
2258 set_pte_at(mm
, address
, page_table
, entry
);
2260 /* No need to invalidate - it was non-present before */
2261 update_mmu_cache(vma
, address
, entry
);
2263 pte_unmap_unlock(page_table
, ptl
);
2266 mem_cgroup_uncharge_page(page
);
2267 page_cache_release(page
);
2270 page_cache_release(page
);
2272 return VM_FAULT_OOM
;
2276 * __do_fault() tries to create a new page mapping. It aggressively
2277 * tries to share with existing pages, but makes a separate copy if
2278 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2279 * the next page fault.
2281 * As this is called only for pages that do not currently exist, we
2282 * do not need to flush old virtual caches or the TLB.
2284 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2285 * but allow concurrent faults), and pte neither mapped nor locked.
2286 * We return with mmap_sem still held, but pte unmapped and unlocked.
2288 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2289 unsigned long address
, pmd_t
*pmd
,
2290 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2297 struct page
*dirty_page
= NULL
;
2298 struct vm_fault vmf
;
2300 int page_mkwrite
= 0;
2302 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2307 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2308 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2312 * For consistency in subsequent calls, make the faulted page always
2315 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2316 lock_page(vmf
.page
);
2318 VM_BUG_ON(!PageLocked(vmf
.page
));
2321 * Should we do an early C-O-W break?
2324 if (flags
& FAULT_FLAG_WRITE
) {
2325 if (!(vma
->vm_flags
& VM_SHARED
)) {
2327 if (unlikely(anon_vma_prepare(vma
))) {
2331 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2337 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2338 __SetPageUptodate(page
);
2341 * If the page will be shareable, see if the backing
2342 * address space wants to know that the page is about
2343 * to become writable
2345 if (vma
->vm_ops
->page_mkwrite
) {
2347 if (vma
->vm_ops
->page_mkwrite(vma
, page
) < 0) {
2348 ret
= VM_FAULT_SIGBUS
;
2349 anon
= 1; /* no anon but release vmf.page */
2354 * XXX: this is not quite right (racy vs
2355 * invalidate) to unlock and relock the page
2356 * like this, however a better fix requires
2357 * reworking page_mkwrite locking API, which
2358 * is better done later.
2360 if (!page
->mapping
) {
2362 anon
= 1; /* no anon but release vmf.page */
2371 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
)) {
2376 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2379 * This silly early PAGE_DIRTY setting removes a race
2380 * due to the bad i386 page protection. But it's valid
2381 * for other architectures too.
2383 * Note that if write_access is true, we either now have
2384 * an exclusive copy of the page, or this is a shared mapping,
2385 * so we can make it writable and dirty to avoid having to
2386 * handle that later.
2388 /* Only go through if we didn't race with anybody else... */
2389 if (likely(pte_same(*page_table
, orig_pte
))) {
2390 flush_icache_page(vma
, page
);
2391 entry
= mk_pte(page
, vma
->vm_page_prot
);
2392 if (flags
& FAULT_FLAG_WRITE
)
2393 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2394 set_pte_at(mm
, address
, page_table
, entry
);
2396 inc_mm_counter(mm
, anon_rss
);
2397 lru_cache_add_active(page
);
2398 page_add_new_anon_rmap(page
, vma
, address
);
2400 inc_mm_counter(mm
, file_rss
);
2401 page_add_file_rmap(page
);
2402 if (flags
& FAULT_FLAG_WRITE
) {
2404 get_page(dirty_page
);
2408 /* no need to invalidate: a not-present page won't be cached */
2409 update_mmu_cache(vma
, address
, entry
);
2411 mem_cgroup_uncharge_page(page
);
2413 page_cache_release(page
);
2415 anon
= 1; /* no anon but release faulted_page */
2418 pte_unmap_unlock(page_table
, ptl
);
2421 unlock_page(vmf
.page
);
2424 page_cache_release(vmf
.page
);
2425 else if (dirty_page
) {
2427 file_update_time(vma
->vm_file
);
2429 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2430 put_page(dirty_page
);
2436 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2437 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2438 int write_access
, pte_t orig_pte
)
2440 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2441 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2442 unsigned int flags
= (write_access
? FAULT_FLAG_WRITE
: 0);
2444 pte_unmap(page_table
);
2445 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2450 * do_no_pfn() tries to create a new page mapping for a page without
2451 * a struct_page backing it
2453 * As this is called only for pages that do not currently exist, we
2454 * do not need to flush old virtual caches or the TLB.
2456 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2457 * but allow concurrent faults), and pte mapped but not yet locked.
2458 * We return with mmap_sem still held, but pte unmapped and unlocked.
2460 * It is expected that the ->nopfn handler always returns the same pfn
2461 * for a given virtual mapping.
2463 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2465 static noinline
int do_no_pfn(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2466 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2473 pte_unmap(page_table
);
2474 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2475 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2477 pfn
= vma
->vm_ops
->nopfn(vma
, address
& PAGE_MASK
);
2479 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2481 if (unlikely(pfn
== NOPFN_OOM
))
2482 return VM_FAULT_OOM
;
2483 else if (unlikely(pfn
== NOPFN_SIGBUS
))
2484 return VM_FAULT_SIGBUS
;
2485 else if (unlikely(pfn
== NOPFN_REFAULT
))
2488 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2490 /* Only go through if we didn't race with anybody else... */
2491 if (pte_none(*page_table
)) {
2492 entry
= pfn_pte(pfn
, vma
->vm_page_prot
);
2494 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2495 set_pte_at(mm
, address
, page_table
, entry
);
2497 pte_unmap_unlock(page_table
, ptl
);
2502 * Fault of a previously existing named mapping. Repopulate the pte
2503 * from the encoded file_pte if possible. This enables swappable
2506 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2507 * but allow concurrent faults), and pte mapped but not yet locked.
2508 * We return with mmap_sem still held, but pte unmapped and unlocked.
2510 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2511 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2512 int write_access
, pte_t orig_pte
)
2514 unsigned int flags
= FAULT_FLAG_NONLINEAR
|
2515 (write_access
? FAULT_FLAG_WRITE
: 0);
2518 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2521 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
) ||
2522 !(vma
->vm_flags
& VM_CAN_NONLINEAR
))) {
2524 * Page table corrupted: show pte and kill process.
2526 print_bad_pte(vma
, orig_pte
, address
);
2527 return VM_FAULT_OOM
;
2530 pgoff
= pte_to_pgoff(orig_pte
);
2531 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2535 * These routines also need to handle stuff like marking pages dirty
2536 * and/or accessed for architectures that don't do it in hardware (most
2537 * RISC architectures). The early dirtying is also good on the i386.
2539 * There is also a hook called "update_mmu_cache()" that architectures
2540 * with external mmu caches can use to update those (ie the Sparc or
2541 * PowerPC hashed page tables that act as extended TLBs).
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), and pte mapped but not yet locked.
2545 * We return with mmap_sem still held, but pte unmapped and unlocked.
2547 static inline int handle_pte_fault(struct mm_struct
*mm
,
2548 struct vm_area_struct
*vma
, unsigned long address
,
2549 pte_t
*pte
, pmd_t
*pmd
, int write_access
)
2555 if (!pte_present(entry
)) {
2556 if (pte_none(entry
)) {
2558 if (likely(vma
->vm_ops
->fault
))
2559 return do_linear_fault(mm
, vma
, address
,
2560 pte
, pmd
, write_access
, entry
);
2561 if (unlikely(vma
->vm_ops
->nopfn
))
2562 return do_no_pfn(mm
, vma
, address
, pte
,
2565 return do_anonymous_page(mm
, vma
, address
,
2566 pte
, pmd
, write_access
);
2568 if (pte_file(entry
))
2569 return do_nonlinear_fault(mm
, vma
, address
,
2570 pte
, pmd
, write_access
, entry
);
2571 return do_swap_page(mm
, vma
, address
,
2572 pte
, pmd
, write_access
, entry
);
2575 ptl
= pte_lockptr(mm
, pmd
);
2577 if (unlikely(!pte_same(*pte
, entry
)))
2580 if (!pte_write(entry
))
2581 return do_wp_page(mm
, vma
, address
,
2582 pte
, pmd
, ptl
, entry
);
2583 entry
= pte_mkdirty(entry
);
2585 entry
= pte_mkyoung(entry
);
2586 if (ptep_set_access_flags(vma
, address
, pte
, entry
, write_access
)) {
2587 update_mmu_cache(vma
, address
, entry
);
2590 * This is needed only for protection faults but the arch code
2591 * is not yet telling us if this is a protection fault or not.
2592 * This still avoids useless tlb flushes for .text page faults
2596 flush_tlb_page(vma
, address
);
2599 pte_unmap_unlock(pte
, ptl
);
2604 * By the time we get here, we already hold the mm semaphore
2606 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2607 unsigned long address
, int write_access
)
2614 __set_current_state(TASK_RUNNING
);
2616 count_vm_event(PGFAULT
);
2618 if (unlikely(is_vm_hugetlb_page(vma
)))
2619 return hugetlb_fault(mm
, vma
, address
, write_access
);
2621 pgd
= pgd_offset(mm
, address
);
2622 pud
= pud_alloc(mm
, pgd
, address
);
2624 return VM_FAULT_OOM
;
2625 pmd
= pmd_alloc(mm
, pud
, address
);
2627 return VM_FAULT_OOM
;
2628 pte
= pte_alloc_map(mm
, pmd
, address
);
2630 return VM_FAULT_OOM
;
2632 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, write_access
);
2635 #ifndef __PAGETABLE_PUD_FOLDED
2637 * Allocate page upper directory.
2638 * We've already handled the fast-path in-line.
2640 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2642 pud_t
*new = pud_alloc_one(mm
, address
);
2646 smp_wmb(); /* See comment in __pte_alloc */
2648 spin_lock(&mm
->page_table_lock
);
2649 if (pgd_present(*pgd
)) /* Another has populated it */
2652 pgd_populate(mm
, pgd
, new);
2653 spin_unlock(&mm
->page_table_lock
);
2656 #endif /* __PAGETABLE_PUD_FOLDED */
2658 #ifndef __PAGETABLE_PMD_FOLDED
2660 * Allocate page middle directory.
2661 * We've already handled the fast-path in-line.
2663 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2665 pmd_t
*new = pmd_alloc_one(mm
, address
);
2669 smp_wmb(); /* See comment in __pte_alloc */
2671 spin_lock(&mm
->page_table_lock
);
2672 #ifndef __ARCH_HAS_4LEVEL_HACK
2673 if (pud_present(*pud
)) /* Another has populated it */
2676 pud_populate(mm
, pud
, new);
2678 if (pgd_present(*pud
)) /* Another has populated it */
2681 pgd_populate(mm
, pud
, new);
2682 #endif /* __ARCH_HAS_4LEVEL_HACK */
2683 spin_unlock(&mm
->page_table_lock
);
2686 #endif /* __PAGETABLE_PMD_FOLDED */
2688 int make_pages_present(unsigned long addr
, unsigned long end
)
2690 int ret
, len
, write
;
2691 struct vm_area_struct
* vma
;
2693 vma
= find_vma(current
->mm
, addr
);
2696 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
2697 BUG_ON(addr
>= end
);
2698 BUG_ON(end
> vma
->vm_end
);
2699 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
2700 ret
= get_user_pages(current
, current
->mm
, addr
,
2701 len
, write
, 0, NULL
, NULL
);
2704 return ret
== len
? 0 : -1;
2707 #if !defined(__HAVE_ARCH_GATE_AREA)
2709 #if defined(AT_SYSINFO_EHDR)
2710 static struct vm_area_struct gate_vma
;
2712 static int __init
gate_vma_init(void)
2714 gate_vma
.vm_mm
= NULL
;
2715 gate_vma
.vm_start
= FIXADDR_USER_START
;
2716 gate_vma
.vm_end
= FIXADDR_USER_END
;
2717 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
2718 gate_vma
.vm_page_prot
= __P101
;
2720 * Make sure the vDSO gets into every core dump.
2721 * Dumping its contents makes post-mortem fully interpretable later
2722 * without matching up the same kernel and hardware config to see
2723 * what PC values meant.
2725 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
2728 __initcall(gate_vma_init
);
2731 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
2733 #ifdef AT_SYSINFO_EHDR
2740 int in_gate_area_no_task(unsigned long addr
)
2742 #ifdef AT_SYSINFO_EHDR
2743 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
2749 #endif /* __HAVE_ARCH_GATE_AREA */
2752 * Access another process' address space.
2753 * Source/target buffer must be kernel space,
2754 * Do not walk the page table directly, use get_user_pages
2756 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2758 struct mm_struct
*mm
;
2759 struct vm_area_struct
*vma
;
2761 void *old_buf
= buf
;
2763 mm
= get_task_mm(tsk
);
2767 down_read(&mm
->mmap_sem
);
2768 /* ignore errors, just check how much was successfully transferred */
2770 int bytes
, ret
, offset
;
2773 ret
= get_user_pages(tsk
, mm
, addr
, 1,
2774 write
, 1, &page
, &vma
);
2779 offset
= addr
& (PAGE_SIZE
-1);
2780 if (bytes
> PAGE_SIZE
-offset
)
2781 bytes
= PAGE_SIZE
-offset
;
2785 copy_to_user_page(vma
, page
, addr
,
2786 maddr
+ offset
, buf
, bytes
);
2787 set_page_dirty_lock(page
);
2789 copy_from_user_page(vma
, page
, addr
,
2790 buf
, maddr
+ offset
, bytes
);
2793 page_cache_release(page
);
2798 up_read(&mm
->mmap_sem
);
2801 return buf
- old_buf
;
2805 * Print the name of a VMA.
2807 void print_vma_addr(char *prefix
, unsigned long ip
)
2809 struct mm_struct
*mm
= current
->mm
;
2810 struct vm_area_struct
*vma
;
2813 * Do not print if we are in atomic
2814 * contexts (in exception stacks, etc.):
2816 if (preempt_count())
2819 down_read(&mm
->mmap_sem
);
2820 vma
= find_vma(mm
, ip
);
2821 if (vma
&& vma
->vm_file
) {
2822 struct file
*f
= vma
->vm_file
;
2823 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
2827 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
2830 s
= strrchr(p
, '/');
2833 printk("%s%s[%lx+%lx]", prefix
, p
,
2835 vma
->vm_end
- vma
->vm_start
);
2836 free_page((unsigned long)buf
);
2839 up_read(¤t
->mm
->mmap_sem
);