libata-core: Document some limits/assumptions about ID_ATA
[linux-2.6/kmemtrace.git] / drivers / ata / libata-core.c
blobd2141a04fff1f3da7e345e6d3541b406971feb1b
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
79 struct workqueue_struct *ata_aux_wq;
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 int atapi_dmadir = 0;
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 int atapi_passthru16 = 1;
90 module_param(atapi_passthru16, int, 0444);
91 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
93 int libata_fua = 0;
94 module_param_named(fua, libata_fua, int, 0444);
95 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
97 static int ata_ignore_hpa = 0;
98 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
101 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
102 module_param(ata_probe_timeout, int, 0444);
103 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
105 int libata_noacpi = 1;
106 module_param_named(noacpi, libata_noacpi, int, 0444);
107 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
109 MODULE_AUTHOR("Jeff Garzik");
110 MODULE_DESCRIPTION("Library module for ATA devices");
111 MODULE_LICENSE("GPL");
112 MODULE_VERSION(DRV_VERSION);
116 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
117 * @tf: Taskfile to convert
118 * @pmp: Port multiplier port
119 * @is_cmd: This FIS is for command
120 * @fis: Buffer into which data will output
122 * Converts a standard ATA taskfile to a Serial ATA
123 * FIS structure (Register - Host to Device).
125 * LOCKING:
126 * Inherited from caller.
128 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
130 fis[0] = 0x27; /* Register - Host to Device FIS */
131 fis[1] = pmp & 0xf; /* Port multiplier number*/
132 if (is_cmd)
133 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
135 fis[2] = tf->command;
136 fis[3] = tf->feature;
138 fis[4] = tf->lbal;
139 fis[5] = tf->lbam;
140 fis[6] = tf->lbah;
141 fis[7] = tf->device;
143 fis[8] = tf->hob_lbal;
144 fis[9] = tf->hob_lbam;
145 fis[10] = tf->hob_lbah;
146 fis[11] = tf->hob_feature;
148 fis[12] = tf->nsect;
149 fis[13] = tf->hob_nsect;
150 fis[14] = 0;
151 fis[15] = tf->ctl;
153 fis[16] = 0;
154 fis[17] = 0;
155 fis[18] = 0;
156 fis[19] = 0;
160 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
161 * @fis: Buffer from which data will be input
162 * @tf: Taskfile to output
164 * Converts a serial ATA FIS structure to a standard ATA taskfile.
166 * LOCKING:
167 * Inherited from caller.
170 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
172 tf->command = fis[2]; /* status */
173 tf->feature = fis[3]; /* error */
175 tf->lbal = fis[4];
176 tf->lbam = fis[5];
177 tf->lbah = fis[6];
178 tf->device = fis[7];
180 tf->hob_lbal = fis[8];
181 tf->hob_lbam = fis[9];
182 tf->hob_lbah = fis[10];
184 tf->nsect = fis[12];
185 tf->hob_nsect = fis[13];
188 static const u8 ata_rw_cmds[] = {
189 /* pio multi */
190 ATA_CMD_READ_MULTI,
191 ATA_CMD_WRITE_MULTI,
192 ATA_CMD_READ_MULTI_EXT,
193 ATA_CMD_WRITE_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_FUA_EXT,
198 /* pio */
199 ATA_CMD_PIO_READ,
200 ATA_CMD_PIO_WRITE,
201 ATA_CMD_PIO_READ_EXT,
202 ATA_CMD_PIO_WRITE_EXT,
207 /* dma */
208 ATA_CMD_READ,
209 ATA_CMD_WRITE,
210 ATA_CMD_READ_EXT,
211 ATA_CMD_WRITE_EXT,
215 ATA_CMD_WRITE_FUA_EXT
219 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
220 * @tf: command to examine and configure
221 * @dev: device tf belongs to
223 * Examine the device configuration and tf->flags to calculate
224 * the proper read/write commands and protocol to use.
226 * LOCKING:
227 * caller.
229 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
231 u8 cmd;
233 int index, fua, lba48, write;
235 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
236 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
237 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
239 if (dev->flags & ATA_DFLAG_PIO) {
240 tf->protocol = ATA_PROT_PIO;
241 index = dev->multi_count ? 0 : 8;
242 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
243 /* Unable to use DMA due to host limitation */
244 tf->protocol = ATA_PROT_PIO;
245 index = dev->multi_count ? 0 : 8;
246 } else {
247 tf->protocol = ATA_PROT_DMA;
248 index = 16;
251 cmd = ata_rw_cmds[index + fua + lba48 + write];
252 if (cmd) {
253 tf->command = cmd;
254 return 0;
256 return -1;
260 * ata_tf_read_block - Read block address from ATA taskfile
261 * @tf: ATA taskfile of interest
262 * @dev: ATA device @tf belongs to
264 * LOCKING:
265 * None.
267 * Read block address from @tf. This function can handle all
268 * three address formats - LBA, LBA48 and CHS. tf->protocol and
269 * flags select the address format to use.
271 * RETURNS:
272 * Block address read from @tf.
274 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
276 u64 block = 0;
278 if (tf->flags & ATA_TFLAG_LBA) {
279 if (tf->flags & ATA_TFLAG_LBA48) {
280 block |= (u64)tf->hob_lbah << 40;
281 block |= (u64)tf->hob_lbam << 32;
282 block |= tf->hob_lbal << 24;
283 } else
284 block |= (tf->device & 0xf) << 24;
286 block |= tf->lbah << 16;
287 block |= tf->lbam << 8;
288 block |= tf->lbal;
289 } else {
290 u32 cyl, head, sect;
292 cyl = tf->lbam | (tf->lbah << 8);
293 head = tf->device & 0xf;
294 sect = tf->lbal;
296 block = (cyl * dev->heads + head) * dev->sectors + sect;
299 return block;
303 * ata_build_rw_tf - Build ATA taskfile for given read/write request
304 * @tf: Target ATA taskfile
305 * @dev: ATA device @tf belongs to
306 * @block: Block address
307 * @n_block: Number of blocks
308 * @tf_flags: RW/FUA etc...
309 * @tag: tag
311 * LOCKING:
312 * None.
314 * Build ATA taskfile @tf for read/write request described by
315 * @block, @n_block, @tf_flags and @tag on @dev.
317 * RETURNS:
319 * 0 on success, -ERANGE if the request is too large for @dev,
320 * -EINVAL if the request is invalid.
322 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
323 u64 block, u32 n_block, unsigned int tf_flags,
324 unsigned int tag)
326 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
327 tf->flags |= tf_flags;
329 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
330 /* yay, NCQ */
331 if (!lba_48_ok(block, n_block))
332 return -ERANGE;
334 tf->protocol = ATA_PROT_NCQ;
335 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
337 if (tf->flags & ATA_TFLAG_WRITE)
338 tf->command = ATA_CMD_FPDMA_WRITE;
339 else
340 tf->command = ATA_CMD_FPDMA_READ;
342 tf->nsect = tag << 3;
343 tf->hob_feature = (n_block >> 8) & 0xff;
344 tf->feature = n_block & 0xff;
346 tf->hob_lbah = (block >> 40) & 0xff;
347 tf->hob_lbam = (block >> 32) & 0xff;
348 tf->hob_lbal = (block >> 24) & 0xff;
349 tf->lbah = (block >> 16) & 0xff;
350 tf->lbam = (block >> 8) & 0xff;
351 tf->lbal = block & 0xff;
353 tf->device = 1 << 6;
354 if (tf->flags & ATA_TFLAG_FUA)
355 tf->device |= 1 << 7;
356 } else if (dev->flags & ATA_DFLAG_LBA) {
357 tf->flags |= ATA_TFLAG_LBA;
359 if (lba_28_ok(block, n_block)) {
360 /* use LBA28 */
361 tf->device |= (block >> 24) & 0xf;
362 } else if (lba_48_ok(block, n_block)) {
363 if (!(dev->flags & ATA_DFLAG_LBA48))
364 return -ERANGE;
366 /* use LBA48 */
367 tf->flags |= ATA_TFLAG_LBA48;
369 tf->hob_nsect = (n_block >> 8) & 0xff;
371 tf->hob_lbah = (block >> 40) & 0xff;
372 tf->hob_lbam = (block >> 32) & 0xff;
373 tf->hob_lbal = (block >> 24) & 0xff;
374 } else
375 /* request too large even for LBA48 */
376 return -ERANGE;
378 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
379 return -EINVAL;
381 tf->nsect = n_block & 0xff;
383 tf->lbah = (block >> 16) & 0xff;
384 tf->lbam = (block >> 8) & 0xff;
385 tf->lbal = block & 0xff;
387 tf->device |= ATA_LBA;
388 } else {
389 /* CHS */
390 u32 sect, head, cyl, track;
392 /* The request -may- be too large for CHS addressing. */
393 if (!lba_28_ok(block, n_block))
394 return -ERANGE;
396 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
397 return -EINVAL;
399 /* Convert LBA to CHS */
400 track = (u32)block / dev->sectors;
401 cyl = track / dev->heads;
402 head = track % dev->heads;
403 sect = (u32)block % dev->sectors + 1;
405 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
406 (u32)block, track, cyl, head, sect);
408 /* Check whether the converted CHS can fit.
409 Cylinder: 0-65535
410 Head: 0-15
411 Sector: 1-255*/
412 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
413 return -ERANGE;
415 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
416 tf->lbal = sect;
417 tf->lbam = cyl;
418 tf->lbah = cyl >> 8;
419 tf->device |= head;
422 return 0;
426 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
427 * @pio_mask: pio_mask
428 * @mwdma_mask: mwdma_mask
429 * @udma_mask: udma_mask
431 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
432 * unsigned int xfer_mask.
434 * LOCKING:
435 * None.
437 * RETURNS:
438 * Packed xfer_mask.
440 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
441 unsigned int mwdma_mask,
442 unsigned int udma_mask)
444 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
445 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
446 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
450 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
451 * @xfer_mask: xfer_mask to unpack
452 * @pio_mask: resulting pio_mask
453 * @mwdma_mask: resulting mwdma_mask
454 * @udma_mask: resulting udma_mask
456 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
457 * Any NULL distination masks will be ignored.
459 static void ata_unpack_xfermask(unsigned int xfer_mask,
460 unsigned int *pio_mask,
461 unsigned int *mwdma_mask,
462 unsigned int *udma_mask)
464 if (pio_mask)
465 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
466 if (mwdma_mask)
467 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
468 if (udma_mask)
469 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
472 static const struct ata_xfer_ent {
473 int shift, bits;
474 u8 base;
475 } ata_xfer_tbl[] = {
476 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
477 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
478 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
479 { -1, },
483 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
484 * @xfer_mask: xfer_mask of interest
486 * Return matching XFER_* value for @xfer_mask. Only the highest
487 * bit of @xfer_mask is considered.
489 * LOCKING:
490 * None.
492 * RETURNS:
493 * Matching XFER_* value, 0 if no match found.
495 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
497 int highbit = fls(xfer_mask) - 1;
498 const struct ata_xfer_ent *ent;
500 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
501 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
502 return ent->base + highbit - ent->shift;
503 return 0;
507 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
508 * @xfer_mode: XFER_* of interest
510 * Return matching xfer_mask for @xfer_mode.
512 * LOCKING:
513 * None.
515 * RETURNS:
516 * Matching xfer_mask, 0 if no match found.
518 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
520 const struct ata_xfer_ent *ent;
522 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
523 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
524 return 1 << (ent->shift + xfer_mode - ent->base);
525 return 0;
529 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
530 * @xfer_mode: XFER_* of interest
532 * Return matching xfer_shift for @xfer_mode.
534 * LOCKING:
535 * None.
537 * RETURNS:
538 * Matching xfer_shift, -1 if no match found.
540 static int ata_xfer_mode2shift(unsigned int xfer_mode)
542 const struct ata_xfer_ent *ent;
544 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
545 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
546 return ent->shift;
547 return -1;
551 * ata_mode_string - convert xfer_mask to string
552 * @xfer_mask: mask of bits supported; only highest bit counts.
554 * Determine string which represents the highest speed
555 * (highest bit in @modemask).
557 * LOCKING:
558 * None.
560 * RETURNS:
561 * Constant C string representing highest speed listed in
562 * @mode_mask, or the constant C string "<n/a>".
564 static const char *ata_mode_string(unsigned int xfer_mask)
566 static const char * const xfer_mode_str[] = {
567 "PIO0",
568 "PIO1",
569 "PIO2",
570 "PIO3",
571 "PIO4",
572 "PIO5",
573 "PIO6",
574 "MWDMA0",
575 "MWDMA1",
576 "MWDMA2",
577 "MWDMA3",
578 "MWDMA4",
579 "UDMA/16",
580 "UDMA/25",
581 "UDMA/33",
582 "UDMA/44",
583 "UDMA/66",
584 "UDMA/100",
585 "UDMA/133",
586 "UDMA7",
588 int highbit;
590 highbit = fls(xfer_mask) - 1;
591 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
592 return xfer_mode_str[highbit];
593 return "<n/a>";
596 static const char *sata_spd_string(unsigned int spd)
598 static const char * const spd_str[] = {
599 "1.5 Gbps",
600 "3.0 Gbps",
603 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
604 return "<unknown>";
605 return spd_str[spd - 1];
608 void ata_dev_disable(struct ata_device *dev)
610 if (ata_dev_enabled(dev)) {
611 if (ata_msg_drv(dev->link->ap))
612 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
613 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
614 ATA_DNXFER_QUIET);
615 dev->class++;
620 * ata_devchk - PATA device presence detection
621 * @ap: ATA channel to examine
622 * @device: Device to examine (starting at zero)
624 * This technique was originally described in
625 * Hale Landis's ATADRVR (www.ata-atapi.com), and
626 * later found its way into the ATA/ATAPI spec.
628 * Write a pattern to the ATA shadow registers,
629 * and if a device is present, it will respond by
630 * correctly storing and echoing back the
631 * ATA shadow register contents.
633 * LOCKING:
634 * caller.
637 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
639 struct ata_ioports *ioaddr = &ap->ioaddr;
640 u8 nsect, lbal;
642 ap->ops->dev_select(ap, device);
644 iowrite8(0x55, ioaddr->nsect_addr);
645 iowrite8(0xaa, ioaddr->lbal_addr);
647 iowrite8(0xaa, ioaddr->nsect_addr);
648 iowrite8(0x55, ioaddr->lbal_addr);
650 iowrite8(0x55, ioaddr->nsect_addr);
651 iowrite8(0xaa, ioaddr->lbal_addr);
653 nsect = ioread8(ioaddr->nsect_addr);
654 lbal = ioread8(ioaddr->lbal_addr);
656 if ((nsect == 0x55) && (lbal == 0xaa))
657 return 1; /* we found a device */
659 return 0; /* nothing found */
663 * ata_dev_classify - determine device type based on ATA-spec signature
664 * @tf: ATA taskfile register set for device to be identified
666 * Determine from taskfile register contents whether a device is
667 * ATA or ATAPI, as per "Signature and persistence" section
668 * of ATA/PI spec (volume 1, sect 5.14).
670 * LOCKING:
671 * None.
673 * RETURNS:
674 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
675 * the event of failure.
678 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
680 /* Apple's open source Darwin code hints that some devices only
681 * put a proper signature into the LBA mid/high registers,
682 * So, we only check those. It's sufficient for uniqueness.
685 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
686 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
687 DPRINTK("found ATA device by sig\n");
688 return ATA_DEV_ATA;
691 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
692 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
693 DPRINTK("found ATAPI device by sig\n");
694 return ATA_DEV_ATAPI;
697 DPRINTK("unknown device\n");
698 return ATA_DEV_UNKNOWN;
702 * ata_dev_try_classify - Parse returned ATA device signature
703 * @ap: ATA channel to examine
704 * @device: Device to examine (starting at zero)
705 * @r_err: Value of error register on completion
707 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
708 * an ATA/ATAPI-defined set of values is placed in the ATA
709 * shadow registers, indicating the results of device detection
710 * and diagnostics.
712 * Select the ATA device, and read the values from the ATA shadow
713 * registers. Then parse according to the Error register value,
714 * and the spec-defined values examined by ata_dev_classify().
716 * LOCKING:
717 * caller.
719 * RETURNS:
720 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
723 unsigned int
724 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
726 struct ata_taskfile tf;
727 unsigned int class;
728 u8 err;
730 ap->ops->dev_select(ap, device);
732 memset(&tf, 0, sizeof(tf));
734 ap->ops->tf_read(ap, &tf);
735 err = tf.feature;
736 if (r_err)
737 *r_err = err;
739 /* see if device passed diags: if master then continue and warn later */
740 if (err == 0 && device == 0)
741 /* diagnostic fail : do nothing _YET_ */
742 ap->link.device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
743 else if (err == 1)
744 /* do nothing */ ;
745 else if ((device == 0) && (err == 0x81))
746 /* do nothing */ ;
747 else
748 return ATA_DEV_NONE;
750 /* determine if device is ATA or ATAPI */
751 class = ata_dev_classify(&tf);
753 if (class == ATA_DEV_UNKNOWN)
754 return ATA_DEV_NONE;
755 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
756 return ATA_DEV_NONE;
757 return class;
761 * ata_id_string - Convert IDENTIFY DEVICE page into string
762 * @id: IDENTIFY DEVICE results we will examine
763 * @s: string into which data is output
764 * @ofs: offset into identify device page
765 * @len: length of string to return. must be an even number.
767 * The strings in the IDENTIFY DEVICE page are broken up into
768 * 16-bit chunks. Run through the string, and output each
769 * 8-bit chunk linearly, regardless of platform.
771 * LOCKING:
772 * caller.
775 void ata_id_string(const u16 *id, unsigned char *s,
776 unsigned int ofs, unsigned int len)
778 unsigned int c;
780 while (len > 0) {
781 c = id[ofs] >> 8;
782 *s = c;
783 s++;
785 c = id[ofs] & 0xff;
786 *s = c;
787 s++;
789 ofs++;
790 len -= 2;
795 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
796 * @id: IDENTIFY DEVICE results we will examine
797 * @s: string into which data is output
798 * @ofs: offset into identify device page
799 * @len: length of string to return. must be an odd number.
801 * This function is identical to ata_id_string except that it
802 * trims trailing spaces and terminates the resulting string with
803 * null. @len must be actual maximum length (even number) + 1.
805 * LOCKING:
806 * caller.
808 void ata_id_c_string(const u16 *id, unsigned char *s,
809 unsigned int ofs, unsigned int len)
811 unsigned char *p;
813 WARN_ON(!(len & 1));
815 ata_id_string(id, s, ofs, len - 1);
817 p = s + strnlen(s, len - 1);
818 while (p > s && p[-1] == ' ')
819 p--;
820 *p = '\0';
823 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
825 u64 sectors = 0;
827 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
828 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
829 sectors |= (tf->hob_lbal & 0xff) << 24;
830 sectors |= (tf->lbah & 0xff) << 16;
831 sectors |= (tf->lbam & 0xff) << 8;
832 sectors |= (tf->lbal & 0xff);
834 return ++sectors;
837 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
839 u64 sectors = 0;
841 sectors |= (tf->device & 0x0f) << 24;
842 sectors |= (tf->lbah & 0xff) << 16;
843 sectors |= (tf->lbam & 0xff) << 8;
844 sectors |= (tf->lbal & 0xff);
846 return ++sectors;
850 * ata_read_native_max_address_ext - LBA48 native max query
851 * @dev: Device to query
853 * Perform an LBA48 size query upon the device in question. Return the
854 * actual LBA48 size or zero if the command fails.
857 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
859 unsigned int err;
860 struct ata_taskfile tf;
862 ata_tf_init(dev, &tf);
864 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
865 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
866 tf.protocol |= ATA_PROT_NODATA;
867 tf.device |= 0x40;
869 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
870 if (err)
871 return 0;
873 return ata_tf_to_lba48(&tf);
877 * ata_read_native_max_address - LBA28 native max query
878 * @dev: Device to query
880 * Performa an LBA28 size query upon the device in question. Return the
881 * actual LBA28 size or zero if the command fails.
884 static u64 ata_read_native_max_address(struct ata_device *dev)
886 unsigned int err;
887 struct ata_taskfile tf;
889 ata_tf_init(dev, &tf);
891 tf.command = ATA_CMD_READ_NATIVE_MAX;
892 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
893 tf.protocol |= ATA_PROT_NODATA;
894 tf.device |= 0x40;
896 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
897 if (err)
898 return 0;
900 return ata_tf_to_lba(&tf);
904 * ata_set_native_max_address_ext - LBA48 native max set
905 * @dev: Device to query
906 * @new_sectors: new max sectors value to set for the device
908 * Perform an LBA48 size set max upon the device in question. Return the
909 * actual LBA48 size or zero if the command fails.
912 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
914 unsigned int err;
915 struct ata_taskfile tf;
917 new_sectors--;
919 ata_tf_init(dev, &tf);
921 tf.command = ATA_CMD_SET_MAX_EXT;
922 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
923 tf.protocol |= ATA_PROT_NODATA;
924 tf.device |= 0x40;
926 tf.lbal = (new_sectors >> 0) & 0xff;
927 tf.lbam = (new_sectors >> 8) & 0xff;
928 tf.lbah = (new_sectors >> 16) & 0xff;
930 tf.hob_lbal = (new_sectors >> 24) & 0xff;
931 tf.hob_lbam = (new_sectors >> 32) & 0xff;
932 tf.hob_lbah = (new_sectors >> 40) & 0xff;
934 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
935 if (err)
936 return 0;
938 return ata_tf_to_lba48(&tf);
942 * ata_set_native_max_address - LBA28 native max set
943 * @dev: Device to query
944 * @new_sectors: new max sectors value to set for the device
946 * Perform an LBA28 size set max upon the device in question. Return the
947 * actual LBA28 size or zero if the command fails.
950 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
952 unsigned int err;
953 struct ata_taskfile tf;
955 new_sectors--;
957 ata_tf_init(dev, &tf);
959 tf.command = ATA_CMD_SET_MAX;
960 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
961 tf.protocol |= ATA_PROT_NODATA;
963 tf.lbal = (new_sectors >> 0) & 0xff;
964 tf.lbam = (new_sectors >> 8) & 0xff;
965 tf.lbah = (new_sectors >> 16) & 0xff;
966 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
968 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
969 if (err)
970 return 0;
972 return ata_tf_to_lba(&tf);
976 * ata_hpa_resize - Resize a device with an HPA set
977 * @dev: Device to resize
979 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
980 * it if required to the full size of the media. The caller must check
981 * the drive has the HPA feature set enabled.
984 static u64 ata_hpa_resize(struct ata_device *dev)
986 u64 sectors = dev->n_sectors;
987 u64 hpa_sectors;
989 if (ata_id_has_lba48(dev->id))
990 hpa_sectors = ata_read_native_max_address_ext(dev);
991 else
992 hpa_sectors = ata_read_native_max_address(dev);
994 if (hpa_sectors > sectors) {
995 ata_dev_printk(dev, KERN_INFO,
996 "Host Protected Area detected:\n"
997 "\tcurrent size: %lld sectors\n"
998 "\tnative size: %lld sectors\n",
999 (long long)sectors, (long long)hpa_sectors);
1001 if (ata_ignore_hpa) {
1002 if (ata_id_has_lba48(dev->id))
1003 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1004 else
1005 hpa_sectors = ata_set_native_max_address(dev,
1006 hpa_sectors);
1008 if (hpa_sectors) {
1009 ata_dev_printk(dev, KERN_INFO, "native size "
1010 "increased to %lld sectors\n",
1011 (long long)hpa_sectors);
1012 return hpa_sectors;
1015 } else if (hpa_sectors < sectors)
1016 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1017 "is smaller than sectors (%lld)\n", __FUNCTION__,
1018 (long long)hpa_sectors, (long long)sectors);
1020 return sectors;
1023 static u64 ata_id_n_sectors(const u16 *id)
1025 if (ata_id_has_lba(id)) {
1026 if (ata_id_has_lba48(id))
1027 return ata_id_u64(id, 100);
1028 else
1029 return ata_id_u32(id, 60);
1030 } else {
1031 if (ata_id_current_chs_valid(id))
1032 return ata_id_u32(id, 57);
1033 else
1034 return id[1] * id[3] * id[6];
1039 * ata_id_to_dma_mode - Identify DMA mode from id block
1040 * @dev: device to identify
1041 * @unknown: mode to assume if we cannot tell
1043 * Set up the timing values for the device based upon the identify
1044 * reported values for the DMA mode. This function is used by drivers
1045 * which rely upon firmware configured modes, but wish to report the
1046 * mode correctly when possible.
1048 * In addition we emit similarly formatted messages to the default
1049 * ata_dev_set_mode handler, in order to provide consistency of
1050 * presentation.
1053 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1055 unsigned int mask;
1056 u8 mode;
1058 /* Pack the DMA modes */
1059 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1060 if (dev->id[53] & 0x04)
1061 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1063 /* Select the mode in use */
1064 mode = ata_xfer_mask2mode(mask);
1066 if (mode != 0) {
1067 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1068 ata_mode_string(mask));
1069 } else {
1070 /* SWDMA perhaps ? */
1071 mode = unknown;
1072 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1075 /* Configure the device reporting */
1076 dev->xfer_mode = mode;
1077 dev->xfer_shift = ata_xfer_mode2shift(mode);
1081 * ata_noop_dev_select - Select device 0/1 on ATA bus
1082 * @ap: ATA channel to manipulate
1083 * @device: ATA device (numbered from zero) to select
1085 * This function performs no actual function.
1087 * May be used as the dev_select() entry in ata_port_operations.
1089 * LOCKING:
1090 * caller.
1092 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1098 * ata_std_dev_select - Select device 0/1 on ATA bus
1099 * @ap: ATA channel to manipulate
1100 * @device: ATA device (numbered from zero) to select
1102 * Use the method defined in the ATA specification to
1103 * make either device 0, or device 1, active on the
1104 * ATA channel. Works with both PIO and MMIO.
1106 * May be used as the dev_select() entry in ata_port_operations.
1108 * LOCKING:
1109 * caller.
1112 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1114 u8 tmp;
1116 if (device == 0)
1117 tmp = ATA_DEVICE_OBS;
1118 else
1119 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1121 iowrite8(tmp, ap->ioaddr.device_addr);
1122 ata_pause(ap); /* needed; also flushes, for mmio */
1126 * ata_dev_select - Select device 0/1 on ATA bus
1127 * @ap: ATA channel to manipulate
1128 * @device: ATA device (numbered from zero) to select
1129 * @wait: non-zero to wait for Status register BSY bit to clear
1130 * @can_sleep: non-zero if context allows sleeping
1132 * Use the method defined in the ATA specification to
1133 * make either device 0, or device 1, active on the
1134 * ATA channel.
1136 * This is a high-level version of ata_std_dev_select(),
1137 * which additionally provides the services of inserting
1138 * the proper pauses and status polling, where needed.
1140 * LOCKING:
1141 * caller.
1144 void ata_dev_select(struct ata_port *ap, unsigned int device,
1145 unsigned int wait, unsigned int can_sleep)
1147 if (ata_msg_probe(ap))
1148 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1149 "device %u, wait %u\n", device, wait);
1151 if (wait)
1152 ata_wait_idle(ap);
1154 ap->ops->dev_select(ap, device);
1156 if (wait) {
1157 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1158 msleep(150);
1159 ata_wait_idle(ap);
1164 * ata_dump_id - IDENTIFY DEVICE info debugging output
1165 * @id: IDENTIFY DEVICE page to dump
1167 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1168 * page.
1170 * LOCKING:
1171 * caller.
1174 static inline void ata_dump_id(const u16 *id)
1176 DPRINTK("49==0x%04x "
1177 "53==0x%04x "
1178 "63==0x%04x "
1179 "64==0x%04x "
1180 "75==0x%04x \n",
1181 id[49],
1182 id[53],
1183 id[63],
1184 id[64],
1185 id[75]);
1186 DPRINTK("80==0x%04x "
1187 "81==0x%04x "
1188 "82==0x%04x "
1189 "83==0x%04x "
1190 "84==0x%04x \n",
1191 id[80],
1192 id[81],
1193 id[82],
1194 id[83],
1195 id[84]);
1196 DPRINTK("88==0x%04x "
1197 "93==0x%04x\n",
1198 id[88],
1199 id[93]);
1203 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1204 * @id: IDENTIFY data to compute xfer mask from
1206 * Compute the xfermask for this device. This is not as trivial
1207 * as it seems if we must consider early devices correctly.
1209 * FIXME: pre IDE drive timing (do we care ?).
1211 * LOCKING:
1212 * None.
1214 * RETURNS:
1215 * Computed xfermask
1217 static unsigned int ata_id_xfermask(const u16 *id)
1219 unsigned int pio_mask, mwdma_mask, udma_mask;
1221 /* Usual case. Word 53 indicates word 64 is valid */
1222 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1223 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1224 pio_mask <<= 3;
1225 pio_mask |= 0x7;
1226 } else {
1227 /* If word 64 isn't valid then Word 51 high byte holds
1228 * the PIO timing number for the maximum. Turn it into
1229 * a mask.
1231 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1232 if (mode < 5) /* Valid PIO range */
1233 pio_mask = (2 << mode) - 1;
1234 else
1235 pio_mask = 1;
1237 /* But wait.. there's more. Design your standards by
1238 * committee and you too can get a free iordy field to
1239 * process. However its the speeds not the modes that
1240 * are supported... Note drivers using the timing API
1241 * will get this right anyway
1245 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1247 if (ata_id_is_cfa(id)) {
1249 * Process compact flash extended modes
1251 int pio = id[163] & 0x7;
1252 int dma = (id[163] >> 3) & 7;
1254 if (pio)
1255 pio_mask |= (1 << 5);
1256 if (pio > 1)
1257 pio_mask |= (1 << 6);
1258 if (dma)
1259 mwdma_mask |= (1 << 3);
1260 if (dma > 1)
1261 mwdma_mask |= (1 << 4);
1264 udma_mask = 0;
1265 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1266 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1268 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1272 * ata_port_queue_task - Queue port_task
1273 * @ap: The ata_port to queue port_task for
1274 * @fn: workqueue function to be scheduled
1275 * @data: data for @fn to use
1276 * @delay: delay time for workqueue function
1278 * Schedule @fn(@data) for execution after @delay jiffies using
1279 * port_task. There is one port_task per port and it's the
1280 * user(low level driver)'s responsibility to make sure that only
1281 * one task is active at any given time.
1283 * libata core layer takes care of synchronization between
1284 * port_task and EH. ata_port_queue_task() may be ignored for EH
1285 * synchronization.
1287 * LOCKING:
1288 * Inherited from caller.
1290 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1291 unsigned long delay)
1293 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1294 ap->port_task_data = data;
1296 /* may fail if ata_port_flush_task() in progress */
1297 queue_delayed_work(ata_wq, &ap->port_task, delay);
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1310 void ata_port_flush_task(struct ata_port *ap)
1312 DPRINTK("ENTER\n");
1314 cancel_rearming_delayed_work(&ap->port_task);
1316 if (ata_msg_ctl(ap))
1317 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1320 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1322 struct completion *waiting = qc->private_data;
1324 complete(waiting);
1328 * ata_exec_internal_sg - execute libata internal command
1329 * @dev: Device to which the command is sent
1330 * @tf: Taskfile registers for the command and the result
1331 * @cdb: CDB for packet command
1332 * @dma_dir: Data tranfer direction of the command
1333 * @sg: sg list for the data buffer of the command
1334 * @n_elem: Number of sg entries
1336 * Executes libata internal command with timeout. @tf contains
1337 * command on entry and result on return. Timeout and error
1338 * conditions are reported via return value. No recovery action
1339 * is taken after a command times out. It's caller's duty to
1340 * clean up after timeout.
1342 * LOCKING:
1343 * None. Should be called with kernel context, might sleep.
1345 * RETURNS:
1346 * Zero on success, AC_ERR_* mask on failure
1348 unsigned ata_exec_internal_sg(struct ata_device *dev,
1349 struct ata_taskfile *tf, const u8 *cdb,
1350 int dma_dir, struct scatterlist *sg,
1351 unsigned int n_elem)
1353 struct ata_link *link = dev->link;
1354 struct ata_port *ap = link->ap;
1355 u8 command = tf->command;
1356 struct ata_queued_cmd *qc;
1357 unsigned int tag, preempted_tag;
1358 u32 preempted_sactive, preempted_qc_active;
1359 DECLARE_COMPLETION_ONSTACK(wait);
1360 unsigned long flags;
1361 unsigned int err_mask;
1362 int rc;
1364 spin_lock_irqsave(ap->lock, flags);
1366 /* no internal command while frozen */
1367 if (ap->pflags & ATA_PFLAG_FROZEN) {
1368 spin_unlock_irqrestore(ap->lock, flags);
1369 return AC_ERR_SYSTEM;
1372 /* initialize internal qc */
1374 /* XXX: Tag 0 is used for drivers with legacy EH as some
1375 * drivers choke if any other tag is given. This breaks
1376 * ata_tag_internal() test for those drivers. Don't use new
1377 * EH stuff without converting to it.
1379 if (ap->ops->error_handler)
1380 tag = ATA_TAG_INTERNAL;
1381 else
1382 tag = 0;
1384 if (test_and_set_bit(tag, &ap->qc_allocated))
1385 BUG();
1386 qc = __ata_qc_from_tag(ap, tag);
1388 qc->tag = tag;
1389 qc->scsicmd = NULL;
1390 qc->ap = ap;
1391 qc->dev = dev;
1392 ata_qc_reinit(qc);
1394 preempted_tag = link->active_tag;
1395 preempted_sactive = link->sactive;
1396 preempted_qc_active = ap->qc_active;
1397 link->active_tag = ATA_TAG_POISON;
1398 link->sactive = 0;
1399 ap->qc_active = 0;
1401 /* prepare & issue qc */
1402 qc->tf = *tf;
1403 if (cdb)
1404 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1405 qc->flags |= ATA_QCFLAG_RESULT_TF;
1406 qc->dma_dir = dma_dir;
1407 if (dma_dir != DMA_NONE) {
1408 unsigned int i, buflen = 0;
1410 for (i = 0; i < n_elem; i++)
1411 buflen += sg[i].length;
1413 ata_sg_init(qc, sg, n_elem);
1414 qc->nbytes = buflen;
1417 qc->private_data = &wait;
1418 qc->complete_fn = ata_qc_complete_internal;
1420 ata_qc_issue(qc);
1422 spin_unlock_irqrestore(ap->lock, flags);
1424 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1426 ata_port_flush_task(ap);
1428 if (!rc) {
1429 spin_lock_irqsave(ap->lock, flags);
1431 /* We're racing with irq here. If we lose, the
1432 * following test prevents us from completing the qc
1433 * twice. If we win, the port is frozen and will be
1434 * cleaned up by ->post_internal_cmd().
1436 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1437 qc->err_mask |= AC_ERR_TIMEOUT;
1439 if (ap->ops->error_handler)
1440 ata_port_freeze(ap);
1441 else
1442 ata_qc_complete(qc);
1444 if (ata_msg_warn(ap))
1445 ata_dev_printk(dev, KERN_WARNING,
1446 "qc timeout (cmd 0x%x)\n", command);
1449 spin_unlock_irqrestore(ap->lock, flags);
1452 /* do post_internal_cmd */
1453 if (ap->ops->post_internal_cmd)
1454 ap->ops->post_internal_cmd(qc);
1456 /* perform minimal error analysis */
1457 if (qc->flags & ATA_QCFLAG_FAILED) {
1458 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1459 qc->err_mask |= AC_ERR_DEV;
1461 if (!qc->err_mask)
1462 qc->err_mask |= AC_ERR_OTHER;
1464 if (qc->err_mask & ~AC_ERR_OTHER)
1465 qc->err_mask &= ~AC_ERR_OTHER;
1468 /* finish up */
1469 spin_lock_irqsave(ap->lock, flags);
1471 *tf = qc->result_tf;
1472 err_mask = qc->err_mask;
1474 ata_qc_free(qc);
1475 link->active_tag = preempted_tag;
1476 link->sactive = preempted_sactive;
1477 ap->qc_active = preempted_qc_active;
1479 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1480 * Until those drivers are fixed, we detect the condition
1481 * here, fail the command with AC_ERR_SYSTEM and reenable the
1482 * port.
1484 * Note that this doesn't change any behavior as internal
1485 * command failure results in disabling the device in the
1486 * higher layer for LLDDs without new reset/EH callbacks.
1488 * Kill the following code as soon as those drivers are fixed.
1490 if (ap->flags & ATA_FLAG_DISABLED) {
1491 err_mask |= AC_ERR_SYSTEM;
1492 ata_port_probe(ap);
1495 spin_unlock_irqrestore(ap->lock, flags);
1497 return err_mask;
1501 * ata_exec_internal - execute libata internal command
1502 * @dev: Device to which the command is sent
1503 * @tf: Taskfile registers for the command and the result
1504 * @cdb: CDB for packet command
1505 * @dma_dir: Data tranfer direction of the command
1506 * @buf: Data buffer of the command
1507 * @buflen: Length of data buffer
1509 * Wrapper around ata_exec_internal_sg() which takes simple
1510 * buffer instead of sg list.
1512 * LOCKING:
1513 * None. Should be called with kernel context, might sleep.
1515 * RETURNS:
1516 * Zero on success, AC_ERR_* mask on failure
1518 unsigned ata_exec_internal(struct ata_device *dev,
1519 struct ata_taskfile *tf, const u8 *cdb,
1520 int dma_dir, void *buf, unsigned int buflen)
1522 struct scatterlist *psg = NULL, sg;
1523 unsigned int n_elem = 0;
1525 if (dma_dir != DMA_NONE) {
1526 WARN_ON(!buf);
1527 sg_init_one(&sg, buf, buflen);
1528 psg = &sg;
1529 n_elem++;
1532 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1536 * ata_do_simple_cmd - execute simple internal command
1537 * @dev: Device to which the command is sent
1538 * @cmd: Opcode to execute
1540 * Execute a 'simple' command, that only consists of the opcode
1541 * 'cmd' itself, without filling any other registers
1543 * LOCKING:
1544 * Kernel thread context (may sleep).
1546 * RETURNS:
1547 * Zero on success, AC_ERR_* mask on failure
1549 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1551 struct ata_taskfile tf;
1553 ata_tf_init(dev, &tf);
1555 tf.command = cmd;
1556 tf.flags |= ATA_TFLAG_DEVICE;
1557 tf.protocol = ATA_PROT_NODATA;
1559 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1563 * ata_pio_need_iordy - check if iordy needed
1564 * @adev: ATA device
1566 * Check if the current speed of the device requires IORDY. Used
1567 * by various controllers for chip configuration.
1570 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1572 /* Controller doesn't support IORDY. Probably a pointless check
1573 as the caller should know this */
1574 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1575 return 0;
1576 /* PIO3 and higher it is mandatory */
1577 if (adev->pio_mode > XFER_PIO_2)
1578 return 1;
1579 /* We turn it on when possible */
1580 if (ata_id_has_iordy(adev->id))
1581 return 1;
1582 return 0;
1586 * ata_pio_mask_no_iordy - Return the non IORDY mask
1587 * @adev: ATA device
1589 * Compute the highest mode possible if we are not using iordy. Return
1590 * -1 if no iordy mode is available.
1593 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1595 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1596 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1597 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1598 /* Is the speed faster than the drive allows non IORDY ? */
1599 if (pio) {
1600 /* This is cycle times not frequency - watch the logic! */
1601 if (pio > 240) /* PIO2 is 240nS per cycle */
1602 return 3 << ATA_SHIFT_PIO;
1603 return 7 << ATA_SHIFT_PIO;
1606 return 3 << ATA_SHIFT_PIO;
1610 * ata_dev_read_id - Read ID data from the specified device
1611 * @dev: target device
1612 * @p_class: pointer to class of the target device (may be changed)
1613 * @flags: ATA_READID_* flags
1614 * @id: buffer to read IDENTIFY data into
1616 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1617 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1618 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1619 * for pre-ATA4 drives.
1621 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1622 * now we abort if we hit that case.
1624 * LOCKING:
1625 * Kernel thread context (may sleep)
1627 * RETURNS:
1628 * 0 on success, -errno otherwise.
1630 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1631 unsigned int flags, u16 *id)
1633 struct ata_port *ap = dev->link->ap;
1634 unsigned int class = *p_class;
1635 struct ata_taskfile tf;
1636 unsigned int err_mask = 0;
1637 const char *reason;
1638 int may_fallback = 1, tried_spinup = 0;
1639 int rc;
1641 if (ata_msg_ctl(ap))
1642 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1644 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1645 retry:
1646 ata_tf_init(dev, &tf);
1648 switch (class) {
1649 case ATA_DEV_ATA:
1650 tf.command = ATA_CMD_ID_ATA;
1651 break;
1652 case ATA_DEV_ATAPI:
1653 tf.command = ATA_CMD_ID_ATAPI;
1654 break;
1655 default:
1656 rc = -ENODEV;
1657 reason = "unsupported class";
1658 goto err_out;
1661 tf.protocol = ATA_PROT_PIO;
1663 /* Some devices choke if TF registers contain garbage. Make
1664 * sure those are properly initialized.
1666 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1668 /* Device presence detection is unreliable on some
1669 * controllers. Always poll IDENTIFY if available.
1671 tf.flags |= ATA_TFLAG_POLLING;
1673 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1674 id, sizeof(id[0]) * ATA_ID_WORDS);
1675 if (err_mask) {
1676 if (err_mask & AC_ERR_NODEV_HINT) {
1677 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1678 ap->print_id, dev->devno);
1679 return -ENOENT;
1682 /* Device or controller might have reported the wrong
1683 * device class. Give a shot at the other IDENTIFY if
1684 * the current one is aborted by the device.
1686 if (may_fallback &&
1687 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1688 may_fallback = 0;
1690 if (class == ATA_DEV_ATA)
1691 class = ATA_DEV_ATAPI;
1692 else
1693 class = ATA_DEV_ATA;
1694 goto retry;
1697 rc = -EIO;
1698 reason = "I/O error";
1699 goto err_out;
1702 /* Falling back doesn't make sense if ID data was read
1703 * successfully at least once.
1705 may_fallback = 0;
1707 swap_buf_le16(id, ATA_ID_WORDS);
1709 /* sanity check */
1710 rc = -EINVAL;
1711 reason = "device reports invalid type";
1713 if (class == ATA_DEV_ATA) {
1714 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1715 goto err_out;
1716 } else {
1717 if (ata_id_is_ata(id))
1718 goto err_out;
1721 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1722 tried_spinup = 1;
1724 * Drive powered-up in standby mode, and requires a specific
1725 * SET_FEATURES spin-up subcommand before it will accept
1726 * anything other than the original IDENTIFY command.
1728 ata_tf_init(dev, &tf);
1729 tf.command = ATA_CMD_SET_FEATURES;
1730 tf.feature = SETFEATURES_SPINUP;
1731 tf.protocol = ATA_PROT_NODATA;
1732 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1733 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1734 if (err_mask && id[2] != 0x738c) {
1735 rc = -EIO;
1736 reason = "SPINUP failed";
1737 goto err_out;
1740 * If the drive initially returned incomplete IDENTIFY info,
1741 * we now must reissue the IDENTIFY command.
1743 if (id[2] == 0x37c8)
1744 goto retry;
1747 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1749 * The exact sequence expected by certain pre-ATA4 drives is:
1750 * SRST RESET
1751 * IDENTIFY (optional in early ATA)
1752 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1753 * anything else..
1754 * Some drives were very specific about that exact sequence.
1756 * Note that ATA4 says lba is mandatory so the second check
1757 * shoud never trigger.
1759 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1760 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1761 if (err_mask) {
1762 rc = -EIO;
1763 reason = "INIT_DEV_PARAMS failed";
1764 goto err_out;
1767 /* current CHS translation info (id[53-58]) might be
1768 * changed. reread the identify device info.
1770 flags &= ~ATA_READID_POSTRESET;
1771 goto retry;
1775 *p_class = class;
1777 return 0;
1779 err_out:
1780 if (ata_msg_warn(ap))
1781 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1782 "(%s, err_mask=0x%x)\n", reason, err_mask);
1783 return rc;
1786 static inline u8 ata_dev_knobble(struct ata_device *dev)
1788 struct ata_port *ap = dev->link->ap;
1789 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1792 static void ata_dev_config_ncq(struct ata_device *dev,
1793 char *desc, size_t desc_sz)
1795 struct ata_port *ap = dev->link->ap;
1796 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1798 if (!ata_id_has_ncq(dev->id)) {
1799 desc[0] = '\0';
1800 return;
1802 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1803 snprintf(desc, desc_sz, "NCQ (not used)");
1804 return;
1806 if (ap->flags & ATA_FLAG_NCQ) {
1807 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1808 dev->flags |= ATA_DFLAG_NCQ;
1811 if (hdepth >= ddepth)
1812 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1813 else
1814 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1818 * ata_dev_configure - Configure the specified ATA/ATAPI device
1819 * @dev: Target device to configure
1821 * Configure @dev according to @dev->id. Generic and low-level
1822 * driver specific fixups are also applied.
1824 * LOCKING:
1825 * Kernel thread context (may sleep)
1827 * RETURNS:
1828 * 0 on success, -errno otherwise
1830 int ata_dev_configure(struct ata_device *dev)
1832 struct ata_port *ap = dev->link->ap;
1833 struct ata_eh_context *ehc = &dev->link->eh_context;
1834 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1835 const u16 *id = dev->id;
1836 unsigned int xfer_mask;
1837 char revbuf[7]; /* XYZ-99\0 */
1838 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1839 char modelbuf[ATA_ID_PROD_LEN+1];
1840 int rc;
1842 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1843 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1844 __FUNCTION__);
1845 return 0;
1848 if (ata_msg_probe(ap))
1849 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1851 /* set horkage */
1852 dev->horkage |= ata_dev_blacklisted(dev);
1854 /* let ACPI work its magic */
1855 rc = ata_acpi_on_devcfg(dev);
1856 if (rc)
1857 return rc;
1859 /* print device capabilities */
1860 if (ata_msg_probe(ap))
1861 ata_dev_printk(dev, KERN_DEBUG,
1862 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1863 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1864 __FUNCTION__,
1865 id[49], id[82], id[83], id[84],
1866 id[85], id[86], id[87], id[88]);
1868 /* initialize to-be-configured parameters */
1869 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1870 dev->max_sectors = 0;
1871 dev->cdb_len = 0;
1872 dev->n_sectors = 0;
1873 dev->cylinders = 0;
1874 dev->heads = 0;
1875 dev->sectors = 0;
1878 * common ATA, ATAPI feature tests
1881 /* find max transfer mode; for printk only */
1882 xfer_mask = ata_id_xfermask(id);
1884 if (ata_msg_probe(ap))
1885 ata_dump_id(id);
1887 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1888 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1889 sizeof(fwrevbuf));
1891 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1892 sizeof(modelbuf));
1894 /* ATA-specific feature tests */
1895 if (dev->class == ATA_DEV_ATA) {
1896 if (ata_id_is_cfa(id)) {
1897 if (id[162] & 1) /* CPRM may make this media unusable */
1898 ata_dev_printk(dev, KERN_WARNING,
1899 "supports DRM functions and may "
1900 "not be fully accessable.\n");
1901 snprintf(revbuf, 7, "CFA");
1903 else
1904 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1906 dev->n_sectors = ata_id_n_sectors(id);
1908 if (dev->id[59] & 0x100)
1909 dev->multi_count = dev->id[59] & 0xff;
1911 if (ata_id_has_lba(id)) {
1912 const char *lba_desc;
1913 char ncq_desc[20];
1915 lba_desc = "LBA";
1916 dev->flags |= ATA_DFLAG_LBA;
1917 if (ata_id_has_lba48(id)) {
1918 dev->flags |= ATA_DFLAG_LBA48;
1919 lba_desc = "LBA48";
1921 if (dev->n_sectors >= (1UL << 28) &&
1922 ata_id_has_flush_ext(id))
1923 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1926 if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) &&
1927 ata_id_hpa_enabled(dev->id))
1928 dev->n_sectors = ata_hpa_resize(dev);
1930 /* config NCQ */
1931 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1933 /* print device info to dmesg */
1934 if (ata_msg_drv(ap) && print_info) {
1935 ata_dev_printk(dev, KERN_INFO,
1936 "%s: %s, %s, max %s\n",
1937 revbuf, modelbuf, fwrevbuf,
1938 ata_mode_string(xfer_mask));
1939 ata_dev_printk(dev, KERN_INFO,
1940 "%Lu sectors, multi %u: %s %s\n",
1941 (unsigned long long)dev->n_sectors,
1942 dev->multi_count, lba_desc, ncq_desc);
1944 } else {
1945 /* CHS */
1947 /* Default translation */
1948 dev->cylinders = id[1];
1949 dev->heads = id[3];
1950 dev->sectors = id[6];
1952 if (ata_id_current_chs_valid(id)) {
1953 /* Current CHS translation is valid. */
1954 dev->cylinders = id[54];
1955 dev->heads = id[55];
1956 dev->sectors = id[56];
1959 /* print device info to dmesg */
1960 if (ata_msg_drv(ap) && print_info) {
1961 ata_dev_printk(dev, KERN_INFO,
1962 "%s: %s, %s, max %s\n",
1963 revbuf, modelbuf, fwrevbuf,
1964 ata_mode_string(xfer_mask));
1965 ata_dev_printk(dev, KERN_INFO,
1966 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1967 (unsigned long long)dev->n_sectors,
1968 dev->multi_count, dev->cylinders,
1969 dev->heads, dev->sectors);
1973 dev->cdb_len = 16;
1976 /* ATAPI-specific feature tests */
1977 else if (dev->class == ATA_DEV_ATAPI) {
1978 char *cdb_intr_string = "";
1980 rc = atapi_cdb_len(id);
1981 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1982 if (ata_msg_warn(ap))
1983 ata_dev_printk(dev, KERN_WARNING,
1984 "unsupported CDB len\n");
1985 rc = -EINVAL;
1986 goto err_out_nosup;
1988 dev->cdb_len = (unsigned int) rc;
1990 if (ata_id_cdb_intr(dev->id)) {
1991 dev->flags |= ATA_DFLAG_CDB_INTR;
1992 cdb_intr_string = ", CDB intr";
1995 /* print device info to dmesg */
1996 if (ata_msg_drv(ap) && print_info)
1997 ata_dev_printk(dev, KERN_INFO,
1998 "ATAPI: %s, %s, max %s%s\n",
1999 modelbuf, fwrevbuf,
2000 ata_mode_string(xfer_mask),
2001 cdb_intr_string);
2004 /* determine max_sectors */
2005 dev->max_sectors = ATA_MAX_SECTORS;
2006 if (dev->flags & ATA_DFLAG_LBA48)
2007 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2009 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2010 /* Let the user know. We don't want to disallow opens for
2011 rescue purposes, or in case the vendor is just a blithering
2012 idiot */
2013 if (print_info) {
2014 ata_dev_printk(dev, KERN_WARNING,
2015 "Drive reports diagnostics failure. This may indicate a drive\n");
2016 ata_dev_printk(dev, KERN_WARNING,
2017 "fault or invalid emulation. Contact drive vendor for information.\n");
2021 /* limit bridge transfers to udma5, 200 sectors */
2022 if (ata_dev_knobble(dev)) {
2023 if (ata_msg_drv(ap) && print_info)
2024 ata_dev_printk(dev, KERN_INFO,
2025 "applying bridge limits\n");
2026 dev->udma_mask &= ATA_UDMA5;
2027 dev->max_sectors = ATA_MAX_SECTORS;
2030 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2031 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2032 dev->max_sectors);
2034 if (ap->ops->dev_config)
2035 ap->ops->dev_config(dev);
2037 if (ata_msg_probe(ap))
2038 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2039 __FUNCTION__, ata_chk_status(ap));
2040 return 0;
2042 err_out_nosup:
2043 if (ata_msg_probe(ap))
2044 ata_dev_printk(dev, KERN_DEBUG,
2045 "%s: EXIT, err\n", __FUNCTION__);
2046 return rc;
2050 * ata_cable_40wire - return 40 wire cable type
2051 * @ap: port
2053 * Helper method for drivers which want to hardwire 40 wire cable
2054 * detection.
2057 int ata_cable_40wire(struct ata_port *ap)
2059 return ATA_CBL_PATA40;
2063 * ata_cable_80wire - return 80 wire cable type
2064 * @ap: port
2066 * Helper method for drivers which want to hardwire 80 wire cable
2067 * detection.
2070 int ata_cable_80wire(struct ata_port *ap)
2072 return ATA_CBL_PATA80;
2076 * ata_cable_unknown - return unknown PATA cable.
2077 * @ap: port
2079 * Helper method for drivers which have no PATA cable detection.
2082 int ata_cable_unknown(struct ata_port *ap)
2084 return ATA_CBL_PATA_UNK;
2088 * ata_cable_sata - return SATA cable type
2089 * @ap: port
2091 * Helper method for drivers which have SATA cables
2094 int ata_cable_sata(struct ata_port *ap)
2096 return ATA_CBL_SATA;
2100 * ata_bus_probe - Reset and probe ATA bus
2101 * @ap: Bus to probe
2103 * Master ATA bus probing function. Initiates a hardware-dependent
2104 * bus reset, then attempts to identify any devices found on
2105 * the bus.
2107 * LOCKING:
2108 * PCI/etc. bus probe sem.
2110 * RETURNS:
2111 * Zero on success, negative errno otherwise.
2114 int ata_bus_probe(struct ata_port *ap)
2116 unsigned int classes[ATA_MAX_DEVICES];
2117 int tries[ATA_MAX_DEVICES];
2118 int rc;
2119 struct ata_device *dev;
2121 ata_port_probe(ap);
2123 ata_link_for_each_dev(dev, &ap->link)
2124 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2126 retry:
2127 /* reset and determine device classes */
2128 ap->ops->phy_reset(ap);
2130 ata_link_for_each_dev(dev, &ap->link) {
2131 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2132 dev->class != ATA_DEV_UNKNOWN)
2133 classes[dev->devno] = dev->class;
2134 else
2135 classes[dev->devno] = ATA_DEV_NONE;
2137 dev->class = ATA_DEV_UNKNOWN;
2140 ata_port_probe(ap);
2142 /* after the reset the device state is PIO 0 and the controller
2143 state is undefined. Record the mode */
2145 ata_link_for_each_dev(dev, &ap->link)
2146 dev->pio_mode = XFER_PIO_0;
2148 /* read IDENTIFY page and configure devices. We have to do the identify
2149 specific sequence bass-ackwards so that PDIAG- is released by
2150 the slave device */
2152 ata_link_for_each_dev(dev, &ap->link) {
2153 if (tries[dev->devno])
2154 dev->class = classes[dev->devno];
2156 if (!ata_dev_enabled(dev))
2157 continue;
2159 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2160 dev->id);
2161 if (rc)
2162 goto fail;
2165 /* Now ask for the cable type as PDIAG- should have been released */
2166 if (ap->ops->cable_detect)
2167 ap->cbl = ap->ops->cable_detect(ap);
2169 /* After the identify sequence we can now set up the devices. We do
2170 this in the normal order so that the user doesn't get confused */
2172 ata_link_for_each_dev(dev, &ap->link) {
2173 if (!ata_dev_enabled(dev))
2174 continue;
2176 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2177 rc = ata_dev_configure(dev);
2178 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2179 if (rc)
2180 goto fail;
2183 /* configure transfer mode */
2184 rc = ata_set_mode(&ap->link, &dev);
2185 if (rc)
2186 goto fail;
2188 ata_link_for_each_dev(dev, &ap->link)
2189 if (ata_dev_enabled(dev))
2190 return 0;
2192 /* no device present, disable port */
2193 ata_port_disable(ap);
2194 ap->ops->port_disable(ap);
2195 return -ENODEV;
2197 fail:
2198 tries[dev->devno]--;
2200 switch (rc) {
2201 case -EINVAL:
2202 /* eeek, something went very wrong, give up */
2203 tries[dev->devno] = 0;
2204 break;
2206 case -ENODEV:
2207 /* give it just one more chance */
2208 tries[dev->devno] = min(tries[dev->devno], 1);
2209 case -EIO:
2210 if (tries[dev->devno] == 1) {
2211 /* This is the last chance, better to slow
2212 * down than lose it.
2214 sata_down_spd_limit(&ap->link);
2215 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2219 if (!tries[dev->devno])
2220 ata_dev_disable(dev);
2222 goto retry;
2226 * ata_port_probe - Mark port as enabled
2227 * @ap: Port for which we indicate enablement
2229 * Modify @ap data structure such that the system
2230 * thinks that the entire port is enabled.
2232 * LOCKING: host lock, or some other form of
2233 * serialization.
2236 void ata_port_probe(struct ata_port *ap)
2238 ap->flags &= ~ATA_FLAG_DISABLED;
2242 * sata_print_link_status - Print SATA link status
2243 * @link: SATA link to printk link status about
2245 * This function prints link speed and status of a SATA link.
2247 * LOCKING:
2248 * None.
2250 void sata_print_link_status(struct ata_link *link)
2252 u32 sstatus, scontrol, tmp;
2254 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2255 return;
2256 sata_scr_read(link, SCR_CONTROL, &scontrol);
2258 if (ata_link_online(link)) {
2259 tmp = (sstatus >> 4) & 0xf;
2260 ata_link_printk(link, KERN_INFO,
2261 "SATA link up %s (SStatus %X SControl %X)\n",
2262 sata_spd_string(tmp), sstatus, scontrol);
2263 } else {
2264 ata_link_printk(link, KERN_INFO,
2265 "SATA link down (SStatus %X SControl %X)\n",
2266 sstatus, scontrol);
2271 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2272 * @ap: SATA port associated with target SATA PHY.
2274 * This function issues commands to standard SATA Sxxx
2275 * PHY registers, to wake up the phy (and device), and
2276 * clear any reset condition.
2278 * LOCKING:
2279 * PCI/etc. bus probe sem.
2282 void __sata_phy_reset(struct ata_port *ap)
2284 struct ata_link *link = &ap->link;
2285 unsigned long timeout = jiffies + (HZ * 5);
2286 u32 sstatus;
2288 if (ap->flags & ATA_FLAG_SATA_RESET) {
2289 /* issue phy wake/reset */
2290 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2291 /* Couldn't find anything in SATA I/II specs, but
2292 * AHCI-1.1 10.4.2 says at least 1 ms. */
2293 mdelay(1);
2295 /* phy wake/clear reset */
2296 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2298 /* wait for phy to become ready, if necessary */
2299 do {
2300 msleep(200);
2301 sata_scr_read(link, SCR_STATUS, &sstatus);
2302 if ((sstatus & 0xf) != 1)
2303 break;
2304 } while (time_before(jiffies, timeout));
2306 /* print link status */
2307 sata_print_link_status(link);
2309 /* TODO: phy layer with polling, timeouts, etc. */
2310 if (!ata_link_offline(link))
2311 ata_port_probe(ap);
2312 else
2313 ata_port_disable(ap);
2315 if (ap->flags & ATA_FLAG_DISABLED)
2316 return;
2318 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2319 ata_port_disable(ap);
2320 return;
2323 ap->cbl = ATA_CBL_SATA;
2327 * sata_phy_reset - Reset SATA bus.
2328 * @ap: SATA port associated with target SATA PHY.
2330 * This function resets the SATA bus, and then probes
2331 * the bus for devices.
2333 * LOCKING:
2334 * PCI/etc. bus probe sem.
2337 void sata_phy_reset(struct ata_port *ap)
2339 __sata_phy_reset(ap);
2340 if (ap->flags & ATA_FLAG_DISABLED)
2341 return;
2342 ata_bus_reset(ap);
2346 * ata_dev_pair - return other device on cable
2347 * @adev: device
2349 * Obtain the other device on the same cable, or if none is
2350 * present NULL is returned
2353 struct ata_device *ata_dev_pair(struct ata_device *adev)
2355 struct ata_link *link = adev->link;
2356 struct ata_device *pair = &link->device[1 - adev->devno];
2357 if (!ata_dev_enabled(pair))
2358 return NULL;
2359 return pair;
2363 * ata_port_disable - Disable port.
2364 * @ap: Port to be disabled.
2366 * Modify @ap data structure such that the system
2367 * thinks that the entire port is disabled, and should
2368 * never attempt to probe or communicate with devices
2369 * on this port.
2371 * LOCKING: host lock, or some other form of
2372 * serialization.
2375 void ata_port_disable(struct ata_port *ap)
2377 ap->link.device[0].class = ATA_DEV_NONE;
2378 ap->link.device[1].class = ATA_DEV_NONE;
2379 ap->flags |= ATA_FLAG_DISABLED;
2383 * sata_down_spd_limit - adjust SATA spd limit downward
2384 * @link: Link to adjust SATA spd limit for
2386 * Adjust SATA spd limit of @link downward. Note that this
2387 * function only adjusts the limit. The change must be applied
2388 * using sata_set_spd().
2390 * LOCKING:
2391 * Inherited from caller.
2393 * RETURNS:
2394 * 0 on success, negative errno on failure
2396 int sata_down_spd_limit(struct ata_link *link)
2398 u32 sstatus, spd, mask;
2399 int rc, highbit;
2401 if (!sata_scr_valid(link))
2402 return -EOPNOTSUPP;
2404 /* If SCR can be read, use it to determine the current SPD.
2405 * If not, use cached value in link->sata_spd.
2407 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2408 if (rc == 0)
2409 spd = (sstatus >> 4) & 0xf;
2410 else
2411 spd = link->sata_spd;
2413 mask = link->sata_spd_limit;
2414 if (mask <= 1)
2415 return -EINVAL;
2417 /* unconditionally mask off the highest bit */
2418 highbit = fls(mask) - 1;
2419 mask &= ~(1 << highbit);
2421 /* Mask off all speeds higher than or equal to the current
2422 * one. Force 1.5Gbps if current SPD is not available.
2424 if (spd > 1)
2425 mask &= (1 << (spd - 1)) - 1;
2426 else
2427 mask &= 1;
2429 /* were we already at the bottom? */
2430 if (!mask)
2431 return -EINVAL;
2433 link->sata_spd_limit = mask;
2435 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2436 sata_spd_string(fls(mask)));
2438 return 0;
2441 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2443 u32 spd, limit;
2445 if (link->sata_spd_limit == UINT_MAX)
2446 limit = 0;
2447 else
2448 limit = fls(link->sata_spd_limit);
2450 spd = (*scontrol >> 4) & 0xf;
2451 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2453 return spd != limit;
2457 * sata_set_spd_needed - is SATA spd configuration needed
2458 * @link: Link in question
2460 * Test whether the spd limit in SControl matches
2461 * @link->sata_spd_limit. This function is used to determine
2462 * whether hardreset is necessary to apply SATA spd
2463 * configuration.
2465 * LOCKING:
2466 * Inherited from caller.
2468 * RETURNS:
2469 * 1 if SATA spd configuration is needed, 0 otherwise.
2471 int sata_set_spd_needed(struct ata_link *link)
2473 u32 scontrol;
2475 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2476 return 0;
2478 return __sata_set_spd_needed(link, &scontrol);
2482 * sata_set_spd - set SATA spd according to spd limit
2483 * @link: Link to set SATA spd for
2485 * Set SATA spd of @link according to sata_spd_limit.
2487 * LOCKING:
2488 * Inherited from caller.
2490 * RETURNS:
2491 * 0 if spd doesn't need to be changed, 1 if spd has been
2492 * changed. Negative errno if SCR registers are inaccessible.
2494 int sata_set_spd(struct ata_link *link)
2496 u32 scontrol;
2497 int rc;
2499 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2500 return rc;
2502 if (!__sata_set_spd_needed(link, &scontrol))
2503 return 0;
2505 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2506 return rc;
2508 return 1;
2512 * This mode timing computation functionality is ported over from
2513 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2516 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2517 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2518 * for UDMA6, which is currently supported only by Maxtor drives.
2520 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2523 static const struct ata_timing ata_timing[] = {
2525 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2526 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2527 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2528 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2530 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2531 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2532 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2533 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2534 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2536 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2538 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2539 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2540 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2542 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2543 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2544 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2546 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2547 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2548 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2549 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2551 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2552 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2553 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2555 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2557 { 0xFF }
2560 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2561 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2563 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2565 q->setup = EZ(t->setup * 1000, T);
2566 q->act8b = EZ(t->act8b * 1000, T);
2567 q->rec8b = EZ(t->rec8b * 1000, T);
2568 q->cyc8b = EZ(t->cyc8b * 1000, T);
2569 q->active = EZ(t->active * 1000, T);
2570 q->recover = EZ(t->recover * 1000, T);
2571 q->cycle = EZ(t->cycle * 1000, T);
2572 q->udma = EZ(t->udma * 1000, UT);
2575 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2576 struct ata_timing *m, unsigned int what)
2578 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2579 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2580 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2581 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2582 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2583 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2584 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2585 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2588 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2590 const struct ata_timing *t;
2592 for (t = ata_timing; t->mode != speed; t++)
2593 if (t->mode == 0xFF)
2594 return NULL;
2595 return t;
2598 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2599 struct ata_timing *t, int T, int UT)
2601 const struct ata_timing *s;
2602 struct ata_timing p;
2605 * Find the mode.
2608 if (!(s = ata_timing_find_mode(speed)))
2609 return -EINVAL;
2611 memcpy(t, s, sizeof(*s));
2614 * If the drive is an EIDE drive, it can tell us it needs extended
2615 * PIO/MW_DMA cycle timing.
2618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2619 memset(&p, 0, sizeof(p));
2620 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2621 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2622 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2623 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2624 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2626 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2630 * Convert the timing to bus clock counts.
2633 ata_timing_quantize(t, t, T, UT);
2636 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2637 * S.M.A.R.T * and some other commands. We have to ensure that the
2638 * DMA cycle timing is slower/equal than the fastest PIO timing.
2641 if (speed > XFER_PIO_6) {
2642 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2643 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2647 * Lengthen active & recovery time so that cycle time is correct.
2650 if (t->act8b + t->rec8b < t->cyc8b) {
2651 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2652 t->rec8b = t->cyc8b - t->act8b;
2655 if (t->active + t->recover < t->cycle) {
2656 t->active += (t->cycle - (t->active + t->recover)) / 2;
2657 t->recover = t->cycle - t->active;
2660 /* In a few cases quantisation may produce enough errors to
2661 leave t->cycle too low for the sum of active and recovery
2662 if so we must correct this */
2663 if (t->active + t->recover > t->cycle)
2664 t->cycle = t->active + t->recover;
2666 return 0;
2670 * ata_down_xfermask_limit - adjust dev xfer masks downward
2671 * @dev: Device to adjust xfer masks
2672 * @sel: ATA_DNXFER_* selector
2674 * Adjust xfer masks of @dev downward. Note that this function
2675 * does not apply the change. Invoking ata_set_mode() afterwards
2676 * will apply the limit.
2678 * LOCKING:
2679 * Inherited from caller.
2681 * RETURNS:
2682 * 0 on success, negative errno on failure
2684 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2686 char buf[32];
2687 unsigned int orig_mask, xfer_mask;
2688 unsigned int pio_mask, mwdma_mask, udma_mask;
2689 int quiet, highbit;
2691 quiet = !!(sel & ATA_DNXFER_QUIET);
2692 sel &= ~ATA_DNXFER_QUIET;
2694 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2695 dev->mwdma_mask,
2696 dev->udma_mask);
2697 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2699 switch (sel) {
2700 case ATA_DNXFER_PIO:
2701 highbit = fls(pio_mask) - 1;
2702 pio_mask &= ~(1 << highbit);
2703 break;
2705 case ATA_DNXFER_DMA:
2706 if (udma_mask) {
2707 highbit = fls(udma_mask) - 1;
2708 udma_mask &= ~(1 << highbit);
2709 if (!udma_mask)
2710 return -ENOENT;
2711 } else if (mwdma_mask) {
2712 highbit = fls(mwdma_mask) - 1;
2713 mwdma_mask &= ~(1 << highbit);
2714 if (!mwdma_mask)
2715 return -ENOENT;
2717 break;
2719 case ATA_DNXFER_40C:
2720 udma_mask &= ATA_UDMA_MASK_40C;
2721 break;
2723 case ATA_DNXFER_FORCE_PIO0:
2724 pio_mask &= 1;
2725 case ATA_DNXFER_FORCE_PIO:
2726 mwdma_mask = 0;
2727 udma_mask = 0;
2728 break;
2730 default:
2731 BUG();
2734 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2736 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2737 return -ENOENT;
2739 if (!quiet) {
2740 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2741 snprintf(buf, sizeof(buf), "%s:%s",
2742 ata_mode_string(xfer_mask),
2743 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2744 else
2745 snprintf(buf, sizeof(buf), "%s",
2746 ata_mode_string(xfer_mask));
2748 ata_dev_printk(dev, KERN_WARNING,
2749 "limiting speed to %s\n", buf);
2752 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2753 &dev->udma_mask);
2755 return 0;
2758 static int ata_dev_set_mode(struct ata_device *dev)
2760 struct ata_eh_context *ehc = &dev->link->eh_context;
2761 unsigned int err_mask;
2762 int rc;
2764 dev->flags &= ~ATA_DFLAG_PIO;
2765 if (dev->xfer_shift == ATA_SHIFT_PIO)
2766 dev->flags |= ATA_DFLAG_PIO;
2768 err_mask = ata_dev_set_xfermode(dev);
2769 /* Old CFA may refuse this command, which is just fine */
2770 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2771 err_mask &= ~AC_ERR_DEV;
2772 /* Some very old devices and some bad newer ones fail any kind of
2773 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2774 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2775 dev->pio_mode <= XFER_PIO_2)
2776 err_mask &= ~AC_ERR_DEV;
2777 if (err_mask) {
2778 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2779 "(err_mask=0x%x)\n", err_mask);
2780 return -EIO;
2783 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2784 rc = ata_dev_revalidate(dev, 0);
2785 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2786 if (rc)
2787 return rc;
2789 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2790 dev->xfer_shift, (int)dev->xfer_mode);
2792 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2793 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2794 return 0;
2798 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2799 * @link: link on which timings will be programmed
2800 * @r_failed_dev: out paramter for failed device
2802 * Standard implementation of the function used to tune and set
2803 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2804 * ata_dev_set_mode() fails, pointer to the failing device is
2805 * returned in @r_failed_dev.
2807 * LOCKING:
2808 * PCI/etc. bus probe sem.
2810 * RETURNS:
2811 * 0 on success, negative errno otherwise
2814 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2816 struct ata_port *ap = link->ap;
2817 struct ata_device *dev;
2818 int rc = 0, used_dma = 0, found = 0;
2820 /* step 1: calculate xfer_mask */
2821 ata_link_for_each_dev(dev, link) {
2822 unsigned int pio_mask, dma_mask;
2824 if (!ata_dev_enabled(dev))
2825 continue;
2827 ata_dev_xfermask(dev);
2829 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2830 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2831 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2832 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2834 found = 1;
2835 if (dev->dma_mode)
2836 used_dma = 1;
2838 if (!found)
2839 goto out;
2841 /* step 2: always set host PIO timings */
2842 ata_link_for_each_dev(dev, link) {
2843 if (!ata_dev_enabled(dev))
2844 continue;
2846 if (!dev->pio_mode) {
2847 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2848 rc = -EINVAL;
2849 goto out;
2852 dev->xfer_mode = dev->pio_mode;
2853 dev->xfer_shift = ATA_SHIFT_PIO;
2854 if (ap->ops->set_piomode)
2855 ap->ops->set_piomode(ap, dev);
2858 /* step 3: set host DMA timings */
2859 ata_link_for_each_dev(dev, link) {
2860 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2861 continue;
2863 dev->xfer_mode = dev->dma_mode;
2864 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2865 if (ap->ops->set_dmamode)
2866 ap->ops->set_dmamode(ap, dev);
2869 /* step 4: update devices' xfer mode */
2870 ata_link_for_each_dev(dev, link) {
2871 /* don't update suspended devices' xfer mode */
2872 if (!ata_dev_enabled(dev))
2873 continue;
2875 rc = ata_dev_set_mode(dev);
2876 if (rc)
2877 goto out;
2880 /* Record simplex status. If we selected DMA then the other
2881 * host channels are not permitted to do so.
2883 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2884 ap->host->simplex_claimed = ap;
2886 out:
2887 if (rc)
2888 *r_failed_dev = dev;
2889 return rc;
2893 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2894 * @link: link on which timings will be programmed
2895 * @r_failed_dev: out paramter for failed device
2897 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2898 * ata_set_mode() fails, pointer to the failing device is
2899 * returned in @r_failed_dev.
2901 * LOCKING:
2902 * PCI/etc. bus probe sem.
2904 * RETURNS:
2905 * 0 on success, negative errno otherwise
2907 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2909 struct ata_port *ap = link->ap;
2911 /* has private set_mode? */
2912 if (ap->ops->set_mode)
2913 return ap->ops->set_mode(link, r_failed_dev);
2914 return ata_do_set_mode(link, r_failed_dev);
2918 * ata_tf_to_host - issue ATA taskfile to host controller
2919 * @ap: port to which command is being issued
2920 * @tf: ATA taskfile register set
2922 * Issues ATA taskfile register set to ATA host controller,
2923 * with proper synchronization with interrupt handler and
2924 * other threads.
2926 * LOCKING:
2927 * spin_lock_irqsave(host lock)
2930 static inline void ata_tf_to_host(struct ata_port *ap,
2931 const struct ata_taskfile *tf)
2933 ap->ops->tf_load(ap, tf);
2934 ap->ops->exec_command(ap, tf);
2938 * ata_busy_sleep - sleep until BSY clears, or timeout
2939 * @ap: port containing status register to be polled
2940 * @tmout_pat: impatience timeout
2941 * @tmout: overall timeout
2943 * Sleep until ATA Status register bit BSY clears,
2944 * or a timeout occurs.
2946 * LOCKING:
2947 * Kernel thread context (may sleep).
2949 * RETURNS:
2950 * 0 on success, -errno otherwise.
2952 int ata_busy_sleep(struct ata_port *ap,
2953 unsigned long tmout_pat, unsigned long tmout)
2955 unsigned long timer_start, timeout;
2956 u8 status;
2958 status = ata_busy_wait(ap, ATA_BUSY, 300);
2959 timer_start = jiffies;
2960 timeout = timer_start + tmout_pat;
2961 while (status != 0xff && (status & ATA_BUSY) &&
2962 time_before(jiffies, timeout)) {
2963 msleep(50);
2964 status = ata_busy_wait(ap, ATA_BUSY, 3);
2967 if (status != 0xff && (status & ATA_BUSY))
2968 ata_port_printk(ap, KERN_WARNING,
2969 "port is slow to respond, please be patient "
2970 "(Status 0x%x)\n", status);
2972 timeout = timer_start + tmout;
2973 while (status != 0xff && (status & ATA_BUSY) &&
2974 time_before(jiffies, timeout)) {
2975 msleep(50);
2976 status = ata_chk_status(ap);
2979 if (status == 0xff)
2980 return -ENODEV;
2982 if (status & ATA_BUSY) {
2983 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2984 "(%lu secs, Status 0x%x)\n",
2985 tmout / HZ, status);
2986 return -EBUSY;
2989 return 0;
2993 * ata_wait_ready - sleep until BSY clears, or timeout
2994 * @ap: port containing status register to be polled
2995 * @deadline: deadline jiffies for the operation
2997 * Sleep until ATA Status register bit BSY clears, or timeout
2998 * occurs.
3000 * LOCKING:
3001 * Kernel thread context (may sleep).
3003 * RETURNS:
3004 * 0 on success, -errno otherwise.
3006 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3008 unsigned long start = jiffies;
3009 int warned = 0;
3011 while (1) {
3012 u8 status = ata_chk_status(ap);
3013 unsigned long now = jiffies;
3015 if (!(status & ATA_BUSY))
3016 return 0;
3017 if (!ata_link_online(&ap->link) && status == 0xff)
3018 return -ENODEV;
3019 if (time_after(now, deadline))
3020 return -EBUSY;
3022 if (!warned && time_after(now, start + 5 * HZ) &&
3023 (deadline - now > 3 * HZ)) {
3024 ata_port_printk(ap, KERN_WARNING,
3025 "port is slow to respond, please be patient "
3026 "(Status 0x%x)\n", status);
3027 warned = 1;
3030 msleep(50);
3034 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3035 unsigned long deadline)
3037 struct ata_ioports *ioaddr = &ap->ioaddr;
3038 unsigned int dev0 = devmask & (1 << 0);
3039 unsigned int dev1 = devmask & (1 << 1);
3040 int rc, ret = 0;
3042 /* if device 0 was found in ata_devchk, wait for its
3043 * BSY bit to clear
3045 if (dev0) {
3046 rc = ata_wait_ready(ap, deadline);
3047 if (rc) {
3048 if (rc != -ENODEV)
3049 return rc;
3050 ret = rc;
3054 /* if device 1 was found in ata_devchk, wait for register
3055 * access briefly, then wait for BSY to clear.
3057 if (dev1) {
3058 int i;
3060 ap->ops->dev_select(ap, 1);
3062 /* Wait for register access. Some ATAPI devices fail
3063 * to set nsect/lbal after reset, so don't waste too
3064 * much time on it. We're gonna wait for !BSY anyway.
3066 for (i = 0; i < 2; i++) {
3067 u8 nsect, lbal;
3069 nsect = ioread8(ioaddr->nsect_addr);
3070 lbal = ioread8(ioaddr->lbal_addr);
3071 if ((nsect == 1) && (lbal == 1))
3072 break;
3073 msleep(50); /* give drive a breather */
3076 rc = ata_wait_ready(ap, deadline);
3077 if (rc) {
3078 if (rc != -ENODEV)
3079 return rc;
3080 ret = rc;
3084 /* is all this really necessary? */
3085 ap->ops->dev_select(ap, 0);
3086 if (dev1)
3087 ap->ops->dev_select(ap, 1);
3088 if (dev0)
3089 ap->ops->dev_select(ap, 0);
3091 return ret;
3094 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3095 unsigned long deadline)
3097 struct ata_ioports *ioaddr = &ap->ioaddr;
3099 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3101 /* software reset. causes dev0 to be selected */
3102 iowrite8(ap->ctl, ioaddr->ctl_addr);
3103 udelay(20); /* FIXME: flush */
3104 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3105 udelay(20); /* FIXME: flush */
3106 iowrite8(ap->ctl, ioaddr->ctl_addr);
3108 /* spec mandates ">= 2ms" before checking status.
3109 * We wait 150ms, because that was the magic delay used for
3110 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3111 * between when the ATA command register is written, and then
3112 * status is checked. Because waiting for "a while" before
3113 * checking status is fine, post SRST, we perform this magic
3114 * delay here as well.
3116 * Old drivers/ide uses the 2mS rule and then waits for ready
3118 msleep(150);
3120 /* Before we perform post reset processing we want to see if
3121 * the bus shows 0xFF because the odd clown forgets the D7
3122 * pulldown resistor.
3124 if (ata_check_status(ap) == 0xFF)
3125 return -ENODEV;
3127 return ata_bus_post_reset(ap, devmask, deadline);
3131 * ata_bus_reset - reset host port and associated ATA channel
3132 * @ap: port to reset
3134 * This is typically the first time we actually start issuing
3135 * commands to the ATA channel. We wait for BSY to clear, then
3136 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3137 * result. Determine what devices, if any, are on the channel
3138 * by looking at the device 0/1 error register. Look at the signature
3139 * stored in each device's taskfile registers, to determine if
3140 * the device is ATA or ATAPI.
3142 * LOCKING:
3143 * PCI/etc. bus probe sem.
3144 * Obtains host lock.
3146 * SIDE EFFECTS:
3147 * Sets ATA_FLAG_DISABLED if bus reset fails.
3150 void ata_bus_reset(struct ata_port *ap)
3152 struct ata_device *device = ap->link.device;
3153 struct ata_ioports *ioaddr = &ap->ioaddr;
3154 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3155 u8 err;
3156 unsigned int dev0, dev1 = 0, devmask = 0;
3157 int rc;
3159 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3161 /* determine if device 0/1 are present */
3162 if (ap->flags & ATA_FLAG_SATA_RESET)
3163 dev0 = 1;
3164 else {
3165 dev0 = ata_devchk(ap, 0);
3166 if (slave_possible)
3167 dev1 = ata_devchk(ap, 1);
3170 if (dev0)
3171 devmask |= (1 << 0);
3172 if (dev1)
3173 devmask |= (1 << 1);
3175 /* select device 0 again */
3176 ap->ops->dev_select(ap, 0);
3178 /* issue bus reset */
3179 if (ap->flags & ATA_FLAG_SRST) {
3180 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3181 if (rc && rc != -ENODEV)
3182 goto err_out;
3186 * determine by signature whether we have ATA or ATAPI devices
3188 device[0].class = ata_dev_try_classify(ap, 0, &err);
3189 if ((slave_possible) && (err != 0x81))
3190 device[1].class = ata_dev_try_classify(ap, 1, &err);
3192 /* is double-select really necessary? */
3193 if (device[1].class != ATA_DEV_NONE)
3194 ap->ops->dev_select(ap, 1);
3195 if (device[0].class != ATA_DEV_NONE)
3196 ap->ops->dev_select(ap, 0);
3198 /* if no devices were detected, disable this port */
3199 if ((device[0].class == ATA_DEV_NONE) &&
3200 (device[1].class == ATA_DEV_NONE))
3201 goto err_out;
3203 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3204 /* set up device control for ATA_FLAG_SATA_RESET */
3205 iowrite8(ap->ctl, ioaddr->ctl_addr);
3208 DPRINTK("EXIT\n");
3209 return;
3211 err_out:
3212 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3213 ap->ops->port_disable(ap);
3215 DPRINTK("EXIT\n");
3219 * sata_link_debounce - debounce SATA phy status
3220 * @link: ATA link to debounce SATA phy status for
3221 * @params: timing parameters { interval, duratinon, timeout } in msec
3222 * @deadline: deadline jiffies for the operation
3224 * Make sure SStatus of @link reaches stable state, determined by
3225 * holding the same value where DET is not 1 for @duration polled
3226 * every @interval, before @timeout. Timeout constraints the
3227 * beginning of the stable state. Because DET gets stuck at 1 on
3228 * some controllers after hot unplugging, this functions waits
3229 * until timeout then returns 0 if DET is stable at 1.
3231 * @timeout is further limited by @deadline. The sooner of the
3232 * two is used.
3234 * LOCKING:
3235 * Kernel thread context (may sleep)
3237 * RETURNS:
3238 * 0 on success, -errno on failure.
3240 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3241 unsigned long deadline)
3243 unsigned long interval_msec = params[0];
3244 unsigned long duration = msecs_to_jiffies(params[1]);
3245 unsigned long last_jiffies, t;
3246 u32 last, cur;
3247 int rc;
3249 t = jiffies + msecs_to_jiffies(params[2]);
3250 if (time_before(t, deadline))
3251 deadline = t;
3253 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3254 return rc;
3255 cur &= 0xf;
3257 last = cur;
3258 last_jiffies = jiffies;
3260 while (1) {
3261 msleep(interval_msec);
3262 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3263 return rc;
3264 cur &= 0xf;
3266 /* DET stable? */
3267 if (cur == last) {
3268 if (cur == 1 && time_before(jiffies, deadline))
3269 continue;
3270 if (time_after(jiffies, last_jiffies + duration))
3271 return 0;
3272 continue;
3275 /* unstable, start over */
3276 last = cur;
3277 last_jiffies = jiffies;
3279 /* Check deadline. If debouncing failed, return
3280 * -EPIPE to tell upper layer to lower link speed.
3282 if (time_after(jiffies, deadline))
3283 return -EPIPE;
3288 * sata_link_resume - resume SATA link
3289 * @link: ATA link to resume SATA
3290 * @params: timing parameters { interval, duratinon, timeout } in msec
3291 * @deadline: deadline jiffies for the operation
3293 * Resume SATA phy @link and debounce it.
3295 * LOCKING:
3296 * Kernel thread context (may sleep)
3298 * RETURNS:
3299 * 0 on success, -errno on failure.
3301 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3302 unsigned long deadline)
3304 u32 scontrol;
3305 int rc;
3307 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3308 return rc;
3310 scontrol = (scontrol & 0x0f0) | 0x300;
3312 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3313 return rc;
3315 /* Some PHYs react badly if SStatus is pounded immediately
3316 * after resuming. Delay 200ms before debouncing.
3318 msleep(200);
3320 return sata_link_debounce(link, params, deadline);
3324 * ata_std_prereset - prepare for reset
3325 * @link: ATA link to be reset
3326 * @deadline: deadline jiffies for the operation
3328 * @link is about to be reset. Initialize it. Failure from
3329 * prereset makes libata abort whole reset sequence and give up
3330 * that port, so prereset should be best-effort. It does its
3331 * best to prepare for reset sequence but if things go wrong, it
3332 * should just whine, not fail.
3334 * LOCKING:
3335 * Kernel thread context (may sleep)
3337 * RETURNS:
3338 * 0 on success, -errno otherwise.
3340 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3342 struct ata_port *ap = link->ap;
3343 struct ata_eh_context *ehc = &link->eh_context;
3344 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3345 int rc;
3347 /* handle link resume */
3348 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3349 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3350 ehc->i.action |= ATA_EH_HARDRESET;
3352 /* if we're about to do hardreset, nothing more to do */
3353 if (ehc->i.action & ATA_EH_HARDRESET)
3354 return 0;
3356 /* if SATA, resume link */
3357 if (ap->flags & ATA_FLAG_SATA) {
3358 rc = sata_link_resume(link, timing, deadline);
3359 /* whine about phy resume failure but proceed */
3360 if (rc && rc != -EOPNOTSUPP)
3361 ata_link_printk(link, KERN_WARNING, "failed to resume "
3362 "link for reset (errno=%d)\n", rc);
3365 /* Wait for !BSY if the controller can wait for the first D2H
3366 * Reg FIS and we don't know that no device is attached.
3368 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3369 rc = ata_wait_ready(ap, deadline);
3370 if (rc && rc != -ENODEV) {
3371 ata_link_printk(link, KERN_WARNING, "device not ready "
3372 "(errno=%d), forcing hardreset\n", rc);
3373 ehc->i.action |= ATA_EH_HARDRESET;
3377 return 0;
3381 * ata_std_softreset - reset host port via ATA SRST
3382 * @link: ATA link to reset
3383 * @classes: resulting classes of attached devices
3384 * @deadline: deadline jiffies for the operation
3386 * Reset host port using ATA SRST.
3388 * LOCKING:
3389 * Kernel thread context (may sleep)
3391 * RETURNS:
3392 * 0 on success, -errno otherwise.
3394 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3395 unsigned long deadline)
3397 struct ata_port *ap = link->ap;
3398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3399 unsigned int devmask = 0;
3400 int rc;
3401 u8 err;
3403 DPRINTK("ENTER\n");
3405 if (ata_link_offline(link)) {
3406 classes[0] = ATA_DEV_NONE;
3407 goto out;
3410 /* determine if device 0/1 are present */
3411 if (ata_devchk(ap, 0))
3412 devmask |= (1 << 0);
3413 if (slave_possible && ata_devchk(ap, 1))
3414 devmask |= (1 << 1);
3416 /* select device 0 again */
3417 ap->ops->dev_select(ap, 0);
3419 /* issue bus reset */
3420 DPRINTK("about to softreset, devmask=%x\n", devmask);
3421 rc = ata_bus_softreset(ap, devmask, deadline);
3422 /* if link is occupied, -ENODEV too is an error */
3423 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3424 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3425 return rc;
3428 /* determine by signature whether we have ATA or ATAPI devices */
3429 classes[0] = ata_dev_try_classify(ap, 0, &err);
3430 if (slave_possible && err != 0x81)
3431 classes[1] = ata_dev_try_classify(ap, 1, &err);
3433 out:
3434 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3435 return 0;
3439 * sata_link_hardreset - reset link via SATA phy reset
3440 * @link: link to reset
3441 * @timing: timing parameters { interval, duratinon, timeout } in msec
3442 * @deadline: deadline jiffies for the operation
3444 * SATA phy-reset @link using DET bits of SControl register.
3446 * LOCKING:
3447 * Kernel thread context (may sleep)
3449 * RETURNS:
3450 * 0 on success, -errno otherwise.
3452 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3453 unsigned long deadline)
3455 u32 scontrol;
3456 int rc;
3458 DPRINTK("ENTER\n");
3460 if (sata_set_spd_needed(link)) {
3461 /* SATA spec says nothing about how to reconfigure
3462 * spd. To be on the safe side, turn off phy during
3463 * reconfiguration. This works for at least ICH7 AHCI
3464 * and Sil3124.
3466 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3467 goto out;
3469 scontrol = (scontrol & 0x0f0) | 0x304;
3471 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3472 goto out;
3474 sata_set_spd(link);
3477 /* issue phy wake/reset */
3478 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3479 goto out;
3481 scontrol = (scontrol & 0x0f0) | 0x301;
3483 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3484 goto out;
3486 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3487 * 10.4.2 says at least 1 ms.
3489 msleep(1);
3491 /* bring link back */
3492 rc = sata_link_resume(link, timing, deadline);
3493 out:
3494 DPRINTK("EXIT, rc=%d\n", rc);
3495 return rc;
3499 * sata_std_hardreset - reset host port via SATA phy reset
3500 * @link: link to reset
3501 * @class: resulting class of attached device
3502 * @deadline: deadline jiffies for the operation
3504 * SATA phy-reset host port using DET bits of SControl register,
3505 * wait for !BSY and classify the attached device.
3507 * LOCKING:
3508 * Kernel thread context (may sleep)
3510 * RETURNS:
3511 * 0 on success, -errno otherwise.
3513 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3514 unsigned long deadline)
3516 struct ata_port *ap = link->ap;
3517 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3518 int rc;
3520 DPRINTK("ENTER\n");
3522 /* do hardreset */
3523 rc = sata_link_hardreset(link, timing, deadline);
3524 if (rc) {
3525 ata_link_printk(link, KERN_ERR,
3526 "COMRESET failed (errno=%d)\n", rc);
3527 return rc;
3530 /* TODO: phy layer with polling, timeouts, etc. */
3531 if (ata_link_offline(link)) {
3532 *class = ATA_DEV_NONE;
3533 DPRINTK("EXIT, link offline\n");
3534 return 0;
3537 /* wait a while before checking status, see SRST for more info */
3538 msleep(150);
3540 rc = ata_wait_ready(ap, deadline);
3541 /* link occupied, -ENODEV too is an error */
3542 if (rc) {
3543 ata_link_printk(link, KERN_ERR,
3544 "COMRESET failed (errno=%d)\n", rc);
3545 return rc;
3548 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3550 *class = ata_dev_try_classify(ap, 0, NULL);
3552 DPRINTK("EXIT, class=%u\n", *class);
3553 return 0;
3557 * ata_std_postreset - standard postreset callback
3558 * @link: the target ata_link
3559 * @classes: classes of attached devices
3561 * This function is invoked after a successful reset. Note that
3562 * the device might have been reset more than once using
3563 * different reset methods before postreset is invoked.
3565 * LOCKING:
3566 * Kernel thread context (may sleep)
3568 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3570 struct ata_port *ap = link->ap;
3571 u32 serror;
3573 DPRINTK("ENTER\n");
3575 /* print link status */
3576 sata_print_link_status(link);
3578 /* clear SError */
3579 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3580 sata_scr_write(link, SCR_ERROR, serror);
3582 /* is double-select really necessary? */
3583 if (classes[0] != ATA_DEV_NONE)
3584 ap->ops->dev_select(ap, 1);
3585 if (classes[1] != ATA_DEV_NONE)
3586 ap->ops->dev_select(ap, 0);
3588 /* bail out if no device is present */
3589 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3590 DPRINTK("EXIT, no device\n");
3591 return;
3594 /* set up device control */
3595 if (ap->ioaddr.ctl_addr)
3596 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3598 DPRINTK("EXIT\n");
3602 * ata_dev_same_device - Determine whether new ID matches configured device
3603 * @dev: device to compare against
3604 * @new_class: class of the new device
3605 * @new_id: IDENTIFY page of the new device
3607 * Compare @new_class and @new_id against @dev and determine
3608 * whether @dev is the device indicated by @new_class and
3609 * @new_id.
3611 * LOCKING:
3612 * None.
3614 * RETURNS:
3615 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3617 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3618 const u16 *new_id)
3620 const u16 *old_id = dev->id;
3621 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3622 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3624 if (dev->class != new_class) {
3625 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3626 dev->class, new_class);
3627 return 0;
3630 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3631 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3632 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3633 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3635 if (strcmp(model[0], model[1])) {
3636 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3637 "'%s' != '%s'\n", model[0], model[1]);
3638 return 0;
3641 if (strcmp(serial[0], serial[1])) {
3642 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3643 "'%s' != '%s'\n", serial[0], serial[1]);
3644 return 0;
3647 return 1;
3651 * ata_dev_reread_id - Re-read IDENTIFY data
3652 * @dev: target ATA device
3653 * @readid_flags: read ID flags
3655 * Re-read IDENTIFY page and make sure @dev is still attached to
3656 * the port.
3658 * LOCKING:
3659 * Kernel thread context (may sleep)
3661 * RETURNS:
3662 * 0 on success, negative errno otherwise
3664 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3666 unsigned int class = dev->class;
3667 u16 *id = (void *)dev->link->ap->sector_buf;
3668 int rc;
3670 /* read ID data */
3671 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3672 if (rc)
3673 return rc;
3675 /* is the device still there? */
3676 if (!ata_dev_same_device(dev, class, id))
3677 return -ENODEV;
3679 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3680 return 0;
3684 * ata_dev_revalidate - Revalidate ATA device
3685 * @dev: device to revalidate
3686 * @readid_flags: read ID flags
3688 * Re-read IDENTIFY page, make sure @dev is still attached to the
3689 * port and reconfigure it according to the new IDENTIFY page.
3691 * LOCKING:
3692 * Kernel thread context (may sleep)
3694 * RETURNS:
3695 * 0 on success, negative errno otherwise
3697 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3699 u64 n_sectors = dev->n_sectors;
3700 int rc;
3702 if (!ata_dev_enabled(dev))
3703 return -ENODEV;
3705 /* re-read ID */
3706 rc = ata_dev_reread_id(dev, readid_flags);
3707 if (rc)
3708 goto fail;
3710 /* configure device according to the new ID */
3711 rc = ata_dev_configure(dev);
3712 if (rc)
3713 goto fail;
3715 /* verify n_sectors hasn't changed */
3716 if (dev->class == ATA_DEV_ATA && n_sectors &&
3717 dev->n_sectors != n_sectors) {
3718 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3719 "%llu != %llu\n",
3720 (unsigned long long)n_sectors,
3721 (unsigned long long)dev->n_sectors);
3723 /* restore original n_sectors */
3724 dev->n_sectors = n_sectors;
3726 rc = -ENODEV;
3727 goto fail;
3730 return 0;
3732 fail:
3733 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3734 return rc;
3737 struct ata_blacklist_entry {
3738 const char *model_num;
3739 const char *model_rev;
3740 unsigned long horkage;
3743 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3744 /* Devices with DMA related problems under Linux */
3745 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3746 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3747 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3748 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3749 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3750 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3751 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3752 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3753 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3754 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3755 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3756 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3757 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3758 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3759 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3760 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3761 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3762 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3763 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3764 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3765 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3766 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3767 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3768 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3769 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3770 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3771 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3772 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3773 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3774 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3775 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3776 { "IOMEGA ZIP 250 ATAPI Floppy",
3777 NULL, ATA_HORKAGE_NODMA },
3779 /* Weird ATAPI devices */
3780 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3782 /* Devices we expect to fail diagnostics */
3784 /* Devices where NCQ should be avoided */
3785 /* NCQ is slow */
3786 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3787 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3788 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3789 /* NCQ is broken */
3790 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3791 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
3792 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3793 { "Maxtor 7B250S0", "BANC1B70", ATA_HORKAGE_NONCQ, },
3794 { "Maxtor 7B300S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3795 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3796 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3797 ATA_HORKAGE_NONCQ },
3798 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3799 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3800 /* Blacklist entries taken from Silicon Image 3124/3132
3801 Windows driver .inf file - also several Linux problem reports */
3802 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3803 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3804 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3805 /* Drives which do spurious command completion */
3806 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3807 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3808 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3809 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3810 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3811 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3812 { "ST3160812AS", "3.AD", ATA_HORKAGE_NONCQ, },
3813 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
3815 /* devices which puke on READ_NATIVE_MAX */
3816 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3817 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3818 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3819 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3821 /* End Marker */
3825 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3827 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3828 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3829 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3831 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3832 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3834 while (ad->model_num) {
3835 if (!strcmp(ad->model_num, model_num)) {
3836 if (ad->model_rev == NULL)
3837 return ad->horkage;
3838 if (!strcmp(ad->model_rev, model_rev))
3839 return ad->horkage;
3841 ad++;
3843 return 0;
3846 static int ata_dma_blacklisted(const struct ata_device *dev)
3848 /* We don't support polling DMA.
3849 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3850 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3852 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
3853 (dev->flags & ATA_DFLAG_CDB_INTR))
3854 return 1;
3855 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3859 * ata_dev_xfermask - Compute supported xfermask of the given device
3860 * @dev: Device to compute xfermask for
3862 * Compute supported xfermask of @dev and store it in
3863 * dev->*_mask. This function is responsible for applying all
3864 * known limits including host controller limits, device
3865 * blacklist, etc...
3867 * LOCKING:
3868 * None.
3870 static void ata_dev_xfermask(struct ata_device *dev)
3872 struct ata_link *link = dev->link;
3873 struct ata_port *ap = link->ap;
3874 struct ata_host *host = ap->host;
3875 unsigned long xfer_mask;
3877 /* controller modes available */
3878 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3879 ap->mwdma_mask, ap->udma_mask);
3881 /* drive modes available */
3882 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3883 dev->mwdma_mask, dev->udma_mask);
3884 xfer_mask &= ata_id_xfermask(dev->id);
3887 * CFA Advanced TrueIDE timings are not allowed on a shared
3888 * cable
3890 if (ata_dev_pair(dev)) {
3891 /* No PIO5 or PIO6 */
3892 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3893 /* No MWDMA3 or MWDMA 4 */
3894 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3897 if (ata_dma_blacklisted(dev)) {
3898 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3899 ata_dev_printk(dev, KERN_WARNING,
3900 "device is on DMA blacklist, disabling DMA\n");
3903 if ((host->flags & ATA_HOST_SIMPLEX) &&
3904 host->simplex_claimed && host->simplex_claimed != ap) {
3905 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3906 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3907 "other device, disabling DMA\n");
3910 if (ap->flags & ATA_FLAG_NO_IORDY)
3911 xfer_mask &= ata_pio_mask_no_iordy(dev);
3913 if (ap->ops->mode_filter)
3914 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3916 /* Apply cable rule here. Don't apply it early because when
3917 * we handle hot plug the cable type can itself change.
3918 * Check this last so that we know if the transfer rate was
3919 * solely limited by the cable.
3920 * Unknown or 80 wire cables reported host side are checked
3921 * drive side as well. Cases where we know a 40wire cable
3922 * is used safely for 80 are not checked here.
3924 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3925 /* UDMA/44 or higher would be available */
3926 if((ap->cbl == ATA_CBL_PATA40) ||
3927 (ata_drive_40wire(dev->id) &&
3928 (ap->cbl == ATA_CBL_PATA_UNK ||
3929 ap->cbl == ATA_CBL_PATA80))) {
3930 ata_dev_printk(dev, KERN_WARNING,
3931 "limited to UDMA/33 due to 40-wire cable\n");
3932 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3935 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3936 &dev->mwdma_mask, &dev->udma_mask);
3940 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3941 * @dev: Device to which command will be sent
3943 * Issue SET FEATURES - XFER MODE command to device @dev
3944 * on port @ap.
3946 * LOCKING:
3947 * PCI/etc. bus probe sem.
3949 * RETURNS:
3950 * 0 on success, AC_ERR_* mask otherwise.
3953 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3955 struct ata_taskfile tf;
3956 unsigned int err_mask;
3958 /* set up set-features taskfile */
3959 DPRINTK("set features - xfer mode\n");
3961 /* Some controllers and ATAPI devices show flaky interrupt
3962 * behavior after setting xfer mode. Use polling instead.
3964 ata_tf_init(dev, &tf);
3965 tf.command = ATA_CMD_SET_FEATURES;
3966 tf.feature = SETFEATURES_XFER;
3967 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3968 tf.protocol = ATA_PROT_NODATA;
3969 tf.nsect = dev->xfer_mode;
3971 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3973 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3974 return err_mask;
3978 * ata_dev_init_params - Issue INIT DEV PARAMS command
3979 * @dev: Device to which command will be sent
3980 * @heads: Number of heads (taskfile parameter)
3981 * @sectors: Number of sectors (taskfile parameter)
3983 * LOCKING:
3984 * Kernel thread context (may sleep)
3986 * RETURNS:
3987 * 0 on success, AC_ERR_* mask otherwise.
3989 static unsigned int ata_dev_init_params(struct ata_device *dev,
3990 u16 heads, u16 sectors)
3992 struct ata_taskfile tf;
3993 unsigned int err_mask;
3995 /* Number of sectors per track 1-255. Number of heads 1-16 */
3996 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3997 return AC_ERR_INVALID;
3999 /* set up init dev params taskfile */
4000 DPRINTK("init dev params \n");
4002 ata_tf_init(dev, &tf);
4003 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4004 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4005 tf.protocol = ATA_PROT_NODATA;
4006 tf.nsect = sectors;
4007 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4009 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4010 /* A clean abort indicates an original or just out of spec drive
4011 and we should continue as we issue the setup based on the
4012 drive reported working geometry */
4013 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4014 err_mask = 0;
4016 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4017 return err_mask;
4021 * ata_sg_clean - Unmap DMA memory associated with command
4022 * @qc: Command containing DMA memory to be released
4024 * Unmap all mapped DMA memory associated with this command.
4026 * LOCKING:
4027 * spin_lock_irqsave(host lock)
4029 void ata_sg_clean(struct ata_queued_cmd *qc)
4031 struct ata_port *ap = qc->ap;
4032 struct scatterlist *sg = qc->__sg;
4033 int dir = qc->dma_dir;
4034 void *pad_buf = NULL;
4036 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4037 WARN_ON(sg == NULL);
4039 if (qc->flags & ATA_QCFLAG_SINGLE)
4040 WARN_ON(qc->n_elem > 1);
4042 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4044 /* if we padded the buffer out to 32-bit bound, and data
4045 * xfer direction is from-device, we must copy from the
4046 * pad buffer back into the supplied buffer
4048 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4049 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4051 if (qc->flags & ATA_QCFLAG_SG) {
4052 if (qc->n_elem)
4053 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4054 /* restore last sg */
4055 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4056 if (pad_buf) {
4057 struct scatterlist *psg = &qc->pad_sgent;
4058 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4059 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4060 kunmap_atomic(addr, KM_IRQ0);
4062 } else {
4063 if (qc->n_elem)
4064 dma_unmap_single(ap->dev,
4065 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4066 dir);
4067 /* restore sg */
4068 sg->length += qc->pad_len;
4069 if (pad_buf)
4070 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4071 pad_buf, qc->pad_len);
4074 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4075 qc->__sg = NULL;
4079 * ata_fill_sg - Fill PCI IDE PRD table
4080 * @qc: Metadata associated with taskfile to be transferred
4082 * Fill PCI IDE PRD (scatter-gather) table with segments
4083 * associated with the current disk command.
4085 * LOCKING:
4086 * spin_lock_irqsave(host lock)
4089 static void ata_fill_sg(struct ata_queued_cmd *qc)
4091 struct ata_port *ap = qc->ap;
4092 struct scatterlist *sg;
4093 unsigned int idx;
4095 WARN_ON(qc->__sg == NULL);
4096 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4098 idx = 0;
4099 ata_for_each_sg(sg, qc) {
4100 u32 addr, offset;
4101 u32 sg_len, len;
4103 /* determine if physical DMA addr spans 64K boundary.
4104 * Note h/w doesn't support 64-bit, so we unconditionally
4105 * truncate dma_addr_t to u32.
4107 addr = (u32) sg_dma_address(sg);
4108 sg_len = sg_dma_len(sg);
4110 while (sg_len) {
4111 offset = addr & 0xffff;
4112 len = sg_len;
4113 if ((offset + sg_len) > 0x10000)
4114 len = 0x10000 - offset;
4116 ap->prd[idx].addr = cpu_to_le32(addr);
4117 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4118 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4120 idx++;
4121 sg_len -= len;
4122 addr += len;
4126 if (idx)
4127 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4131 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4132 * @qc: Metadata associated with taskfile to be transferred
4134 * Fill PCI IDE PRD (scatter-gather) table with segments
4135 * associated with the current disk command. Perform the fill
4136 * so that we avoid writing any length 64K records for
4137 * controllers that don't follow the spec.
4139 * LOCKING:
4140 * spin_lock_irqsave(host lock)
4143 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4145 struct ata_port *ap = qc->ap;
4146 struct scatterlist *sg;
4147 unsigned int idx;
4149 WARN_ON(qc->__sg == NULL);
4150 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4152 idx = 0;
4153 ata_for_each_sg(sg, qc) {
4154 u32 addr, offset;
4155 u32 sg_len, len, blen;
4157 /* determine if physical DMA addr spans 64K boundary.
4158 * Note h/w doesn't support 64-bit, so we unconditionally
4159 * truncate dma_addr_t to u32.
4161 addr = (u32) sg_dma_address(sg);
4162 sg_len = sg_dma_len(sg);
4164 while (sg_len) {
4165 offset = addr & 0xffff;
4166 len = sg_len;
4167 if ((offset + sg_len) > 0x10000)
4168 len = 0x10000 - offset;
4170 blen = len & 0xffff;
4171 ap->prd[idx].addr = cpu_to_le32(addr);
4172 if (blen == 0) {
4173 /* Some PATA chipsets like the CS5530 can't
4174 cope with 0x0000 meaning 64K as the spec says */
4175 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4176 blen = 0x8000;
4177 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4179 ap->prd[idx].flags_len = cpu_to_le32(blen);
4180 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4182 idx++;
4183 sg_len -= len;
4184 addr += len;
4188 if (idx)
4189 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4193 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4194 * @qc: Metadata associated with taskfile to check
4196 * Allow low-level driver to filter ATA PACKET commands, returning
4197 * a status indicating whether or not it is OK to use DMA for the
4198 * supplied PACKET command.
4200 * LOCKING:
4201 * spin_lock_irqsave(host lock)
4203 * RETURNS: 0 when ATAPI DMA can be used
4204 * nonzero otherwise
4206 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4208 struct ata_port *ap = qc->ap;
4210 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4211 * few ATAPI devices choke on such DMA requests.
4213 if (unlikely(qc->nbytes & 15))
4214 return 1;
4216 if (ap->ops->check_atapi_dma)
4217 return ap->ops->check_atapi_dma(qc);
4219 return 0;
4223 * ata_qc_prep - Prepare taskfile for submission
4224 * @qc: Metadata associated with taskfile to be prepared
4226 * Prepare ATA taskfile for submission.
4228 * LOCKING:
4229 * spin_lock_irqsave(host lock)
4231 void ata_qc_prep(struct ata_queued_cmd *qc)
4233 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4234 return;
4236 ata_fill_sg(qc);
4240 * ata_dumb_qc_prep - Prepare taskfile for submission
4241 * @qc: Metadata associated with taskfile to be prepared
4243 * Prepare ATA taskfile for submission.
4245 * LOCKING:
4246 * spin_lock_irqsave(host lock)
4248 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4250 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4251 return;
4253 ata_fill_sg_dumb(qc);
4256 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4259 * ata_sg_init_one - Associate command with memory buffer
4260 * @qc: Command to be associated
4261 * @buf: Memory buffer
4262 * @buflen: Length of memory buffer, in bytes.
4264 * Initialize the data-related elements of queued_cmd @qc
4265 * to point to a single memory buffer, @buf of byte length @buflen.
4267 * LOCKING:
4268 * spin_lock_irqsave(host lock)
4271 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4273 qc->flags |= ATA_QCFLAG_SINGLE;
4275 qc->__sg = &qc->sgent;
4276 qc->n_elem = 1;
4277 qc->orig_n_elem = 1;
4278 qc->buf_virt = buf;
4279 qc->nbytes = buflen;
4281 sg_init_one(&qc->sgent, buf, buflen);
4285 * ata_sg_init - Associate command with scatter-gather table.
4286 * @qc: Command to be associated
4287 * @sg: Scatter-gather table.
4288 * @n_elem: Number of elements in s/g table.
4290 * Initialize the data-related elements of queued_cmd @qc
4291 * to point to a scatter-gather table @sg, containing @n_elem
4292 * elements.
4294 * LOCKING:
4295 * spin_lock_irqsave(host lock)
4298 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4299 unsigned int n_elem)
4301 qc->flags |= ATA_QCFLAG_SG;
4302 qc->__sg = sg;
4303 qc->n_elem = n_elem;
4304 qc->orig_n_elem = n_elem;
4308 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4309 * @qc: Command with memory buffer to be mapped.
4311 * DMA-map the memory buffer associated with queued_cmd @qc.
4313 * LOCKING:
4314 * spin_lock_irqsave(host lock)
4316 * RETURNS:
4317 * Zero on success, negative on error.
4320 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4322 struct ata_port *ap = qc->ap;
4323 int dir = qc->dma_dir;
4324 struct scatterlist *sg = qc->__sg;
4325 dma_addr_t dma_address;
4326 int trim_sg = 0;
4328 /* we must lengthen transfers to end on a 32-bit boundary */
4329 qc->pad_len = sg->length & 3;
4330 if (qc->pad_len) {
4331 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4332 struct scatterlist *psg = &qc->pad_sgent;
4334 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4336 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4338 if (qc->tf.flags & ATA_TFLAG_WRITE)
4339 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4340 qc->pad_len);
4342 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4343 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4344 /* trim sg */
4345 sg->length -= qc->pad_len;
4346 if (sg->length == 0)
4347 trim_sg = 1;
4349 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4350 sg->length, qc->pad_len);
4353 if (trim_sg) {
4354 qc->n_elem--;
4355 goto skip_map;
4358 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4359 sg->length, dir);
4360 if (dma_mapping_error(dma_address)) {
4361 /* restore sg */
4362 sg->length += qc->pad_len;
4363 return -1;
4366 sg_dma_address(sg) = dma_address;
4367 sg_dma_len(sg) = sg->length;
4369 skip_map:
4370 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4371 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4373 return 0;
4377 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4378 * @qc: Command with scatter-gather table to be mapped.
4380 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4382 * LOCKING:
4383 * spin_lock_irqsave(host lock)
4385 * RETURNS:
4386 * Zero on success, negative on error.
4390 static int ata_sg_setup(struct ata_queued_cmd *qc)
4392 struct ata_port *ap = qc->ap;
4393 struct scatterlist *sg = qc->__sg;
4394 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4395 int n_elem, pre_n_elem, dir, trim_sg = 0;
4397 VPRINTK("ENTER, ata%u\n", ap->print_id);
4398 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4400 /* we must lengthen transfers to end on a 32-bit boundary */
4401 qc->pad_len = lsg->length & 3;
4402 if (qc->pad_len) {
4403 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4404 struct scatterlist *psg = &qc->pad_sgent;
4405 unsigned int offset;
4407 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4409 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4412 * psg->page/offset are used to copy to-be-written
4413 * data in this function or read data in ata_sg_clean.
4415 offset = lsg->offset + lsg->length - qc->pad_len;
4416 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4417 psg->offset = offset_in_page(offset);
4419 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4420 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4421 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4422 kunmap_atomic(addr, KM_IRQ0);
4425 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4426 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4427 /* trim last sg */
4428 lsg->length -= qc->pad_len;
4429 if (lsg->length == 0)
4430 trim_sg = 1;
4432 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4433 qc->n_elem - 1, lsg->length, qc->pad_len);
4436 pre_n_elem = qc->n_elem;
4437 if (trim_sg && pre_n_elem)
4438 pre_n_elem--;
4440 if (!pre_n_elem) {
4441 n_elem = 0;
4442 goto skip_map;
4445 dir = qc->dma_dir;
4446 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4447 if (n_elem < 1) {
4448 /* restore last sg */
4449 lsg->length += qc->pad_len;
4450 return -1;
4453 DPRINTK("%d sg elements mapped\n", n_elem);
4455 skip_map:
4456 qc->n_elem = n_elem;
4458 return 0;
4462 * swap_buf_le16 - swap halves of 16-bit words in place
4463 * @buf: Buffer to swap
4464 * @buf_words: Number of 16-bit words in buffer.
4466 * Swap halves of 16-bit words if needed to convert from
4467 * little-endian byte order to native cpu byte order, or
4468 * vice-versa.
4470 * LOCKING:
4471 * Inherited from caller.
4473 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4475 #ifdef __BIG_ENDIAN
4476 unsigned int i;
4478 for (i = 0; i < buf_words; i++)
4479 buf[i] = le16_to_cpu(buf[i]);
4480 #endif /* __BIG_ENDIAN */
4484 * ata_data_xfer - Transfer data by PIO
4485 * @adev: device to target
4486 * @buf: data buffer
4487 * @buflen: buffer length
4488 * @write_data: read/write
4490 * Transfer data from/to the device data register by PIO.
4492 * LOCKING:
4493 * Inherited from caller.
4495 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4496 unsigned int buflen, int write_data)
4498 struct ata_port *ap = adev->link->ap;
4499 unsigned int words = buflen >> 1;
4501 /* Transfer multiple of 2 bytes */
4502 if (write_data)
4503 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4504 else
4505 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4507 /* Transfer trailing 1 byte, if any. */
4508 if (unlikely(buflen & 0x01)) {
4509 u16 align_buf[1] = { 0 };
4510 unsigned char *trailing_buf = buf + buflen - 1;
4512 if (write_data) {
4513 memcpy(align_buf, trailing_buf, 1);
4514 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4515 } else {
4516 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4517 memcpy(trailing_buf, align_buf, 1);
4523 * ata_data_xfer_noirq - Transfer data by PIO
4524 * @adev: device to target
4525 * @buf: data buffer
4526 * @buflen: buffer length
4527 * @write_data: read/write
4529 * Transfer data from/to the device data register by PIO. Do the
4530 * transfer with interrupts disabled.
4532 * LOCKING:
4533 * Inherited from caller.
4535 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4536 unsigned int buflen, int write_data)
4538 unsigned long flags;
4539 local_irq_save(flags);
4540 ata_data_xfer(adev, buf, buflen, write_data);
4541 local_irq_restore(flags);
4546 * ata_pio_sector - Transfer a sector of data.
4547 * @qc: Command on going
4549 * Transfer qc->sect_size bytes of data from/to the ATA device.
4551 * LOCKING:
4552 * Inherited from caller.
4555 static void ata_pio_sector(struct ata_queued_cmd *qc)
4557 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4558 struct scatterlist *sg = qc->__sg;
4559 struct ata_port *ap = qc->ap;
4560 struct page *page;
4561 unsigned int offset;
4562 unsigned char *buf;
4564 if (qc->curbytes == qc->nbytes - qc->sect_size)
4565 ap->hsm_task_state = HSM_ST_LAST;
4567 page = sg[qc->cursg].page;
4568 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4570 /* get the current page and offset */
4571 page = nth_page(page, (offset >> PAGE_SHIFT));
4572 offset %= PAGE_SIZE;
4574 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4576 if (PageHighMem(page)) {
4577 unsigned long flags;
4579 /* FIXME: use a bounce buffer */
4580 local_irq_save(flags);
4581 buf = kmap_atomic(page, KM_IRQ0);
4583 /* do the actual data transfer */
4584 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4586 kunmap_atomic(buf, KM_IRQ0);
4587 local_irq_restore(flags);
4588 } else {
4589 buf = page_address(page);
4590 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4593 qc->curbytes += qc->sect_size;
4594 qc->cursg_ofs += qc->sect_size;
4596 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4597 qc->cursg++;
4598 qc->cursg_ofs = 0;
4603 * ata_pio_sectors - Transfer one or many sectors.
4604 * @qc: Command on going
4606 * Transfer one or many sectors of data from/to the
4607 * ATA device for the DRQ request.
4609 * LOCKING:
4610 * Inherited from caller.
4613 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4615 if (is_multi_taskfile(&qc->tf)) {
4616 /* READ/WRITE MULTIPLE */
4617 unsigned int nsect;
4619 WARN_ON(qc->dev->multi_count == 0);
4621 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4622 qc->dev->multi_count);
4623 while (nsect--)
4624 ata_pio_sector(qc);
4625 } else
4626 ata_pio_sector(qc);
4628 ata_altstatus(qc->ap); /* flush */
4632 * atapi_send_cdb - Write CDB bytes to hardware
4633 * @ap: Port to which ATAPI device is attached.
4634 * @qc: Taskfile currently active
4636 * When device has indicated its readiness to accept
4637 * a CDB, this function is called. Send the CDB.
4639 * LOCKING:
4640 * caller.
4643 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4645 /* send SCSI cdb */
4646 DPRINTK("send cdb\n");
4647 WARN_ON(qc->dev->cdb_len < 12);
4649 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4650 ata_altstatus(ap); /* flush */
4652 switch (qc->tf.protocol) {
4653 case ATA_PROT_ATAPI:
4654 ap->hsm_task_state = HSM_ST;
4655 break;
4656 case ATA_PROT_ATAPI_NODATA:
4657 ap->hsm_task_state = HSM_ST_LAST;
4658 break;
4659 case ATA_PROT_ATAPI_DMA:
4660 ap->hsm_task_state = HSM_ST_LAST;
4661 /* initiate bmdma */
4662 ap->ops->bmdma_start(qc);
4663 break;
4668 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4669 * @qc: Command on going
4670 * @bytes: number of bytes
4672 * Transfer Transfer data from/to the ATAPI device.
4674 * LOCKING:
4675 * Inherited from caller.
4679 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4681 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4682 struct scatterlist *sg = qc->__sg;
4683 struct ata_port *ap = qc->ap;
4684 struct page *page;
4685 unsigned char *buf;
4686 unsigned int offset, count;
4688 if (qc->curbytes + bytes >= qc->nbytes)
4689 ap->hsm_task_state = HSM_ST_LAST;
4691 next_sg:
4692 if (unlikely(qc->cursg >= qc->n_elem)) {
4694 * The end of qc->sg is reached and the device expects
4695 * more data to transfer. In order not to overrun qc->sg
4696 * and fulfill length specified in the byte count register,
4697 * - for read case, discard trailing data from the device
4698 * - for write case, padding zero data to the device
4700 u16 pad_buf[1] = { 0 };
4701 unsigned int words = bytes >> 1;
4702 unsigned int i;
4704 if (words) /* warning if bytes > 1 */
4705 ata_dev_printk(qc->dev, KERN_WARNING,
4706 "%u bytes trailing data\n", bytes);
4708 for (i = 0; i < words; i++)
4709 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4711 ap->hsm_task_state = HSM_ST_LAST;
4712 return;
4715 sg = &qc->__sg[qc->cursg];
4717 page = sg->page;
4718 offset = sg->offset + qc->cursg_ofs;
4720 /* get the current page and offset */
4721 page = nth_page(page, (offset >> PAGE_SHIFT));
4722 offset %= PAGE_SIZE;
4724 /* don't overrun current sg */
4725 count = min(sg->length - qc->cursg_ofs, bytes);
4727 /* don't cross page boundaries */
4728 count = min(count, (unsigned int)PAGE_SIZE - offset);
4730 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4732 if (PageHighMem(page)) {
4733 unsigned long flags;
4735 /* FIXME: use bounce buffer */
4736 local_irq_save(flags);
4737 buf = kmap_atomic(page, KM_IRQ0);
4739 /* do the actual data transfer */
4740 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4742 kunmap_atomic(buf, KM_IRQ0);
4743 local_irq_restore(flags);
4744 } else {
4745 buf = page_address(page);
4746 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4749 bytes -= count;
4750 qc->curbytes += count;
4751 qc->cursg_ofs += count;
4753 if (qc->cursg_ofs == sg->length) {
4754 qc->cursg++;
4755 qc->cursg_ofs = 0;
4758 if (bytes)
4759 goto next_sg;
4763 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4764 * @qc: Command on going
4766 * Transfer Transfer data from/to the ATAPI device.
4768 * LOCKING:
4769 * Inherited from caller.
4772 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4774 struct ata_port *ap = qc->ap;
4775 struct ata_device *dev = qc->dev;
4776 unsigned int ireason, bc_lo, bc_hi, bytes;
4777 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4779 /* Abuse qc->result_tf for temp storage of intermediate TF
4780 * here to save some kernel stack usage.
4781 * For normal completion, qc->result_tf is not relevant. For
4782 * error, qc->result_tf is later overwritten by ata_qc_complete().
4783 * So, the correctness of qc->result_tf is not affected.
4785 ap->ops->tf_read(ap, &qc->result_tf);
4786 ireason = qc->result_tf.nsect;
4787 bc_lo = qc->result_tf.lbam;
4788 bc_hi = qc->result_tf.lbah;
4789 bytes = (bc_hi << 8) | bc_lo;
4791 /* shall be cleared to zero, indicating xfer of data */
4792 if (ireason & (1 << 0))
4793 goto err_out;
4795 /* make sure transfer direction matches expected */
4796 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4797 if (do_write != i_write)
4798 goto err_out;
4800 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4802 __atapi_pio_bytes(qc, bytes);
4803 ata_altstatus(ap); /* flush */
4805 return;
4807 err_out:
4808 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4809 qc->err_mask |= AC_ERR_HSM;
4810 ap->hsm_task_state = HSM_ST_ERR;
4814 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4815 * @ap: the target ata_port
4816 * @qc: qc on going
4818 * RETURNS:
4819 * 1 if ok in workqueue, 0 otherwise.
4822 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4824 if (qc->tf.flags & ATA_TFLAG_POLLING)
4825 return 1;
4827 if (ap->hsm_task_state == HSM_ST_FIRST) {
4828 if (qc->tf.protocol == ATA_PROT_PIO &&
4829 (qc->tf.flags & ATA_TFLAG_WRITE))
4830 return 1;
4832 if (is_atapi_taskfile(&qc->tf) &&
4833 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4834 return 1;
4837 return 0;
4841 * ata_hsm_qc_complete - finish a qc running on standard HSM
4842 * @qc: Command to complete
4843 * @in_wq: 1 if called from workqueue, 0 otherwise
4845 * Finish @qc which is running on standard HSM.
4847 * LOCKING:
4848 * If @in_wq is zero, spin_lock_irqsave(host lock).
4849 * Otherwise, none on entry and grabs host lock.
4851 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4853 struct ata_port *ap = qc->ap;
4854 unsigned long flags;
4856 if (ap->ops->error_handler) {
4857 if (in_wq) {
4858 spin_lock_irqsave(ap->lock, flags);
4860 /* EH might have kicked in while host lock is
4861 * released.
4863 qc = ata_qc_from_tag(ap, qc->tag);
4864 if (qc) {
4865 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4866 ap->ops->irq_on(ap);
4867 ata_qc_complete(qc);
4868 } else
4869 ata_port_freeze(ap);
4872 spin_unlock_irqrestore(ap->lock, flags);
4873 } else {
4874 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4875 ata_qc_complete(qc);
4876 else
4877 ata_port_freeze(ap);
4879 } else {
4880 if (in_wq) {
4881 spin_lock_irqsave(ap->lock, flags);
4882 ap->ops->irq_on(ap);
4883 ata_qc_complete(qc);
4884 spin_unlock_irqrestore(ap->lock, flags);
4885 } else
4886 ata_qc_complete(qc);
4891 * ata_hsm_move - move the HSM to the next state.
4892 * @ap: the target ata_port
4893 * @qc: qc on going
4894 * @status: current device status
4895 * @in_wq: 1 if called from workqueue, 0 otherwise
4897 * RETURNS:
4898 * 1 when poll next status needed, 0 otherwise.
4900 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4901 u8 status, int in_wq)
4903 unsigned long flags = 0;
4904 int poll_next;
4906 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4908 /* Make sure ata_qc_issue_prot() does not throw things
4909 * like DMA polling into the workqueue. Notice that
4910 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4912 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4914 fsm_start:
4915 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4916 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4918 switch (ap->hsm_task_state) {
4919 case HSM_ST_FIRST:
4920 /* Send first data block or PACKET CDB */
4922 /* If polling, we will stay in the work queue after
4923 * sending the data. Otherwise, interrupt handler
4924 * takes over after sending the data.
4926 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4928 /* check device status */
4929 if (unlikely((status & ATA_DRQ) == 0)) {
4930 /* handle BSY=0, DRQ=0 as error */
4931 if (likely(status & (ATA_ERR | ATA_DF)))
4932 /* device stops HSM for abort/error */
4933 qc->err_mask |= AC_ERR_DEV;
4934 else
4935 /* HSM violation. Let EH handle this */
4936 qc->err_mask |= AC_ERR_HSM;
4938 ap->hsm_task_state = HSM_ST_ERR;
4939 goto fsm_start;
4942 /* Device should not ask for data transfer (DRQ=1)
4943 * when it finds something wrong.
4944 * We ignore DRQ here and stop the HSM by
4945 * changing hsm_task_state to HSM_ST_ERR and
4946 * let the EH abort the command or reset the device.
4948 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4949 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4950 "error, dev_stat 0x%X\n", status);
4951 qc->err_mask |= AC_ERR_HSM;
4952 ap->hsm_task_state = HSM_ST_ERR;
4953 goto fsm_start;
4956 /* Send the CDB (atapi) or the first data block (ata pio out).
4957 * During the state transition, interrupt handler shouldn't
4958 * be invoked before the data transfer is complete and
4959 * hsm_task_state is changed. Hence, the following locking.
4961 if (in_wq)
4962 spin_lock_irqsave(ap->lock, flags);
4964 if (qc->tf.protocol == ATA_PROT_PIO) {
4965 /* PIO data out protocol.
4966 * send first data block.
4969 /* ata_pio_sectors() might change the state
4970 * to HSM_ST_LAST. so, the state is changed here
4971 * before ata_pio_sectors().
4973 ap->hsm_task_state = HSM_ST;
4974 ata_pio_sectors(qc);
4975 } else
4976 /* send CDB */
4977 atapi_send_cdb(ap, qc);
4979 if (in_wq)
4980 spin_unlock_irqrestore(ap->lock, flags);
4982 /* if polling, ata_pio_task() handles the rest.
4983 * otherwise, interrupt handler takes over from here.
4985 break;
4987 case HSM_ST:
4988 /* complete command or read/write the data register */
4989 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4990 /* ATAPI PIO protocol */
4991 if ((status & ATA_DRQ) == 0) {
4992 /* No more data to transfer or device error.
4993 * Device error will be tagged in HSM_ST_LAST.
4995 ap->hsm_task_state = HSM_ST_LAST;
4996 goto fsm_start;
4999 /* Device should not ask for data transfer (DRQ=1)
5000 * when it finds something wrong.
5001 * We ignore DRQ here and stop the HSM by
5002 * changing hsm_task_state to HSM_ST_ERR and
5003 * let the EH abort the command or reset the device.
5005 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5006 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5007 "device error, dev_stat 0x%X\n",
5008 status);
5009 qc->err_mask |= AC_ERR_HSM;
5010 ap->hsm_task_state = HSM_ST_ERR;
5011 goto fsm_start;
5014 atapi_pio_bytes(qc);
5016 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5017 /* bad ireason reported by device */
5018 goto fsm_start;
5020 } else {
5021 /* ATA PIO protocol */
5022 if (unlikely((status & ATA_DRQ) == 0)) {
5023 /* handle BSY=0, DRQ=0 as error */
5024 if (likely(status & (ATA_ERR | ATA_DF)))
5025 /* device stops HSM for abort/error */
5026 qc->err_mask |= AC_ERR_DEV;
5027 else
5028 /* HSM violation. Let EH handle this.
5029 * Phantom devices also trigger this
5030 * condition. Mark hint.
5032 qc->err_mask |= AC_ERR_HSM |
5033 AC_ERR_NODEV_HINT;
5035 ap->hsm_task_state = HSM_ST_ERR;
5036 goto fsm_start;
5039 /* For PIO reads, some devices may ask for
5040 * data transfer (DRQ=1) alone with ERR=1.
5041 * We respect DRQ here and transfer one
5042 * block of junk data before changing the
5043 * hsm_task_state to HSM_ST_ERR.
5045 * For PIO writes, ERR=1 DRQ=1 doesn't make
5046 * sense since the data block has been
5047 * transferred to the device.
5049 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5050 /* data might be corrputed */
5051 qc->err_mask |= AC_ERR_DEV;
5053 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5054 ata_pio_sectors(qc);
5055 status = ata_wait_idle(ap);
5058 if (status & (ATA_BUSY | ATA_DRQ))
5059 qc->err_mask |= AC_ERR_HSM;
5061 /* ata_pio_sectors() might change the
5062 * state to HSM_ST_LAST. so, the state
5063 * is changed after ata_pio_sectors().
5065 ap->hsm_task_state = HSM_ST_ERR;
5066 goto fsm_start;
5069 ata_pio_sectors(qc);
5071 if (ap->hsm_task_state == HSM_ST_LAST &&
5072 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5073 /* all data read */
5074 status = ata_wait_idle(ap);
5075 goto fsm_start;
5079 poll_next = 1;
5080 break;
5082 case HSM_ST_LAST:
5083 if (unlikely(!ata_ok(status))) {
5084 qc->err_mask |= __ac_err_mask(status);
5085 ap->hsm_task_state = HSM_ST_ERR;
5086 goto fsm_start;
5089 /* no more data to transfer */
5090 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5091 ap->print_id, qc->dev->devno, status);
5093 WARN_ON(qc->err_mask);
5095 ap->hsm_task_state = HSM_ST_IDLE;
5097 /* complete taskfile transaction */
5098 ata_hsm_qc_complete(qc, in_wq);
5100 poll_next = 0;
5101 break;
5103 case HSM_ST_ERR:
5104 /* make sure qc->err_mask is available to
5105 * know what's wrong and recover
5107 WARN_ON(qc->err_mask == 0);
5109 ap->hsm_task_state = HSM_ST_IDLE;
5111 /* complete taskfile transaction */
5112 ata_hsm_qc_complete(qc, in_wq);
5114 poll_next = 0;
5115 break;
5116 default:
5117 poll_next = 0;
5118 BUG();
5121 return poll_next;
5124 static void ata_pio_task(struct work_struct *work)
5126 struct ata_port *ap =
5127 container_of(work, struct ata_port, port_task.work);
5128 struct ata_queued_cmd *qc = ap->port_task_data;
5129 u8 status;
5130 int poll_next;
5132 fsm_start:
5133 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5136 * This is purely heuristic. This is a fast path.
5137 * Sometimes when we enter, BSY will be cleared in
5138 * a chk-status or two. If not, the drive is probably seeking
5139 * or something. Snooze for a couple msecs, then
5140 * chk-status again. If still busy, queue delayed work.
5142 status = ata_busy_wait(ap, ATA_BUSY, 5);
5143 if (status & ATA_BUSY) {
5144 msleep(2);
5145 status = ata_busy_wait(ap, ATA_BUSY, 10);
5146 if (status & ATA_BUSY) {
5147 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5148 return;
5152 /* move the HSM */
5153 poll_next = ata_hsm_move(ap, qc, status, 1);
5155 /* another command or interrupt handler
5156 * may be running at this point.
5158 if (poll_next)
5159 goto fsm_start;
5163 * ata_qc_new - Request an available ATA command, for queueing
5164 * @ap: Port associated with device @dev
5165 * @dev: Device from whom we request an available command structure
5167 * LOCKING:
5168 * None.
5171 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5173 struct ata_queued_cmd *qc = NULL;
5174 unsigned int i;
5176 /* no command while frozen */
5177 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5178 return NULL;
5180 /* the last tag is reserved for internal command. */
5181 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5182 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5183 qc = __ata_qc_from_tag(ap, i);
5184 break;
5187 if (qc)
5188 qc->tag = i;
5190 return qc;
5194 * ata_qc_new_init - Request an available ATA command, and initialize it
5195 * @dev: Device from whom we request an available command structure
5197 * LOCKING:
5198 * None.
5201 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5203 struct ata_port *ap = dev->link->ap;
5204 struct ata_queued_cmd *qc;
5206 qc = ata_qc_new(ap);
5207 if (qc) {
5208 qc->scsicmd = NULL;
5209 qc->ap = ap;
5210 qc->dev = dev;
5212 ata_qc_reinit(qc);
5215 return qc;
5219 * ata_qc_free - free unused ata_queued_cmd
5220 * @qc: Command to complete
5222 * Designed to free unused ata_queued_cmd object
5223 * in case something prevents using it.
5225 * LOCKING:
5226 * spin_lock_irqsave(host lock)
5228 void ata_qc_free(struct ata_queued_cmd *qc)
5230 struct ata_port *ap = qc->ap;
5231 unsigned int tag;
5233 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5235 qc->flags = 0;
5236 tag = qc->tag;
5237 if (likely(ata_tag_valid(tag))) {
5238 qc->tag = ATA_TAG_POISON;
5239 clear_bit(tag, &ap->qc_allocated);
5243 void __ata_qc_complete(struct ata_queued_cmd *qc)
5245 struct ata_port *ap = qc->ap;
5246 struct ata_link *link = qc->dev->link;
5248 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5249 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5251 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5252 ata_sg_clean(qc);
5254 /* command should be marked inactive atomically with qc completion */
5255 if (qc->tf.protocol == ATA_PROT_NCQ)
5256 link->sactive &= ~(1 << qc->tag);
5257 else
5258 link->active_tag = ATA_TAG_POISON;
5260 /* atapi: mark qc as inactive to prevent the interrupt handler
5261 * from completing the command twice later, before the error handler
5262 * is called. (when rc != 0 and atapi request sense is needed)
5264 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5265 ap->qc_active &= ~(1 << qc->tag);
5267 /* call completion callback */
5268 qc->complete_fn(qc);
5271 static void fill_result_tf(struct ata_queued_cmd *qc)
5273 struct ata_port *ap = qc->ap;
5275 qc->result_tf.flags = qc->tf.flags;
5276 ap->ops->tf_read(ap, &qc->result_tf);
5280 * ata_qc_complete - Complete an active ATA command
5281 * @qc: Command to complete
5282 * @err_mask: ATA Status register contents
5284 * Indicate to the mid and upper layers that an ATA
5285 * command has completed, with either an ok or not-ok status.
5287 * LOCKING:
5288 * spin_lock_irqsave(host lock)
5290 void ata_qc_complete(struct ata_queued_cmd *qc)
5292 struct ata_port *ap = qc->ap;
5294 /* XXX: New EH and old EH use different mechanisms to
5295 * synchronize EH with regular execution path.
5297 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5298 * Normal execution path is responsible for not accessing a
5299 * failed qc. libata core enforces the rule by returning NULL
5300 * from ata_qc_from_tag() for failed qcs.
5302 * Old EH depends on ata_qc_complete() nullifying completion
5303 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5304 * not synchronize with interrupt handler. Only PIO task is
5305 * taken care of.
5307 if (ap->ops->error_handler) {
5308 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5310 if (unlikely(qc->err_mask))
5311 qc->flags |= ATA_QCFLAG_FAILED;
5313 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5314 if (!ata_tag_internal(qc->tag)) {
5315 /* always fill result TF for failed qc */
5316 fill_result_tf(qc);
5317 ata_qc_schedule_eh(qc);
5318 return;
5322 /* read result TF if requested */
5323 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5324 fill_result_tf(qc);
5326 __ata_qc_complete(qc);
5327 } else {
5328 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5329 return;
5331 /* read result TF if failed or requested */
5332 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5333 fill_result_tf(qc);
5335 __ata_qc_complete(qc);
5340 * ata_qc_complete_multiple - Complete multiple qcs successfully
5341 * @ap: port in question
5342 * @qc_active: new qc_active mask
5343 * @finish_qc: LLDD callback invoked before completing a qc
5345 * Complete in-flight commands. This functions is meant to be
5346 * called from low-level driver's interrupt routine to complete
5347 * requests normally. ap->qc_active and @qc_active is compared
5348 * and commands are completed accordingly.
5350 * LOCKING:
5351 * spin_lock_irqsave(host lock)
5353 * RETURNS:
5354 * Number of completed commands on success, -errno otherwise.
5356 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5357 void (*finish_qc)(struct ata_queued_cmd *))
5359 int nr_done = 0;
5360 u32 done_mask;
5361 int i;
5363 done_mask = ap->qc_active ^ qc_active;
5365 if (unlikely(done_mask & qc_active)) {
5366 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5367 "(%08x->%08x)\n", ap->qc_active, qc_active);
5368 return -EINVAL;
5371 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5372 struct ata_queued_cmd *qc;
5374 if (!(done_mask & (1 << i)))
5375 continue;
5377 if ((qc = ata_qc_from_tag(ap, i))) {
5378 if (finish_qc)
5379 finish_qc(qc);
5380 ata_qc_complete(qc);
5381 nr_done++;
5385 return nr_done;
5388 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5390 struct ata_port *ap = qc->ap;
5392 switch (qc->tf.protocol) {
5393 case ATA_PROT_NCQ:
5394 case ATA_PROT_DMA:
5395 case ATA_PROT_ATAPI_DMA:
5396 return 1;
5398 case ATA_PROT_ATAPI:
5399 case ATA_PROT_PIO:
5400 if (ap->flags & ATA_FLAG_PIO_DMA)
5401 return 1;
5403 /* fall through */
5405 default:
5406 return 0;
5409 /* never reached */
5413 * ata_qc_issue - issue taskfile to device
5414 * @qc: command to issue to device
5416 * Prepare an ATA command to submission to device.
5417 * This includes mapping the data into a DMA-able
5418 * area, filling in the S/G table, and finally
5419 * writing the taskfile to hardware, starting the command.
5421 * LOCKING:
5422 * spin_lock_irqsave(host lock)
5424 void ata_qc_issue(struct ata_queued_cmd *qc)
5426 struct ata_port *ap = qc->ap;
5427 struct ata_link *link = qc->dev->link;
5429 /* Make sure only one non-NCQ command is outstanding. The
5430 * check is skipped for old EH because it reuses active qc to
5431 * request ATAPI sense.
5433 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5435 if (qc->tf.protocol == ATA_PROT_NCQ) {
5436 WARN_ON(link->sactive & (1 << qc->tag));
5437 link->sactive |= 1 << qc->tag;
5438 } else {
5439 WARN_ON(link->sactive);
5440 link->active_tag = qc->tag;
5443 qc->flags |= ATA_QCFLAG_ACTIVE;
5444 ap->qc_active |= 1 << qc->tag;
5446 if (ata_should_dma_map(qc)) {
5447 if (qc->flags & ATA_QCFLAG_SG) {
5448 if (ata_sg_setup(qc))
5449 goto sg_err;
5450 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5451 if (ata_sg_setup_one(qc))
5452 goto sg_err;
5454 } else {
5455 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5458 ap->ops->qc_prep(qc);
5460 qc->err_mask |= ap->ops->qc_issue(qc);
5461 if (unlikely(qc->err_mask))
5462 goto err;
5463 return;
5465 sg_err:
5466 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5467 qc->err_mask |= AC_ERR_SYSTEM;
5468 err:
5469 ata_qc_complete(qc);
5473 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5474 * @qc: command to issue to device
5476 * Using various libata functions and hooks, this function
5477 * starts an ATA command. ATA commands are grouped into
5478 * classes called "protocols", and issuing each type of protocol
5479 * is slightly different.
5481 * May be used as the qc_issue() entry in ata_port_operations.
5483 * LOCKING:
5484 * spin_lock_irqsave(host lock)
5486 * RETURNS:
5487 * Zero on success, AC_ERR_* mask on failure
5490 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5492 struct ata_port *ap = qc->ap;
5494 /* Use polling pio if the LLD doesn't handle
5495 * interrupt driven pio and atapi CDB interrupt.
5497 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5498 switch (qc->tf.protocol) {
5499 case ATA_PROT_PIO:
5500 case ATA_PROT_NODATA:
5501 case ATA_PROT_ATAPI:
5502 case ATA_PROT_ATAPI_NODATA:
5503 qc->tf.flags |= ATA_TFLAG_POLLING;
5504 break;
5505 case ATA_PROT_ATAPI_DMA:
5506 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5507 /* see ata_dma_blacklisted() */
5508 BUG();
5509 break;
5510 default:
5511 break;
5515 /* select the device */
5516 ata_dev_select(ap, qc->dev->devno, 1, 0);
5518 /* start the command */
5519 switch (qc->tf.protocol) {
5520 case ATA_PROT_NODATA:
5521 if (qc->tf.flags & ATA_TFLAG_POLLING)
5522 ata_qc_set_polling(qc);
5524 ata_tf_to_host(ap, &qc->tf);
5525 ap->hsm_task_state = HSM_ST_LAST;
5527 if (qc->tf.flags & ATA_TFLAG_POLLING)
5528 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5530 break;
5532 case ATA_PROT_DMA:
5533 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5535 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5536 ap->ops->bmdma_setup(qc); /* set up bmdma */
5537 ap->ops->bmdma_start(qc); /* initiate bmdma */
5538 ap->hsm_task_state = HSM_ST_LAST;
5539 break;
5541 case ATA_PROT_PIO:
5542 if (qc->tf.flags & ATA_TFLAG_POLLING)
5543 ata_qc_set_polling(qc);
5545 ata_tf_to_host(ap, &qc->tf);
5547 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5548 /* PIO data out protocol */
5549 ap->hsm_task_state = HSM_ST_FIRST;
5550 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5552 /* always send first data block using
5553 * the ata_pio_task() codepath.
5555 } else {
5556 /* PIO data in protocol */
5557 ap->hsm_task_state = HSM_ST;
5559 if (qc->tf.flags & ATA_TFLAG_POLLING)
5560 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5562 /* if polling, ata_pio_task() handles the rest.
5563 * otherwise, interrupt handler takes over from here.
5567 break;
5569 case ATA_PROT_ATAPI:
5570 case ATA_PROT_ATAPI_NODATA:
5571 if (qc->tf.flags & ATA_TFLAG_POLLING)
5572 ata_qc_set_polling(qc);
5574 ata_tf_to_host(ap, &qc->tf);
5576 ap->hsm_task_state = HSM_ST_FIRST;
5578 /* send cdb by polling if no cdb interrupt */
5579 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5580 (qc->tf.flags & ATA_TFLAG_POLLING))
5581 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5582 break;
5584 case ATA_PROT_ATAPI_DMA:
5585 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5587 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5588 ap->ops->bmdma_setup(qc); /* set up bmdma */
5589 ap->hsm_task_state = HSM_ST_FIRST;
5591 /* send cdb by polling if no cdb interrupt */
5592 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5593 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5594 break;
5596 default:
5597 WARN_ON(1);
5598 return AC_ERR_SYSTEM;
5601 return 0;
5605 * ata_host_intr - Handle host interrupt for given (port, task)
5606 * @ap: Port on which interrupt arrived (possibly...)
5607 * @qc: Taskfile currently active in engine
5609 * Handle host interrupt for given queued command. Currently,
5610 * only DMA interrupts are handled. All other commands are
5611 * handled via polling with interrupts disabled (nIEN bit).
5613 * LOCKING:
5614 * spin_lock_irqsave(host lock)
5616 * RETURNS:
5617 * One if interrupt was handled, zero if not (shared irq).
5620 inline unsigned int ata_host_intr (struct ata_port *ap,
5621 struct ata_queued_cmd *qc)
5623 struct ata_eh_info *ehi = &ap->link.eh_info;
5624 u8 status, host_stat = 0;
5626 VPRINTK("ata%u: protocol %d task_state %d\n",
5627 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5629 /* Check whether we are expecting interrupt in this state */
5630 switch (ap->hsm_task_state) {
5631 case HSM_ST_FIRST:
5632 /* Some pre-ATAPI-4 devices assert INTRQ
5633 * at this state when ready to receive CDB.
5636 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5637 * The flag was turned on only for atapi devices.
5638 * No need to check is_atapi_taskfile(&qc->tf) again.
5640 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5641 goto idle_irq;
5642 break;
5643 case HSM_ST_LAST:
5644 if (qc->tf.protocol == ATA_PROT_DMA ||
5645 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5646 /* check status of DMA engine */
5647 host_stat = ap->ops->bmdma_status(ap);
5648 VPRINTK("ata%u: host_stat 0x%X\n",
5649 ap->print_id, host_stat);
5651 /* if it's not our irq... */
5652 if (!(host_stat & ATA_DMA_INTR))
5653 goto idle_irq;
5655 /* before we do anything else, clear DMA-Start bit */
5656 ap->ops->bmdma_stop(qc);
5658 if (unlikely(host_stat & ATA_DMA_ERR)) {
5659 /* error when transfering data to/from memory */
5660 qc->err_mask |= AC_ERR_HOST_BUS;
5661 ap->hsm_task_state = HSM_ST_ERR;
5664 break;
5665 case HSM_ST:
5666 break;
5667 default:
5668 goto idle_irq;
5671 /* check altstatus */
5672 status = ata_altstatus(ap);
5673 if (status & ATA_BUSY)
5674 goto idle_irq;
5676 /* check main status, clearing INTRQ */
5677 status = ata_chk_status(ap);
5678 if (unlikely(status & ATA_BUSY))
5679 goto idle_irq;
5681 /* ack bmdma irq events */
5682 ap->ops->irq_clear(ap);
5684 ata_hsm_move(ap, qc, status, 0);
5686 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5687 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5688 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5690 return 1; /* irq handled */
5692 idle_irq:
5693 ap->stats.idle_irq++;
5695 #ifdef ATA_IRQ_TRAP
5696 if ((ap->stats.idle_irq % 1000) == 0) {
5697 ap->ops->irq_ack(ap, 0); /* debug trap */
5698 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5699 return 1;
5701 #endif
5702 return 0; /* irq not handled */
5706 * ata_interrupt - Default ATA host interrupt handler
5707 * @irq: irq line (unused)
5708 * @dev_instance: pointer to our ata_host information structure
5710 * Default interrupt handler for PCI IDE devices. Calls
5711 * ata_host_intr() for each port that is not disabled.
5713 * LOCKING:
5714 * Obtains host lock during operation.
5716 * RETURNS:
5717 * IRQ_NONE or IRQ_HANDLED.
5720 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5722 struct ata_host *host = dev_instance;
5723 unsigned int i;
5724 unsigned int handled = 0;
5725 unsigned long flags;
5727 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5728 spin_lock_irqsave(&host->lock, flags);
5730 for (i = 0; i < host->n_ports; i++) {
5731 struct ata_port *ap;
5733 ap = host->ports[i];
5734 if (ap &&
5735 !(ap->flags & ATA_FLAG_DISABLED)) {
5736 struct ata_queued_cmd *qc;
5738 qc = ata_qc_from_tag(ap, ap->link.active_tag);
5739 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5740 (qc->flags & ATA_QCFLAG_ACTIVE))
5741 handled |= ata_host_intr(ap, qc);
5745 spin_unlock_irqrestore(&host->lock, flags);
5747 return IRQ_RETVAL(handled);
5751 * sata_scr_valid - test whether SCRs are accessible
5752 * @link: ATA link to test SCR accessibility for
5754 * Test whether SCRs are accessible for @link.
5756 * LOCKING:
5757 * None.
5759 * RETURNS:
5760 * 1 if SCRs are accessible, 0 otherwise.
5762 int sata_scr_valid(struct ata_link *link)
5764 struct ata_port *ap = link->ap;
5766 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5770 * sata_scr_read - read SCR register of the specified port
5771 * @link: ATA link to read SCR for
5772 * @reg: SCR to read
5773 * @val: Place to store read value
5775 * Read SCR register @reg of @link into *@val. This function is
5776 * guaranteed to succeed if the cable type of the port is SATA
5777 * and the port implements ->scr_read.
5779 * LOCKING:
5780 * None.
5782 * RETURNS:
5783 * 0 on success, negative errno on failure.
5785 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5787 struct ata_port *ap = link->ap;
5789 if (sata_scr_valid(link))
5790 return ap->ops->scr_read(ap, reg, val);
5791 return -EOPNOTSUPP;
5795 * sata_scr_write - write SCR register of the specified port
5796 * @link: ATA link to write SCR for
5797 * @reg: SCR to write
5798 * @val: value to write
5800 * Write @val to SCR register @reg of @link. This function is
5801 * guaranteed to succeed if the cable type of the port is SATA
5802 * and the port implements ->scr_read.
5804 * LOCKING:
5805 * None.
5807 * RETURNS:
5808 * 0 on success, negative errno on failure.
5810 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5812 struct ata_port *ap = link->ap;
5814 if (sata_scr_valid(link))
5815 return ap->ops->scr_write(ap, reg, val);
5816 return -EOPNOTSUPP;
5820 * sata_scr_write_flush - write SCR register of the specified port and flush
5821 * @link: ATA link to write SCR for
5822 * @reg: SCR to write
5823 * @val: value to write
5825 * This function is identical to sata_scr_write() except that this
5826 * function performs flush after writing to the register.
5828 * LOCKING:
5829 * None.
5831 * RETURNS:
5832 * 0 on success, negative errno on failure.
5834 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5836 struct ata_port *ap = link->ap;
5837 int rc;
5839 if (sata_scr_valid(link)) {
5840 rc = ap->ops->scr_write(ap, reg, val);
5841 if (rc == 0)
5842 rc = ap->ops->scr_read(ap, reg, &val);
5843 return rc;
5845 return -EOPNOTSUPP;
5849 * ata_link_online - test whether the given link is online
5850 * @link: ATA link to test
5852 * Test whether @link is online. Note that this function returns
5853 * 0 if online status of @link cannot be obtained, so
5854 * ata_link_online(link) != !ata_link_offline(link).
5856 * LOCKING:
5857 * None.
5859 * RETURNS:
5860 * 1 if the port online status is available and online.
5862 int ata_link_online(struct ata_link *link)
5864 u32 sstatus;
5866 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5867 (sstatus & 0xf) == 0x3)
5868 return 1;
5869 return 0;
5873 * ata_link_offline - test whether the given link is offline
5874 * @link: ATA link to test
5876 * Test whether @link is offline. Note that this function
5877 * returns 0 if offline status of @link cannot be obtained, so
5878 * ata_link_online(link) != !ata_link_offline(link).
5880 * LOCKING:
5881 * None.
5883 * RETURNS:
5884 * 1 if the port offline status is available and offline.
5886 int ata_link_offline(struct ata_link *link)
5888 u32 sstatus;
5890 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5891 (sstatus & 0xf) != 0x3)
5892 return 1;
5893 return 0;
5896 int ata_flush_cache(struct ata_device *dev)
5898 unsigned int err_mask;
5899 u8 cmd;
5901 if (!ata_try_flush_cache(dev))
5902 return 0;
5904 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5905 cmd = ATA_CMD_FLUSH_EXT;
5906 else
5907 cmd = ATA_CMD_FLUSH;
5909 err_mask = ata_do_simple_cmd(dev, cmd);
5910 if (err_mask) {
5911 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5912 return -EIO;
5915 return 0;
5918 #ifdef CONFIG_PM
5919 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5920 unsigned int action, unsigned int ehi_flags,
5921 int wait)
5923 unsigned long flags;
5924 int i, rc;
5926 for (i = 0; i < host->n_ports; i++) {
5927 struct ata_port *ap = host->ports[i];
5928 struct ata_link *link;
5930 /* Previous resume operation might still be in
5931 * progress. Wait for PM_PENDING to clear.
5933 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5934 ata_port_wait_eh(ap);
5935 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5938 /* request PM ops to EH */
5939 spin_lock_irqsave(ap->lock, flags);
5941 ap->pm_mesg = mesg;
5942 if (wait) {
5943 rc = 0;
5944 ap->pm_result = &rc;
5947 ap->pflags |= ATA_PFLAG_PM_PENDING;
5948 __ata_port_for_each_link(link, ap) {
5949 link->eh_info.action |= action;
5950 link->eh_info.flags |= ehi_flags;
5953 ata_port_schedule_eh(ap);
5955 spin_unlock_irqrestore(ap->lock, flags);
5957 /* wait and check result */
5958 if (wait) {
5959 ata_port_wait_eh(ap);
5960 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5961 if (rc)
5962 return rc;
5966 return 0;
5970 * ata_host_suspend - suspend host
5971 * @host: host to suspend
5972 * @mesg: PM message
5974 * Suspend @host. Actual operation is performed by EH. This
5975 * function requests EH to perform PM operations and waits for EH
5976 * to finish.
5978 * LOCKING:
5979 * Kernel thread context (may sleep).
5981 * RETURNS:
5982 * 0 on success, -errno on failure.
5984 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5986 int rc;
5988 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5989 if (rc == 0)
5990 host->dev->power.power_state = mesg;
5991 return rc;
5995 * ata_host_resume - resume host
5996 * @host: host to resume
5998 * Resume @host. Actual operation is performed by EH. This
5999 * function requests EH to perform PM operations and returns.
6000 * Note that all resume operations are performed parallely.
6002 * LOCKING:
6003 * Kernel thread context (may sleep).
6005 void ata_host_resume(struct ata_host *host)
6007 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6008 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6009 host->dev->power.power_state = PMSG_ON;
6011 #endif
6014 * ata_port_start - Set port up for dma.
6015 * @ap: Port to initialize
6017 * Called just after data structures for each port are
6018 * initialized. Allocates space for PRD table.
6020 * May be used as the port_start() entry in ata_port_operations.
6022 * LOCKING:
6023 * Inherited from caller.
6025 int ata_port_start(struct ata_port *ap)
6027 struct device *dev = ap->dev;
6028 int rc;
6030 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6031 GFP_KERNEL);
6032 if (!ap->prd)
6033 return -ENOMEM;
6035 rc = ata_pad_alloc(ap, dev);
6036 if (rc)
6037 return rc;
6039 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6040 (unsigned long long)ap->prd_dma);
6041 return 0;
6045 * ata_dev_init - Initialize an ata_device structure
6046 * @dev: Device structure to initialize
6048 * Initialize @dev in preparation for probing.
6050 * LOCKING:
6051 * Inherited from caller.
6053 void ata_dev_init(struct ata_device *dev)
6055 struct ata_link *link = dev->link;
6056 struct ata_port *ap = link->ap;
6057 unsigned long flags;
6059 /* SATA spd limit is bound to the first device */
6060 link->sata_spd_limit = link->hw_sata_spd_limit;
6061 link->sata_spd = 0;
6063 /* High bits of dev->flags are used to record warm plug
6064 * requests which occur asynchronously. Synchronize using
6065 * host lock.
6067 spin_lock_irqsave(ap->lock, flags);
6068 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6069 dev->horkage = 0;
6070 spin_unlock_irqrestore(ap->lock, flags);
6072 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6073 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6074 dev->pio_mask = UINT_MAX;
6075 dev->mwdma_mask = UINT_MAX;
6076 dev->udma_mask = UINT_MAX;
6080 * ata_link_init - Initialize an ata_link structure
6081 * @ap: ATA port link is attached to
6082 * @link: Link structure to initialize
6083 * @pmp: Port multiplier port number
6085 * Initialize @link.
6087 * LOCKING:
6088 * Kernel thread context (may sleep)
6090 static void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6092 int i;
6094 /* clear everything except for devices */
6095 memset(link, 0, offsetof(struct ata_link, device[0]));
6097 link->ap = ap;
6098 link->pmp = pmp;
6099 link->active_tag = ATA_TAG_POISON;
6100 link->hw_sata_spd_limit = UINT_MAX;
6102 /* can't use iterator, ap isn't initialized yet */
6103 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6104 struct ata_device *dev = &link->device[i];
6106 dev->link = link;
6107 dev->devno = dev - link->device;
6108 ata_dev_init(dev);
6113 * sata_link_init_spd - Initialize link->sata_spd_limit
6114 * @link: Link to configure sata_spd_limit for
6116 * Initialize @link->[hw_]sata_spd_limit to the currently
6117 * configured value.
6119 * LOCKING:
6120 * Kernel thread context (may sleep).
6122 * RETURNS:
6123 * 0 on success, -errno on failure.
6125 static int sata_link_init_spd(struct ata_link *link)
6127 u32 scontrol, spd;
6128 int rc;
6130 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6131 if (rc)
6132 return rc;
6134 spd = (scontrol >> 4) & 0xf;
6135 if (spd)
6136 link->hw_sata_spd_limit &= (1 << spd) - 1;
6138 link->sata_spd_limit = link->hw_sata_spd_limit;
6140 return 0;
6144 * ata_port_alloc - allocate and initialize basic ATA port resources
6145 * @host: ATA host this allocated port belongs to
6147 * Allocate and initialize basic ATA port resources.
6149 * RETURNS:
6150 * Allocate ATA port on success, NULL on failure.
6152 * LOCKING:
6153 * Inherited from calling layer (may sleep).
6155 struct ata_port *ata_port_alloc(struct ata_host *host)
6157 struct ata_port *ap;
6159 DPRINTK("ENTER\n");
6161 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6162 if (!ap)
6163 return NULL;
6165 ap->pflags |= ATA_PFLAG_INITIALIZING;
6166 ap->lock = &host->lock;
6167 ap->flags = ATA_FLAG_DISABLED;
6168 ap->print_id = -1;
6169 ap->ctl = ATA_DEVCTL_OBS;
6170 ap->host = host;
6171 ap->dev = host->dev;
6172 ap->last_ctl = 0xFF;
6174 #if defined(ATA_VERBOSE_DEBUG)
6175 /* turn on all debugging levels */
6176 ap->msg_enable = 0x00FF;
6177 #elif defined(ATA_DEBUG)
6178 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6179 #else
6180 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6181 #endif
6183 INIT_DELAYED_WORK(&ap->port_task, NULL);
6184 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6185 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6186 INIT_LIST_HEAD(&ap->eh_done_q);
6187 init_waitqueue_head(&ap->eh_wait_q);
6188 init_timer_deferrable(&ap->fastdrain_timer);
6189 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6190 ap->fastdrain_timer.data = (unsigned long)ap;
6192 ap->cbl = ATA_CBL_NONE;
6194 ata_link_init(ap, &ap->link, 0);
6196 #ifdef ATA_IRQ_TRAP
6197 ap->stats.unhandled_irq = 1;
6198 ap->stats.idle_irq = 1;
6199 #endif
6200 return ap;
6203 static void ata_host_release(struct device *gendev, void *res)
6205 struct ata_host *host = dev_get_drvdata(gendev);
6206 int i;
6208 for (i = 0; i < host->n_ports; i++) {
6209 struct ata_port *ap = host->ports[i];
6211 if (!ap)
6212 continue;
6214 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6215 ap->ops->port_stop(ap);
6218 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6219 host->ops->host_stop(host);
6221 for (i = 0; i < host->n_ports; i++) {
6222 struct ata_port *ap = host->ports[i];
6224 if (!ap)
6225 continue;
6227 if (ap->scsi_host)
6228 scsi_host_put(ap->scsi_host);
6230 kfree(ap);
6231 host->ports[i] = NULL;
6234 dev_set_drvdata(gendev, NULL);
6238 * ata_host_alloc - allocate and init basic ATA host resources
6239 * @dev: generic device this host is associated with
6240 * @max_ports: maximum number of ATA ports associated with this host
6242 * Allocate and initialize basic ATA host resources. LLD calls
6243 * this function to allocate a host, initializes it fully and
6244 * attaches it using ata_host_register().
6246 * @max_ports ports are allocated and host->n_ports is
6247 * initialized to @max_ports. The caller is allowed to decrease
6248 * host->n_ports before calling ata_host_register(). The unused
6249 * ports will be automatically freed on registration.
6251 * RETURNS:
6252 * Allocate ATA host on success, NULL on failure.
6254 * LOCKING:
6255 * Inherited from calling layer (may sleep).
6257 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6259 struct ata_host *host;
6260 size_t sz;
6261 int i;
6263 DPRINTK("ENTER\n");
6265 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6266 return NULL;
6268 /* alloc a container for our list of ATA ports (buses) */
6269 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6270 /* alloc a container for our list of ATA ports (buses) */
6271 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6272 if (!host)
6273 goto err_out;
6275 devres_add(dev, host);
6276 dev_set_drvdata(dev, host);
6278 spin_lock_init(&host->lock);
6279 host->dev = dev;
6280 host->n_ports = max_ports;
6282 /* allocate ports bound to this host */
6283 for (i = 0; i < max_ports; i++) {
6284 struct ata_port *ap;
6286 ap = ata_port_alloc(host);
6287 if (!ap)
6288 goto err_out;
6290 ap->port_no = i;
6291 host->ports[i] = ap;
6294 devres_remove_group(dev, NULL);
6295 return host;
6297 err_out:
6298 devres_release_group(dev, NULL);
6299 return NULL;
6303 * ata_host_alloc_pinfo - alloc host and init with port_info array
6304 * @dev: generic device this host is associated with
6305 * @ppi: array of ATA port_info to initialize host with
6306 * @n_ports: number of ATA ports attached to this host
6308 * Allocate ATA host and initialize with info from @ppi. If NULL
6309 * terminated, @ppi may contain fewer entries than @n_ports. The
6310 * last entry will be used for the remaining ports.
6312 * RETURNS:
6313 * Allocate ATA host on success, NULL on failure.
6315 * LOCKING:
6316 * Inherited from calling layer (may sleep).
6318 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6319 const struct ata_port_info * const * ppi,
6320 int n_ports)
6322 const struct ata_port_info *pi;
6323 struct ata_host *host;
6324 int i, j;
6326 host = ata_host_alloc(dev, n_ports);
6327 if (!host)
6328 return NULL;
6330 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6331 struct ata_port *ap = host->ports[i];
6333 if (ppi[j])
6334 pi = ppi[j++];
6336 ap->pio_mask = pi->pio_mask;
6337 ap->mwdma_mask = pi->mwdma_mask;
6338 ap->udma_mask = pi->udma_mask;
6339 ap->flags |= pi->flags;
6340 ap->link.flags |= pi->link_flags;
6341 ap->ops = pi->port_ops;
6343 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6344 host->ops = pi->port_ops;
6345 if (!host->private_data && pi->private_data)
6346 host->private_data = pi->private_data;
6349 return host;
6353 * ata_host_start - start and freeze ports of an ATA host
6354 * @host: ATA host to start ports for
6356 * Start and then freeze ports of @host. Started status is
6357 * recorded in host->flags, so this function can be called
6358 * multiple times. Ports are guaranteed to get started only
6359 * once. If host->ops isn't initialized yet, its set to the
6360 * first non-dummy port ops.
6362 * LOCKING:
6363 * Inherited from calling layer (may sleep).
6365 * RETURNS:
6366 * 0 if all ports are started successfully, -errno otherwise.
6368 int ata_host_start(struct ata_host *host)
6370 int i, rc;
6372 if (host->flags & ATA_HOST_STARTED)
6373 return 0;
6375 for (i = 0; i < host->n_ports; i++) {
6376 struct ata_port *ap = host->ports[i];
6378 if (!host->ops && !ata_port_is_dummy(ap))
6379 host->ops = ap->ops;
6381 if (ap->ops->port_start) {
6382 rc = ap->ops->port_start(ap);
6383 if (rc) {
6384 ata_port_printk(ap, KERN_ERR, "failed to "
6385 "start port (errno=%d)\n", rc);
6386 goto err_out;
6390 ata_eh_freeze_port(ap);
6393 host->flags |= ATA_HOST_STARTED;
6394 return 0;
6396 err_out:
6397 while (--i >= 0) {
6398 struct ata_port *ap = host->ports[i];
6400 if (ap->ops->port_stop)
6401 ap->ops->port_stop(ap);
6403 return rc;
6407 * ata_sas_host_init - Initialize a host struct
6408 * @host: host to initialize
6409 * @dev: device host is attached to
6410 * @flags: host flags
6411 * @ops: port_ops
6413 * LOCKING:
6414 * PCI/etc. bus probe sem.
6417 /* KILLME - the only user left is ipr */
6418 void ata_host_init(struct ata_host *host, struct device *dev,
6419 unsigned long flags, const struct ata_port_operations *ops)
6421 spin_lock_init(&host->lock);
6422 host->dev = dev;
6423 host->flags = flags;
6424 host->ops = ops;
6428 * ata_host_register - register initialized ATA host
6429 * @host: ATA host to register
6430 * @sht: template for SCSI host
6432 * Register initialized ATA host. @host is allocated using
6433 * ata_host_alloc() and fully initialized by LLD. This function
6434 * starts ports, registers @host with ATA and SCSI layers and
6435 * probe registered devices.
6437 * LOCKING:
6438 * Inherited from calling layer (may sleep).
6440 * RETURNS:
6441 * 0 on success, -errno otherwise.
6443 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6445 int i, rc;
6447 /* host must have been started */
6448 if (!(host->flags & ATA_HOST_STARTED)) {
6449 dev_printk(KERN_ERR, host->dev,
6450 "BUG: trying to register unstarted host\n");
6451 WARN_ON(1);
6452 return -EINVAL;
6455 /* Blow away unused ports. This happens when LLD can't
6456 * determine the exact number of ports to allocate at
6457 * allocation time.
6459 for (i = host->n_ports; host->ports[i]; i++)
6460 kfree(host->ports[i]);
6462 /* give ports names and add SCSI hosts */
6463 for (i = 0; i < host->n_ports; i++)
6464 host->ports[i]->print_id = ata_print_id++;
6466 rc = ata_scsi_add_hosts(host, sht);
6467 if (rc)
6468 return rc;
6470 /* associate with ACPI nodes */
6471 ata_acpi_associate(host);
6473 /* set cable, sata_spd_limit and report */
6474 for (i = 0; i < host->n_ports; i++) {
6475 struct ata_port *ap = host->ports[i];
6476 int irq_line;
6477 unsigned long xfer_mask;
6479 /* set SATA cable type if still unset */
6480 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6481 ap->cbl = ATA_CBL_SATA;
6483 /* init sata_spd_limit to the current value */
6484 sata_link_init_spd(&ap->link);
6486 /* report the secondary IRQ for second channel legacy */
6487 irq_line = host->irq;
6488 if (i == 1 && host->irq2)
6489 irq_line = host->irq2;
6491 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6492 ap->udma_mask);
6494 /* print per-port info to dmesg */
6495 if (!ata_port_is_dummy(ap))
6496 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6497 "ctl 0x%p bmdma 0x%p irq %d\n",
6498 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6499 ata_mode_string(xfer_mask),
6500 ap->ioaddr.cmd_addr,
6501 ap->ioaddr.ctl_addr,
6502 ap->ioaddr.bmdma_addr,
6503 irq_line);
6504 else
6505 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6508 /* perform each probe synchronously */
6509 DPRINTK("probe begin\n");
6510 for (i = 0; i < host->n_ports; i++) {
6511 struct ata_port *ap = host->ports[i];
6512 int rc;
6514 /* probe */
6515 if (ap->ops->error_handler) {
6516 struct ata_eh_info *ehi = &ap->link.eh_info;
6517 unsigned long flags;
6519 ata_port_probe(ap);
6521 /* kick EH for boot probing */
6522 spin_lock_irqsave(ap->lock, flags);
6524 ehi->probe_mask =
6525 (1 << ata_link_max_devices(&ap->link)) - 1;
6526 ehi->action |= ATA_EH_SOFTRESET;
6527 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6529 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6530 ap->pflags |= ATA_PFLAG_LOADING;
6531 ata_port_schedule_eh(ap);
6533 spin_unlock_irqrestore(ap->lock, flags);
6535 /* wait for EH to finish */
6536 ata_port_wait_eh(ap);
6537 } else {
6538 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6539 rc = ata_bus_probe(ap);
6540 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6542 if (rc) {
6543 /* FIXME: do something useful here?
6544 * Current libata behavior will
6545 * tear down everything when
6546 * the module is removed
6547 * or the h/w is unplugged.
6553 /* probes are done, now scan each port's disk(s) */
6554 DPRINTK("host probe begin\n");
6555 for (i = 0; i < host->n_ports; i++) {
6556 struct ata_port *ap = host->ports[i];
6558 ata_scsi_scan_host(ap, 1);
6561 return 0;
6565 * ata_host_activate - start host, request IRQ and register it
6566 * @host: target ATA host
6567 * @irq: IRQ to request
6568 * @irq_handler: irq_handler used when requesting IRQ
6569 * @irq_flags: irq_flags used when requesting IRQ
6570 * @sht: scsi_host_template to use when registering the host
6572 * After allocating an ATA host and initializing it, most libata
6573 * LLDs perform three steps to activate the host - start host,
6574 * request IRQ and register it. This helper takes necessasry
6575 * arguments and performs the three steps in one go.
6577 * LOCKING:
6578 * Inherited from calling layer (may sleep).
6580 * RETURNS:
6581 * 0 on success, -errno otherwise.
6583 int ata_host_activate(struct ata_host *host, int irq,
6584 irq_handler_t irq_handler, unsigned long irq_flags,
6585 struct scsi_host_template *sht)
6587 int rc;
6589 rc = ata_host_start(host);
6590 if (rc)
6591 return rc;
6593 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6594 dev_driver_string(host->dev), host);
6595 if (rc)
6596 return rc;
6598 /* Used to print device info at probe */
6599 host->irq = irq;
6601 rc = ata_host_register(host, sht);
6602 /* if failed, just free the IRQ and leave ports alone */
6603 if (rc)
6604 devm_free_irq(host->dev, irq, host);
6606 return rc;
6610 * ata_port_detach - Detach ATA port in prepration of device removal
6611 * @ap: ATA port to be detached
6613 * Detach all ATA devices and the associated SCSI devices of @ap;
6614 * then, remove the associated SCSI host. @ap is guaranteed to
6615 * be quiescent on return from this function.
6617 * LOCKING:
6618 * Kernel thread context (may sleep).
6620 void ata_port_detach(struct ata_port *ap)
6622 unsigned long flags;
6623 struct ata_link *link;
6624 struct ata_device *dev;
6626 if (!ap->ops->error_handler)
6627 goto skip_eh;
6629 /* tell EH we're leaving & flush EH */
6630 spin_lock_irqsave(ap->lock, flags);
6631 ap->pflags |= ATA_PFLAG_UNLOADING;
6632 spin_unlock_irqrestore(ap->lock, flags);
6634 ata_port_wait_eh(ap);
6636 /* EH is now guaranteed to see UNLOADING, so no new device
6637 * will be attached. Disable all existing devices.
6639 spin_lock_irqsave(ap->lock, flags);
6641 ata_port_for_each_link(link, ap) {
6642 ata_link_for_each_dev(dev, link)
6643 ata_dev_disable(dev);
6646 spin_unlock_irqrestore(ap->lock, flags);
6648 /* Final freeze & EH. All in-flight commands are aborted. EH
6649 * will be skipped and retrials will be terminated with bad
6650 * target.
6652 spin_lock_irqsave(ap->lock, flags);
6653 ata_port_freeze(ap); /* won't be thawed */
6654 spin_unlock_irqrestore(ap->lock, flags);
6656 ata_port_wait_eh(ap);
6657 cancel_rearming_delayed_work(&ap->hotplug_task);
6659 skip_eh:
6660 /* remove the associated SCSI host */
6661 scsi_remove_host(ap->scsi_host);
6665 * ata_host_detach - Detach all ports of an ATA host
6666 * @host: Host to detach
6668 * Detach all ports of @host.
6670 * LOCKING:
6671 * Kernel thread context (may sleep).
6673 void ata_host_detach(struct ata_host *host)
6675 int i;
6677 for (i = 0; i < host->n_ports; i++)
6678 ata_port_detach(host->ports[i]);
6682 * ata_std_ports - initialize ioaddr with standard port offsets.
6683 * @ioaddr: IO address structure to be initialized
6685 * Utility function which initializes data_addr, error_addr,
6686 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6687 * device_addr, status_addr, and command_addr to standard offsets
6688 * relative to cmd_addr.
6690 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6693 void ata_std_ports(struct ata_ioports *ioaddr)
6695 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6696 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6697 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6698 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6699 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6700 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6701 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6702 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6703 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6704 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6708 #ifdef CONFIG_PCI
6711 * ata_pci_remove_one - PCI layer callback for device removal
6712 * @pdev: PCI device that was removed
6714 * PCI layer indicates to libata via this hook that hot-unplug or
6715 * module unload event has occurred. Detach all ports. Resource
6716 * release is handled via devres.
6718 * LOCKING:
6719 * Inherited from PCI layer (may sleep).
6721 void ata_pci_remove_one(struct pci_dev *pdev)
6723 struct device *dev = pci_dev_to_dev(pdev);
6724 struct ata_host *host = dev_get_drvdata(dev);
6726 ata_host_detach(host);
6729 /* move to PCI subsystem */
6730 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6732 unsigned long tmp = 0;
6734 switch (bits->width) {
6735 case 1: {
6736 u8 tmp8 = 0;
6737 pci_read_config_byte(pdev, bits->reg, &tmp8);
6738 tmp = tmp8;
6739 break;
6741 case 2: {
6742 u16 tmp16 = 0;
6743 pci_read_config_word(pdev, bits->reg, &tmp16);
6744 tmp = tmp16;
6745 break;
6747 case 4: {
6748 u32 tmp32 = 0;
6749 pci_read_config_dword(pdev, bits->reg, &tmp32);
6750 tmp = tmp32;
6751 break;
6754 default:
6755 return -EINVAL;
6758 tmp &= bits->mask;
6760 return (tmp == bits->val) ? 1 : 0;
6763 #ifdef CONFIG_PM
6764 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6766 pci_save_state(pdev);
6767 pci_disable_device(pdev);
6769 if (mesg.event == PM_EVENT_SUSPEND)
6770 pci_set_power_state(pdev, PCI_D3hot);
6773 int ata_pci_device_do_resume(struct pci_dev *pdev)
6775 int rc;
6777 pci_set_power_state(pdev, PCI_D0);
6778 pci_restore_state(pdev);
6780 rc = pcim_enable_device(pdev);
6781 if (rc) {
6782 dev_printk(KERN_ERR, &pdev->dev,
6783 "failed to enable device after resume (%d)\n", rc);
6784 return rc;
6787 pci_set_master(pdev);
6788 return 0;
6791 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6793 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6794 int rc = 0;
6796 rc = ata_host_suspend(host, mesg);
6797 if (rc)
6798 return rc;
6800 ata_pci_device_do_suspend(pdev, mesg);
6802 return 0;
6805 int ata_pci_device_resume(struct pci_dev *pdev)
6807 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6808 int rc;
6810 rc = ata_pci_device_do_resume(pdev);
6811 if (rc == 0)
6812 ata_host_resume(host);
6813 return rc;
6815 #endif /* CONFIG_PM */
6817 #endif /* CONFIG_PCI */
6820 static int __init ata_init(void)
6822 ata_probe_timeout *= HZ;
6823 ata_wq = create_workqueue("ata");
6824 if (!ata_wq)
6825 return -ENOMEM;
6827 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6828 if (!ata_aux_wq) {
6829 destroy_workqueue(ata_wq);
6830 return -ENOMEM;
6833 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6834 return 0;
6837 static void __exit ata_exit(void)
6839 destroy_workqueue(ata_wq);
6840 destroy_workqueue(ata_aux_wq);
6843 subsys_initcall(ata_init);
6844 module_exit(ata_exit);
6846 static unsigned long ratelimit_time;
6847 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6849 int ata_ratelimit(void)
6851 int rc;
6852 unsigned long flags;
6854 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6856 if (time_after(jiffies, ratelimit_time)) {
6857 rc = 1;
6858 ratelimit_time = jiffies + (HZ/5);
6859 } else
6860 rc = 0;
6862 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6864 return rc;
6868 * ata_wait_register - wait until register value changes
6869 * @reg: IO-mapped register
6870 * @mask: Mask to apply to read register value
6871 * @val: Wait condition
6872 * @interval_msec: polling interval in milliseconds
6873 * @timeout_msec: timeout in milliseconds
6875 * Waiting for some bits of register to change is a common
6876 * operation for ATA controllers. This function reads 32bit LE
6877 * IO-mapped register @reg and tests for the following condition.
6879 * (*@reg & mask) != val
6881 * If the condition is met, it returns; otherwise, the process is
6882 * repeated after @interval_msec until timeout.
6884 * LOCKING:
6885 * Kernel thread context (may sleep)
6887 * RETURNS:
6888 * The final register value.
6890 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6891 unsigned long interval_msec,
6892 unsigned long timeout_msec)
6894 unsigned long timeout;
6895 u32 tmp;
6897 tmp = ioread32(reg);
6899 /* Calculate timeout _after_ the first read to make sure
6900 * preceding writes reach the controller before starting to
6901 * eat away the timeout.
6903 timeout = jiffies + (timeout_msec * HZ) / 1000;
6905 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6906 msleep(interval_msec);
6907 tmp = ioread32(reg);
6910 return tmp;
6914 * Dummy port_ops
6916 static void ata_dummy_noret(struct ata_port *ap) { }
6917 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6918 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6920 static u8 ata_dummy_check_status(struct ata_port *ap)
6922 return ATA_DRDY;
6925 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6927 return AC_ERR_SYSTEM;
6930 const struct ata_port_operations ata_dummy_port_ops = {
6931 .port_disable = ata_port_disable,
6932 .check_status = ata_dummy_check_status,
6933 .check_altstatus = ata_dummy_check_status,
6934 .dev_select = ata_noop_dev_select,
6935 .qc_prep = ata_noop_qc_prep,
6936 .qc_issue = ata_dummy_qc_issue,
6937 .freeze = ata_dummy_noret,
6938 .thaw = ata_dummy_noret,
6939 .error_handler = ata_dummy_noret,
6940 .post_internal_cmd = ata_dummy_qc_noret,
6941 .irq_clear = ata_dummy_noret,
6942 .port_start = ata_dummy_ret0,
6943 .port_stop = ata_dummy_noret,
6946 const struct ata_port_info ata_dummy_port_info = {
6947 .port_ops = &ata_dummy_port_ops,
6951 * libata is essentially a library of internal helper functions for
6952 * low-level ATA host controller drivers. As such, the API/ABI is
6953 * likely to change as new drivers are added and updated.
6954 * Do not depend on ABI/API stability.
6957 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6958 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6959 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6960 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6961 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6962 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6963 EXPORT_SYMBOL_GPL(ata_std_ports);
6964 EXPORT_SYMBOL_GPL(ata_host_init);
6965 EXPORT_SYMBOL_GPL(ata_host_alloc);
6966 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6967 EXPORT_SYMBOL_GPL(ata_host_start);
6968 EXPORT_SYMBOL_GPL(ata_host_register);
6969 EXPORT_SYMBOL_GPL(ata_host_activate);
6970 EXPORT_SYMBOL_GPL(ata_host_detach);
6971 EXPORT_SYMBOL_GPL(ata_sg_init);
6972 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6973 EXPORT_SYMBOL_GPL(ata_hsm_move);
6974 EXPORT_SYMBOL_GPL(ata_qc_complete);
6975 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6976 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6977 EXPORT_SYMBOL_GPL(ata_tf_load);
6978 EXPORT_SYMBOL_GPL(ata_tf_read);
6979 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6980 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6981 EXPORT_SYMBOL_GPL(sata_print_link_status);
6982 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6983 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6984 EXPORT_SYMBOL_GPL(ata_check_status);
6985 EXPORT_SYMBOL_GPL(ata_altstatus);
6986 EXPORT_SYMBOL_GPL(ata_exec_command);
6987 EXPORT_SYMBOL_GPL(ata_port_start);
6988 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6989 EXPORT_SYMBOL_GPL(ata_interrupt);
6990 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6991 EXPORT_SYMBOL_GPL(ata_data_xfer);
6992 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6993 EXPORT_SYMBOL_GPL(ata_qc_prep);
6994 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
6995 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6996 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6997 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6998 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6999 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7000 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7001 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7002 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7003 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7004 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7005 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7006 EXPORT_SYMBOL_GPL(ata_port_probe);
7007 EXPORT_SYMBOL_GPL(ata_dev_disable);
7008 EXPORT_SYMBOL_GPL(sata_set_spd);
7009 EXPORT_SYMBOL_GPL(sata_link_debounce);
7010 EXPORT_SYMBOL_GPL(sata_link_resume);
7011 EXPORT_SYMBOL_GPL(sata_phy_reset);
7012 EXPORT_SYMBOL_GPL(__sata_phy_reset);
7013 EXPORT_SYMBOL_GPL(ata_bus_reset);
7014 EXPORT_SYMBOL_GPL(ata_std_prereset);
7015 EXPORT_SYMBOL_GPL(ata_std_softreset);
7016 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7017 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7018 EXPORT_SYMBOL_GPL(ata_std_postreset);
7019 EXPORT_SYMBOL_GPL(ata_dev_classify);
7020 EXPORT_SYMBOL_GPL(ata_dev_pair);
7021 EXPORT_SYMBOL_GPL(ata_port_disable);
7022 EXPORT_SYMBOL_GPL(ata_ratelimit);
7023 EXPORT_SYMBOL_GPL(ata_wait_register);
7024 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7025 EXPORT_SYMBOL_GPL(ata_wait_ready);
7026 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7027 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7028 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7029 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7030 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7031 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7032 EXPORT_SYMBOL_GPL(ata_host_intr);
7033 EXPORT_SYMBOL_GPL(sata_scr_valid);
7034 EXPORT_SYMBOL_GPL(sata_scr_read);
7035 EXPORT_SYMBOL_GPL(sata_scr_write);
7036 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7037 EXPORT_SYMBOL_GPL(ata_link_online);
7038 EXPORT_SYMBOL_GPL(ata_link_offline);
7039 #ifdef CONFIG_PM
7040 EXPORT_SYMBOL_GPL(ata_host_suspend);
7041 EXPORT_SYMBOL_GPL(ata_host_resume);
7042 #endif /* CONFIG_PM */
7043 EXPORT_SYMBOL_GPL(ata_id_string);
7044 EXPORT_SYMBOL_GPL(ata_id_c_string);
7045 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7046 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7048 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7049 EXPORT_SYMBOL_GPL(ata_timing_compute);
7050 EXPORT_SYMBOL_GPL(ata_timing_merge);
7052 #ifdef CONFIG_PCI
7053 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7054 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7055 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7056 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7057 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7058 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7059 #ifdef CONFIG_PM
7060 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7061 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7062 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7063 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7064 #endif /* CONFIG_PM */
7065 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7066 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7067 #endif /* CONFIG_PCI */
7069 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7070 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7071 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7072 EXPORT_SYMBOL_GPL(ata_eng_timeout);
7073 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7074 EXPORT_SYMBOL_GPL(ata_link_abort);
7075 EXPORT_SYMBOL_GPL(ata_port_abort);
7076 EXPORT_SYMBOL_GPL(ata_port_freeze);
7077 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7078 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7079 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7080 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7081 EXPORT_SYMBOL_GPL(ata_do_eh);
7082 EXPORT_SYMBOL_GPL(ata_irq_on);
7083 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
7084 EXPORT_SYMBOL_GPL(ata_irq_ack);
7085 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
7086 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7088 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7089 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7090 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7091 EXPORT_SYMBOL_GPL(ata_cable_sata);