2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/interrupt.h>
29 #include <linux/cpu.h>
30 #include <linux/blktrace_api.h>
35 #include <scsi/scsi_cmnd.h>
37 static void blk_unplug_work(struct work_struct
*work
);
38 static void blk_unplug_timeout(unsigned long data
);
39 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
40 static void init_request_from_bio(struct request
*req
, struct bio
*bio
);
41 static int __make_request(request_queue_t
*q
, struct bio
*bio
);
42 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
);
45 * For the allocated request tables
47 static kmem_cache_t
*request_cachep
;
50 * For queue allocation
52 static kmem_cache_t
*requestq_cachep
;
55 * For io context allocations
57 static kmem_cache_t
*iocontext_cachep
;
60 * Controlling structure to kblockd
62 static struct workqueue_struct
*kblockd_workqueue
;
64 unsigned long blk_max_low_pfn
, blk_max_pfn
;
66 EXPORT_SYMBOL(blk_max_low_pfn
);
67 EXPORT_SYMBOL(blk_max_pfn
);
69 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
71 /* Amount of time in which a process may batch requests */
72 #define BLK_BATCH_TIME (HZ/50UL)
74 /* Number of requests a "batching" process may submit */
75 #define BLK_BATCH_REQ 32
78 * Return the threshold (number of used requests) at which the queue is
79 * considered to be congested. It include a little hysteresis to keep the
80 * context switch rate down.
82 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
84 return q
->nr_congestion_on
;
88 * The threshold at which a queue is considered to be uncongested
90 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
92 return q
->nr_congestion_off
;
95 static void blk_queue_congestion_threshold(struct request_queue
*q
)
99 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
100 if (nr
> q
->nr_requests
)
102 q
->nr_congestion_on
= nr
;
104 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
107 q
->nr_congestion_off
= nr
;
111 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * Locates the passed device's request queue and returns the address of its
117 * Will return NULL if the request queue cannot be located.
119 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
121 struct backing_dev_info
*ret
= NULL
;
122 request_queue_t
*q
= bdev_get_queue(bdev
);
125 ret
= &q
->backing_dev_info
;
128 EXPORT_SYMBOL(blk_get_backing_dev_info
);
130 void blk_queue_activity_fn(request_queue_t
*q
, activity_fn
*fn
, void *data
)
133 q
->activity_data
= data
;
135 EXPORT_SYMBOL(blk_queue_activity_fn
);
138 * blk_queue_prep_rq - set a prepare_request function for queue
140 * @pfn: prepare_request function
142 * It's possible for a queue to register a prepare_request callback which
143 * is invoked before the request is handed to the request_fn. The goal of
144 * the function is to prepare a request for I/O, it can be used to build a
145 * cdb from the request data for instance.
148 void blk_queue_prep_rq(request_queue_t
*q
, prep_rq_fn
*pfn
)
153 EXPORT_SYMBOL(blk_queue_prep_rq
);
156 * blk_queue_merge_bvec - set a merge_bvec function for queue
158 * @mbfn: merge_bvec_fn
160 * Usually queues have static limitations on the max sectors or segments that
161 * we can put in a request. Stacking drivers may have some settings that
162 * are dynamic, and thus we have to query the queue whether it is ok to
163 * add a new bio_vec to a bio at a given offset or not. If the block device
164 * has such limitations, it needs to register a merge_bvec_fn to control
165 * the size of bio's sent to it. Note that a block device *must* allow a
166 * single page to be added to an empty bio. The block device driver may want
167 * to use the bio_split() function to deal with these bio's. By default
168 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
171 void blk_queue_merge_bvec(request_queue_t
*q
, merge_bvec_fn
*mbfn
)
173 q
->merge_bvec_fn
= mbfn
;
176 EXPORT_SYMBOL(blk_queue_merge_bvec
);
178 void blk_queue_softirq_done(request_queue_t
*q
, softirq_done_fn
*fn
)
180 q
->softirq_done_fn
= fn
;
183 EXPORT_SYMBOL(blk_queue_softirq_done
);
186 * blk_queue_make_request - define an alternate make_request function for a device
187 * @q: the request queue for the device to be affected
188 * @mfn: the alternate make_request function
191 * The normal way for &struct bios to be passed to a device
192 * driver is for them to be collected into requests on a request
193 * queue, and then to allow the device driver to select requests
194 * off that queue when it is ready. This works well for many block
195 * devices. However some block devices (typically virtual devices
196 * such as md or lvm) do not benefit from the processing on the
197 * request queue, and are served best by having the requests passed
198 * directly to them. This can be achieved by providing a function
199 * to blk_queue_make_request().
202 * The driver that does this *must* be able to deal appropriately
203 * with buffers in "highmemory". This can be accomplished by either calling
204 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
205 * blk_queue_bounce() to create a buffer in normal memory.
207 void blk_queue_make_request(request_queue_t
* q
, make_request_fn
* mfn
)
212 q
->nr_requests
= BLKDEV_MAX_RQ
;
213 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
214 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
215 q
->make_request_fn
= mfn
;
216 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
217 q
->backing_dev_info
.state
= 0;
218 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
219 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
220 blk_queue_hardsect_size(q
, 512);
221 blk_queue_dma_alignment(q
, 511);
222 blk_queue_congestion_threshold(q
);
223 q
->nr_batching
= BLK_BATCH_REQ
;
225 q
->unplug_thresh
= 4; /* hmm */
226 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
227 if (q
->unplug_delay
== 0)
230 INIT_WORK(&q
->unplug_work
, blk_unplug_work
);
232 q
->unplug_timer
.function
= blk_unplug_timeout
;
233 q
->unplug_timer
.data
= (unsigned long)q
;
236 * by default assume old behaviour and bounce for any highmem page
238 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
240 blk_queue_activity_fn(q
, NULL
, NULL
);
243 EXPORT_SYMBOL(blk_queue_make_request
);
245 static void rq_init(request_queue_t
*q
, struct request
*rq
)
247 INIT_LIST_HEAD(&rq
->queuelist
);
248 INIT_LIST_HEAD(&rq
->donelist
);
251 rq
->bio
= rq
->biotail
= NULL
;
252 INIT_HLIST_NODE(&rq
->hash
);
253 RB_CLEAR_NODE(&rq
->rb_node
);
261 rq
->nr_phys_segments
= 0;
264 rq
->end_io_data
= NULL
;
265 rq
->completion_data
= NULL
;
269 * blk_queue_ordered - does this queue support ordered writes
270 * @q: the request queue
271 * @ordered: one of QUEUE_ORDERED_*
272 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
275 * For journalled file systems, doing ordered writes on a commit
276 * block instead of explicitly doing wait_on_buffer (which is bad
277 * for performance) can be a big win. Block drivers supporting this
278 * feature should call this function and indicate so.
281 int blk_queue_ordered(request_queue_t
*q
, unsigned ordered
,
282 prepare_flush_fn
*prepare_flush_fn
)
284 if (ordered
& (QUEUE_ORDERED_PREFLUSH
| QUEUE_ORDERED_POSTFLUSH
) &&
285 prepare_flush_fn
== NULL
) {
286 printk(KERN_ERR
"blk_queue_ordered: prepare_flush_fn required\n");
290 if (ordered
!= QUEUE_ORDERED_NONE
&&
291 ordered
!= QUEUE_ORDERED_DRAIN
&&
292 ordered
!= QUEUE_ORDERED_DRAIN_FLUSH
&&
293 ordered
!= QUEUE_ORDERED_DRAIN_FUA
&&
294 ordered
!= QUEUE_ORDERED_TAG
&&
295 ordered
!= QUEUE_ORDERED_TAG_FLUSH
&&
296 ordered
!= QUEUE_ORDERED_TAG_FUA
) {
297 printk(KERN_ERR
"blk_queue_ordered: bad value %d\n", ordered
);
301 q
->ordered
= ordered
;
302 q
->next_ordered
= ordered
;
303 q
->prepare_flush_fn
= prepare_flush_fn
;
308 EXPORT_SYMBOL(blk_queue_ordered
);
311 * blk_queue_issue_flush_fn - set function for issuing a flush
312 * @q: the request queue
313 * @iff: the function to be called issuing the flush
316 * If a driver supports issuing a flush command, the support is notified
317 * to the block layer by defining it through this call.
320 void blk_queue_issue_flush_fn(request_queue_t
*q
, issue_flush_fn
*iff
)
322 q
->issue_flush_fn
= iff
;
325 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
328 * Cache flushing for ordered writes handling
330 inline unsigned blk_ordered_cur_seq(request_queue_t
*q
)
334 return 1 << ffz(q
->ordseq
);
337 unsigned blk_ordered_req_seq(struct request
*rq
)
339 request_queue_t
*q
= rq
->q
;
341 BUG_ON(q
->ordseq
== 0);
343 if (rq
== &q
->pre_flush_rq
)
344 return QUEUE_ORDSEQ_PREFLUSH
;
345 if (rq
== &q
->bar_rq
)
346 return QUEUE_ORDSEQ_BAR
;
347 if (rq
== &q
->post_flush_rq
)
348 return QUEUE_ORDSEQ_POSTFLUSH
;
350 if ((rq
->cmd_flags
& REQ_ORDERED_COLOR
) ==
351 (q
->orig_bar_rq
->cmd_flags
& REQ_ORDERED_COLOR
))
352 return QUEUE_ORDSEQ_DRAIN
;
354 return QUEUE_ORDSEQ_DONE
;
357 void blk_ordered_complete_seq(request_queue_t
*q
, unsigned seq
, int error
)
362 if (error
&& !q
->orderr
)
365 BUG_ON(q
->ordseq
& seq
);
368 if (blk_ordered_cur_seq(q
) != QUEUE_ORDSEQ_DONE
)
372 * Okay, sequence complete.
375 uptodate
= q
->orderr
? q
->orderr
: 1;
379 end_that_request_first(rq
, uptodate
, rq
->hard_nr_sectors
);
380 end_that_request_last(rq
, uptodate
);
383 static void pre_flush_end_io(struct request
*rq
, int error
)
385 elv_completed_request(rq
->q
, rq
);
386 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_PREFLUSH
, error
);
389 static void bar_end_io(struct request
*rq
, int error
)
391 elv_completed_request(rq
->q
, rq
);
392 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_BAR
, error
);
395 static void post_flush_end_io(struct request
*rq
, int error
)
397 elv_completed_request(rq
->q
, rq
);
398 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_POSTFLUSH
, error
);
401 static void queue_flush(request_queue_t
*q
, unsigned which
)
404 rq_end_io_fn
*end_io
;
406 if (which
== QUEUE_ORDERED_PREFLUSH
) {
407 rq
= &q
->pre_flush_rq
;
408 end_io
= pre_flush_end_io
;
410 rq
= &q
->post_flush_rq
;
411 end_io
= post_flush_end_io
;
414 rq
->cmd_flags
= REQ_HARDBARRIER
;
416 rq
->elevator_private
= NULL
;
417 rq
->elevator_private2
= NULL
;
418 rq
->rq_disk
= q
->bar_rq
.rq_disk
;
420 q
->prepare_flush_fn(q
, rq
);
422 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
425 static inline struct request
*start_ordered(request_queue_t
*q
,
430 q
->ordered
= q
->next_ordered
;
431 q
->ordseq
|= QUEUE_ORDSEQ_STARTED
;
434 * Prep proxy barrier request.
436 blkdev_dequeue_request(rq
);
441 if (bio_data_dir(q
->orig_bar_rq
->bio
) == WRITE
)
442 rq
->cmd_flags
|= REQ_RW
;
443 rq
->cmd_flags
|= q
->ordered
& QUEUE_ORDERED_FUA
? REQ_FUA
: 0;
444 rq
->elevator_private
= NULL
;
445 rq
->elevator_private2
= NULL
;
446 init_request_from_bio(rq
, q
->orig_bar_rq
->bio
);
447 rq
->end_io
= bar_end_io
;
450 * Queue ordered sequence. As we stack them at the head, we
451 * need to queue in reverse order. Note that we rely on that
452 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
453 * request gets inbetween ordered sequence.
455 if (q
->ordered
& QUEUE_ORDERED_POSTFLUSH
)
456 queue_flush(q
, QUEUE_ORDERED_POSTFLUSH
);
458 q
->ordseq
|= QUEUE_ORDSEQ_POSTFLUSH
;
460 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
462 if (q
->ordered
& QUEUE_ORDERED_PREFLUSH
) {
463 queue_flush(q
, QUEUE_ORDERED_PREFLUSH
);
464 rq
= &q
->pre_flush_rq
;
466 q
->ordseq
|= QUEUE_ORDSEQ_PREFLUSH
;
468 if ((q
->ordered
& QUEUE_ORDERED_TAG
) || q
->in_flight
== 0)
469 q
->ordseq
|= QUEUE_ORDSEQ_DRAIN
;
476 int blk_do_ordered(request_queue_t
*q
, struct request
**rqp
)
478 struct request
*rq
= *rqp
;
479 int is_barrier
= blk_fs_request(rq
) && blk_barrier_rq(rq
);
485 if (q
->next_ordered
!= QUEUE_ORDERED_NONE
) {
486 *rqp
= start_ordered(q
, rq
);
490 * This can happen when the queue switches to
491 * ORDERED_NONE while this request is on it.
493 blkdev_dequeue_request(rq
);
494 end_that_request_first(rq
, -EOPNOTSUPP
,
495 rq
->hard_nr_sectors
);
496 end_that_request_last(rq
, -EOPNOTSUPP
);
503 * Ordered sequence in progress
506 /* Special requests are not subject to ordering rules. */
507 if (!blk_fs_request(rq
) &&
508 rq
!= &q
->pre_flush_rq
&& rq
!= &q
->post_flush_rq
)
511 if (q
->ordered
& QUEUE_ORDERED_TAG
) {
512 /* Ordered by tag. Blocking the next barrier is enough. */
513 if (is_barrier
&& rq
!= &q
->bar_rq
)
516 /* Ordered by draining. Wait for turn. */
517 WARN_ON(blk_ordered_req_seq(rq
) < blk_ordered_cur_seq(q
));
518 if (blk_ordered_req_seq(rq
) > blk_ordered_cur_seq(q
))
525 static int flush_dry_bio_endio(struct bio
*bio
, unsigned int bytes
, int error
)
527 request_queue_t
*q
= bio
->bi_private
;
528 struct bio_vec
*bvec
;
532 * This is dry run, restore bio_sector and size. We'll finish
533 * this request again with the original bi_end_io after an
534 * error occurs or post flush is complete.
543 bio_for_each_segment(bvec
, bio
, i
) {
544 bvec
->bv_len
+= bvec
->bv_offset
;
549 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
550 bio
->bi_size
= q
->bi_size
;
551 bio
->bi_sector
-= (q
->bi_size
>> 9);
557 static int ordered_bio_endio(struct request
*rq
, struct bio
*bio
,
558 unsigned int nbytes
, int error
)
560 request_queue_t
*q
= rq
->q
;
564 if (&q
->bar_rq
!= rq
)
568 * Okay, this is the barrier request in progress, dry finish it.
570 if (error
&& !q
->orderr
)
573 endio
= bio
->bi_end_io
;
574 private = bio
->bi_private
;
575 bio
->bi_end_io
= flush_dry_bio_endio
;
578 bio_endio(bio
, nbytes
, error
);
580 bio
->bi_end_io
= endio
;
581 bio
->bi_private
= private;
587 * blk_queue_bounce_limit - set bounce buffer limit for queue
588 * @q: the request queue for the device
589 * @dma_addr: bus address limit
592 * Different hardware can have different requirements as to what pages
593 * it can do I/O directly to. A low level driver can call
594 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
595 * buffers for doing I/O to pages residing above @page.
597 void blk_queue_bounce_limit(request_queue_t
*q
, u64 dma_addr
)
599 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
602 q
->bounce_gfp
= GFP_NOIO
;
603 #if BITS_PER_LONG == 64
604 /* Assume anything <= 4GB can be handled by IOMMU.
605 Actually some IOMMUs can handle everything, but I don't
606 know of a way to test this here. */
607 if (bounce_pfn
< (min_t(u64
,0xffffffff,BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
609 q
->bounce_pfn
= max_low_pfn
;
611 if (bounce_pfn
< blk_max_low_pfn
)
613 q
->bounce_pfn
= bounce_pfn
;
616 init_emergency_isa_pool();
617 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
618 q
->bounce_pfn
= bounce_pfn
;
622 EXPORT_SYMBOL(blk_queue_bounce_limit
);
625 * blk_queue_max_sectors - set max sectors for a request for this queue
626 * @q: the request queue for the device
627 * @max_sectors: max sectors in the usual 512b unit
630 * Enables a low level driver to set an upper limit on the size of
633 void blk_queue_max_sectors(request_queue_t
*q
, unsigned int max_sectors
)
635 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
636 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
637 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
640 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
641 q
->max_hw_sectors
= q
->max_sectors
= max_sectors
;
643 q
->max_sectors
= BLK_DEF_MAX_SECTORS
;
644 q
->max_hw_sectors
= max_sectors
;
648 EXPORT_SYMBOL(blk_queue_max_sectors
);
651 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
652 * @q: the request queue for the device
653 * @max_segments: max number of segments
656 * Enables a low level driver to set an upper limit on the number of
657 * physical data segments in a request. This would be the largest sized
658 * scatter list the driver could handle.
660 void blk_queue_max_phys_segments(request_queue_t
*q
, unsigned short max_segments
)
664 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
667 q
->max_phys_segments
= max_segments
;
670 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
673 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
674 * @q: the request queue for the device
675 * @max_segments: max number of segments
678 * Enables a low level driver to set an upper limit on the number of
679 * hw data segments in a request. This would be the largest number of
680 * address/length pairs the host adapter can actually give as once
683 void blk_queue_max_hw_segments(request_queue_t
*q
, unsigned short max_segments
)
687 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
690 q
->max_hw_segments
= max_segments
;
693 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
696 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
697 * @q: the request queue for the device
698 * @max_size: max size of segment in bytes
701 * Enables a low level driver to set an upper limit on the size of a
704 void blk_queue_max_segment_size(request_queue_t
*q
, unsigned int max_size
)
706 if (max_size
< PAGE_CACHE_SIZE
) {
707 max_size
= PAGE_CACHE_SIZE
;
708 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
711 q
->max_segment_size
= max_size
;
714 EXPORT_SYMBOL(blk_queue_max_segment_size
);
717 * blk_queue_hardsect_size - set hardware sector size for the queue
718 * @q: the request queue for the device
719 * @size: the hardware sector size, in bytes
722 * This should typically be set to the lowest possible sector size
723 * that the hardware can operate on (possible without reverting to
724 * even internal read-modify-write operations). Usually the default
725 * of 512 covers most hardware.
727 void blk_queue_hardsect_size(request_queue_t
*q
, unsigned short size
)
729 q
->hardsect_size
= size
;
732 EXPORT_SYMBOL(blk_queue_hardsect_size
);
735 * Returns the minimum that is _not_ zero, unless both are zero.
737 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
740 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
741 * @t: the stacking driver (top)
742 * @b: the underlying device (bottom)
744 void blk_queue_stack_limits(request_queue_t
*t
, request_queue_t
*b
)
746 /* zero is "infinity" */
747 t
->max_sectors
= min_not_zero(t
->max_sectors
,b
->max_sectors
);
748 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
,b
->max_hw_sectors
);
750 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
751 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
752 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
753 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
754 if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
))
755 clear_bit(QUEUE_FLAG_CLUSTER
, &t
->queue_flags
);
758 EXPORT_SYMBOL(blk_queue_stack_limits
);
761 * blk_queue_segment_boundary - set boundary rules for segment merging
762 * @q: the request queue for the device
763 * @mask: the memory boundary mask
765 void blk_queue_segment_boundary(request_queue_t
*q
, unsigned long mask
)
767 if (mask
< PAGE_CACHE_SIZE
- 1) {
768 mask
= PAGE_CACHE_SIZE
- 1;
769 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
772 q
->seg_boundary_mask
= mask
;
775 EXPORT_SYMBOL(blk_queue_segment_boundary
);
778 * blk_queue_dma_alignment - set dma length and memory alignment
779 * @q: the request queue for the device
780 * @mask: alignment mask
783 * set required memory and length aligment for direct dma transactions.
784 * this is used when buiding direct io requests for the queue.
787 void blk_queue_dma_alignment(request_queue_t
*q
, int mask
)
789 q
->dma_alignment
= mask
;
792 EXPORT_SYMBOL(blk_queue_dma_alignment
);
795 * blk_queue_find_tag - find a request by its tag and queue
796 * @q: The request queue for the device
797 * @tag: The tag of the request
800 * Should be used when a device returns a tag and you want to match
803 * no locks need be held.
805 struct request
*blk_queue_find_tag(request_queue_t
*q
, int tag
)
807 return blk_map_queue_find_tag(q
->queue_tags
, tag
);
810 EXPORT_SYMBOL(blk_queue_find_tag
);
813 * __blk_free_tags - release a given set of tag maintenance info
814 * @bqt: the tag map to free
816 * Tries to free the specified @bqt@. Returns true if it was
817 * actually freed and false if there are still references using it
819 static int __blk_free_tags(struct blk_queue_tag
*bqt
)
823 retval
= atomic_dec_and_test(&bqt
->refcnt
);
826 BUG_ON(!list_empty(&bqt
->busy_list
));
828 kfree(bqt
->tag_index
);
829 bqt
->tag_index
= NULL
;
842 * __blk_queue_free_tags - release tag maintenance info
843 * @q: the request queue for the device
846 * blk_cleanup_queue() will take care of calling this function, if tagging
847 * has been used. So there's no need to call this directly.
849 static void __blk_queue_free_tags(request_queue_t
*q
)
851 struct blk_queue_tag
*bqt
= q
->queue_tags
;
856 __blk_free_tags(bqt
);
858 q
->queue_tags
= NULL
;
859 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
864 * blk_free_tags - release a given set of tag maintenance info
865 * @bqt: the tag map to free
867 * For externally managed @bqt@ frees the map. Callers of this
868 * function must guarantee to have released all the queues that
869 * might have been using this tag map.
871 void blk_free_tags(struct blk_queue_tag
*bqt
)
873 if (unlikely(!__blk_free_tags(bqt
)))
876 EXPORT_SYMBOL(blk_free_tags
);
879 * blk_queue_free_tags - release tag maintenance info
880 * @q: the request queue for the device
883 * This is used to disabled tagged queuing to a device, yet leave
886 void blk_queue_free_tags(request_queue_t
*q
)
888 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
891 EXPORT_SYMBOL(blk_queue_free_tags
);
894 init_tag_map(request_queue_t
*q
, struct blk_queue_tag
*tags
, int depth
)
896 struct request
**tag_index
;
897 unsigned long *tag_map
;
900 if (q
&& depth
> q
->nr_requests
* 2) {
901 depth
= q
->nr_requests
* 2;
902 printk(KERN_ERR
"%s: adjusted depth to %d\n",
903 __FUNCTION__
, depth
);
906 tag_index
= kzalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
910 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
911 tag_map
= kzalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
915 tags
->real_max_depth
= depth
;
916 tags
->max_depth
= depth
;
917 tags
->tag_index
= tag_index
;
918 tags
->tag_map
= tag_map
;
926 static struct blk_queue_tag
*__blk_queue_init_tags(struct request_queue
*q
,
929 struct blk_queue_tag
*tags
;
931 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
935 if (init_tag_map(q
, tags
, depth
))
938 INIT_LIST_HEAD(&tags
->busy_list
);
940 atomic_set(&tags
->refcnt
, 1);
948 * blk_init_tags - initialize the tag info for an external tag map
949 * @depth: the maximum queue depth supported
950 * @tags: the tag to use
952 struct blk_queue_tag
*blk_init_tags(int depth
)
954 return __blk_queue_init_tags(NULL
, depth
);
956 EXPORT_SYMBOL(blk_init_tags
);
959 * blk_queue_init_tags - initialize the queue tag info
960 * @q: the request queue for the device
961 * @depth: the maximum queue depth supported
962 * @tags: the tag to use
964 int blk_queue_init_tags(request_queue_t
*q
, int depth
,
965 struct blk_queue_tag
*tags
)
969 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
971 if (!tags
&& !q
->queue_tags
) {
972 tags
= __blk_queue_init_tags(q
, depth
);
976 } else if (q
->queue_tags
) {
977 if ((rc
= blk_queue_resize_tags(q
, depth
)))
979 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
982 atomic_inc(&tags
->refcnt
);
985 * assign it, all done
987 q
->queue_tags
= tags
;
988 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
995 EXPORT_SYMBOL(blk_queue_init_tags
);
998 * blk_queue_resize_tags - change the queueing depth
999 * @q: the request queue for the device
1000 * @new_depth: the new max command queueing depth
1003 * Must be called with the queue lock held.
1005 int blk_queue_resize_tags(request_queue_t
*q
, int new_depth
)
1007 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1008 struct request
**tag_index
;
1009 unsigned long *tag_map
;
1010 int max_depth
, nr_ulongs
;
1016 * if we already have large enough real_max_depth. just
1017 * adjust max_depth. *NOTE* as requests with tag value
1018 * between new_depth and real_max_depth can be in-flight, tag
1019 * map can not be shrunk blindly here.
1021 if (new_depth
<= bqt
->real_max_depth
) {
1022 bqt
->max_depth
= new_depth
;
1027 * Currently cannot replace a shared tag map with a new
1028 * one, so error out if this is the case
1030 if (atomic_read(&bqt
->refcnt
) != 1)
1034 * save the old state info, so we can copy it back
1036 tag_index
= bqt
->tag_index
;
1037 tag_map
= bqt
->tag_map
;
1038 max_depth
= bqt
->real_max_depth
;
1040 if (init_tag_map(q
, bqt
, new_depth
))
1043 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
1044 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1045 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
1052 EXPORT_SYMBOL(blk_queue_resize_tags
);
1055 * blk_queue_end_tag - end tag operations for a request
1056 * @q: the request queue for the device
1057 * @rq: the request that has completed
1060 * Typically called when end_that_request_first() returns 0, meaning
1061 * all transfers have been done for a request. It's important to call
1062 * this function before end_that_request_last(), as that will put the
1063 * request back on the free list thus corrupting the internal tag list.
1066 * queue lock must be held.
1068 void blk_queue_end_tag(request_queue_t
*q
, struct request
*rq
)
1070 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1075 if (unlikely(tag
>= bqt
->real_max_depth
))
1077 * This can happen after tag depth has been reduced.
1078 * FIXME: how about a warning or info message here?
1082 if (unlikely(!__test_and_clear_bit(tag
, bqt
->tag_map
))) {
1083 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
1088 list_del_init(&rq
->queuelist
);
1089 rq
->cmd_flags
&= ~REQ_QUEUED
;
1092 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
1093 printk(KERN_ERR
"%s: tag %d is missing\n",
1096 bqt
->tag_index
[tag
] = NULL
;
1100 EXPORT_SYMBOL(blk_queue_end_tag
);
1103 * blk_queue_start_tag - find a free tag and assign it
1104 * @q: the request queue for the device
1105 * @rq: the block request that needs tagging
1108 * This can either be used as a stand-alone helper, or possibly be
1109 * assigned as the queue &prep_rq_fn (in which case &struct request
1110 * automagically gets a tag assigned). Note that this function
1111 * assumes that any type of request can be queued! if this is not
1112 * true for your device, you must check the request type before
1113 * calling this function. The request will also be removed from
1114 * the request queue, so it's the drivers responsibility to readd
1115 * it if it should need to be restarted for some reason.
1118 * queue lock must be held.
1120 int blk_queue_start_tag(request_queue_t
*q
, struct request
*rq
)
1122 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1125 if (unlikely((rq
->cmd_flags
& REQ_QUEUED
))) {
1127 "%s: request %p for device [%s] already tagged %d",
1129 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
1134 * Protect against shared tag maps, as we may not have exclusive
1135 * access to the tag map.
1138 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
1139 if (tag
>= bqt
->max_depth
)
1142 } while (test_and_set_bit(tag
, bqt
->tag_map
));
1144 rq
->cmd_flags
|= REQ_QUEUED
;
1146 bqt
->tag_index
[tag
] = rq
;
1147 blkdev_dequeue_request(rq
);
1148 list_add(&rq
->queuelist
, &bqt
->busy_list
);
1153 EXPORT_SYMBOL(blk_queue_start_tag
);
1156 * blk_queue_invalidate_tags - invalidate all pending tags
1157 * @q: the request queue for the device
1160 * Hardware conditions may dictate a need to stop all pending requests.
1161 * In this case, we will safely clear the block side of the tag queue and
1162 * readd all requests to the request queue in the right order.
1165 * queue lock must be held.
1167 void blk_queue_invalidate_tags(request_queue_t
*q
)
1169 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1170 struct list_head
*tmp
, *n
;
1173 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1174 rq
= list_entry_rq(tmp
);
1176 if (rq
->tag
== -1) {
1178 "%s: bad tag found on list\n", __FUNCTION__
);
1179 list_del_init(&rq
->queuelist
);
1180 rq
->cmd_flags
&= ~REQ_QUEUED
;
1182 blk_queue_end_tag(q
, rq
);
1184 rq
->cmd_flags
&= ~REQ_STARTED
;
1185 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1189 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1191 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1195 printk("%s: dev %s: type=%x, flags=%x\n", msg
,
1196 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
1199 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1201 rq
->current_nr_sectors
);
1202 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1204 if (blk_pc_request(rq
)) {
1206 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1207 printk("%02x ", rq
->cmd
[bit
]);
1212 EXPORT_SYMBOL(blk_dump_rq_flags
);
1214 void blk_recount_segments(request_queue_t
*q
, struct bio
*bio
)
1216 struct bio_vec
*bv
, *bvprv
= NULL
;
1217 int i
, nr_phys_segs
, nr_hw_segs
, seg_size
, hw_seg_size
, cluster
;
1218 int high
, highprv
= 1;
1220 if (unlikely(!bio
->bi_io_vec
))
1223 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1224 hw_seg_size
= seg_size
= nr_phys_segs
= nr_hw_segs
= 0;
1225 bio_for_each_segment(bv
, bio
, i
) {
1227 * the trick here is making sure that a high page is never
1228 * considered part of another segment, since that might
1229 * change with the bounce page.
1231 high
= page_to_pfn(bv
->bv_page
) >= q
->bounce_pfn
;
1232 if (high
|| highprv
)
1233 goto new_hw_segment
;
1235 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1237 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1239 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1241 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1242 goto new_hw_segment
;
1244 seg_size
+= bv
->bv_len
;
1245 hw_seg_size
+= bv
->bv_len
;
1250 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1251 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
)) {
1252 hw_seg_size
+= bv
->bv_len
;
1255 if (hw_seg_size
> bio
->bi_hw_front_size
)
1256 bio
->bi_hw_front_size
= hw_seg_size
;
1257 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1263 seg_size
= bv
->bv_len
;
1266 if (hw_seg_size
> bio
->bi_hw_back_size
)
1267 bio
->bi_hw_back_size
= hw_seg_size
;
1268 if (nr_hw_segs
== 1 && hw_seg_size
> bio
->bi_hw_front_size
)
1269 bio
->bi_hw_front_size
= hw_seg_size
;
1270 bio
->bi_phys_segments
= nr_phys_segs
;
1271 bio
->bi_hw_segments
= nr_hw_segs
;
1272 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1276 static int blk_phys_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1279 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1282 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1284 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1288 * bio and nxt are contigous in memory, check if the queue allows
1289 * these two to be merged into one
1291 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1297 static int blk_hw_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1300 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1301 blk_recount_segments(q
, bio
);
1302 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1303 blk_recount_segments(q
, nxt
);
1304 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1305 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_front_size
+ bio
->bi_hw_back_size
))
1307 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1314 * map a request to scatterlist, return number of sg entries setup. Caller
1315 * must make sure sg can hold rq->nr_phys_segments entries
1317 int blk_rq_map_sg(request_queue_t
*q
, struct request
*rq
, struct scatterlist
*sg
)
1319 struct bio_vec
*bvec
, *bvprv
;
1321 int nsegs
, i
, cluster
;
1324 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1327 * for each bio in rq
1330 rq_for_each_bio(bio
, rq
) {
1332 * for each segment in bio
1334 bio_for_each_segment(bvec
, bio
, i
) {
1335 int nbytes
= bvec
->bv_len
;
1337 if (bvprv
&& cluster
) {
1338 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1341 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1343 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1346 sg
[nsegs
- 1].length
+= nbytes
;
1349 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1350 sg
[nsegs
].page
= bvec
->bv_page
;
1351 sg
[nsegs
].length
= nbytes
;
1352 sg
[nsegs
].offset
= bvec
->bv_offset
;
1357 } /* segments in bio */
1363 EXPORT_SYMBOL(blk_rq_map_sg
);
1366 * the standard queue merge functions, can be overridden with device
1367 * specific ones if so desired
1370 static inline int ll_new_mergeable(request_queue_t
*q
,
1371 struct request
*req
,
1374 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1376 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1377 req
->cmd_flags
|= REQ_NOMERGE
;
1378 if (req
== q
->last_merge
)
1379 q
->last_merge
= NULL
;
1384 * A hw segment is just getting larger, bump just the phys
1387 req
->nr_phys_segments
+= nr_phys_segs
;
1391 static inline int ll_new_hw_segment(request_queue_t
*q
,
1392 struct request
*req
,
1395 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1396 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1398 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1399 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1400 req
->cmd_flags
|= REQ_NOMERGE
;
1401 if (req
== q
->last_merge
)
1402 q
->last_merge
= NULL
;
1407 * This will form the start of a new hw segment. Bump both
1410 req
->nr_hw_segments
+= nr_hw_segs
;
1411 req
->nr_phys_segments
+= nr_phys_segs
;
1415 static int ll_back_merge_fn(request_queue_t
*q
, struct request
*req
,
1418 unsigned short max_sectors
;
1421 if (unlikely(blk_pc_request(req
)))
1422 max_sectors
= q
->max_hw_sectors
;
1424 max_sectors
= q
->max_sectors
;
1426 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1427 req
->cmd_flags
|= REQ_NOMERGE
;
1428 if (req
== q
->last_merge
)
1429 q
->last_merge
= NULL
;
1432 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1433 blk_recount_segments(q
, req
->biotail
);
1434 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1435 blk_recount_segments(q
, bio
);
1436 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1437 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1438 !BIOVEC_VIRT_OVERSIZE(len
)) {
1439 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1442 if (req
->nr_hw_segments
== 1)
1443 req
->bio
->bi_hw_front_size
= len
;
1444 if (bio
->bi_hw_segments
== 1)
1445 bio
->bi_hw_back_size
= len
;
1450 return ll_new_hw_segment(q
, req
, bio
);
1453 static int ll_front_merge_fn(request_queue_t
*q
, struct request
*req
,
1456 unsigned short max_sectors
;
1459 if (unlikely(blk_pc_request(req
)))
1460 max_sectors
= q
->max_hw_sectors
;
1462 max_sectors
= q
->max_sectors
;
1465 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1466 req
->cmd_flags
|= REQ_NOMERGE
;
1467 if (req
== q
->last_merge
)
1468 q
->last_merge
= NULL
;
1471 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1472 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1473 blk_recount_segments(q
, bio
);
1474 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1475 blk_recount_segments(q
, req
->bio
);
1476 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1477 !BIOVEC_VIRT_OVERSIZE(len
)) {
1478 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1481 if (bio
->bi_hw_segments
== 1)
1482 bio
->bi_hw_front_size
= len
;
1483 if (req
->nr_hw_segments
== 1)
1484 req
->biotail
->bi_hw_back_size
= len
;
1489 return ll_new_hw_segment(q
, req
, bio
);
1492 static int ll_merge_requests_fn(request_queue_t
*q
, struct request
*req
,
1493 struct request
*next
)
1495 int total_phys_segments
;
1496 int total_hw_segments
;
1499 * First check if the either of the requests are re-queued
1500 * requests. Can't merge them if they are.
1502 if (req
->special
|| next
->special
)
1506 * Will it become too large?
1508 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1511 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1512 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1513 total_phys_segments
--;
1515 if (total_phys_segments
> q
->max_phys_segments
)
1518 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1519 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1520 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1522 * propagate the combined length to the end of the requests
1524 if (req
->nr_hw_segments
== 1)
1525 req
->bio
->bi_hw_front_size
= len
;
1526 if (next
->nr_hw_segments
== 1)
1527 next
->biotail
->bi_hw_back_size
= len
;
1528 total_hw_segments
--;
1531 if (total_hw_segments
> q
->max_hw_segments
)
1534 /* Merge is OK... */
1535 req
->nr_phys_segments
= total_phys_segments
;
1536 req
->nr_hw_segments
= total_hw_segments
;
1541 * "plug" the device if there are no outstanding requests: this will
1542 * force the transfer to start only after we have put all the requests
1545 * This is called with interrupts off and no requests on the queue and
1546 * with the queue lock held.
1548 void blk_plug_device(request_queue_t
*q
)
1550 WARN_ON(!irqs_disabled());
1553 * don't plug a stopped queue, it must be paired with blk_start_queue()
1554 * which will restart the queueing
1556 if (blk_queue_stopped(q
))
1559 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
)) {
1560 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1561 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
1565 EXPORT_SYMBOL(blk_plug_device
);
1568 * remove the queue from the plugged list, if present. called with
1569 * queue lock held and interrupts disabled.
1571 int blk_remove_plug(request_queue_t
*q
)
1573 WARN_ON(!irqs_disabled());
1575 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1578 del_timer(&q
->unplug_timer
);
1582 EXPORT_SYMBOL(blk_remove_plug
);
1585 * remove the plug and let it rip..
1587 void __generic_unplug_device(request_queue_t
*q
)
1589 if (unlikely(blk_queue_stopped(q
)))
1592 if (!blk_remove_plug(q
))
1597 EXPORT_SYMBOL(__generic_unplug_device
);
1600 * generic_unplug_device - fire a request queue
1601 * @q: The &request_queue_t in question
1604 * Linux uses plugging to build bigger requests queues before letting
1605 * the device have at them. If a queue is plugged, the I/O scheduler
1606 * is still adding and merging requests on the queue. Once the queue
1607 * gets unplugged, the request_fn defined for the queue is invoked and
1608 * transfers started.
1610 void generic_unplug_device(request_queue_t
*q
)
1612 spin_lock_irq(q
->queue_lock
);
1613 __generic_unplug_device(q
);
1614 spin_unlock_irq(q
->queue_lock
);
1616 EXPORT_SYMBOL(generic_unplug_device
);
1618 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1621 request_queue_t
*q
= bdi
->unplug_io_data
;
1624 * devices don't necessarily have an ->unplug_fn defined
1627 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1628 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1634 static void blk_unplug_work(struct work_struct
*work
)
1636 request_queue_t
*q
= container_of(work
, request_queue_t
, unplug_work
);
1638 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1639 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1644 static void blk_unplug_timeout(unsigned long data
)
1646 request_queue_t
*q
= (request_queue_t
*)data
;
1648 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
1649 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1651 kblockd_schedule_work(&q
->unplug_work
);
1655 * blk_start_queue - restart a previously stopped queue
1656 * @q: The &request_queue_t in question
1659 * blk_start_queue() will clear the stop flag on the queue, and call
1660 * the request_fn for the queue if it was in a stopped state when
1661 * entered. Also see blk_stop_queue(). Queue lock must be held.
1663 void blk_start_queue(request_queue_t
*q
)
1665 WARN_ON(!irqs_disabled());
1667 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1670 * one level of recursion is ok and is much faster than kicking
1671 * the unplug handling
1673 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1675 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1678 kblockd_schedule_work(&q
->unplug_work
);
1682 EXPORT_SYMBOL(blk_start_queue
);
1685 * blk_stop_queue - stop a queue
1686 * @q: The &request_queue_t in question
1689 * The Linux block layer assumes that a block driver will consume all
1690 * entries on the request queue when the request_fn strategy is called.
1691 * Often this will not happen, because of hardware limitations (queue
1692 * depth settings). If a device driver gets a 'queue full' response,
1693 * or if it simply chooses not to queue more I/O at one point, it can
1694 * call this function to prevent the request_fn from being called until
1695 * the driver has signalled it's ready to go again. This happens by calling
1696 * blk_start_queue() to restart queue operations. Queue lock must be held.
1698 void blk_stop_queue(request_queue_t
*q
)
1701 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1703 EXPORT_SYMBOL(blk_stop_queue
);
1706 * blk_sync_queue - cancel any pending callbacks on a queue
1710 * The block layer may perform asynchronous callback activity
1711 * on a queue, such as calling the unplug function after a timeout.
1712 * A block device may call blk_sync_queue to ensure that any
1713 * such activity is cancelled, thus allowing it to release resources
1714 * the the callbacks might use. The caller must already have made sure
1715 * that its ->make_request_fn will not re-add plugging prior to calling
1719 void blk_sync_queue(struct request_queue
*q
)
1721 del_timer_sync(&q
->unplug_timer
);
1724 EXPORT_SYMBOL(blk_sync_queue
);
1727 * blk_run_queue - run a single device queue
1728 * @q: The queue to run
1730 void blk_run_queue(struct request_queue
*q
)
1732 unsigned long flags
;
1734 spin_lock_irqsave(q
->queue_lock
, flags
);
1738 * Only recurse once to avoid overrunning the stack, let the unplug
1739 * handling reinvoke the handler shortly if we already got there.
1741 if (!elv_queue_empty(q
)) {
1742 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1744 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1747 kblockd_schedule_work(&q
->unplug_work
);
1751 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1753 EXPORT_SYMBOL(blk_run_queue
);
1756 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1757 * @kobj: the kobj belonging of the request queue to be released
1760 * blk_cleanup_queue is the pair to blk_init_queue() or
1761 * blk_queue_make_request(). It should be called when a request queue is
1762 * being released; typically when a block device is being de-registered.
1763 * Currently, its primary task it to free all the &struct request
1764 * structures that were allocated to the queue and the queue itself.
1767 * Hopefully the low level driver will have finished any
1768 * outstanding requests first...
1770 static void blk_release_queue(struct kobject
*kobj
)
1772 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
1773 struct request_list
*rl
= &q
->rq
;
1778 mempool_destroy(rl
->rq_pool
);
1781 __blk_queue_free_tags(q
);
1783 blk_trace_shutdown(q
);
1785 kmem_cache_free(requestq_cachep
, q
);
1788 void blk_put_queue(request_queue_t
*q
)
1790 kobject_put(&q
->kobj
);
1792 EXPORT_SYMBOL(blk_put_queue
);
1794 void blk_cleanup_queue(request_queue_t
* q
)
1796 mutex_lock(&q
->sysfs_lock
);
1797 set_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
);
1798 mutex_unlock(&q
->sysfs_lock
);
1801 elevator_exit(q
->elevator
);
1806 EXPORT_SYMBOL(blk_cleanup_queue
);
1808 static int blk_init_free_list(request_queue_t
*q
)
1810 struct request_list
*rl
= &q
->rq
;
1812 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1813 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1815 init_waitqueue_head(&rl
->wait
[READ
]);
1816 init_waitqueue_head(&rl
->wait
[WRITE
]);
1818 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1819 mempool_free_slab
, request_cachep
, q
->node
);
1827 request_queue_t
*blk_alloc_queue(gfp_t gfp_mask
)
1829 return blk_alloc_queue_node(gfp_mask
, -1);
1831 EXPORT_SYMBOL(blk_alloc_queue
);
1833 static struct kobj_type queue_ktype
;
1835 request_queue_t
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1839 q
= kmem_cache_alloc_node(requestq_cachep
, gfp_mask
, node_id
);
1843 memset(q
, 0, sizeof(*q
));
1844 init_timer(&q
->unplug_timer
);
1846 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
1847 q
->kobj
.ktype
= &queue_ktype
;
1848 kobject_init(&q
->kobj
);
1850 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1851 q
->backing_dev_info
.unplug_io_data
= q
;
1853 mutex_init(&q
->sysfs_lock
);
1857 EXPORT_SYMBOL(blk_alloc_queue_node
);
1860 * blk_init_queue - prepare a request queue for use with a block device
1861 * @rfn: The function to be called to process requests that have been
1862 * placed on the queue.
1863 * @lock: Request queue spin lock
1866 * If a block device wishes to use the standard request handling procedures,
1867 * which sorts requests and coalesces adjacent requests, then it must
1868 * call blk_init_queue(). The function @rfn will be called when there
1869 * are requests on the queue that need to be processed. If the device
1870 * supports plugging, then @rfn may not be called immediately when requests
1871 * are available on the queue, but may be called at some time later instead.
1872 * Plugged queues are generally unplugged when a buffer belonging to one
1873 * of the requests on the queue is needed, or due to memory pressure.
1875 * @rfn is not required, or even expected, to remove all requests off the
1876 * queue, but only as many as it can handle at a time. If it does leave
1877 * requests on the queue, it is responsible for arranging that the requests
1878 * get dealt with eventually.
1880 * The queue spin lock must be held while manipulating the requests on the
1881 * request queue; this lock will be taken also from interrupt context, so irq
1882 * disabling is needed for it.
1884 * Function returns a pointer to the initialized request queue, or NULL if
1885 * it didn't succeed.
1888 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1889 * when the block device is deactivated (such as at module unload).
1892 request_queue_t
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1894 return blk_init_queue_node(rfn
, lock
, -1);
1896 EXPORT_SYMBOL(blk_init_queue
);
1899 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1901 request_queue_t
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1907 if (blk_init_free_list(q
)) {
1908 kmem_cache_free(requestq_cachep
, q
);
1913 * if caller didn't supply a lock, they get per-queue locking with
1917 spin_lock_init(&q
->__queue_lock
);
1918 lock
= &q
->__queue_lock
;
1921 q
->request_fn
= rfn
;
1922 q
->back_merge_fn
= ll_back_merge_fn
;
1923 q
->front_merge_fn
= ll_front_merge_fn
;
1924 q
->merge_requests_fn
= ll_merge_requests_fn
;
1925 q
->prep_rq_fn
= NULL
;
1926 q
->unplug_fn
= generic_unplug_device
;
1927 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1928 q
->queue_lock
= lock
;
1930 blk_queue_segment_boundary(q
, 0xffffffff);
1932 blk_queue_make_request(q
, __make_request
);
1933 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1935 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1936 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1941 if (!elevator_init(q
, NULL
)) {
1942 blk_queue_congestion_threshold(q
);
1949 EXPORT_SYMBOL(blk_init_queue_node
);
1951 int blk_get_queue(request_queue_t
*q
)
1953 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1954 kobject_get(&q
->kobj
);
1961 EXPORT_SYMBOL(blk_get_queue
);
1963 static inline void blk_free_request(request_queue_t
*q
, struct request
*rq
)
1965 if (rq
->cmd_flags
& REQ_ELVPRIV
)
1966 elv_put_request(q
, rq
);
1967 mempool_free(rq
, q
->rq
.rq_pool
);
1970 static struct request
*
1971 blk_alloc_request(request_queue_t
*q
, int rw
, int priv
, gfp_t gfp_mask
)
1973 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
1979 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1980 * see bio.h and blkdev.h
1982 rq
->cmd_flags
= rw
| REQ_ALLOCED
;
1985 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
1986 mempool_free(rq
, q
->rq
.rq_pool
);
1989 rq
->cmd_flags
|= REQ_ELVPRIV
;
1996 * ioc_batching returns true if the ioc is a valid batching request and
1997 * should be given priority access to a request.
1999 static inline int ioc_batching(request_queue_t
*q
, struct io_context
*ioc
)
2005 * Make sure the process is able to allocate at least 1 request
2006 * even if the batch times out, otherwise we could theoretically
2009 return ioc
->nr_batch_requests
== q
->nr_batching
||
2010 (ioc
->nr_batch_requests
> 0
2011 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
2015 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2016 * will cause the process to be a "batcher" on all queues in the system. This
2017 * is the behaviour we want though - once it gets a wakeup it should be given
2020 static void ioc_set_batching(request_queue_t
*q
, struct io_context
*ioc
)
2022 if (!ioc
|| ioc_batching(q
, ioc
))
2025 ioc
->nr_batch_requests
= q
->nr_batching
;
2026 ioc
->last_waited
= jiffies
;
2029 static void __freed_request(request_queue_t
*q
, int rw
)
2031 struct request_list
*rl
= &q
->rq
;
2033 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
2034 blk_clear_queue_congested(q
, rw
);
2036 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
2037 if (waitqueue_active(&rl
->wait
[rw
]))
2038 wake_up(&rl
->wait
[rw
]);
2040 blk_clear_queue_full(q
, rw
);
2045 * A request has just been released. Account for it, update the full and
2046 * congestion status, wake up any waiters. Called under q->queue_lock.
2048 static void freed_request(request_queue_t
*q
, int rw
, int priv
)
2050 struct request_list
*rl
= &q
->rq
;
2056 __freed_request(q
, rw
);
2058 if (unlikely(rl
->starved
[rw
^ 1]))
2059 __freed_request(q
, rw
^ 1);
2062 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2064 * Get a free request, queue_lock must be held.
2065 * Returns NULL on failure, with queue_lock held.
2066 * Returns !NULL on success, with queue_lock *not held*.
2068 static struct request
*get_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
2071 struct request
*rq
= NULL
;
2072 struct request_list
*rl
= &q
->rq
;
2073 struct io_context
*ioc
= NULL
;
2074 int may_queue
, priv
;
2076 may_queue
= elv_may_queue(q
, rw
);
2077 if (may_queue
== ELV_MQUEUE_NO
)
2080 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
2081 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
2082 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
2084 * The queue will fill after this allocation, so set
2085 * it as full, and mark this process as "batching".
2086 * This process will be allowed to complete a batch of
2087 * requests, others will be blocked.
2089 if (!blk_queue_full(q
, rw
)) {
2090 ioc_set_batching(q
, ioc
);
2091 blk_set_queue_full(q
, rw
);
2093 if (may_queue
!= ELV_MQUEUE_MUST
2094 && !ioc_batching(q
, ioc
)) {
2096 * The queue is full and the allocating
2097 * process is not a "batcher", and not
2098 * exempted by the IO scheduler
2104 blk_set_queue_congested(q
, rw
);
2108 * Only allow batching queuers to allocate up to 50% over the defined
2109 * limit of requests, otherwise we could have thousands of requests
2110 * allocated with any setting of ->nr_requests
2112 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
2116 rl
->starved
[rw
] = 0;
2118 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
2122 spin_unlock_irq(q
->queue_lock
);
2124 rq
= blk_alloc_request(q
, rw
, priv
, gfp_mask
);
2125 if (unlikely(!rq
)) {
2127 * Allocation failed presumably due to memory. Undo anything
2128 * we might have messed up.
2130 * Allocating task should really be put onto the front of the
2131 * wait queue, but this is pretty rare.
2133 spin_lock_irq(q
->queue_lock
);
2134 freed_request(q
, rw
, priv
);
2137 * in the very unlikely event that allocation failed and no
2138 * requests for this direction was pending, mark us starved
2139 * so that freeing of a request in the other direction will
2140 * notice us. another possible fix would be to split the
2141 * rq mempool into READ and WRITE
2144 if (unlikely(rl
->count
[rw
] == 0))
2145 rl
->starved
[rw
] = 1;
2151 * ioc may be NULL here, and ioc_batching will be false. That's
2152 * OK, if the queue is under the request limit then requests need
2153 * not count toward the nr_batch_requests limit. There will always
2154 * be some limit enforced by BLK_BATCH_TIME.
2156 if (ioc_batching(q
, ioc
))
2157 ioc
->nr_batch_requests
--;
2161 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
2167 * No available requests for this queue, unplug the device and wait for some
2168 * requests to become available.
2170 * Called with q->queue_lock held, and returns with it unlocked.
2172 static struct request
*get_request_wait(request_queue_t
*q
, int rw
,
2177 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2180 struct request_list
*rl
= &q
->rq
;
2182 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
2183 TASK_UNINTERRUPTIBLE
);
2185 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2188 struct io_context
*ioc
;
2190 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
2192 __generic_unplug_device(q
);
2193 spin_unlock_irq(q
->queue_lock
);
2197 * After sleeping, we become a "batching" process and
2198 * will be able to allocate at least one request, and
2199 * up to a big batch of them for a small period time.
2200 * See ioc_batching, ioc_set_batching
2202 ioc
= current_io_context(GFP_NOIO
, q
->node
);
2203 ioc_set_batching(q
, ioc
);
2205 spin_lock_irq(q
->queue_lock
);
2207 finish_wait(&rl
->wait
[rw
], &wait
);
2213 struct request
*blk_get_request(request_queue_t
*q
, int rw
, gfp_t gfp_mask
)
2217 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2219 spin_lock_irq(q
->queue_lock
);
2220 if (gfp_mask
& __GFP_WAIT
) {
2221 rq
= get_request_wait(q
, rw
, NULL
);
2223 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2225 spin_unlock_irq(q
->queue_lock
);
2227 /* q->queue_lock is unlocked at this point */
2231 EXPORT_SYMBOL(blk_get_request
);
2234 * blk_start_queueing - initiate dispatch of requests to device
2235 * @q: request queue to kick into gear
2237 * This is basically a helper to remove the need to know whether a queue
2238 * is plugged or not if someone just wants to initiate dispatch of requests
2241 * The queue lock must be held with interrupts disabled.
2243 void blk_start_queueing(request_queue_t
*q
)
2245 if (!blk_queue_plugged(q
))
2248 __generic_unplug_device(q
);
2250 EXPORT_SYMBOL(blk_start_queueing
);
2253 * blk_requeue_request - put a request back on queue
2254 * @q: request queue where request should be inserted
2255 * @rq: request to be inserted
2258 * Drivers often keep queueing requests until the hardware cannot accept
2259 * more, when that condition happens we need to put the request back
2260 * on the queue. Must be called with queue lock held.
2262 void blk_requeue_request(request_queue_t
*q
, struct request
*rq
)
2264 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
2266 if (blk_rq_tagged(rq
))
2267 blk_queue_end_tag(q
, rq
);
2269 elv_requeue_request(q
, rq
);
2272 EXPORT_SYMBOL(blk_requeue_request
);
2275 * blk_insert_request - insert a special request in to a request queue
2276 * @q: request queue where request should be inserted
2277 * @rq: request to be inserted
2278 * @at_head: insert request at head or tail of queue
2279 * @data: private data
2282 * Many block devices need to execute commands asynchronously, so they don't
2283 * block the whole kernel from preemption during request execution. This is
2284 * accomplished normally by inserting aritficial requests tagged as
2285 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2286 * scheduled for actual execution by the request queue.
2288 * We have the option of inserting the head or the tail of the queue.
2289 * Typically we use the tail for new ioctls and so forth. We use the head
2290 * of the queue for things like a QUEUE_FULL message from a device, or a
2291 * host that is unable to accept a particular command.
2293 void blk_insert_request(request_queue_t
*q
, struct request
*rq
,
2294 int at_head
, void *data
)
2296 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2297 unsigned long flags
;
2300 * tell I/O scheduler that this isn't a regular read/write (ie it
2301 * must not attempt merges on this) and that it acts as a soft
2304 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
2305 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
2309 spin_lock_irqsave(q
->queue_lock
, flags
);
2312 * If command is tagged, release the tag
2314 if (blk_rq_tagged(rq
))
2315 blk_queue_end_tag(q
, rq
);
2317 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2318 __elv_add_request(q
, rq
, where
, 0);
2319 blk_start_queueing(q
);
2320 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2323 EXPORT_SYMBOL(blk_insert_request
);
2325 static int __blk_rq_unmap_user(struct bio
*bio
)
2330 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2331 bio_unmap_user(bio
);
2333 ret
= bio_uncopy_user(bio
);
2339 static int __blk_rq_map_user(request_queue_t
*q
, struct request
*rq
,
2340 void __user
*ubuf
, unsigned int len
)
2342 unsigned long uaddr
;
2343 struct bio
*bio
, *orig_bio
;
2346 reading
= rq_data_dir(rq
) == READ
;
2349 * if alignment requirement is satisfied, map in user pages for
2350 * direct dma. else, set up kernel bounce buffers
2352 uaddr
= (unsigned long) ubuf
;
2353 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2354 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2356 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2359 return PTR_ERR(bio
);
2363 blk_queue_bounce(q
, &bio
);
2365 * We link the bounce buffer in and could have to traverse it
2366 * later so we have to get a ref to prevent it from being freed
2371 * for most (all? don't know of any) queues we could
2372 * skip grabbing the queue lock here. only drivers with
2373 * funky private ->back_merge_fn() function could be
2376 spin_lock_irq(q
->queue_lock
);
2378 blk_rq_bio_prep(q
, rq
, bio
);
2379 else if (!q
->back_merge_fn(q
, rq
, bio
)) {
2381 spin_unlock_irq(q
->queue_lock
);
2384 rq
->biotail
->bi_next
= bio
;
2387 rq
->nr_sectors
+= bio_sectors(bio
);
2388 rq
->hard_nr_sectors
= rq
->nr_sectors
;
2389 rq
->data_len
+= bio
->bi_size
;
2391 spin_unlock_irq(q
->queue_lock
);
2393 return bio
->bi_size
;
2396 /* if it was boucned we must call the end io function */
2397 bio_endio(bio
, bio
->bi_size
, 0);
2398 __blk_rq_unmap_user(orig_bio
);
2404 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2405 * @q: request queue where request should be inserted
2406 * @rq: request structure to fill
2407 * @ubuf: the user buffer
2408 * @len: length of user data
2411 * Data will be mapped directly for zero copy io, if possible. Otherwise
2412 * a kernel bounce buffer is used.
2414 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2415 * still in process context.
2417 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2418 * before being submitted to the device, as pages mapped may be out of
2419 * reach. It's the callers responsibility to make sure this happens. The
2420 * original bio must be passed back in to blk_rq_unmap_user() for proper
2423 int blk_rq_map_user(request_queue_t
*q
, struct request
*rq
, void __user
*ubuf
,
2426 unsigned long bytes_read
= 0;
2429 if (len
> (q
->max_hw_sectors
<< 9))
2434 while (bytes_read
!= len
) {
2435 unsigned long map_len
, end
, start
;
2437 map_len
= min_t(unsigned long, len
- bytes_read
, BIO_MAX_SIZE
);
2438 end
= ((unsigned long)ubuf
+ map_len
+ PAGE_SIZE
- 1)
2440 start
= (unsigned long)ubuf
>> PAGE_SHIFT
;
2443 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2444 * pages. If this happens we just lower the requested
2445 * mapping len by a page so that we can fit
2447 if (end
- start
> BIO_MAX_PAGES
)
2448 map_len
-= PAGE_SIZE
;
2450 ret
= __blk_rq_map_user(q
, rq
, ubuf
, map_len
);
2457 rq
->buffer
= rq
->data
= NULL
;
2460 blk_rq_unmap_user(rq
);
2464 EXPORT_SYMBOL(blk_rq_map_user
);
2467 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2468 * @q: request queue where request should be inserted
2469 * @rq: request to map data to
2470 * @iov: pointer to the iovec
2471 * @iov_count: number of elements in the iovec
2474 * Data will be mapped directly for zero copy io, if possible. Otherwise
2475 * a kernel bounce buffer is used.
2477 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2478 * still in process context.
2480 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2481 * before being submitted to the device, as pages mapped may be out of
2482 * reach. It's the callers responsibility to make sure this happens. The
2483 * original bio must be passed back in to blk_rq_unmap_user() for proper
2486 int blk_rq_map_user_iov(request_queue_t
*q
, struct request
*rq
,
2487 struct sg_iovec
*iov
, int iov_count
, unsigned int len
)
2491 if (!iov
|| iov_count
<= 0)
2494 /* we don't allow misaligned data like bio_map_user() does. If the
2495 * user is using sg, they're expected to know the alignment constraints
2496 * and respect them accordingly */
2497 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2499 return PTR_ERR(bio
);
2501 if (bio
->bi_size
!= len
) {
2502 bio_endio(bio
, bio
->bi_size
, 0);
2503 bio_unmap_user(bio
);
2508 blk_rq_bio_prep(q
, rq
, bio
);
2509 rq
->buffer
= rq
->data
= NULL
;
2513 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2516 * blk_rq_unmap_user - unmap a request with user data
2517 * @rq: rq to be unmapped
2520 * Unmap a rq previously mapped by blk_rq_map_user().
2521 * rq->bio must be set to the original head of the request.
2523 int blk_rq_unmap_user(struct request
*rq
)
2525 struct bio
*bio
, *mapped_bio
;
2527 while ((bio
= rq
->bio
)) {
2528 if (bio_flagged(bio
, BIO_BOUNCED
))
2529 mapped_bio
= bio
->bi_private
;
2533 __blk_rq_unmap_user(mapped_bio
);
2534 rq
->bio
= bio
->bi_next
;
2540 EXPORT_SYMBOL(blk_rq_unmap_user
);
2543 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2544 * @q: request queue where request should be inserted
2545 * @rq: request to fill
2546 * @kbuf: the kernel buffer
2547 * @len: length of user data
2548 * @gfp_mask: memory allocation flags
2550 int blk_rq_map_kern(request_queue_t
*q
, struct request
*rq
, void *kbuf
,
2551 unsigned int len
, gfp_t gfp_mask
)
2555 if (len
> (q
->max_hw_sectors
<< 9))
2560 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2562 return PTR_ERR(bio
);
2564 if (rq_data_dir(rq
) == WRITE
)
2565 bio
->bi_rw
|= (1 << BIO_RW
);
2567 blk_rq_bio_prep(q
, rq
, bio
);
2568 rq
->buffer
= rq
->data
= NULL
;
2572 EXPORT_SYMBOL(blk_rq_map_kern
);
2575 * blk_execute_rq_nowait - insert a request into queue for execution
2576 * @q: queue to insert the request in
2577 * @bd_disk: matching gendisk
2578 * @rq: request to insert
2579 * @at_head: insert request at head or tail of queue
2580 * @done: I/O completion handler
2583 * Insert a fully prepared request at the back of the io scheduler queue
2584 * for execution. Don't wait for completion.
2586 void blk_execute_rq_nowait(request_queue_t
*q
, struct gendisk
*bd_disk
,
2587 struct request
*rq
, int at_head
,
2590 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2592 rq
->rq_disk
= bd_disk
;
2593 rq
->cmd_flags
|= REQ_NOMERGE
;
2595 WARN_ON(irqs_disabled());
2596 spin_lock_irq(q
->queue_lock
);
2597 __elv_add_request(q
, rq
, where
, 1);
2598 __generic_unplug_device(q
);
2599 spin_unlock_irq(q
->queue_lock
);
2601 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
2604 * blk_execute_rq - insert a request into queue for execution
2605 * @q: queue to insert the request in
2606 * @bd_disk: matching gendisk
2607 * @rq: request to insert
2608 * @at_head: insert request at head or tail of queue
2611 * Insert a fully prepared request at the back of the io scheduler queue
2612 * for execution and wait for completion.
2614 int blk_execute_rq(request_queue_t
*q
, struct gendisk
*bd_disk
,
2615 struct request
*rq
, int at_head
)
2617 DECLARE_COMPLETION_ONSTACK(wait
);
2618 char sense
[SCSI_SENSE_BUFFERSIZE
];
2622 * we need an extra reference to the request, so we can look at
2623 * it after io completion
2628 memset(sense
, 0, sizeof(sense
));
2633 rq
->end_io_data
= &wait
;
2634 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2635 wait_for_completion(&wait
);
2643 EXPORT_SYMBOL(blk_execute_rq
);
2646 * blkdev_issue_flush - queue a flush
2647 * @bdev: blockdev to issue flush for
2648 * @error_sector: error sector
2651 * Issue a flush for the block device in question. Caller can supply
2652 * room for storing the error offset in case of a flush error, if they
2653 * wish to. Caller must run wait_for_completion() on its own.
2655 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2659 if (bdev
->bd_disk
== NULL
)
2662 q
= bdev_get_queue(bdev
);
2665 if (!q
->issue_flush_fn
)
2668 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2671 EXPORT_SYMBOL(blkdev_issue_flush
);
2673 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2675 int rw
= rq_data_dir(rq
);
2677 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2681 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2683 disk_round_stats(rq
->rq_disk
);
2684 rq
->rq_disk
->in_flight
++;
2689 * add-request adds a request to the linked list.
2690 * queue lock is held and interrupts disabled, as we muck with the
2691 * request queue list.
2693 static inline void add_request(request_queue_t
* q
, struct request
* req
)
2695 drive_stat_acct(req
, req
->nr_sectors
, 1);
2698 q
->activity_fn(q
->activity_data
, rq_data_dir(req
));
2701 * elevator indicated where it wants this request to be
2702 * inserted at elevator_merge time
2704 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2708 * disk_round_stats() - Round off the performance stats on a struct
2711 * The average IO queue length and utilisation statistics are maintained
2712 * by observing the current state of the queue length and the amount of
2713 * time it has been in this state for.
2715 * Normally, that accounting is done on IO completion, but that can result
2716 * in more than a second's worth of IO being accounted for within any one
2717 * second, leading to >100% utilisation. To deal with that, we call this
2718 * function to do a round-off before returning the results when reading
2719 * /proc/diskstats. This accounts immediately for all queue usage up to
2720 * the current jiffies and restarts the counters again.
2722 void disk_round_stats(struct gendisk
*disk
)
2724 unsigned long now
= jiffies
;
2726 if (now
== disk
->stamp
)
2729 if (disk
->in_flight
) {
2730 __disk_stat_add(disk
, time_in_queue
,
2731 disk
->in_flight
* (now
- disk
->stamp
));
2732 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2737 EXPORT_SYMBOL_GPL(disk_round_stats
);
2740 * queue lock must be held
2742 void __blk_put_request(request_queue_t
*q
, struct request
*req
)
2746 if (unlikely(--req
->ref_count
))
2749 elv_completed_request(q
, req
);
2752 * Request may not have originated from ll_rw_blk. if not,
2753 * it didn't come out of our reserved rq pools
2755 if (req
->cmd_flags
& REQ_ALLOCED
) {
2756 int rw
= rq_data_dir(req
);
2757 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
2759 BUG_ON(!list_empty(&req
->queuelist
));
2760 BUG_ON(!hlist_unhashed(&req
->hash
));
2762 blk_free_request(q
, req
);
2763 freed_request(q
, rw
, priv
);
2767 EXPORT_SYMBOL_GPL(__blk_put_request
);
2769 void blk_put_request(struct request
*req
)
2771 unsigned long flags
;
2772 request_queue_t
*q
= req
->q
;
2775 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2776 * following if (q) test.
2779 spin_lock_irqsave(q
->queue_lock
, flags
);
2780 __blk_put_request(q
, req
);
2781 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2785 EXPORT_SYMBOL(blk_put_request
);
2788 * blk_end_sync_rq - executes a completion event on a request
2789 * @rq: request to complete
2790 * @error: end io status of the request
2792 void blk_end_sync_rq(struct request
*rq
, int error
)
2794 struct completion
*waiting
= rq
->end_io_data
;
2796 rq
->end_io_data
= NULL
;
2797 __blk_put_request(rq
->q
, rq
);
2800 * complete last, if this is a stack request the process (and thus
2801 * the rq pointer) could be invalid right after this complete()
2805 EXPORT_SYMBOL(blk_end_sync_rq
);
2808 * Has to be called with the request spinlock acquired
2810 static int attempt_merge(request_queue_t
*q
, struct request
*req
,
2811 struct request
*next
)
2813 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2819 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2822 if (rq_data_dir(req
) != rq_data_dir(next
)
2823 || req
->rq_disk
!= next
->rq_disk
2828 * If we are allowed to merge, then append bio list
2829 * from next to rq and release next. merge_requests_fn
2830 * will have updated segment counts, update sector
2833 if (!q
->merge_requests_fn(q
, req
, next
))
2837 * At this point we have either done a back merge
2838 * or front merge. We need the smaller start_time of
2839 * the merged requests to be the current request
2840 * for accounting purposes.
2842 if (time_after(req
->start_time
, next
->start_time
))
2843 req
->start_time
= next
->start_time
;
2845 req
->biotail
->bi_next
= next
->bio
;
2846 req
->biotail
= next
->biotail
;
2848 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2850 elv_merge_requests(q
, req
, next
);
2853 disk_round_stats(req
->rq_disk
);
2854 req
->rq_disk
->in_flight
--;
2857 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2859 __blk_put_request(q
, next
);
2863 static inline int attempt_back_merge(request_queue_t
*q
, struct request
*rq
)
2865 struct request
*next
= elv_latter_request(q
, rq
);
2868 return attempt_merge(q
, rq
, next
);
2873 static inline int attempt_front_merge(request_queue_t
*q
, struct request
*rq
)
2875 struct request
*prev
= elv_former_request(q
, rq
);
2878 return attempt_merge(q
, prev
, rq
);
2883 static void init_request_from_bio(struct request
*req
, struct bio
*bio
)
2885 req
->cmd_type
= REQ_TYPE_FS
;
2888 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2890 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2891 req
->cmd_flags
|= REQ_FAILFAST
;
2894 * REQ_BARRIER implies no merging, but lets make it explicit
2896 if (unlikely(bio_barrier(bio
)))
2897 req
->cmd_flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2900 req
->cmd_flags
|= REQ_RW_SYNC
;
2901 if (bio_rw_meta(bio
))
2902 req
->cmd_flags
|= REQ_RW_META
;
2905 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
2906 req
->hard_nr_sectors
= req
->nr_sectors
= bio_sectors(bio
);
2907 req
->current_nr_sectors
= req
->hard_cur_sectors
= bio_cur_sectors(bio
);
2908 req
->nr_phys_segments
= bio_phys_segments(req
->q
, bio
);
2909 req
->nr_hw_segments
= bio_hw_segments(req
->q
, bio
);
2910 req
->buffer
= bio_data(bio
); /* see ->buffer comment above */
2911 req
->bio
= req
->biotail
= bio
;
2912 req
->ioprio
= bio_prio(bio
);
2913 req
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2914 req
->start_time
= jiffies
;
2917 static int __make_request(request_queue_t
*q
, struct bio
*bio
)
2919 struct request
*req
;
2920 int el_ret
, nr_sectors
, barrier
, err
;
2921 const unsigned short prio
= bio_prio(bio
);
2922 const int sync
= bio_sync(bio
);
2924 nr_sectors
= bio_sectors(bio
);
2927 * low level driver can indicate that it wants pages above a
2928 * certain limit bounced to low memory (ie for highmem, or even
2929 * ISA dma in theory)
2931 blk_queue_bounce(q
, &bio
);
2933 barrier
= bio_barrier(bio
);
2934 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
2939 spin_lock_irq(q
->queue_lock
);
2941 if (unlikely(barrier
) || elv_queue_empty(q
))
2944 el_ret
= elv_merge(q
, &req
, bio
);
2946 case ELEVATOR_BACK_MERGE
:
2947 BUG_ON(!rq_mergeable(req
));
2949 if (!q
->back_merge_fn(q
, req
, bio
))
2952 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
2954 req
->biotail
->bi_next
= bio
;
2956 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2957 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2958 drive_stat_acct(req
, nr_sectors
, 0);
2959 if (!attempt_back_merge(q
, req
))
2960 elv_merged_request(q
, req
, el_ret
);
2963 case ELEVATOR_FRONT_MERGE
:
2964 BUG_ON(!rq_mergeable(req
));
2966 if (!q
->front_merge_fn(q
, req
, bio
))
2969 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
2971 bio
->bi_next
= req
->bio
;
2975 * may not be valid. if the low level driver said
2976 * it didn't need a bounce buffer then it better
2977 * not touch req->buffer either...
2979 req
->buffer
= bio_data(bio
);
2980 req
->current_nr_sectors
= bio_cur_sectors(bio
);
2981 req
->hard_cur_sectors
= req
->current_nr_sectors
;
2982 req
->sector
= req
->hard_sector
= bio
->bi_sector
;
2983 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2984 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2985 drive_stat_acct(req
, nr_sectors
, 0);
2986 if (!attempt_front_merge(q
, req
))
2987 elv_merged_request(q
, req
, el_ret
);
2990 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2997 * Grab a free request. This is might sleep but can not fail.
2998 * Returns with the queue unlocked.
3000 req
= get_request_wait(q
, bio_data_dir(bio
), bio
);
3003 * After dropping the lock and possibly sleeping here, our request
3004 * may now be mergeable after it had proven unmergeable (above).
3005 * We don't worry about that case for efficiency. It won't happen
3006 * often, and the elevators are able to handle it.
3008 init_request_from_bio(req
, bio
);
3010 spin_lock_irq(q
->queue_lock
);
3011 if (elv_queue_empty(q
))
3013 add_request(q
, req
);
3016 __generic_unplug_device(q
);
3018 spin_unlock_irq(q
->queue_lock
);
3022 bio_endio(bio
, nr_sectors
<< 9, err
);
3027 * If bio->bi_dev is a partition, remap the location
3029 static inline void blk_partition_remap(struct bio
*bio
)
3031 struct block_device
*bdev
= bio
->bi_bdev
;
3033 if (bdev
!= bdev
->bd_contains
) {
3034 struct hd_struct
*p
= bdev
->bd_part
;
3035 const int rw
= bio_data_dir(bio
);
3037 p
->sectors
[rw
] += bio_sectors(bio
);
3040 bio
->bi_sector
+= p
->start_sect
;
3041 bio
->bi_bdev
= bdev
->bd_contains
;
3045 static void handle_bad_sector(struct bio
*bio
)
3047 char b
[BDEVNAME_SIZE
];
3049 printk(KERN_INFO
"attempt to access beyond end of device\n");
3050 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
3051 bdevname(bio
->bi_bdev
, b
),
3053 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
3054 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
3056 set_bit(BIO_EOF
, &bio
->bi_flags
);
3060 * generic_make_request: hand a buffer to its device driver for I/O
3061 * @bio: The bio describing the location in memory and on the device.
3063 * generic_make_request() is used to make I/O requests of block
3064 * devices. It is passed a &struct bio, which describes the I/O that needs
3067 * generic_make_request() does not return any status. The
3068 * success/failure status of the request, along with notification of
3069 * completion, is delivered asynchronously through the bio->bi_end_io
3070 * function described (one day) else where.
3072 * The caller of generic_make_request must make sure that bi_io_vec
3073 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3074 * set to describe the device address, and the
3075 * bi_end_io and optionally bi_private are set to describe how
3076 * completion notification should be signaled.
3078 * generic_make_request and the drivers it calls may use bi_next if this
3079 * bio happens to be merged with someone else, and may change bi_dev and
3080 * bi_sector for remaps as it sees fit. So the values of these fields
3081 * should NOT be depended on after the call to generic_make_request.
3083 void generic_make_request(struct bio
*bio
)
3087 sector_t old_sector
;
3088 int ret
, nr_sectors
= bio_sectors(bio
);
3092 /* Test device or partition size, when known. */
3093 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3095 sector_t sector
= bio
->bi_sector
;
3097 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
3099 * This may well happen - the kernel calls bread()
3100 * without checking the size of the device, e.g., when
3101 * mounting a device.
3103 handle_bad_sector(bio
);
3109 * Resolve the mapping until finished. (drivers are
3110 * still free to implement/resolve their own stacking
3111 * by explicitly returning 0)
3113 * NOTE: we don't repeat the blk_size check for each new device.
3114 * Stacking drivers are expected to know what they are doing.
3119 char b
[BDEVNAME_SIZE
];
3121 q
= bdev_get_queue(bio
->bi_bdev
);
3124 "generic_make_request: Trying to access "
3125 "nonexistent block-device %s (%Lu)\n",
3126 bdevname(bio
->bi_bdev
, b
),
3127 (long long) bio
->bi_sector
);
3129 bio_endio(bio
, bio
->bi_size
, -EIO
);
3133 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
3134 printk("bio too big device %s (%u > %u)\n",
3135 bdevname(bio
->bi_bdev
, b
),
3141 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
3145 * If this device has partitions, remap block n
3146 * of partition p to block n+start(p) of the disk.
3148 blk_partition_remap(bio
);
3150 if (old_sector
!= -1)
3151 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
3154 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
3156 old_sector
= bio
->bi_sector
;
3157 old_dev
= bio
->bi_bdev
->bd_dev
;
3159 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3161 sector_t sector
= bio
->bi_sector
;
3163 if (maxsector
< nr_sectors
||
3164 maxsector
- nr_sectors
< sector
) {
3166 * This may well happen - partitions are not
3167 * checked to make sure they are within the size
3168 * of the whole device.
3170 handle_bad_sector(bio
);
3175 ret
= q
->make_request_fn(q
, bio
);
3179 EXPORT_SYMBOL(generic_make_request
);
3182 * submit_bio: submit a bio to the block device layer for I/O
3183 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3184 * @bio: The &struct bio which describes the I/O
3186 * submit_bio() is very similar in purpose to generic_make_request(), and
3187 * uses that function to do most of the work. Both are fairly rough
3188 * interfaces, @bio must be presetup and ready for I/O.
3191 void submit_bio(int rw
, struct bio
*bio
)
3193 int count
= bio_sectors(bio
);
3195 BIO_BUG_ON(!bio
->bi_size
);
3196 BIO_BUG_ON(!bio
->bi_io_vec
);
3199 count_vm_events(PGPGOUT
, count
);
3201 count_vm_events(PGPGIN
, count
);
3203 if (unlikely(block_dump
)) {
3204 char b
[BDEVNAME_SIZE
];
3205 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
3206 current
->comm
, current
->pid
,
3207 (rw
& WRITE
) ? "WRITE" : "READ",
3208 (unsigned long long)bio
->bi_sector
,
3209 bdevname(bio
->bi_bdev
,b
));
3212 generic_make_request(bio
);
3215 EXPORT_SYMBOL(submit_bio
);
3217 static void blk_recalc_rq_segments(struct request
*rq
)
3219 struct bio
*bio
, *prevbio
= NULL
;
3220 int nr_phys_segs
, nr_hw_segs
;
3221 unsigned int phys_size
, hw_size
;
3222 request_queue_t
*q
= rq
->q
;
3227 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
3228 rq_for_each_bio(bio
, rq
) {
3229 /* Force bio hw/phys segs to be recalculated. */
3230 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3232 nr_phys_segs
+= bio_phys_segments(q
, bio
);
3233 nr_hw_segs
+= bio_hw_segments(q
, bio
);
3235 int pseg
= phys_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3236 int hseg
= hw_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3238 if (blk_phys_contig_segment(q
, prevbio
, bio
) &&
3239 pseg
<= q
->max_segment_size
) {
3241 phys_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3245 if (blk_hw_contig_segment(q
, prevbio
, bio
) &&
3246 hseg
<= q
->max_segment_size
) {
3248 hw_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3255 rq
->nr_phys_segments
= nr_phys_segs
;
3256 rq
->nr_hw_segments
= nr_hw_segs
;
3259 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3261 if (blk_fs_request(rq
)) {
3262 rq
->hard_sector
+= nsect
;
3263 rq
->hard_nr_sectors
-= nsect
;
3266 * Move the I/O submission pointers ahead if required.
3268 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3269 (rq
->sector
<= rq
->hard_sector
)) {
3270 rq
->sector
= rq
->hard_sector
;
3271 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3272 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3273 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3274 rq
->buffer
= bio_data(rq
->bio
);
3278 * if total number of sectors is less than the first segment
3279 * size, something has gone terribly wrong
3281 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3282 printk("blk: request botched\n");
3283 rq
->nr_sectors
= rq
->current_nr_sectors
;
3288 static int __end_that_request_first(struct request
*req
, int uptodate
,
3291 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3294 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
3297 * extend uptodate bool to allow < 0 value to be direct io error
3300 if (end_io_error(uptodate
))
3301 error
= !uptodate
? -EIO
: uptodate
;
3304 * for a REQ_BLOCK_PC request, we want to carry any eventual
3305 * sense key with us all the way through
3307 if (!blk_pc_request(req
))
3311 if (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))
3312 printk("end_request: I/O error, dev %s, sector %llu\n",
3313 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3314 (unsigned long long)req
->sector
);
3317 if (blk_fs_request(req
) && req
->rq_disk
) {
3318 const int rw
= rq_data_dir(req
);
3320 disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3323 total_bytes
= bio_nbytes
= 0;
3324 while ((bio
= req
->bio
) != NULL
) {
3327 if (nr_bytes
>= bio
->bi_size
) {
3328 req
->bio
= bio
->bi_next
;
3329 nbytes
= bio
->bi_size
;
3330 if (!ordered_bio_endio(req
, bio
, nbytes
, error
))
3331 bio_endio(bio
, nbytes
, error
);
3335 int idx
= bio
->bi_idx
+ next_idx
;
3337 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3338 blk_dump_rq_flags(req
, "__end_that");
3339 printk("%s: bio idx %d >= vcnt %d\n",
3341 bio
->bi_idx
, bio
->bi_vcnt
);
3345 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3346 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3349 * not a complete bvec done
3351 if (unlikely(nbytes
> nr_bytes
)) {
3352 bio_nbytes
+= nr_bytes
;
3353 total_bytes
+= nr_bytes
;
3358 * advance to the next vector
3361 bio_nbytes
+= nbytes
;
3364 total_bytes
+= nbytes
;
3367 if ((bio
= req
->bio
)) {
3369 * end more in this run, or just return 'not-done'
3371 if (unlikely(nr_bytes
<= 0))
3383 * if the request wasn't completed, update state
3386 if (!ordered_bio_endio(req
, bio
, bio_nbytes
, error
))
3387 bio_endio(bio
, bio_nbytes
, error
);
3388 bio
->bi_idx
+= next_idx
;
3389 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3390 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3393 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3394 blk_recalc_rq_segments(req
);
3399 * end_that_request_first - end I/O on a request
3400 * @req: the request being processed
3401 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3402 * @nr_sectors: number of sectors to end I/O on
3405 * Ends I/O on a number of sectors attached to @req, and sets it up
3406 * for the next range of segments (if any) in the cluster.
3409 * 0 - we are done with this request, call end_that_request_last()
3410 * 1 - still buffers pending for this request
3412 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3414 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3417 EXPORT_SYMBOL(end_that_request_first
);
3420 * end_that_request_chunk - end I/O on a request
3421 * @req: the request being processed
3422 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3423 * @nr_bytes: number of bytes to complete
3426 * Ends I/O on a number of bytes attached to @req, and sets it up
3427 * for the next range of segments (if any). Like end_that_request_first(),
3428 * but deals with bytes instead of sectors.
3431 * 0 - we are done with this request, call end_that_request_last()
3432 * 1 - still buffers pending for this request
3434 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3436 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3439 EXPORT_SYMBOL(end_that_request_chunk
);
3442 * splice the completion data to a local structure and hand off to
3443 * process_completion_queue() to complete the requests
3445 static void blk_done_softirq(struct softirq_action
*h
)
3447 struct list_head
*cpu_list
, local_list
;
3449 local_irq_disable();
3450 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3451 list_replace_init(cpu_list
, &local_list
);
3454 while (!list_empty(&local_list
)) {
3455 struct request
*rq
= list_entry(local_list
.next
, struct request
, donelist
);
3457 list_del_init(&rq
->donelist
);
3458 rq
->q
->softirq_done_fn(rq
);
3462 #ifdef CONFIG_HOTPLUG_CPU
3464 static int blk_cpu_notify(struct notifier_block
*self
, unsigned long action
,
3468 * If a CPU goes away, splice its entries to the current CPU
3469 * and trigger a run of the softirq
3471 if (action
== CPU_DEAD
) {
3472 int cpu
= (unsigned long) hcpu
;
3474 local_irq_disable();
3475 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
3476 &__get_cpu_var(blk_cpu_done
));
3477 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3485 static struct notifier_block __devinitdata blk_cpu_notifier
= {
3486 .notifier_call
= blk_cpu_notify
,
3489 #endif /* CONFIG_HOTPLUG_CPU */
3492 * blk_complete_request - end I/O on a request
3493 * @req: the request being processed
3496 * Ends all I/O on a request. It does not handle partial completions,
3497 * unless the driver actually implements this in its completion callback
3498 * through requeueing. Theh actual completion happens out-of-order,
3499 * through a softirq handler. The user must have registered a completion
3500 * callback through blk_queue_softirq_done().
3503 void blk_complete_request(struct request
*req
)
3505 struct list_head
*cpu_list
;
3506 unsigned long flags
;
3508 BUG_ON(!req
->q
->softirq_done_fn
);
3510 local_irq_save(flags
);
3512 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3513 list_add_tail(&req
->donelist
, cpu_list
);
3514 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3516 local_irq_restore(flags
);
3519 EXPORT_SYMBOL(blk_complete_request
);
3522 * queue lock must be held
3524 void end_that_request_last(struct request
*req
, int uptodate
)
3526 struct gendisk
*disk
= req
->rq_disk
;
3530 * extend uptodate bool to allow < 0 value to be direct io error
3533 if (end_io_error(uptodate
))
3534 error
= !uptodate
? -EIO
: uptodate
;
3536 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3537 laptop_io_completion();
3540 * Account IO completion. bar_rq isn't accounted as a normal
3541 * IO on queueing nor completion. Accounting the containing
3542 * request is enough.
3544 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
3545 unsigned long duration
= jiffies
- req
->start_time
;
3546 const int rw
= rq_data_dir(req
);
3548 __disk_stat_inc(disk
, ios
[rw
]);
3549 __disk_stat_add(disk
, ticks
[rw
], duration
);
3550 disk_round_stats(disk
);
3554 req
->end_io(req
, error
);
3556 __blk_put_request(req
->q
, req
);
3559 EXPORT_SYMBOL(end_that_request_last
);
3561 void end_request(struct request
*req
, int uptodate
)
3563 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3564 add_disk_randomness(req
->rq_disk
);
3565 blkdev_dequeue_request(req
);
3566 end_that_request_last(req
, uptodate
);
3570 EXPORT_SYMBOL(end_request
);
3572 void blk_rq_bio_prep(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
)
3574 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3575 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
3577 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3578 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3579 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3580 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3581 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3582 rq
->buffer
= bio_data(bio
);
3583 rq
->data_len
= bio
->bi_size
;
3585 rq
->bio
= rq
->biotail
= bio
;
3588 EXPORT_SYMBOL(blk_rq_bio_prep
);
3590 int kblockd_schedule_work(struct work_struct
*work
)
3592 return queue_work(kblockd_workqueue
, work
);
3595 EXPORT_SYMBOL(kblockd_schedule_work
);
3597 void kblockd_flush(void)
3599 flush_workqueue(kblockd_workqueue
);
3601 EXPORT_SYMBOL(kblockd_flush
);
3603 int __init
blk_dev_init(void)
3607 kblockd_workqueue
= create_workqueue("kblockd");
3608 if (!kblockd_workqueue
)
3609 panic("Failed to create kblockd\n");
3611 request_cachep
= kmem_cache_create("blkdev_requests",
3612 sizeof(struct request
), 0, SLAB_PANIC
, NULL
, NULL
);
3614 requestq_cachep
= kmem_cache_create("blkdev_queue",
3615 sizeof(request_queue_t
), 0, SLAB_PANIC
, NULL
, NULL
);
3617 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3618 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
, NULL
);
3620 for_each_possible_cpu(i
)
3621 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
3623 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
3624 register_hotcpu_notifier(&blk_cpu_notifier
);
3626 blk_max_low_pfn
= max_low_pfn
;
3627 blk_max_pfn
= max_pfn
;
3633 * IO Context helper functions
3635 void put_io_context(struct io_context
*ioc
)
3640 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3642 if (atomic_dec_and_test(&ioc
->refcount
)) {
3643 struct cfq_io_context
*cic
;
3646 if (ioc
->aic
&& ioc
->aic
->dtor
)
3647 ioc
->aic
->dtor(ioc
->aic
);
3648 if (ioc
->cic_root
.rb_node
!= NULL
) {
3649 struct rb_node
*n
= rb_first(&ioc
->cic_root
);
3651 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
3656 kmem_cache_free(iocontext_cachep
, ioc
);
3659 EXPORT_SYMBOL(put_io_context
);
3661 /* Called by the exitting task */
3662 void exit_io_context(void)
3664 struct io_context
*ioc
;
3665 struct cfq_io_context
*cic
;
3668 ioc
= current
->io_context
;
3669 current
->io_context
= NULL
;
3670 task_unlock(current
);
3673 if (ioc
->aic
&& ioc
->aic
->exit
)
3674 ioc
->aic
->exit(ioc
->aic
);
3675 if (ioc
->cic_root
.rb_node
!= NULL
) {
3676 cic
= rb_entry(rb_first(&ioc
->cic_root
), struct cfq_io_context
, rb_node
);
3680 put_io_context(ioc
);
3684 * If the current task has no IO context then create one and initialise it.
3685 * Otherwise, return its existing IO context.
3687 * This returned IO context doesn't have a specifically elevated refcount,
3688 * but since the current task itself holds a reference, the context can be
3689 * used in general code, so long as it stays within `current` context.
3691 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
)
3693 struct task_struct
*tsk
= current
;
3694 struct io_context
*ret
;
3696 ret
= tsk
->io_context
;
3700 ret
= kmem_cache_alloc_node(iocontext_cachep
, gfp_flags
, node
);
3702 atomic_set(&ret
->refcount
, 1);
3703 ret
->task
= current
;
3704 ret
->ioprio_changed
= 0;
3705 ret
->last_waited
= jiffies
; /* doesn't matter... */
3706 ret
->nr_batch_requests
= 0; /* because this is 0 */
3708 ret
->cic_root
.rb_node
= NULL
;
3709 /* make sure set_task_ioprio() sees the settings above */
3711 tsk
->io_context
= ret
;
3716 EXPORT_SYMBOL(current_io_context
);
3719 * If the current task has no IO context then create one and initialise it.
3720 * If it does have a context, take a ref on it.
3722 * This is always called in the context of the task which submitted the I/O.
3724 struct io_context
*get_io_context(gfp_t gfp_flags
, int node
)
3726 struct io_context
*ret
;
3727 ret
= current_io_context(gfp_flags
, node
);
3729 atomic_inc(&ret
->refcount
);
3732 EXPORT_SYMBOL(get_io_context
);
3734 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3736 struct io_context
*src
= *psrc
;
3737 struct io_context
*dst
= *pdst
;
3740 BUG_ON(atomic_read(&src
->refcount
) == 0);
3741 atomic_inc(&src
->refcount
);
3742 put_io_context(dst
);
3746 EXPORT_SYMBOL(copy_io_context
);
3748 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3750 struct io_context
*temp
;
3755 EXPORT_SYMBOL(swap_io_context
);
3760 struct queue_sysfs_entry
{
3761 struct attribute attr
;
3762 ssize_t (*show
)(struct request_queue
*, char *);
3763 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3767 queue_var_show(unsigned int var
, char *page
)
3769 return sprintf(page
, "%d\n", var
);
3773 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3775 char *p
= (char *) page
;
3777 *var
= simple_strtoul(p
, &p
, 10);
3781 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3783 return queue_var_show(q
->nr_requests
, (page
));
3787 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3789 struct request_list
*rl
= &q
->rq
;
3791 int ret
= queue_var_store(&nr
, page
, count
);
3792 if (nr
< BLKDEV_MIN_RQ
)
3795 spin_lock_irq(q
->queue_lock
);
3796 q
->nr_requests
= nr
;
3797 blk_queue_congestion_threshold(q
);
3799 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3800 blk_set_queue_congested(q
, READ
);
3801 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3802 blk_clear_queue_congested(q
, READ
);
3804 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3805 blk_set_queue_congested(q
, WRITE
);
3806 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3807 blk_clear_queue_congested(q
, WRITE
);
3809 if (rl
->count
[READ
] >= q
->nr_requests
) {
3810 blk_set_queue_full(q
, READ
);
3811 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3812 blk_clear_queue_full(q
, READ
);
3813 wake_up(&rl
->wait
[READ
]);
3816 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3817 blk_set_queue_full(q
, WRITE
);
3818 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3819 blk_clear_queue_full(q
, WRITE
);
3820 wake_up(&rl
->wait
[WRITE
]);
3822 spin_unlock_irq(q
->queue_lock
);
3826 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3828 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3830 return queue_var_show(ra_kb
, (page
));
3834 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3836 unsigned long ra_kb
;
3837 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3839 spin_lock_irq(q
->queue_lock
);
3840 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3841 spin_unlock_irq(q
->queue_lock
);
3846 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3848 int max_sectors_kb
= q
->max_sectors
>> 1;
3850 return queue_var_show(max_sectors_kb
, (page
));
3854 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3856 unsigned long max_sectors_kb
,
3857 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3858 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3859 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3862 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3865 * Take the queue lock to update the readahead and max_sectors
3866 * values synchronously:
3868 spin_lock_irq(q
->queue_lock
);
3870 * Trim readahead window as well, if necessary:
3872 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3873 if (ra_kb
> max_sectors_kb
)
3874 q
->backing_dev_info
.ra_pages
=
3875 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3877 q
->max_sectors
= max_sectors_kb
<< 1;
3878 spin_unlock_irq(q
->queue_lock
);
3883 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3885 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3887 return queue_var_show(max_hw_sectors_kb
, (page
));
3891 static struct queue_sysfs_entry queue_requests_entry
= {
3892 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3893 .show
= queue_requests_show
,
3894 .store
= queue_requests_store
,
3897 static struct queue_sysfs_entry queue_ra_entry
= {
3898 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3899 .show
= queue_ra_show
,
3900 .store
= queue_ra_store
,
3903 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3904 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3905 .show
= queue_max_sectors_show
,
3906 .store
= queue_max_sectors_store
,
3909 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
3910 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
3911 .show
= queue_max_hw_sectors_show
,
3914 static struct queue_sysfs_entry queue_iosched_entry
= {
3915 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
3916 .show
= elv_iosched_show
,
3917 .store
= elv_iosched_store
,
3920 static struct attribute
*default_attrs
[] = {
3921 &queue_requests_entry
.attr
,
3922 &queue_ra_entry
.attr
,
3923 &queue_max_hw_sectors_entry
.attr
,
3924 &queue_max_sectors_entry
.attr
,
3925 &queue_iosched_entry
.attr
,
3929 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3932 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
3934 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3935 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
3940 mutex_lock(&q
->sysfs_lock
);
3941 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
3942 mutex_unlock(&q
->sysfs_lock
);
3945 res
= entry
->show(q
, page
);
3946 mutex_unlock(&q
->sysfs_lock
);
3951 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
3952 const char *page
, size_t length
)
3954 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3955 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
3961 mutex_lock(&q
->sysfs_lock
);
3962 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
3963 mutex_unlock(&q
->sysfs_lock
);
3966 res
= entry
->store(q
, page
, length
);
3967 mutex_unlock(&q
->sysfs_lock
);
3971 static struct sysfs_ops queue_sysfs_ops
= {
3972 .show
= queue_attr_show
,
3973 .store
= queue_attr_store
,
3976 static struct kobj_type queue_ktype
= {
3977 .sysfs_ops
= &queue_sysfs_ops
,
3978 .default_attrs
= default_attrs
,
3979 .release
= blk_release_queue
,
3982 int blk_register_queue(struct gendisk
*disk
)
3986 request_queue_t
*q
= disk
->queue
;
3988 if (!q
|| !q
->request_fn
)
3991 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
3993 ret
= kobject_add(&q
->kobj
);
3997 kobject_uevent(&q
->kobj
, KOBJ_ADD
);
3999 ret
= elv_register_queue(q
);
4001 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
4002 kobject_del(&q
->kobj
);
4009 void blk_unregister_queue(struct gendisk
*disk
)
4011 request_queue_t
*q
= disk
->queue
;
4013 if (q
&& q
->request_fn
) {
4014 elv_unregister_queue(q
);
4016 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
4017 kobject_del(&q
->kobj
);
4018 kobject_put(&disk
->kobj
);