sched: clean up struct load_stat
[linux-2.6/kmemtrace.git] / kernel / sched.c
blob3a4ac0b75f2df556313f71e57e08b4252c6ac489
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
66 #include <asm/tlb.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak)) sched_clock(void)
75 return (unsigned long long)jiffies * (1000000000 / HZ);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
115 #ifdef CONFIG_SMP
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134 #endif
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
143 static unsigned int static_prio_timeslice(int static_prio)
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
154 static inline int rt_policy(int policy)
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
161 static inline int task_has_rt_policy(struct task_struct *p)
163 return rt_policy(p->policy);
167 * This is the priority-queue data structure of the RT scheduling class:
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
174 /* CFS-related fields in a runqueue */
175 struct cfs_rq {
176 struct load_weight load;
177 unsigned long nr_running;
179 s64 fair_clock;
180 u64 exec_clock;
181 u64 min_vruntime;
182 s64 wait_runtime;
183 u64 sleeper_bonus;
184 unsigned long wait_runtime_overruns, wait_runtime_underruns;
186 struct rb_root tasks_timeline;
187 struct rb_node *rb_leftmost;
188 struct rb_node *rb_load_balance_curr;
189 /* 'curr' points to currently running entity on this cfs_rq.
190 * It is set to NULL otherwise (i.e when none are currently running).
192 struct sched_entity *curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
196 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
197 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
198 * (like users, containers etc.)
200 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
201 * list is used during load balance.
203 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
204 #endif
207 /* Real-Time classes' related field in a runqueue: */
208 struct rt_rq {
209 struct rt_prio_array active;
210 int rt_load_balance_idx;
211 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
215 * This is the main, per-CPU runqueue data structure.
217 * Locking rule: those places that want to lock multiple runqueues
218 * (such as the load balancing or the thread migration code), lock
219 * acquire operations must be ordered by ascending &runqueue.
221 struct rq {
222 spinlock_t lock; /* runqueue lock */
225 * nr_running and cpu_load should be in the same cacheline because
226 * remote CPUs use both these fields when doing load calculation.
228 unsigned long nr_running;
229 #define CPU_LOAD_IDX_MAX 5
230 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
231 unsigned char idle_at_tick;
232 #ifdef CONFIG_NO_HZ
233 unsigned char in_nohz_recently;
234 #endif
235 struct load_weight load; /* capture load from *all* tasks on this cpu */
236 unsigned long nr_load_updates;
237 u64 nr_switches;
239 struct cfs_rq cfs;
240 #ifdef CONFIG_FAIR_GROUP_SCHED
241 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
242 #endif
243 struct rt_rq rt;
246 * This is part of a global counter where only the total sum
247 * over all CPUs matters. A task can increase this counter on
248 * one CPU and if it got migrated afterwards it may decrease
249 * it on another CPU. Always updated under the runqueue lock:
251 unsigned long nr_uninterruptible;
253 struct task_struct *curr, *idle;
254 unsigned long next_balance;
255 struct mm_struct *prev_mm;
257 u64 clock, prev_clock_raw;
258 s64 clock_max_delta;
260 unsigned int clock_warps, clock_overflows;
261 u64 idle_clock;
262 unsigned int clock_deep_idle_events;
263 u64 tick_timestamp;
265 atomic_t nr_iowait;
267 #ifdef CONFIG_SMP
268 struct sched_domain *sd;
270 /* For active balancing */
271 int active_balance;
272 int push_cpu;
273 int cpu; /* cpu of this runqueue */
275 struct task_struct *migration_thread;
276 struct list_head migration_queue;
277 #endif
279 #ifdef CONFIG_SCHEDSTATS
280 /* latency stats */
281 struct sched_info rq_sched_info;
283 /* sys_sched_yield() stats */
284 unsigned long yld_exp_empty;
285 unsigned long yld_act_empty;
286 unsigned long yld_both_empty;
287 unsigned long yld_cnt;
289 /* schedule() stats */
290 unsigned long sched_switch;
291 unsigned long sched_cnt;
292 unsigned long sched_goidle;
294 /* try_to_wake_up() stats */
295 unsigned long ttwu_cnt;
296 unsigned long ttwu_local;
297 #endif
298 struct lock_class_key rq_lock_key;
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
302 static DEFINE_MUTEX(sched_hotcpu_mutex);
304 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
306 rq->curr->sched_class->check_preempt_curr(rq, p);
309 static inline int cpu_of(struct rq *rq)
311 #ifdef CONFIG_SMP
312 return rq->cpu;
313 #else
314 return 0;
315 #endif
319 * Update the per-runqueue clock, as finegrained as the platform can give
320 * us, but without assuming monotonicity, etc.:
322 static void __update_rq_clock(struct rq *rq)
324 u64 prev_raw = rq->prev_clock_raw;
325 u64 now = sched_clock();
326 s64 delta = now - prev_raw;
327 u64 clock = rq->clock;
329 #ifdef CONFIG_SCHED_DEBUG
330 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
331 #endif
333 * Protect against sched_clock() occasionally going backwards:
335 if (unlikely(delta < 0)) {
336 clock++;
337 rq->clock_warps++;
338 } else {
340 * Catch too large forward jumps too:
342 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
343 if (clock < rq->tick_timestamp + TICK_NSEC)
344 clock = rq->tick_timestamp + TICK_NSEC;
345 else
346 clock++;
347 rq->clock_overflows++;
348 } else {
349 if (unlikely(delta > rq->clock_max_delta))
350 rq->clock_max_delta = delta;
351 clock += delta;
355 rq->prev_clock_raw = now;
356 rq->clock = clock;
359 static void update_rq_clock(struct rq *rq)
361 if (likely(smp_processor_id() == cpu_of(rq)))
362 __update_rq_clock(rq);
366 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
367 * See detach_destroy_domains: synchronize_sched for details.
369 * The domain tree of any CPU may only be accessed from within
370 * preempt-disabled sections.
372 #define for_each_domain(cpu, __sd) \
373 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
375 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
376 #define this_rq() (&__get_cpu_var(runqueues))
377 #define task_rq(p) cpu_rq(task_cpu(p))
378 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
381 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
383 #ifdef CONFIG_SCHED_DEBUG
384 # define const_debug __read_mostly
385 #else
386 # define const_debug static const
387 #endif
390 * Debugging: various feature bits
392 enum {
393 SCHED_FEAT_FAIR_SLEEPERS = 1,
394 SCHED_FEAT_NEW_FAIR_SLEEPERS = 2,
395 SCHED_FEAT_SLEEPER_AVG = 4,
396 SCHED_FEAT_SLEEPER_LOAD_AVG = 8,
397 SCHED_FEAT_START_DEBIT = 16,
398 SCHED_FEAT_USE_TREE_AVG = 32,
399 SCHED_FEAT_APPROX_AVG = 64,
402 const_debug unsigned int sysctl_sched_features =
403 SCHED_FEAT_FAIR_SLEEPERS *0 |
404 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
405 SCHED_FEAT_SLEEPER_AVG *0 |
406 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
407 SCHED_FEAT_START_DEBIT *1 |
408 SCHED_FEAT_USE_TREE_AVG *0 |
409 SCHED_FEAT_APPROX_AVG *0;
411 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
414 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
415 * clock constructed from sched_clock():
417 unsigned long long cpu_clock(int cpu)
419 unsigned long long now;
420 unsigned long flags;
421 struct rq *rq;
423 local_irq_save(flags);
424 rq = cpu_rq(cpu);
425 update_rq_clock(rq);
426 now = rq->clock;
427 local_irq_restore(flags);
429 return now;
432 #ifdef CONFIG_FAIR_GROUP_SCHED
433 /* Change a task's ->cfs_rq if it moves across CPUs */
434 static inline void set_task_cfs_rq(struct task_struct *p)
436 p->se.cfs_rq = &task_rq(p)->cfs;
438 #else
439 static inline void set_task_cfs_rq(struct task_struct *p)
442 #endif
444 #ifndef prepare_arch_switch
445 # define prepare_arch_switch(next) do { } while (0)
446 #endif
447 #ifndef finish_arch_switch
448 # define finish_arch_switch(prev) do { } while (0)
449 #endif
451 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
452 static inline int task_running(struct rq *rq, struct task_struct *p)
454 return rq->curr == p;
457 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
461 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
463 #ifdef CONFIG_DEBUG_SPINLOCK
464 /* this is a valid case when another task releases the spinlock */
465 rq->lock.owner = current;
466 #endif
468 * If we are tracking spinlock dependencies then we have to
469 * fix up the runqueue lock - which gets 'carried over' from
470 * prev into current:
472 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
474 spin_unlock_irq(&rq->lock);
477 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
478 static inline int task_running(struct rq *rq, struct task_struct *p)
480 #ifdef CONFIG_SMP
481 return p->oncpu;
482 #else
483 return rq->curr == p;
484 #endif
487 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
489 #ifdef CONFIG_SMP
491 * We can optimise this out completely for !SMP, because the
492 * SMP rebalancing from interrupt is the only thing that cares
493 * here.
495 next->oncpu = 1;
496 #endif
497 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
498 spin_unlock_irq(&rq->lock);
499 #else
500 spin_unlock(&rq->lock);
501 #endif
504 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
506 #ifdef CONFIG_SMP
508 * After ->oncpu is cleared, the task can be moved to a different CPU.
509 * We must ensure this doesn't happen until the switch is completely
510 * finished.
512 smp_wmb();
513 prev->oncpu = 0;
514 #endif
515 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
516 local_irq_enable();
517 #endif
519 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
522 * __task_rq_lock - lock the runqueue a given task resides on.
523 * Must be called interrupts disabled.
525 static inline struct rq *__task_rq_lock(struct task_struct *p)
526 __acquires(rq->lock)
528 struct rq *rq;
530 repeat_lock_task:
531 rq = task_rq(p);
532 spin_lock(&rq->lock);
533 if (unlikely(rq != task_rq(p))) {
534 spin_unlock(&rq->lock);
535 goto repeat_lock_task;
537 return rq;
541 * task_rq_lock - lock the runqueue a given task resides on and disable
542 * interrupts. Note the ordering: we can safely lookup the task_rq without
543 * explicitly disabling preemption.
545 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
546 __acquires(rq->lock)
548 struct rq *rq;
550 repeat_lock_task:
551 local_irq_save(*flags);
552 rq = task_rq(p);
553 spin_lock(&rq->lock);
554 if (unlikely(rq != task_rq(p))) {
555 spin_unlock_irqrestore(&rq->lock, *flags);
556 goto repeat_lock_task;
558 return rq;
561 static inline void __task_rq_unlock(struct rq *rq)
562 __releases(rq->lock)
564 spin_unlock(&rq->lock);
567 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
568 __releases(rq->lock)
570 spin_unlock_irqrestore(&rq->lock, *flags);
574 * this_rq_lock - lock this runqueue and disable interrupts.
576 static inline struct rq *this_rq_lock(void)
577 __acquires(rq->lock)
579 struct rq *rq;
581 local_irq_disable();
582 rq = this_rq();
583 spin_lock(&rq->lock);
585 return rq;
589 * We are going deep-idle (irqs are disabled):
591 void sched_clock_idle_sleep_event(void)
593 struct rq *rq = cpu_rq(smp_processor_id());
595 spin_lock(&rq->lock);
596 __update_rq_clock(rq);
597 spin_unlock(&rq->lock);
598 rq->clock_deep_idle_events++;
600 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
603 * We just idled delta nanoseconds (called with irqs disabled):
605 void sched_clock_idle_wakeup_event(u64 delta_ns)
607 struct rq *rq = cpu_rq(smp_processor_id());
608 u64 now = sched_clock();
610 rq->idle_clock += delta_ns;
612 * Override the previous timestamp and ignore all
613 * sched_clock() deltas that occured while we idled,
614 * and use the PM-provided delta_ns to advance the
615 * rq clock:
617 spin_lock(&rq->lock);
618 rq->prev_clock_raw = now;
619 rq->clock += delta_ns;
620 spin_unlock(&rq->lock);
622 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
625 * resched_task - mark a task 'to be rescheduled now'.
627 * On UP this means the setting of the need_resched flag, on SMP it
628 * might also involve a cross-CPU call to trigger the scheduler on
629 * the target CPU.
631 #ifdef CONFIG_SMP
633 #ifndef tsk_is_polling
634 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
635 #endif
637 static void resched_task(struct task_struct *p)
639 int cpu;
641 assert_spin_locked(&task_rq(p)->lock);
643 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
644 return;
646 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
648 cpu = task_cpu(p);
649 if (cpu == smp_processor_id())
650 return;
652 /* NEED_RESCHED must be visible before we test polling */
653 smp_mb();
654 if (!tsk_is_polling(p))
655 smp_send_reschedule(cpu);
658 static void resched_cpu(int cpu)
660 struct rq *rq = cpu_rq(cpu);
661 unsigned long flags;
663 if (!spin_trylock_irqsave(&rq->lock, flags))
664 return;
665 resched_task(cpu_curr(cpu));
666 spin_unlock_irqrestore(&rq->lock, flags);
668 #else
669 static inline void resched_task(struct task_struct *p)
671 assert_spin_locked(&task_rq(p)->lock);
672 set_tsk_need_resched(p);
674 #endif
676 static u64 div64_likely32(u64 divident, unsigned long divisor)
678 #if BITS_PER_LONG == 32
679 if (likely(divident <= 0xffffffffULL))
680 return (u32)divident / divisor;
681 do_div(divident, divisor);
683 return divident;
684 #else
685 return divident / divisor;
686 #endif
689 #if BITS_PER_LONG == 32
690 # define WMULT_CONST (~0UL)
691 #else
692 # define WMULT_CONST (1UL << 32)
693 #endif
695 #define WMULT_SHIFT 32
698 * Shift right and round:
700 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
702 static unsigned long
703 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
704 struct load_weight *lw)
706 u64 tmp;
708 if (unlikely(!lw->inv_weight))
709 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
711 tmp = (u64)delta_exec * weight;
713 * Check whether we'd overflow the 64-bit multiplication:
715 if (unlikely(tmp > WMULT_CONST))
716 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
717 WMULT_SHIFT/2);
718 else
719 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
721 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
724 static inline unsigned long
725 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
727 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
730 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
732 lw->weight += inc;
733 if (sched_feat(FAIR_SLEEPERS))
734 lw->inv_weight = WMULT_CONST / lw->weight;
737 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
739 lw->weight -= dec;
740 if (sched_feat(FAIR_SLEEPERS) && likely(lw->weight))
741 lw->inv_weight = WMULT_CONST / lw->weight;
745 * To aid in avoiding the subversion of "niceness" due to uneven distribution
746 * of tasks with abnormal "nice" values across CPUs the contribution that
747 * each task makes to its run queue's load is weighted according to its
748 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
749 * scaled version of the new time slice allocation that they receive on time
750 * slice expiry etc.
753 #define WEIGHT_IDLEPRIO 2
754 #define WMULT_IDLEPRIO (1 << 31)
757 * Nice levels are multiplicative, with a gentle 10% change for every
758 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
759 * nice 1, it will get ~10% less CPU time than another CPU-bound task
760 * that remained on nice 0.
762 * The "10% effect" is relative and cumulative: from _any_ nice level,
763 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
764 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
765 * If a task goes up by ~10% and another task goes down by ~10% then
766 * the relative distance between them is ~25%.)
768 static const int prio_to_weight[40] = {
769 /* -20 */ 88761, 71755, 56483, 46273, 36291,
770 /* -15 */ 29154, 23254, 18705, 14949, 11916,
771 /* -10 */ 9548, 7620, 6100, 4904, 3906,
772 /* -5 */ 3121, 2501, 1991, 1586, 1277,
773 /* 0 */ 1024, 820, 655, 526, 423,
774 /* 5 */ 335, 272, 215, 172, 137,
775 /* 10 */ 110, 87, 70, 56, 45,
776 /* 15 */ 36, 29, 23, 18, 15,
780 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
782 * In cases where the weight does not change often, we can use the
783 * precalculated inverse to speed up arithmetics by turning divisions
784 * into multiplications:
786 static const u32 prio_to_wmult[40] = {
787 /* -20 */ 48388, 59856, 76040, 92818, 118348,
788 /* -15 */ 147320, 184698, 229616, 287308, 360437,
789 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
790 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
791 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
792 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
793 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
794 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
797 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
800 * runqueue iterator, to support SMP load-balancing between different
801 * scheduling classes, without having to expose their internal data
802 * structures to the load-balancing proper:
804 struct rq_iterator {
805 void *arg;
806 struct task_struct *(*start)(void *);
807 struct task_struct *(*next)(void *);
810 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
811 unsigned long max_nr_move, unsigned long max_load_move,
812 struct sched_domain *sd, enum cpu_idle_type idle,
813 int *all_pinned, unsigned long *load_moved,
814 int *this_best_prio, struct rq_iterator *iterator);
816 #include "sched_stats.h"
817 #include "sched_rt.c"
818 #include "sched_fair.c"
819 #include "sched_idletask.c"
820 #ifdef CONFIG_SCHED_DEBUG
821 # include "sched_debug.c"
822 #endif
824 #define sched_class_highest (&rt_sched_class)
827 * Update delta_exec, delta_fair fields for rq.
829 * delta_fair clock advances at a rate inversely proportional to
830 * total load (rq->load.weight) on the runqueue, while
831 * delta_exec advances at the same rate as wall-clock (provided
832 * cpu is not idle).
834 * delta_exec / delta_fair is a measure of the (smoothened) load on this
835 * runqueue over any given interval. This (smoothened) load is used
836 * during load balance.
838 * This function is called /before/ updating rq->load
839 * and when switching tasks.
841 static inline void inc_load(struct rq *rq, const struct task_struct *p)
843 update_load_add(&rq->load, p->se.load.weight);
846 static inline void dec_load(struct rq *rq, const struct task_struct *p)
848 update_load_sub(&rq->load, p->se.load.weight);
851 static void inc_nr_running(struct task_struct *p, struct rq *rq)
853 rq->nr_running++;
854 inc_load(rq, p);
857 static void dec_nr_running(struct task_struct *p, struct rq *rq)
859 rq->nr_running--;
860 dec_load(rq, p);
863 static void set_load_weight(struct task_struct *p)
865 p->se.wait_runtime = 0;
867 if (task_has_rt_policy(p)) {
868 p->se.load.weight = prio_to_weight[0] * 2;
869 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
870 return;
874 * SCHED_IDLE tasks get minimal weight:
876 if (p->policy == SCHED_IDLE) {
877 p->se.load.weight = WEIGHT_IDLEPRIO;
878 p->se.load.inv_weight = WMULT_IDLEPRIO;
879 return;
882 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
883 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
886 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
888 sched_info_queued(p);
889 p->sched_class->enqueue_task(rq, p, wakeup);
890 p->se.on_rq = 1;
893 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
895 p->sched_class->dequeue_task(rq, p, sleep);
896 p->se.on_rq = 0;
900 * __normal_prio - return the priority that is based on the static prio
902 static inline int __normal_prio(struct task_struct *p)
904 return p->static_prio;
908 * Calculate the expected normal priority: i.e. priority
909 * without taking RT-inheritance into account. Might be
910 * boosted by interactivity modifiers. Changes upon fork,
911 * setprio syscalls, and whenever the interactivity
912 * estimator recalculates.
914 static inline int normal_prio(struct task_struct *p)
916 int prio;
918 if (task_has_rt_policy(p))
919 prio = MAX_RT_PRIO-1 - p->rt_priority;
920 else
921 prio = __normal_prio(p);
922 return prio;
926 * Calculate the current priority, i.e. the priority
927 * taken into account by the scheduler. This value might
928 * be boosted by RT tasks, or might be boosted by
929 * interactivity modifiers. Will be RT if the task got
930 * RT-boosted. If not then it returns p->normal_prio.
932 static int effective_prio(struct task_struct *p)
934 p->normal_prio = normal_prio(p);
936 * If we are RT tasks or we were boosted to RT priority,
937 * keep the priority unchanged. Otherwise, update priority
938 * to the normal priority:
940 if (!rt_prio(p->prio))
941 return p->normal_prio;
942 return p->prio;
946 * activate_task - move a task to the runqueue.
948 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
950 if (p->state == TASK_UNINTERRUPTIBLE)
951 rq->nr_uninterruptible--;
953 enqueue_task(rq, p, wakeup);
954 inc_nr_running(p, rq);
958 * activate_idle_task - move idle task to the _front_ of runqueue.
960 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
962 update_rq_clock(rq);
964 if (p->state == TASK_UNINTERRUPTIBLE)
965 rq->nr_uninterruptible--;
967 enqueue_task(rq, p, 0);
968 inc_nr_running(p, rq);
972 * deactivate_task - remove a task from the runqueue.
974 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
976 if (p->state == TASK_UNINTERRUPTIBLE)
977 rq->nr_uninterruptible++;
979 dequeue_task(rq, p, sleep);
980 dec_nr_running(p, rq);
984 * task_curr - is this task currently executing on a CPU?
985 * @p: the task in question.
987 inline int task_curr(const struct task_struct *p)
989 return cpu_curr(task_cpu(p)) == p;
992 /* Used instead of source_load when we know the type == 0 */
993 unsigned long weighted_cpuload(const int cpu)
995 return cpu_rq(cpu)->load.weight;
998 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1000 #ifdef CONFIG_SMP
1001 task_thread_info(p)->cpu = cpu;
1002 set_task_cfs_rq(p);
1003 #endif
1006 #ifdef CONFIG_SMP
1008 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1010 int old_cpu = task_cpu(p);
1011 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1012 u64 clock_offset, fair_clock_offset;
1014 clock_offset = old_rq->clock - new_rq->clock;
1015 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1017 if (p->se.wait_start_fair)
1018 p->se.wait_start_fair -= fair_clock_offset;
1019 if (p->se.sleep_start_fair)
1020 p->se.sleep_start_fair -= fair_clock_offset;
1022 #ifdef CONFIG_SCHEDSTATS
1023 if (p->se.wait_start)
1024 p->se.wait_start -= clock_offset;
1025 if (p->se.sleep_start)
1026 p->se.sleep_start -= clock_offset;
1027 if (p->se.block_start)
1028 p->se.block_start -= clock_offset;
1029 #endif
1031 __set_task_cpu(p, new_cpu);
1034 struct migration_req {
1035 struct list_head list;
1037 struct task_struct *task;
1038 int dest_cpu;
1040 struct completion done;
1044 * The task's runqueue lock must be held.
1045 * Returns true if you have to wait for migration thread.
1047 static int
1048 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1050 struct rq *rq = task_rq(p);
1053 * If the task is not on a runqueue (and not running), then
1054 * it is sufficient to simply update the task's cpu field.
1056 if (!p->se.on_rq && !task_running(rq, p)) {
1057 set_task_cpu(p, dest_cpu);
1058 return 0;
1061 init_completion(&req->done);
1062 req->task = p;
1063 req->dest_cpu = dest_cpu;
1064 list_add(&req->list, &rq->migration_queue);
1066 return 1;
1070 * wait_task_inactive - wait for a thread to unschedule.
1072 * The caller must ensure that the task *will* unschedule sometime soon,
1073 * else this function might spin for a *long* time. This function can't
1074 * be called with interrupts off, or it may introduce deadlock with
1075 * smp_call_function() if an IPI is sent by the same process we are
1076 * waiting to become inactive.
1078 void wait_task_inactive(struct task_struct *p)
1080 unsigned long flags;
1081 int running, on_rq;
1082 struct rq *rq;
1084 repeat:
1086 * We do the initial early heuristics without holding
1087 * any task-queue locks at all. We'll only try to get
1088 * the runqueue lock when things look like they will
1089 * work out!
1091 rq = task_rq(p);
1094 * If the task is actively running on another CPU
1095 * still, just relax and busy-wait without holding
1096 * any locks.
1098 * NOTE! Since we don't hold any locks, it's not
1099 * even sure that "rq" stays as the right runqueue!
1100 * But we don't care, since "task_running()" will
1101 * return false if the runqueue has changed and p
1102 * is actually now running somewhere else!
1104 while (task_running(rq, p))
1105 cpu_relax();
1108 * Ok, time to look more closely! We need the rq
1109 * lock now, to be *sure*. If we're wrong, we'll
1110 * just go back and repeat.
1112 rq = task_rq_lock(p, &flags);
1113 running = task_running(rq, p);
1114 on_rq = p->se.on_rq;
1115 task_rq_unlock(rq, &flags);
1118 * Was it really running after all now that we
1119 * checked with the proper locks actually held?
1121 * Oops. Go back and try again..
1123 if (unlikely(running)) {
1124 cpu_relax();
1125 goto repeat;
1129 * It's not enough that it's not actively running,
1130 * it must be off the runqueue _entirely_, and not
1131 * preempted!
1133 * So if it wa still runnable (but just not actively
1134 * running right now), it's preempted, and we should
1135 * yield - it could be a while.
1137 if (unlikely(on_rq)) {
1138 yield();
1139 goto repeat;
1143 * Ahh, all good. It wasn't running, and it wasn't
1144 * runnable, which means that it will never become
1145 * running in the future either. We're all done!
1149 /***
1150 * kick_process - kick a running thread to enter/exit the kernel
1151 * @p: the to-be-kicked thread
1153 * Cause a process which is running on another CPU to enter
1154 * kernel-mode, without any delay. (to get signals handled.)
1156 * NOTE: this function doesnt have to take the runqueue lock,
1157 * because all it wants to ensure is that the remote task enters
1158 * the kernel. If the IPI races and the task has been migrated
1159 * to another CPU then no harm is done and the purpose has been
1160 * achieved as well.
1162 void kick_process(struct task_struct *p)
1164 int cpu;
1166 preempt_disable();
1167 cpu = task_cpu(p);
1168 if ((cpu != smp_processor_id()) && task_curr(p))
1169 smp_send_reschedule(cpu);
1170 preempt_enable();
1174 * Return a low guess at the load of a migration-source cpu weighted
1175 * according to the scheduling class and "nice" value.
1177 * We want to under-estimate the load of migration sources, to
1178 * balance conservatively.
1180 static inline unsigned long source_load(int cpu, int type)
1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long total = weighted_cpuload(cpu);
1185 if (type == 0)
1186 return total;
1188 return min(rq->cpu_load[type-1], total);
1192 * Return a high guess at the load of a migration-target cpu weighted
1193 * according to the scheduling class and "nice" value.
1195 static inline unsigned long target_load(int cpu, int type)
1197 struct rq *rq = cpu_rq(cpu);
1198 unsigned long total = weighted_cpuload(cpu);
1200 if (type == 0)
1201 return total;
1203 return max(rq->cpu_load[type-1], total);
1207 * Return the average load per task on the cpu's run queue
1209 static inline unsigned long cpu_avg_load_per_task(int cpu)
1211 struct rq *rq = cpu_rq(cpu);
1212 unsigned long total = weighted_cpuload(cpu);
1213 unsigned long n = rq->nr_running;
1215 return n ? total / n : SCHED_LOAD_SCALE;
1219 * find_idlest_group finds and returns the least busy CPU group within the
1220 * domain.
1222 static struct sched_group *
1223 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1225 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1226 unsigned long min_load = ULONG_MAX, this_load = 0;
1227 int load_idx = sd->forkexec_idx;
1228 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1230 do {
1231 unsigned long load, avg_load;
1232 int local_group;
1233 int i;
1235 /* Skip over this group if it has no CPUs allowed */
1236 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1237 goto nextgroup;
1239 local_group = cpu_isset(this_cpu, group->cpumask);
1241 /* Tally up the load of all CPUs in the group */
1242 avg_load = 0;
1244 for_each_cpu_mask(i, group->cpumask) {
1245 /* Bias balancing toward cpus of our domain */
1246 if (local_group)
1247 load = source_load(i, load_idx);
1248 else
1249 load = target_load(i, load_idx);
1251 avg_load += load;
1254 /* Adjust by relative CPU power of the group */
1255 avg_load = sg_div_cpu_power(group,
1256 avg_load * SCHED_LOAD_SCALE);
1258 if (local_group) {
1259 this_load = avg_load;
1260 this = group;
1261 } else if (avg_load < min_load) {
1262 min_load = avg_load;
1263 idlest = group;
1265 nextgroup:
1266 group = group->next;
1267 } while (group != sd->groups);
1269 if (!idlest || 100*this_load < imbalance*min_load)
1270 return NULL;
1271 return idlest;
1275 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1277 static int
1278 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1280 cpumask_t tmp;
1281 unsigned long load, min_load = ULONG_MAX;
1282 int idlest = -1;
1283 int i;
1285 /* Traverse only the allowed CPUs */
1286 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1288 for_each_cpu_mask(i, tmp) {
1289 load = weighted_cpuload(i);
1291 if (load < min_load || (load == min_load && i == this_cpu)) {
1292 min_load = load;
1293 idlest = i;
1297 return idlest;
1301 * sched_balance_self: balance the current task (running on cpu) in domains
1302 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1303 * SD_BALANCE_EXEC.
1305 * Balance, ie. select the least loaded group.
1307 * Returns the target CPU number, or the same CPU if no balancing is needed.
1309 * preempt must be disabled.
1311 static int sched_balance_self(int cpu, int flag)
1313 struct task_struct *t = current;
1314 struct sched_domain *tmp, *sd = NULL;
1316 for_each_domain(cpu, tmp) {
1318 * If power savings logic is enabled for a domain, stop there.
1320 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1321 break;
1322 if (tmp->flags & flag)
1323 sd = tmp;
1326 while (sd) {
1327 cpumask_t span;
1328 struct sched_group *group;
1329 int new_cpu, weight;
1331 if (!(sd->flags & flag)) {
1332 sd = sd->child;
1333 continue;
1336 span = sd->span;
1337 group = find_idlest_group(sd, t, cpu);
1338 if (!group) {
1339 sd = sd->child;
1340 continue;
1343 new_cpu = find_idlest_cpu(group, t, cpu);
1344 if (new_cpu == -1 || new_cpu == cpu) {
1345 /* Now try balancing at a lower domain level of cpu */
1346 sd = sd->child;
1347 continue;
1350 /* Now try balancing at a lower domain level of new_cpu */
1351 cpu = new_cpu;
1352 sd = NULL;
1353 weight = cpus_weight(span);
1354 for_each_domain(cpu, tmp) {
1355 if (weight <= cpus_weight(tmp->span))
1356 break;
1357 if (tmp->flags & flag)
1358 sd = tmp;
1360 /* while loop will break here if sd == NULL */
1363 return cpu;
1366 #endif /* CONFIG_SMP */
1369 * wake_idle() will wake a task on an idle cpu if task->cpu is
1370 * not idle and an idle cpu is available. The span of cpus to
1371 * search starts with cpus closest then further out as needed,
1372 * so we always favor a closer, idle cpu.
1374 * Returns the CPU we should wake onto.
1376 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1377 static int wake_idle(int cpu, struct task_struct *p)
1379 cpumask_t tmp;
1380 struct sched_domain *sd;
1381 int i;
1384 * If it is idle, then it is the best cpu to run this task.
1386 * This cpu is also the best, if it has more than one task already.
1387 * Siblings must be also busy(in most cases) as they didn't already
1388 * pickup the extra load from this cpu and hence we need not check
1389 * sibling runqueue info. This will avoid the checks and cache miss
1390 * penalities associated with that.
1392 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1393 return cpu;
1395 for_each_domain(cpu, sd) {
1396 if (sd->flags & SD_WAKE_IDLE) {
1397 cpus_and(tmp, sd->span, p->cpus_allowed);
1398 for_each_cpu_mask(i, tmp) {
1399 if (idle_cpu(i))
1400 return i;
1402 } else {
1403 break;
1406 return cpu;
1408 #else
1409 static inline int wake_idle(int cpu, struct task_struct *p)
1411 return cpu;
1413 #endif
1415 /***
1416 * try_to_wake_up - wake up a thread
1417 * @p: the to-be-woken-up thread
1418 * @state: the mask of task states that can be woken
1419 * @sync: do a synchronous wakeup?
1421 * Put it on the run-queue if it's not already there. The "current"
1422 * thread is always on the run-queue (except when the actual
1423 * re-schedule is in progress), and as such you're allowed to do
1424 * the simpler "current->state = TASK_RUNNING" to mark yourself
1425 * runnable without the overhead of this.
1427 * returns failure only if the task is already active.
1429 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1431 int cpu, this_cpu, success = 0;
1432 unsigned long flags;
1433 long old_state;
1434 struct rq *rq;
1435 #ifdef CONFIG_SMP
1436 struct sched_domain *sd, *this_sd = NULL;
1437 unsigned long load, this_load;
1438 int new_cpu;
1439 #endif
1441 rq = task_rq_lock(p, &flags);
1442 old_state = p->state;
1443 if (!(old_state & state))
1444 goto out;
1446 if (p->se.on_rq)
1447 goto out_running;
1449 cpu = task_cpu(p);
1450 this_cpu = smp_processor_id();
1452 #ifdef CONFIG_SMP
1453 if (unlikely(task_running(rq, p)))
1454 goto out_activate;
1456 new_cpu = cpu;
1458 schedstat_inc(rq, ttwu_cnt);
1459 if (cpu == this_cpu) {
1460 schedstat_inc(rq, ttwu_local);
1461 goto out_set_cpu;
1464 for_each_domain(this_cpu, sd) {
1465 if (cpu_isset(cpu, sd->span)) {
1466 schedstat_inc(sd, ttwu_wake_remote);
1467 this_sd = sd;
1468 break;
1472 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1473 goto out_set_cpu;
1476 * Check for affine wakeup and passive balancing possibilities.
1478 if (this_sd) {
1479 int idx = this_sd->wake_idx;
1480 unsigned int imbalance;
1482 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1484 load = source_load(cpu, idx);
1485 this_load = target_load(this_cpu, idx);
1487 new_cpu = this_cpu; /* Wake to this CPU if we can */
1489 if (this_sd->flags & SD_WAKE_AFFINE) {
1490 unsigned long tl = this_load;
1491 unsigned long tl_per_task;
1493 tl_per_task = cpu_avg_load_per_task(this_cpu);
1496 * If sync wakeup then subtract the (maximum possible)
1497 * effect of the currently running task from the load
1498 * of the current CPU:
1500 if (sync)
1501 tl -= current->se.load.weight;
1503 if ((tl <= load &&
1504 tl + target_load(cpu, idx) <= tl_per_task) ||
1505 100*(tl + p->se.load.weight) <= imbalance*load) {
1507 * This domain has SD_WAKE_AFFINE and
1508 * p is cache cold in this domain, and
1509 * there is no bad imbalance.
1511 schedstat_inc(this_sd, ttwu_move_affine);
1512 goto out_set_cpu;
1517 * Start passive balancing when half the imbalance_pct
1518 * limit is reached.
1520 if (this_sd->flags & SD_WAKE_BALANCE) {
1521 if (imbalance*this_load <= 100*load) {
1522 schedstat_inc(this_sd, ttwu_move_balance);
1523 goto out_set_cpu;
1528 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1529 out_set_cpu:
1530 new_cpu = wake_idle(new_cpu, p);
1531 if (new_cpu != cpu) {
1532 set_task_cpu(p, new_cpu);
1533 task_rq_unlock(rq, &flags);
1534 /* might preempt at this point */
1535 rq = task_rq_lock(p, &flags);
1536 old_state = p->state;
1537 if (!(old_state & state))
1538 goto out;
1539 if (p->se.on_rq)
1540 goto out_running;
1542 this_cpu = smp_processor_id();
1543 cpu = task_cpu(p);
1546 out_activate:
1547 #endif /* CONFIG_SMP */
1548 update_rq_clock(rq);
1549 activate_task(rq, p, 1);
1551 * Sync wakeups (i.e. those types of wakeups where the waker
1552 * has indicated that it will leave the CPU in short order)
1553 * don't trigger a preemption, if the woken up task will run on
1554 * this cpu. (in this case the 'I will reschedule' promise of
1555 * the waker guarantees that the freshly woken up task is going
1556 * to be considered on this CPU.)
1558 if (!sync || cpu != this_cpu)
1559 check_preempt_curr(rq, p);
1560 success = 1;
1562 out_running:
1563 p->state = TASK_RUNNING;
1564 out:
1565 task_rq_unlock(rq, &flags);
1567 return success;
1570 int fastcall wake_up_process(struct task_struct *p)
1572 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1573 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1575 EXPORT_SYMBOL(wake_up_process);
1577 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1579 return try_to_wake_up(p, state, 0);
1583 * Perform scheduler related setup for a newly forked process p.
1584 * p is forked by current.
1586 * __sched_fork() is basic setup used by init_idle() too:
1588 static void __sched_fork(struct task_struct *p)
1590 p->se.wait_start_fair = 0;
1591 p->se.exec_start = 0;
1592 p->se.sum_exec_runtime = 0;
1593 p->se.prev_sum_exec_runtime = 0;
1594 p->se.wait_runtime = 0;
1595 p->se.sleep_start_fair = 0;
1597 #ifdef CONFIG_SCHEDSTATS
1598 p->se.wait_start = 0;
1599 p->se.sum_wait_runtime = 0;
1600 p->se.sum_sleep_runtime = 0;
1601 p->se.sleep_start = 0;
1602 p->se.block_start = 0;
1603 p->se.sleep_max = 0;
1604 p->se.block_max = 0;
1605 p->se.exec_max = 0;
1606 p->se.slice_max = 0;
1607 p->se.wait_max = 0;
1608 p->se.wait_runtime_overruns = 0;
1609 p->se.wait_runtime_underruns = 0;
1610 #endif
1612 INIT_LIST_HEAD(&p->run_list);
1613 p->se.on_rq = 0;
1615 #ifdef CONFIG_PREEMPT_NOTIFIERS
1616 INIT_HLIST_HEAD(&p->preempt_notifiers);
1617 #endif
1620 * We mark the process as running here, but have not actually
1621 * inserted it onto the runqueue yet. This guarantees that
1622 * nobody will actually run it, and a signal or other external
1623 * event cannot wake it up and insert it on the runqueue either.
1625 p->state = TASK_RUNNING;
1629 * fork()/clone()-time setup:
1631 void sched_fork(struct task_struct *p, int clone_flags)
1633 int cpu = get_cpu();
1635 __sched_fork(p);
1637 #ifdef CONFIG_SMP
1638 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1639 #endif
1640 __set_task_cpu(p, cpu);
1643 * Make sure we do not leak PI boosting priority to the child:
1645 p->prio = current->normal_prio;
1647 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1648 if (likely(sched_info_on()))
1649 memset(&p->sched_info, 0, sizeof(p->sched_info));
1650 #endif
1651 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1652 p->oncpu = 0;
1653 #endif
1654 #ifdef CONFIG_PREEMPT
1655 /* Want to start with kernel preemption disabled. */
1656 task_thread_info(p)->preempt_count = 1;
1657 #endif
1658 put_cpu();
1662 * wake_up_new_task - wake up a newly created task for the first time.
1664 * This function will do some initial scheduler statistics housekeeping
1665 * that must be done for every newly created context, then puts the task
1666 * on the runqueue and wakes it.
1668 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1670 unsigned long flags;
1671 struct rq *rq;
1672 int this_cpu;
1674 rq = task_rq_lock(p, &flags);
1675 BUG_ON(p->state != TASK_RUNNING);
1676 this_cpu = smp_processor_id(); /* parent's CPU */
1677 update_rq_clock(rq);
1679 p->prio = effective_prio(p);
1681 if (rt_prio(p->prio))
1682 p->sched_class = &rt_sched_class;
1683 else
1684 p->sched_class = &fair_sched_class;
1686 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1687 !current->se.on_rq) {
1688 activate_task(rq, p, 0);
1689 } else {
1691 * Let the scheduling class do new task startup
1692 * management (if any):
1694 p->sched_class->task_new(rq, p);
1695 inc_nr_running(p, rq);
1697 check_preempt_curr(rq, p);
1698 task_rq_unlock(rq, &flags);
1701 #ifdef CONFIG_PREEMPT_NOTIFIERS
1704 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1705 * @notifier: notifier struct to register
1707 void preempt_notifier_register(struct preempt_notifier *notifier)
1709 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1711 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1714 * preempt_notifier_unregister - no longer interested in preemption notifications
1715 * @notifier: notifier struct to unregister
1717 * This is safe to call from within a preemption notifier.
1719 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1721 hlist_del(&notifier->link);
1723 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1725 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1727 struct preempt_notifier *notifier;
1728 struct hlist_node *node;
1730 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1731 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1734 static void
1735 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1736 struct task_struct *next)
1738 struct preempt_notifier *notifier;
1739 struct hlist_node *node;
1741 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1742 notifier->ops->sched_out(notifier, next);
1745 #else
1747 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1751 static void
1752 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1753 struct task_struct *next)
1757 #endif
1760 * prepare_task_switch - prepare to switch tasks
1761 * @rq: the runqueue preparing to switch
1762 * @prev: the current task that is being switched out
1763 * @next: the task we are going to switch to.
1765 * This is called with the rq lock held and interrupts off. It must
1766 * be paired with a subsequent finish_task_switch after the context
1767 * switch.
1769 * prepare_task_switch sets up locking and calls architecture specific
1770 * hooks.
1772 static inline void
1773 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1774 struct task_struct *next)
1776 fire_sched_out_preempt_notifiers(prev, next);
1777 prepare_lock_switch(rq, next);
1778 prepare_arch_switch(next);
1782 * finish_task_switch - clean up after a task-switch
1783 * @rq: runqueue associated with task-switch
1784 * @prev: the thread we just switched away from.
1786 * finish_task_switch must be called after the context switch, paired
1787 * with a prepare_task_switch call before the context switch.
1788 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1789 * and do any other architecture-specific cleanup actions.
1791 * Note that we may have delayed dropping an mm in context_switch(). If
1792 * so, we finish that here outside of the runqueue lock. (Doing it
1793 * with the lock held can cause deadlocks; see schedule() for
1794 * details.)
1796 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1797 __releases(rq->lock)
1799 struct mm_struct *mm = rq->prev_mm;
1800 long prev_state;
1802 rq->prev_mm = NULL;
1805 * A task struct has one reference for the use as "current".
1806 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1807 * schedule one last time. The schedule call will never return, and
1808 * the scheduled task must drop that reference.
1809 * The test for TASK_DEAD must occur while the runqueue locks are
1810 * still held, otherwise prev could be scheduled on another cpu, die
1811 * there before we look at prev->state, and then the reference would
1812 * be dropped twice.
1813 * Manfred Spraul <manfred@colorfullife.com>
1815 prev_state = prev->state;
1816 finish_arch_switch(prev);
1817 finish_lock_switch(rq, prev);
1818 fire_sched_in_preempt_notifiers(current);
1819 if (mm)
1820 mmdrop(mm);
1821 if (unlikely(prev_state == TASK_DEAD)) {
1823 * Remove function-return probe instances associated with this
1824 * task and put them back on the free list.
1826 kprobe_flush_task(prev);
1827 put_task_struct(prev);
1832 * schedule_tail - first thing a freshly forked thread must call.
1833 * @prev: the thread we just switched away from.
1835 asmlinkage void schedule_tail(struct task_struct *prev)
1836 __releases(rq->lock)
1838 struct rq *rq = this_rq();
1840 finish_task_switch(rq, prev);
1841 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1842 /* In this case, finish_task_switch does not reenable preemption */
1843 preempt_enable();
1844 #endif
1845 if (current->set_child_tid)
1846 put_user(current->pid, current->set_child_tid);
1850 * context_switch - switch to the new MM and the new
1851 * thread's register state.
1853 static inline void
1854 context_switch(struct rq *rq, struct task_struct *prev,
1855 struct task_struct *next)
1857 struct mm_struct *mm, *oldmm;
1859 prepare_task_switch(rq, prev, next);
1860 mm = next->mm;
1861 oldmm = prev->active_mm;
1863 * For paravirt, this is coupled with an exit in switch_to to
1864 * combine the page table reload and the switch backend into
1865 * one hypercall.
1867 arch_enter_lazy_cpu_mode();
1869 if (unlikely(!mm)) {
1870 next->active_mm = oldmm;
1871 atomic_inc(&oldmm->mm_count);
1872 enter_lazy_tlb(oldmm, next);
1873 } else
1874 switch_mm(oldmm, mm, next);
1876 if (unlikely(!prev->mm)) {
1877 prev->active_mm = NULL;
1878 rq->prev_mm = oldmm;
1881 * Since the runqueue lock will be released by the next
1882 * task (which is an invalid locking op but in the case
1883 * of the scheduler it's an obvious special-case), so we
1884 * do an early lockdep release here:
1886 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1887 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1888 #endif
1890 /* Here we just switch the register state and the stack. */
1891 switch_to(prev, next, prev);
1893 barrier();
1895 * this_rq must be evaluated again because prev may have moved
1896 * CPUs since it called schedule(), thus the 'rq' on its stack
1897 * frame will be invalid.
1899 finish_task_switch(this_rq(), prev);
1903 * nr_running, nr_uninterruptible and nr_context_switches:
1905 * externally visible scheduler statistics: current number of runnable
1906 * threads, current number of uninterruptible-sleeping threads, total
1907 * number of context switches performed since bootup.
1909 unsigned long nr_running(void)
1911 unsigned long i, sum = 0;
1913 for_each_online_cpu(i)
1914 sum += cpu_rq(i)->nr_running;
1916 return sum;
1919 unsigned long nr_uninterruptible(void)
1921 unsigned long i, sum = 0;
1923 for_each_possible_cpu(i)
1924 sum += cpu_rq(i)->nr_uninterruptible;
1927 * Since we read the counters lockless, it might be slightly
1928 * inaccurate. Do not allow it to go below zero though:
1930 if (unlikely((long)sum < 0))
1931 sum = 0;
1933 return sum;
1936 unsigned long long nr_context_switches(void)
1938 int i;
1939 unsigned long long sum = 0;
1941 for_each_possible_cpu(i)
1942 sum += cpu_rq(i)->nr_switches;
1944 return sum;
1947 unsigned long nr_iowait(void)
1949 unsigned long i, sum = 0;
1951 for_each_possible_cpu(i)
1952 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1954 return sum;
1957 unsigned long nr_active(void)
1959 unsigned long i, running = 0, uninterruptible = 0;
1961 for_each_online_cpu(i) {
1962 running += cpu_rq(i)->nr_running;
1963 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1966 if (unlikely((long)uninterruptible < 0))
1967 uninterruptible = 0;
1969 return running + uninterruptible;
1973 * Update rq->cpu_load[] statistics. This function is usually called every
1974 * scheduler tick (TICK_NSEC).
1976 static void update_cpu_load(struct rq *this_rq)
1978 unsigned long this_load = this_rq->load.weight;
1979 int i, scale;
1981 this_rq->nr_load_updates++;
1983 /* Update our load: */
1984 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1985 unsigned long old_load, new_load;
1987 /* scale is effectively 1 << i now, and >> i divides by scale */
1989 old_load = this_rq->cpu_load[i];
1990 new_load = this_load;
1992 * Round up the averaging division if load is increasing. This
1993 * prevents us from getting stuck on 9 if the load is 10, for
1994 * example.
1996 if (new_load > old_load)
1997 new_load += scale-1;
1998 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2002 #ifdef CONFIG_SMP
2005 * double_rq_lock - safely lock two runqueues
2007 * Note this does not disable interrupts like task_rq_lock,
2008 * you need to do so manually before calling.
2010 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2011 __acquires(rq1->lock)
2012 __acquires(rq2->lock)
2014 BUG_ON(!irqs_disabled());
2015 if (rq1 == rq2) {
2016 spin_lock(&rq1->lock);
2017 __acquire(rq2->lock); /* Fake it out ;) */
2018 } else {
2019 if (rq1 < rq2) {
2020 spin_lock(&rq1->lock);
2021 spin_lock(&rq2->lock);
2022 } else {
2023 spin_lock(&rq2->lock);
2024 spin_lock(&rq1->lock);
2027 update_rq_clock(rq1);
2028 update_rq_clock(rq2);
2032 * double_rq_unlock - safely unlock two runqueues
2034 * Note this does not restore interrupts like task_rq_unlock,
2035 * you need to do so manually after calling.
2037 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2038 __releases(rq1->lock)
2039 __releases(rq2->lock)
2041 spin_unlock(&rq1->lock);
2042 if (rq1 != rq2)
2043 spin_unlock(&rq2->lock);
2044 else
2045 __release(rq2->lock);
2049 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2051 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2052 __releases(this_rq->lock)
2053 __acquires(busiest->lock)
2054 __acquires(this_rq->lock)
2056 if (unlikely(!irqs_disabled())) {
2057 /* printk() doesn't work good under rq->lock */
2058 spin_unlock(&this_rq->lock);
2059 BUG_ON(1);
2061 if (unlikely(!spin_trylock(&busiest->lock))) {
2062 if (busiest < this_rq) {
2063 spin_unlock(&this_rq->lock);
2064 spin_lock(&busiest->lock);
2065 spin_lock(&this_rq->lock);
2066 } else
2067 spin_lock(&busiest->lock);
2072 * If dest_cpu is allowed for this process, migrate the task to it.
2073 * This is accomplished by forcing the cpu_allowed mask to only
2074 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2075 * the cpu_allowed mask is restored.
2077 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2079 struct migration_req req;
2080 unsigned long flags;
2081 struct rq *rq;
2083 rq = task_rq_lock(p, &flags);
2084 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2085 || unlikely(cpu_is_offline(dest_cpu)))
2086 goto out;
2088 /* force the process onto the specified CPU */
2089 if (migrate_task(p, dest_cpu, &req)) {
2090 /* Need to wait for migration thread (might exit: take ref). */
2091 struct task_struct *mt = rq->migration_thread;
2093 get_task_struct(mt);
2094 task_rq_unlock(rq, &flags);
2095 wake_up_process(mt);
2096 put_task_struct(mt);
2097 wait_for_completion(&req.done);
2099 return;
2101 out:
2102 task_rq_unlock(rq, &flags);
2106 * sched_exec - execve() is a valuable balancing opportunity, because at
2107 * this point the task has the smallest effective memory and cache footprint.
2109 void sched_exec(void)
2111 int new_cpu, this_cpu = get_cpu();
2112 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2113 put_cpu();
2114 if (new_cpu != this_cpu)
2115 sched_migrate_task(current, new_cpu);
2119 * pull_task - move a task from a remote runqueue to the local runqueue.
2120 * Both runqueues must be locked.
2122 static void pull_task(struct rq *src_rq, struct task_struct *p,
2123 struct rq *this_rq, int this_cpu)
2125 deactivate_task(src_rq, p, 0);
2126 set_task_cpu(p, this_cpu);
2127 activate_task(this_rq, p, 0);
2129 * Note that idle threads have a prio of MAX_PRIO, for this test
2130 * to be always true for them.
2132 check_preempt_curr(this_rq, p);
2136 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2138 static
2139 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2140 struct sched_domain *sd, enum cpu_idle_type idle,
2141 int *all_pinned)
2144 * We do not migrate tasks that are:
2145 * 1) running (obviously), or
2146 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2147 * 3) are cache-hot on their current CPU.
2149 if (!cpu_isset(this_cpu, p->cpus_allowed))
2150 return 0;
2151 *all_pinned = 0;
2153 if (task_running(rq, p))
2154 return 0;
2156 return 1;
2159 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2160 unsigned long max_nr_move, unsigned long max_load_move,
2161 struct sched_domain *sd, enum cpu_idle_type idle,
2162 int *all_pinned, unsigned long *load_moved,
2163 int *this_best_prio, struct rq_iterator *iterator)
2165 int pulled = 0, pinned = 0, skip_for_load;
2166 struct task_struct *p;
2167 long rem_load_move = max_load_move;
2169 if (max_nr_move == 0 || max_load_move == 0)
2170 goto out;
2172 pinned = 1;
2175 * Start the load-balancing iterator:
2177 p = iterator->start(iterator->arg);
2178 next:
2179 if (!p)
2180 goto out;
2182 * To help distribute high priority tasks accross CPUs we don't
2183 * skip a task if it will be the highest priority task (i.e. smallest
2184 * prio value) on its new queue regardless of its load weight
2186 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2187 SCHED_LOAD_SCALE_FUZZ;
2188 if ((skip_for_load && p->prio >= *this_best_prio) ||
2189 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2190 p = iterator->next(iterator->arg);
2191 goto next;
2194 pull_task(busiest, p, this_rq, this_cpu);
2195 pulled++;
2196 rem_load_move -= p->se.load.weight;
2199 * We only want to steal up to the prescribed number of tasks
2200 * and the prescribed amount of weighted load.
2202 if (pulled < max_nr_move && rem_load_move > 0) {
2203 if (p->prio < *this_best_prio)
2204 *this_best_prio = p->prio;
2205 p = iterator->next(iterator->arg);
2206 goto next;
2208 out:
2210 * Right now, this is the only place pull_task() is called,
2211 * so we can safely collect pull_task() stats here rather than
2212 * inside pull_task().
2214 schedstat_add(sd, lb_gained[idle], pulled);
2216 if (all_pinned)
2217 *all_pinned = pinned;
2218 *load_moved = max_load_move - rem_load_move;
2219 return pulled;
2223 * move_tasks tries to move up to max_load_move weighted load from busiest to
2224 * this_rq, as part of a balancing operation within domain "sd".
2225 * Returns 1 if successful and 0 otherwise.
2227 * Called with both runqueues locked.
2229 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2230 unsigned long max_load_move,
2231 struct sched_domain *sd, enum cpu_idle_type idle,
2232 int *all_pinned)
2234 struct sched_class *class = sched_class_highest;
2235 unsigned long total_load_moved = 0;
2236 int this_best_prio = this_rq->curr->prio;
2238 do {
2239 total_load_moved +=
2240 class->load_balance(this_rq, this_cpu, busiest,
2241 ULONG_MAX, max_load_move - total_load_moved,
2242 sd, idle, all_pinned, &this_best_prio);
2243 class = class->next;
2244 } while (class && max_load_move > total_load_moved);
2246 return total_load_moved > 0;
2250 * move_one_task tries to move exactly one task from busiest to this_rq, as
2251 * part of active balancing operations within "domain".
2252 * Returns 1 if successful and 0 otherwise.
2254 * Called with both runqueues locked.
2256 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2257 struct sched_domain *sd, enum cpu_idle_type idle)
2259 struct sched_class *class;
2260 int this_best_prio = MAX_PRIO;
2262 for (class = sched_class_highest; class; class = class->next)
2263 if (class->load_balance(this_rq, this_cpu, busiest,
2264 1, ULONG_MAX, sd, idle, NULL,
2265 &this_best_prio))
2266 return 1;
2268 return 0;
2272 * find_busiest_group finds and returns the busiest CPU group within the
2273 * domain. It calculates and returns the amount of weighted load which
2274 * should be moved to restore balance via the imbalance parameter.
2276 static struct sched_group *
2277 find_busiest_group(struct sched_domain *sd, int this_cpu,
2278 unsigned long *imbalance, enum cpu_idle_type idle,
2279 int *sd_idle, cpumask_t *cpus, int *balance)
2281 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2282 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2283 unsigned long max_pull;
2284 unsigned long busiest_load_per_task, busiest_nr_running;
2285 unsigned long this_load_per_task, this_nr_running;
2286 int load_idx;
2287 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2288 int power_savings_balance = 1;
2289 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2290 unsigned long min_nr_running = ULONG_MAX;
2291 struct sched_group *group_min = NULL, *group_leader = NULL;
2292 #endif
2294 max_load = this_load = total_load = total_pwr = 0;
2295 busiest_load_per_task = busiest_nr_running = 0;
2296 this_load_per_task = this_nr_running = 0;
2297 if (idle == CPU_NOT_IDLE)
2298 load_idx = sd->busy_idx;
2299 else if (idle == CPU_NEWLY_IDLE)
2300 load_idx = sd->newidle_idx;
2301 else
2302 load_idx = sd->idle_idx;
2304 do {
2305 unsigned long load, group_capacity;
2306 int local_group;
2307 int i;
2308 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2309 unsigned long sum_nr_running, sum_weighted_load;
2311 local_group = cpu_isset(this_cpu, group->cpumask);
2313 if (local_group)
2314 balance_cpu = first_cpu(group->cpumask);
2316 /* Tally up the load of all CPUs in the group */
2317 sum_weighted_load = sum_nr_running = avg_load = 0;
2319 for_each_cpu_mask(i, group->cpumask) {
2320 struct rq *rq;
2322 if (!cpu_isset(i, *cpus))
2323 continue;
2325 rq = cpu_rq(i);
2327 if (*sd_idle && rq->nr_running)
2328 *sd_idle = 0;
2330 /* Bias balancing toward cpus of our domain */
2331 if (local_group) {
2332 if (idle_cpu(i) && !first_idle_cpu) {
2333 first_idle_cpu = 1;
2334 balance_cpu = i;
2337 load = target_load(i, load_idx);
2338 } else
2339 load = source_load(i, load_idx);
2341 avg_load += load;
2342 sum_nr_running += rq->nr_running;
2343 sum_weighted_load += weighted_cpuload(i);
2347 * First idle cpu or the first cpu(busiest) in this sched group
2348 * is eligible for doing load balancing at this and above
2349 * domains. In the newly idle case, we will allow all the cpu's
2350 * to do the newly idle load balance.
2352 if (idle != CPU_NEWLY_IDLE && local_group &&
2353 balance_cpu != this_cpu && balance) {
2354 *balance = 0;
2355 goto ret;
2358 total_load += avg_load;
2359 total_pwr += group->__cpu_power;
2361 /* Adjust by relative CPU power of the group */
2362 avg_load = sg_div_cpu_power(group,
2363 avg_load * SCHED_LOAD_SCALE);
2365 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2367 if (local_group) {
2368 this_load = avg_load;
2369 this = group;
2370 this_nr_running = sum_nr_running;
2371 this_load_per_task = sum_weighted_load;
2372 } else if (avg_load > max_load &&
2373 sum_nr_running > group_capacity) {
2374 max_load = avg_load;
2375 busiest = group;
2376 busiest_nr_running = sum_nr_running;
2377 busiest_load_per_task = sum_weighted_load;
2380 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2382 * Busy processors will not participate in power savings
2383 * balance.
2385 if (idle == CPU_NOT_IDLE ||
2386 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2387 goto group_next;
2390 * If the local group is idle or completely loaded
2391 * no need to do power savings balance at this domain
2393 if (local_group && (this_nr_running >= group_capacity ||
2394 !this_nr_running))
2395 power_savings_balance = 0;
2398 * If a group is already running at full capacity or idle,
2399 * don't include that group in power savings calculations
2401 if (!power_savings_balance || sum_nr_running >= group_capacity
2402 || !sum_nr_running)
2403 goto group_next;
2406 * Calculate the group which has the least non-idle load.
2407 * This is the group from where we need to pick up the load
2408 * for saving power
2410 if ((sum_nr_running < min_nr_running) ||
2411 (sum_nr_running == min_nr_running &&
2412 first_cpu(group->cpumask) <
2413 first_cpu(group_min->cpumask))) {
2414 group_min = group;
2415 min_nr_running = sum_nr_running;
2416 min_load_per_task = sum_weighted_load /
2417 sum_nr_running;
2421 * Calculate the group which is almost near its
2422 * capacity but still has some space to pick up some load
2423 * from other group and save more power
2425 if (sum_nr_running <= group_capacity - 1) {
2426 if (sum_nr_running > leader_nr_running ||
2427 (sum_nr_running == leader_nr_running &&
2428 first_cpu(group->cpumask) >
2429 first_cpu(group_leader->cpumask))) {
2430 group_leader = group;
2431 leader_nr_running = sum_nr_running;
2434 group_next:
2435 #endif
2436 group = group->next;
2437 } while (group != sd->groups);
2439 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2440 goto out_balanced;
2442 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2444 if (this_load >= avg_load ||
2445 100*max_load <= sd->imbalance_pct*this_load)
2446 goto out_balanced;
2448 busiest_load_per_task /= busiest_nr_running;
2450 * We're trying to get all the cpus to the average_load, so we don't
2451 * want to push ourselves above the average load, nor do we wish to
2452 * reduce the max loaded cpu below the average load, as either of these
2453 * actions would just result in more rebalancing later, and ping-pong
2454 * tasks around. Thus we look for the minimum possible imbalance.
2455 * Negative imbalances (*we* are more loaded than anyone else) will
2456 * be counted as no imbalance for these purposes -- we can't fix that
2457 * by pulling tasks to us. Be careful of negative numbers as they'll
2458 * appear as very large values with unsigned longs.
2460 if (max_load <= busiest_load_per_task)
2461 goto out_balanced;
2464 * In the presence of smp nice balancing, certain scenarios can have
2465 * max load less than avg load(as we skip the groups at or below
2466 * its cpu_power, while calculating max_load..)
2468 if (max_load < avg_load) {
2469 *imbalance = 0;
2470 goto small_imbalance;
2473 /* Don't want to pull so many tasks that a group would go idle */
2474 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2476 /* How much load to actually move to equalise the imbalance */
2477 *imbalance = min(max_pull * busiest->__cpu_power,
2478 (avg_load - this_load) * this->__cpu_power)
2479 / SCHED_LOAD_SCALE;
2482 * if *imbalance is less than the average load per runnable task
2483 * there is no gaurantee that any tasks will be moved so we'll have
2484 * a think about bumping its value to force at least one task to be
2485 * moved
2487 if (*imbalance < busiest_load_per_task) {
2488 unsigned long tmp, pwr_now, pwr_move;
2489 unsigned int imbn;
2491 small_imbalance:
2492 pwr_move = pwr_now = 0;
2493 imbn = 2;
2494 if (this_nr_running) {
2495 this_load_per_task /= this_nr_running;
2496 if (busiest_load_per_task > this_load_per_task)
2497 imbn = 1;
2498 } else
2499 this_load_per_task = SCHED_LOAD_SCALE;
2501 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2502 busiest_load_per_task * imbn) {
2503 *imbalance = busiest_load_per_task;
2504 return busiest;
2508 * OK, we don't have enough imbalance to justify moving tasks,
2509 * however we may be able to increase total CPU power used by
2510 * moving them.
2513 pwr_now += busiest->__cpu_power *
2514 min(busiest_load_per_task, max_load);
2515 pwr_now += this->__cpu_power *
2516 min(this_load_per_task, this_load);
2517 pwr_now /= SCHED_LOAD_SCALE;
2519 /* Amount of load we'd subtract */
2520 tmp = sg_div_cpu_power(busiest,
2521 busiest_load_per_task * SCHED_LOAD_SCALE);
2522 if (max_load > tmp)
2523 pwr_move += busiest->__cpu_power *
2524 min(busiest_load_per_task, max_load - tmp);
2526 /* Amount of load we'd add */
2527 if (max_load * busiest->__cpu_power <
2528 busiest_load_per_task * SCHED_LOAD_SCALE)
2529 tmp = sg_div_cpu_power(this,
2530 max_load * busiest->__cpu_power);
2531 else
2532 tmp = sg_div_cpu_power(this,
2533 busiest_load_per_task * SCHED_LOAD_SCALE);
2534 pwr_move += this->__cpu_power *
2535 min(this_load_per_task, this_load + tmp);
2536 pwr_move /= SCHED_LOAD_SCALE;
2538 /* Move if we gain throughput */
2539 if (pwr_move > pwr_now)
2540 *imbalance = busiest_load_per_task;
2543 return busiest;
2545 out_balanced:
2546 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2547 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2548 goto ret;
2550 if (this == group_leader && group_leader != group_min) {
2551 *imbalance = min_load_per_task;
2552 return group_min;
2554 #endif
2555 ret:
2556 *imbalance = 0;
2557 return NULL;
2561 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2563 static struct rq *
2564 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2565 unsigned long imbalance, cpumask_t *cpus)
2567 struct rq *busiest = NULL, *rq;
2568 unsigned long max_load = 0;
2569 int i;
2571 for_each_cpu_mask(i, group->cpumask) {
2572 unsigned long wl;
2574 if (!cpu_isset(i, *cpus))
2575 continue;
2577 rq = cpu_rq(i);
2578 wl = weighted_cpuload(i);
2580 if (rq->nr_running == 1 && wl > imbalance)
2581 continue;
2583 if (wl > max_load) {
2584 max_load = wl;
2585 busiest = rq;
2589 return busiest;
2593 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2594 * so long as it is large enough.
2596 #define MAX_PINNED_INTERVAL 512
2599 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2600 * tasks if there is an imbalance.
2602 static int load_balance(int this_cpu, struct rq *this_rq,
2603 struct sched_domain *sd, enum cpu_idle_type idle,
2604 int *balance)
2606 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2607 struct sched_group *group;
2608 unsigned long imbalance;
2609 struct rq *busiest;
2610 cpumask_t cpus = CPU_MASK_ALL;
2611 unsigned long flags;
2614 * When power savings policy is enabled for the parent domain, idle
2615 * sibling can pick up load irrespective of busy siblings. In this case,
2616 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2617 * portraying it as CPU_NOT_IDLE.
2619 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2620 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2621 sd_idle = 1;
2623 schedstat_inc(sd, lb_cnt[idle]);
2625 redo:
2626 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2627 &cpus, balance);
2629 if (*balance == 0)
2630 goto out_balanced;
2632 if (!group) {
2633 schedstat_inc(sd, lb_nobusyg[idle]);
2634 goto out_balanced;
2637 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2638 if (!busiest) {
2639 schedstat_inc(sd, lb_nobusyq[idle]);
2640 goto out_balanced;
2643 BUG_ON(busiest == this_rq);
2645 schedstat_add(sd, lb_imbalance[idle], imbalance);
2647 ld_moved = 0;
2648 if (busiest->nr_running > 1) {
2650 * Attempt to move tasks. If find_busiest_group has found
2651 * an imbalance but busiest->nr_running <= 1, the group is
2652 * still unbalanced. ld_moved simply stays zero, so it is
2653 * correctly treated as an imbalance.
2655 local_irq_save(flags);
2656 double_rq_lock(this_rq, busiest);
2657 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2658 imbalance, sd, idle, &all_pinned);
2659 double_rq_unlock(this_rq, busiest);
2660 local_irq_restore(flags);
2663 * some other cpu did the load balance for us.
2665 if (ld_moved && this_cpu != smp_processor_id())
2666 resched_cpu(this_cpu);
2668 /* All tasks on this runqueue were pinned by CPU affinity */
2669 if (unlikely(all_pinned)) {
2670 cpu_clear(cpu_of(busiest), cpus);
2671 if (!cpus_empty(cpus))
2672 goto redo;
2673 goto out_balanced;
2677 if (!ld_moved) {
2678 schedstat_inc(sd, lb_failed[idle]);
2679 sd->nr_balance_failed++;
2681 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2683 spin_lock_irqsave(&busiest->lock, flags);
2685 /* don't kick the migration_thread, if the curr
2686 * task on busiest cpu can't be moved to this_cpu
2688 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2689 spin_unlock_irqrestore(&busiest->lock, flags);
2690 all_pinned = 1;
2691 goto out_one_pinned;
2694 if (!busiest->active_balance) {
2695 busiest->active_balance = 1;
2696 busiest->push_cpu = this_cpu;
2697 active_balance = 1;
2699 spin_unlock_irqrestore(&busiest->lock, flags);
2700 if (active_balance)
2701 wake_up_process(busiest->migration_thread);
2704 * We've kicked active balancing, reset the failure
2705 * counter.
2707 sd->nr_balance_failed = sd->cache_nice_tries+1;
2709 } else
2710 sd->nr_balance_failed = 0;
2712 if (likely(!active_balance)) {
2713 /* We were unbalanced, so reset the balancing interval */
2714 sd->balance_interval = sd->min_interval;
2715 } else {
2717 * If we've begun active balancing, start to back off. This
2718 * case may not be covered by the all_pinned logic if there
2719 * is only 1 task on the busy runqueue (because we don't call
2720 * move_tasks).
2722 if (sd->balance_interval < sd->max_interval)
2723 sd->balance_interval *= 2;
2726 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2727 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2728 return -1;
2729 return ld_moved;
2731 out_balanced:
2732 schedstat_inc(sd, lb_balanced[idle]);
2734 sd->nr_balance_failed = 0;
2736 out_one_pinned:
2737 /* tune up the balancing interval */
2738 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2739 (sd->balance_interval < sd->max_interval))
2740 sd->balance_interval *= 2;
2742 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2743 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2744 return -1;
2745 return 0;
2749 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2750 * tasks if there is an imbalance.
2752 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2753 * this_rq is locked.
2755 static int
2756 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2758 struct sched_group *group;
2759 struct rq *busiest = NULL;
2760 unsigned long imbalance;
2761 int ld_moved = 0;
2762 int sd_idle = 0;
2763 int all_pinned = 0;
2764 cpumask_t cpus = CPU_MASK_ALL;
2767 * When power savings policy is enabled for the parent domain, idle
2768 * sibling can pick up load irrespective of busy siblings. In this case,
2769 * let the state of idle sibling percolate up as IDLE, instead of
2770 * portraying it as CPU_NOT_IDLE.
2772 if (sd->flags & SD_SHARE_CPUPOWER &&
2773 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2774 sd_idle = 1;
2776 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2777 redo:
2778 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2779 &sd_idle, &cpus, NULL);
2780 if (!group) {
2781 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2782 goto out_balanced;
2785 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2786 &cpus);
2787 if (!busiest) {
2788 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2789 goto out_balanced;
2792 BUG_ON(busiest == this_rq);
2794 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2796 ld_moved = 0;
2797 if (busiest->nr_running > 1) {
2798 /* Attempt to move tasks */
2799 double_lock_balance(this_rq, busiest);
2800 /* this_rq->clock is already updated */
2801 update_rq_clock(busiest);
2802 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2803 imbalance, sd, CPU_NEWLY_IDLE,
2804 &all_pinned);
2805 spin_unlock(&busiest->lock);
2807 if (unlikely(all_pinned)) {
2808 cpu_clear(cpu_of(busiest), cpus);
2809 if (!cpus_empty(cpus))
2810 goto redo;
2814 if (!ld_moved) {
2815 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2816 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2817 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2818 return -1;
2819 } else
2820 sd->nr_balance_failed = 0;
2822 return ld_moved;
2824 out_balanced:
2825 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2826 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2827 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2828 return -1;
2829 sd->nr_balance_failed = 0;
2831 return 0;
2835 * idle_balance is called by schedule() if this_cpu is about to become
2836 * idle. Attempts to pull tasks from other CPUs.
2838 static void idle_balance(int this_cpu, struct rq *this_rq)
2840 struct sched_domain *sd;
2841 int pulled_task = -1;
2842 unsigned long next_balance = jiffies + HZ;
2844 for_each_domain(this_cpu, sd) {
2845 unsigned long interval;
2847 if (!(sd->flags & SD_LOAD_BALANCE))
2848 continue;
2850 if (sd->flags & SD_BALANCE_NEWIDLE)
2851 /* If we've pulled tasks over stop searching: */
2852 pulled_task = load_balance_newidle(this_cpu,
2853 this_rq, sd);
2855 interval = msecs_to_jiffies(sd->balance_interval);
2856 if (time_after(next_balance, sd->last_balance + interval))
2857 next_balance = sd->last_balance + interval;
2858 if (pulled_task)
2859 break;
2861 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2863 * We are going idle. next_balance may be set based on
2864 * a busy processor. So reset next_balance.
2866 this_rq->next_balance = next_balance;
2871 * active_load_balance is run by migration threads. It pushes running tasks
2872 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2873 * running on each physical CPU where possible, and avoids physical /
2874 * logical imbalances.
2876 * Called with busiest_rq locked.
2878 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2880 int target_cpu = busiest_rq->push_cpu;
2881 struct sched_domain *sd;
2882 struct rq *target_rq;
2884 /* Is there any task to move? */
2885 if (busiest_rq->nr_running <= 1)
2886 return;
2888 target_rq = cpu_rq(target_cpu);
2891 * This condition is "impossible", if it occurs
2892 * we need to fix it. Originally reported by
2893 * Bjorn Helgaas on a 128-cpu setup.
2895 BUG_ON(busiest_rq == target_rq);
2897 /* move a task from busiest_rq to target_rq */
2898 double_lock_balance(busiest_rq, target_rq);
2899 update_rq_clock(busiest_rq);
2900 update_rq_clock(target_rq);
2902 /* Search for an sd spanning us and the target CPU. */
2903 for_each_domain(target_cpu, sd) {
2904 if ((sd->flags & SD_LOAD_BALANCE) &&
2905 cpu_isset(busiest_cpu, sd->span))
2906 break;
2909 if (likely(sd)) {
2910 schedstat_inc(sd, alb_cnt);
2912 if (move_one_task(target_rq, target_cpu, busiest_rq,
2913 sd, CPU_IDLE))
2914 schedstat_inc(sd, alb_pushed);
2915 else
2916 schedstat_inc(sd, alb_failed);
2918 spin_unlock(&target_rq->lock);
2921 #ifdef CONFIG_NO_HZ
2922 static struct {
2923 atomic_t load_balancer;
2924 cpumask_t cpu_mask;
2925 } nohz ____cacheline_aligned = {
2926 .load_balancer = ATOMIC_INIT(-1),
2927 .cpu_mask = CPU_MASK_NONE,
2931 * This routine will try to nominate the ilb (idle load balancing)
2932 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2933 * load balancing on behalf of all those cpus. If all the cpus in the system
2934 * go into this tickless mode, then there will be no ilb owner (as there is
2935 * no need for one) and all the cpus will sleep till the next wakeup event
2936 * arrives...
2938 * For the ilb owner, tick is not stopped. And this tick will be used
2939 * for idle load balancing. ilb owner will still be part of
2940 * nohz.cpu_mask..
2942 * While stopping the tick, this cpu will become the ilb owner if there
2943 * is no other owner. And will be the owner till that cpu becomes busy
2944 * or if all cpus in the system stop their ticks at which point
2945 * there is no need for ilb owner.
2947 * When the ilb owner becomes busy, it nominates another owner, during the
2948 * next busy scheduler_tick()
2950 int select_nohz_load_balancer(int stop_tick)
2952 int cpu = smp_processor_id();
2954 if (stop_tick) {
2955 cpu_set(cpu, nohz.cpu_mask);
2956 cpu_rq(cpu)->in_nohz_recently = 1;
2959 * If we are going offline and still the leader, give up!
2961 if (cpu_is_offline(cpu) &&
2962 atomic_read(&nohz.load_balancer) == cpu) {
2963 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2964 BUG();
2965 return 0;
2968 /* time for ilb owner also to sleep */
2969 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2970 if (atomic_read(&nohz.load_balancer) == cpu)
2971 atomic_set(&nohz.load_balancer, -1);
2972 return 0;
2975 if (atomic_read(&nohz.load_balancer) == -1) {
2976 /* make me the ilb owner */
2977 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2978 return 1;
2979 } else if (atomic_read(&nohz.load_balancer) == cpu)
2980 return 1;
2981 } else {
2982 if (!cpu_isset(cpu, nohz.cpu_mask))
2983 return 0;
2985 cpu_clear(cpu, nohz.cpu_mask);
2987 if (atomic_read(&nohz.load_balancer) == cpu)
2988 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2989 BUG();
2991 return 0;
2993 #endif
2995 static DEFINE_SPINLOCK(balancing);
2998 * It checks each scheduling domain to see if it is due to be balanced,
2999 * and initiates a balancing operation if so.
3001 * Balancing parameters are set up in arch_init_sched_domains.
3003 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3005 int balance = 1;
3006 struct rq *rq = cpu_rq(cpu);
3007 unsigned long interval;
3008 struct sched_domain *sd;
3009 /* Earliest time when we have to do rebalance again */
3010 unsigned long next_balance = jiffies + 60*HZ;
3011 int update_next_balance = 0;
3013 for_each_domain(cpu, sd) {
3014 if (!(sd->flags & SD_LOAD_BALANCE))
3015 continue;
3017 interval = sd->balance_interval;
3018 if (idle != CPU_IDLE)
3019 interval *= sd->busy_factor;
3021 /* scale ms to jiffies */
3022 interval = msecs_to_jiffies(interval);
3023 if (unlikely(!interval))
3024 interval = 1;
3025 if (interval > HZ*NR_CPUS/10)
3026 interval = HZ*NR_CPUS/10;
3029 if (sd->flags & SD_SERIALIZE) {
3030 if (!spin_trylock(&balancing))
3031 goto out;
3034 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3035 if (load_balance(cpu, rq, sd, idle, &balance)) {
3037 * We've pulled tasks over so either we're no
3038 * longer idle, or one of our SMT siblings is
3039 * not idle.
3041 idle = CPU_NOT_IDLE;
3043 sd->last_balance = jiffies;
3045 if (sd->flags & SD_SERIALIZE)
3046 spin_unlock(&balancing);
3047 out:
3048 if (time_after(next_balance, sd->last_balance + interval)) {
3049 next_balance = sd->last_balance + interval;
3050 update_next_balance = 1;
3054 * Stop the load balance at this level. There is another
3055 * CPU in our sched group which is doing load balancing more
3056 * actively.
3058 if (!balance)
3059 break;
3063 * next_balance will be updated only when there is a need.
3064 * When the cpu is attached to null domain for ex, it will not be
3065 * updated.
3067 if (likely(update_next_balance))
3068 rq->next_balance = next_balance;
3072 * run_rebalance_domains is triggered when needed from the scheduler tick.
3073 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3074 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3076 static void run_rebalance_domains(struct softirq_action *h)
3078 int this_cpu = smp_processor_id();
3079 struct rq *this_rq = cpu_rq(this_cpu);
3080 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3081 CPU_IDLE : CPU_NOT_IDLE;
3083 rebalance_domains(this_cpu, idle);
3085 #ifdef CONFIG_NO_HZ
3087 * If this cpu is the owner for idle load balancing, then do the
3088 * balancing on behalf of the other idle cpus whose ticks are
3089 * stopped.
3091 if (this_rq->idle_at_tick &&
3092 atomic_read(&nohz.load_balancer) == this_cpu) {
3093 cpumask_t cpus = nohz.cpu_mask;
3094 struct rq *rq;
3095 int balance_cpu;
3097 cpu_clear(this_cpu, cpus);
3098 for_each_cpu_mask(balance_cpu, cpus) {
3100 * If this cpu gets work to do, stop the load balancing
3101 * work being done for other cpus. Next load
3102 * balancing owner will pick it up.
3104 if (need_resched())
3105 break;
3107 rebalance_domains(balance_cpu, CPU_IDLE);
3109 rq = cpu_rq(balance_cpu);
3110 if (time_after(this_rq->next_balance, rq->next_balance))
3111 this_rq->next_balance = rq->next_balance;
3114 #endif
3118 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3120 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3121 * idle load balancing owner or decide to stop the periodic load balancing,
3122 * if the whole system is idle.
3124 static inline void trigger_load_balance(struct rq *rq, int cpu)
3126 #ifdef CONFIG_NO_HZ
3128 * If we were in the nohz mode recently and busy at the current
3129 * scheduler tick, then check if we need to nominate new idle
3130 * load balancer.
3132 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3133 rq->in_nohz_recently = 0;
3135 if (atomic_read(&nohz.load_balancer) == cpu) {
3136 cpu_clear(cpu, nohz.cpu_mask);
3137 atomic_set(&nohz.load_balancer, -1);
3140 if (atomic_read(&nohz.load_balancer) == -1) {
3142 * simple selection for now: Nominate the
3143 * first cpu in the nohz list to be the next
3144 * ilb owner.
3146 * TBD: Traverse the sched domains and nominate
3147 * the nearest cpu in the nohz.cpu_mask.
3149 int ilb = first_cpu(nohz.cpu_mask);
3151 if (ilb != NR_CPUS)
3152 resched_cpu(ilb);
3157 * If this cpu is idle and doing idle load balancing for all the
3158 * cpus with ticks stopped, is it time for that to stop?
3160 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3161 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3162 resched_cpu(cpu);
3163 return;
3167 * If this cpu is idle and the idle load balancing is done by
3168 * someone else, then no need raise the SCHED_SOFTIRQ
3170 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3171 cpu_isset(cpu, nohz.cpu_mask))
3172 return;
3173 #endif
3174 if (time_after_eq(jiffies, rq->next_balance))
3175 raise_softirq(SCHED_SOFTIRQ);
3178 #else /* CONFIG_SMP */
3181 * on UP we do not need to balance between CPUs:
3183 static inline void idle_balance(int cpu, struct rq *rq)
3187 /* Avoid "used but not defined" warning on UP */
3188 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3189 unsigned long max_nr_move, unsigned long max_load_move,
3190 struct sched_domain *sd, enum cpu_idle_type idle,
3191 int *all_pinned, unsigned long *load_moved,
3192 int *this_best_prio, struct rq_iterator *iterator)
3194 *load_moved = 0;
3196 return 0;
3199 #endif
3201 DEFINE_PER_CPU(struct kernel_stat, kstat);
3203 EXPORT_PER_CPU_SYMBOL(kstat);
3206 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3207 * that have not yet been banked in case the task is currently running.
3209 unsigned long long task_sched_runtime(struct task_struct *p)
3211 unsigned long flags;
3212 u64 ns, delta_exec;
3213 struct rq *rq;
3215 rq = task_rq_lock(p, &flags);
3216 ns = p->se.sum_exec_runtime;
3217 if (rq->curr == p) {
3218 update_rq_clock(rq);
3219 delta_exec = rq->clock - p->se.exec_start;
3220 if ((s64)delta_exec > 0)
3221 ns += delta_exec;
3223 task_rq_unlock(rq, &flags);
3225 return ns;
3229 * Account user cpu time to a process.
3230 * @p: the process that the cpu time gets accounted to
3231 * @hardirq_offset: the offset to subtract from hardirq_count()
3232 * @cputime: the cpu time spent in user space since the last update
3234 void account_user_time(struct task_struct *p, cputime_t cputime)
3236 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3237 cputime64_t tmp;
3239 p->utime = cputime_add(p->utime, cputime);
3241 /* Add user time to cpustat. */
3242 tmp = cputime_to_cputime64(cputime);
3243 if (TASK_NICE(p) > 0)
3244 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3245 else
3246 cpustat->user = cputime64_add(cpustat->user, tmp);
3250 * Account system cpu time to a process.
3251 * @p: the process that the cpu time gets accounted to
3252 * @hardirq_offset: the offset to subtract from hardirq_count()
3253 * @cputime: the cpu time spent in kernel space since the last update
3255 void account_system_time(struct task_struct *p, int hardirq_offset,
3256 cputime_t cputime)
3258 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3259 struct rq *rq = this_rq();
3260 cputime64_t tmp;
3262 p->stime = cputime_add(p->stime, cputime);
3264 /* Add system time to cpustat. */
3265 tmp = cputime_to_cputime64(cputime);
3266 if (hardirq_count() - hardirq_offset)
3267 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3268 else if (softirq_count())
3269 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3270 else if (p != rq->idle)
3271 cpustat->system = cputime64_add(cpustat->system, tmp);
3272 else if (atomic_read(&rq->nr_iowait) > 0)
3273 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3274 else
3275 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3276 /* Account for system time used */
3277 acct_update_integrals(p);
3281 * Account for involuntary wait time.
3282 * @p: the process from which the cpu time has been stolen
3283 * @steal: the cpu time spent in involuntary wait
3285 void account_steal_time(struct task_struct *p, cputime_t steal)
3287 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3288 cputime64_t tmp = cputime_to_cputime64(steal);
3289 struct rq *rq = this_rq();
3291 if (p == rq->idle) {
3292 p->stime = cputime_add(p->stime, steal);
3293 if (atomic_read(&rq->nr_iowait) > 0)
3294 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3295 else
3296 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3297 } else
3298 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3302 * This function gets called by the timer code, with HZ frequency.
3303 * We call it with interrupts disabled.
3305 * It also gets called by the fork code, when changing the parent's
3306 * timeslices.
3308 void scheduler_tick(void)
3310 int cpu = smp_processor_id();
3311 struct rq *rq = cpu_rq(cpu);
3312 struct task_struct *curr = rq->curr;
3313 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3315 spin_lock(&rq->lock);
3316 __update_rq_clock(rq);
3318 * Let rq->clock advance by at least TICK_NSEC:
3320 if (unlikely(rq->clock < next_tick))
3321 rq->clock = next_tick;
3322 rq->tick_timestamp = rq->clock;
3323 update_cpu_load(rq);
3324 if (curr != rq->idle) /* FIXME: needed? */
3325 curr->sched_class->task_tick(rq, curr);
3326 spin_unlock(&rq->lock);
3328 #ifdef CONFIG_SMP
3329 rq->idle_at_tick = idle_cpu(cpu);
3330 trigger_load_balance(rq, cpu);
3331 #endif
3334 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3336 void fastcall add_preempt_count(int val)
3339 * Underflow?
3341 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3342 return;
3343 preempt_count() += val;
3345 * Spinlock count overflowing soon?
3347 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3348 PREEMPT_MASK - 10);
3350 EXPORT_SYMBOL(add_preempt_count);
3352 void fastcall sub_preempt_count(int val)
3355 * Underflow?
3357 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3358 return;
3360 * Is the spinlock portion underflowing?
3362 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3363 !(preempt_count() & PREEMPT_MASK)))
3364 return;
3366 preempt_count() -= val;
3368 EXPORT_SYMBOL(sub_preempt_count);
3370 #endif
3373 * Print scheduling while atomic bug:
3375 static noinline void __schedule_bug(struct task_struct *prev)
3377 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3378 prev->comm, preempt_count(), prev->pid);
3379 debug_show_held_locks(prev);
3380 if (irqs_disabled())
3381 print_irqtrace_events(prev);
3382 dump_stack();
3386 * Various schedule()-time debugging checks and statistics:
3388 static inline void schedule_debug(struct task_struct *prev)
3391 * Test if we are atomic. Since do_exit() needs to call into
3392 * schedule() atomically, we ignore that path for now.
3393 * Otherwise, whine if we are scheduling when we should not be.
3395 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3396 __schedule_bug(prev);
3398 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3400 schedstat_inc(this_rq(), sched_cnt);
3404 * Pick up the highest-prio task:
3406 static inline struct task_struct *
3407 pick_next_task(struct rq *rq, struct task_struct *prev)
3409 struct sched_class *class;
3410 struct task_struct *p;
3413 * Optimization: we know that if all tasks are in
3414 * the fair class we can call that function directly:
3416 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3417 p = fair_sched_class.pick_next_task(rq);
3418 if (likely(p))
3419 return p;
3422 class = sched_class_highest;
3423 for ( ; ; ) {
3424 p = class->pick_next_task(rq);
3425 if (p)
3426 return p;
3428 * Will never be NULL as the idle class always
3429 * returns a non-NULL p:
3431 class = class->next;
3436 * schedule() is the main scheduler function.
3438 asmlinkage void __sched schedule(void)
3440 struct task_struct *prev, *next;
3441 long *switch_count;
3442 struct rq *rq;
3443 int cpu;
3445 need_resched:
3446 preempt_disable();
3447 cpu = smp_processor_id();
3448 rq = cpu_rq(cpu);
3449 rcu_qsctr_inc(cpu);
3450 prev = rq->curr;
3451 switch_count = &prev->nivcsw;
3453 release_kernel_lock(prev);
3454 need_resched_nonpreemptible:
3456 schedule_debug(prev);
3458 spin_lock_irq(&rq->lock);
3459 clear_tsk_need_resched(prev);
3460 __update_rq_clock(rq);
3462 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3463 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3464 unlikely(signal_pending(prev)))) {
3465 prev->state = TASK_RUNNING;
3466 } else {
3467 deactivate_task(rq, prev, 1);
3469 switch_count = &prev->nvcsw;
3472 if (unlikely(!rq->nr_running))
3473 idle_balance(cpu, rq);
3475 prev->sched_class->put_prev_task(rq, prev);
3476 next = pick_next_task(rq, prev);
3478 sched_info_switch(prev, next);
3480 if (likely(prev != next)) {
3481 rq->nr_switches++;
3482 rq->curr = next;
3483 ++*switch_count;
3485 context_switch(rq, prev, next); /* unlocks the rq */
3486 } else
3487 spin_unlock_irq(&rq->lock);
3489 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3490 cpu = smp_processor_id();
3491 rq = cpu_rq(cpu);
3492 goto need_resched_nonpreemptible;
3494 preempt_enable_no_resched();
3495 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3496 goto need_resched;
3498 EXPORT_SYMBOL(schedule);
3500 #ifdef CONFIG_PREEMPT
3502 * this is the entry point to schedule() from in-kernel preemption
3503 * off of preempt_enable. Kernel preemptions off return from interrupt
3504 * occur there and call schedule directly.
3506 asmlinkage void __sched preempt_schedule(void)
3508 struct thread_info *ti = current_thread_info();
3509 #ifdef CONFIG_PREEMPT_BKL
3510 struct task_struct *task = current;
3511 int saved_lock_depth;
3512 #endif
3514 * If there is a non-zero preempt_count or interrupts are disabled,
3515 * we do not want to preempt the current task. Just return..
3517 if (likely(ti->preempt_count || irqs_disabled()))
3518 return;
3520 need_resched:
3521 add_preempt_count(PREEMPT_ACTIVE);
3523 * We keep the big kernel semaphore locked, but we
3524 * clear ->lock_depth so that schedule() doesnt
3525 * auto-release the semaphore:
3527 #ifdef CONFIG_PREEMPT_BKL
3528 saved_lock_depth = task->lock_depth;
3529 task->lock_depth = -1;
3530 #endif
3531 schedule();
3532 #ifdef CONFIG_PREEMPT_BKL
3533 task->lock_depth = saved_lock_depth;
3534 #endif
3535 sub_preempt_count(PREEMPT_ACTIVE);
3537 /* we could miss a preemption opportunity between schedule and now */
3538 barrier();
3539 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3540 goto need_resched;
3542 EXPORT_SYMBOL(preempt_schedule);
3545 * this is the entry point to schedule() from kernel preemption
3546 * off of irq context.
3547 * Note, that this is called and return with irqs disabled. This will
3548 * protect us against recursive calling from irq.
3550 asmlinkage void __sched preempt_schedule_irq(void)
3552 struct thread_info *ti = current_thread_info();
3553 #ifdef CONFIG_PREEMPT_BKL
3554 struct task_struct *task = current;
3555 int saved_lock_depth;
3556 #endif
3557 /* Catch callers which need to be fixed */
3558 BUG_ON(ti->preempt_count || !irqs_disabled());
3560 need_resched:
3561 add_preempt_count(PREEMPT_ACTIVE);
3563 * We keep the big kernel semaphore locked, but we
3564 * clear ->lock_depth so that schedule() doesnt
3565 * auto-release the semaphore:
3567 #ifdef CONFIG_PREEMPT_BKL
3568 saved_lock_depth = task->lock_depth;
3569 task->lock_depth = -1;
3570 #endif
3571 local_irq_enable();
3572 schedule();
3573 local_irq_disable();
3574 #ifdef CONFIG_PREEMPT_BKL
3575 task->lock_depth = saved_lock_depth;
3576 #endif
3577 sub_preempt_count(PREEMPT_ACTIVE);
3579 /* we could miss a preemption opportunity between schedule and now */
3580 barrier();
3581 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3582 goto need_resched;
3585 #endif /* CONFIG_PREEMPT */
3587 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3588 void *key)
3590 return try_to_wake_up(curr->private, mode, sync);
3592 EXPORT_SYMBOL(default_wake_function);
3595 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3596 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3597 * number) then we wake all the non-exclusive tasks and one exclusive task.
3599 * There are circumstances in which we can try to wake a task which has already
3600 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3601 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3603 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3604 int nr_exclusive, int sync, void *key)
3606 wait_queue_t *curr, *next;
3608 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3609 unsigned flags = curr->flags;
3611 if (curr->func(curr, mode, sync, key) &&
3612 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3613 break;
3618 * __wake_up - wake up threads blocked on a waitqueue.
3619 * @q: the waitqueue
3620 * @mode: which threads
3621 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3622 * @key: is directly passed to the wakeup function
3624 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3625 int nr_exclusive, void *key)
3627 unsigned long flags;
3629 spin_lock_irqsave(&q->lock, flags);
3630 __wake_up_common(q, mode, nr_exclusive, 0, key);
3631 spin_unlock_irqrestore(&q->lock, flags);
3633 EXPORT_SYMBOL(__wake_up);
3636 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3638 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3640 __wake_up_common(q, mode, 1, 0, NULL);
3644 * __wake_up_sync - wake up threads blocked on a waitqueue.
3645 * @q: the waitqueue
3646 * @mode: which threads
3647 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3649 * The sync wakeup differs that the waker knows that it will schedule
3650 * away soon, so while the target thread will be woken up, it will not
3651 * be migrated to another CPU - ie. the two threads are 'synchronized'
3652 * with each other. This can prevent needless bouncing between CPUs.
3654 * On UP it can prevent extra preemption.
3656 void fastcall
3657 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3659 unsigned long flags;
3660 int sync = 1;
3662 if (unlikely(!q))
3663 return;
3665 if (unlikely(!nr_exclusive))
3666 sync = 0;
3668 spin_lock_irqsave(&q->lock, flags);
3669 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3670 spin_unlock_irqrestore(&q->lock, flags);
3672 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3674 void fastcall complete(struct completion *x)
3676 unsigned long flags;
3678 spin_lock_irqsave(&x->wait.lock, flags);
3679 x->done++;
3680 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3681 1, 0, NULL);
3682 spin_unlock_irqrestore(&x->wait.lock, flags);
3684 EXPORT_SYMBOL(complete);
3686 void fastcall complete_all(struct completion *x)
3688 unsigned long flags;
3690 spin_lock_irqsave(&x->wait.lock, flags);
3691 x->done += UINT_MAX/2;
3692 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3693 0, 0, NULL);
3694 spin_unlock_irqrestore(&x->wait.lock, flags);
3696 EXPORT_SYMBOL(complete_all);
3698 void fastcall __sched wait_for_completion(struct completion *x)
3700 might_sleep();
3702 spin_lock_irq(&x->wait.lock);
3703 if (!x->done) {
3704 DECLARE_WAITQUEUE(wait, current);
3706 wait.flags |= WQ_FLAG_EXCLUSIVE;
3707 __add_wait_queue_tail(&x->wait, &wait);
3708 do {
3709 __set_current_state(TASK_UNINTERRUPTIBLE);
3710 spin_unlock_irq(&x->wait.lock);
3711 schedule();
3712 spin_lock_irq(&x->wait.lock);
3713 } while (!x->done);
3714 __remove_wait_queue(&x->wait, &wait);
3716 x->done--;
3717 spin_unlock_irq(&x->wait.lock);
3719 EXPORT_SYMBOL(wait_for_completion);
3721 unsigned long fastcall __sched
3722 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3724 might_sleep();
3726 spin_lock_irq(&x->wait.lock);
3727 if (!x->done) {
3728 DECLARE_WAITQUEUE(wait, current);
3730 wait.flags |= WQ_FLAG_EXCLUSIVE;
3731 __add_wait_queue_tail(&x->wait, &wait);
3732 do {
3733 __set_current_state(TASK_UNINTERRUPTIBLE);
3734 spin_unlock_irq(&x->wait.lock);
3735 timeout = schedule_timeout(timeout);
3736 spin_lock_irq(&x->wait.lock);
3737 if (!timeout) {
3738 __remove_wait_queue(&x->wait, &wait);
3739 goto out;
3741 } while (!x->done);
3742 __remove_wait_queue(&x->wait, &wait);
3744 x->done--;
3745 out:
3746 spin_unlock_irq(&x->wait.lock);
3747 return timeout;
3749 EXPORT_SYMBOL(wait_for_completion_timeout);
3751 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3753 int ret = 0;
3755 might_sleep();
3757 spin_lock_irq(&x->wait.lock);
3758 if (!x->done) {
3759 DECLARE_WAITQUEUE(wait, current);
3761 wait.flags |= WQ_FLAG_EXCLUSIVE;
3762 __add_wait_queue_tail(&x->wait, &wait);
3763 do {
3764 if (signal_pending(current)) {
3765 ret = -ERESTARTSYS;
3766 __remove_wait_queue(&x->wait, &wait);
3767 goto out;
3769 __set_current_state(TASK_INTERRUPTIBLE);
3770 spin_unlock_irq(&x->wait.lock);
3771 schedule();
3772 spin_lock_irq(&x->wait.lock);
3773 } while (!x->done);
3774 __remove_wait_queue(&x->wait, &wait);
3776 x->done--;
3777 out:
3778 spin_unlock_irq(&x->wait.lock);
3780 return ret;
3782 EXPORT_SYMBOL(wait_for_completion_interruptible);
3784 unsigned long fastcall __sched
3785 wait_for_completion_interruptible_timeout(struct completion *x,
3786 unsigned long timeout)
3788 might_sleep();
3790 spin_lock_irq(&x->wait.lock);
3791 if (!x->done) {
3792 DECLARE_WAITQUEUE(wait, current);
3794 wait.flags |= WQ_FLAG_EXCLUSIVE;
3795 __add_wait_queue_tail(&x->wait, &wait);
3796 do {
3797 if (signal_pending(current)) {
3798 timeout = -ERESTARTSYS;
3799 __remove_wait_queue(&x->wait, &wait);
3800 goto out;
3802 __set_current_state(TASK_INTERRUPTIBLE);
3803 spin_unlock_irq(&x->wait.lock);
3804 timeout = schedule_timeout(timeout);
3805 spin_lock_irq(&x->wait.lock);
3806 if (!timeout) {
3807 __remove_wait_queue(&x->wait, &wait);
3808 goto out;
3810 } while (!x->done);
3811 __remove_wait_queue(&x->wait, &wait);
3813 x->done--;
3814 out:
3815 spin_unlock_irq(&x->wait.lock);
3816 return timeout;
3818 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3820 static inline void
3821 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3823 spin_lock_irqsave(&q->lock, *flags);
3824 __add_wait_queue(q, wait);
3825 spin_unlock(&q->lock);
3828 static inline void
3829 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3831 spin_lock_irq(&q->lock);
3832 __remove_wait_queue(q, wait);
3833 spin_unlock_irqrestore(&q->lock, *flags);
3836 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3838 unsigned long flags;
3839 wait_queue_t wait;
3841 init_waitqueue_entry(&wait, current);
3843 current->state = TASK_INTERRUPTIBLE;
3845 sleep_on_head(q, &wait, &flags);
3846 schedule();
3847 sleep_on_tail(q, &wait, &flags);
3849 EXPORT_SYMBOL(interruptible_sleep_on);
3851 long __sched
3852 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3854 unsigned long flags;
3855 wait_queue_t wait;
3857 init_waitqueue_entry(&wait, current);
3859 current->state = TASK_INTERRUPTIBLE;
3861 sleep_on_head(q, &wait, &flags);
3862 timeout = schedule_timeout(timeout);
3863 sleep_on_tail(q, &wait, &flags);
3865 return timeout;
3867 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3869 void __sched sleep_on(wait_queue_head_t *q)
3871 unsigned long flags;
3872 wait_queue_t wait;
3874 init_waitqueue_entry(&wait, current);
3876 current->state = TASK_UNINTERRUPTIBLE;
3878 sleep_on_head(q, &wait, &flags);
3879 schedule();
3880 sleep_on_tail(q, &wait, &flags);
3882 EXPORT_SYMBOL(sleep_on);
3884 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3886 unsigned long flags;
3887 wait_queue_t wait;
3889 init_waitqueue_entry(&wait, current);
3891 current->state = TASK_UNINTERRUPTIBLE;
3893 sleep_on_head(q, &wait, &flags);
3894 timeout = schedule_timeout(timeout);
3895 sleep_on_tail(q, &wait, &flags);
3897 return timeout;
3899 EXPORT_SYMBOL(sleep_on_timeout);
3901 #ifdef CONFIG_RT_MUTEXES
3904 * rt_mutex_setprio - set the current priority of a task
3905 * @p: task
3906 * @prio: prio value (kernel-internal form)
3908 * This function changes the 'effective' priority of a task. It does
3909 * not touch ->normal_prio like __setscheduler().
3911 * Used by the rt_mutex code to implement priority inheritance logic.
3913 void rt_mutex_setprio(struct task_struct *p, int prio)
3915 unsigned long flags;
3916 int oldprio, on_rq;
3917 struct rq *rq;
3919 BUG_ON(prio < 0 || prio > MAX_PRIO);
3921 rq = task_rq_lock(p, &flags);
3922 update_rq_clock(rq);
3924 oldprio = p->prio;
3925 on_rq = p->se.on_rq;
3926 if (on_rq)
3927 dequeue_task(rq, p, 0);
3929 if (rt_prio(prio))
3930 p->sched_class = &rt_sched_class;
3931 else
3932 p->sched_class = &fair_sched_class;
3934 p->prio = prio;
3936 if (on_rq) {
3937 enqueue_task(rq, p, 0);
3939 * Reschedule if we are currently running on this runqueue and
3940 * our priority decreased, or if we are not currently running on
3941 * this runqueue and our priority is higher than the current's
3943 if (task_running(rq, p)) {
3944 if (p->prio > oldprio)
3945 resched_task(rq->curr);
3946 } else {
3947 check_preempt_curr(rq, p);
3950 task_rq_unlock(rq, &flags);
3953 #endif
3955 void set_user_nice(struct task_struct *p, long nice)
3957 int old_prio, delta, on_rq;
3958 unsigned long flags;
3959 struct rq *rq;
3961 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3962 return;
3964 * We have to be careful, if called from sys_setpriority(),
3965 * the task might be in the middle of scheduling on another CPU.
3967 rq = task_rq_lock(p, &flags);
3968 update_rq_clock(rq);
3970 * The RT priorities are set via sched_setscheduler(), but we still
3971 * allow the 'normal' nice value to be set - but as expected
3972 * it wont have any effect on scheduling until the task is
3973 * SCHED_FIFO/SCHED_RR:
3975 if (task_has_rt_policy(p)) {
3976 p->static_prio = NICE_TO_PRIO(nice);
3977 goto out_unlock;
3979 on_rq = p->se.on_rq;
3980 if (on_rq) {
3981 dequeue_task(rq, p, 0);
3982 dec_load(rq, p);
3985 p->static_prio = NICE_TO_PRIO(nice);
3986 set_load_weight(p);
3987 old_prio = p->prio;
3988 p->prio = effective_prio(p);
3989 delta = p->prio - old_prio;
3991 if (on_rq) {
3992 enqueue_task(rq, p, 0);
3993 inc_load(rq, p);
3995 * If the task increased its priority or is running and
3996 * lowered its priority, then reschedule its CPU:
3998 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3999 resched_task(rq->curr);
4001 out_unlock:
4002 task_rq_unlock(rq, &flags);
4004 EXPORT_SYMBOL(set_user_nice);
4007 * can_nice - check if a task can reduce its nice value
4008 * @p: task
4009 * @nice: nice value
4011 int can_nice(const struct task_struct *p, const int nice)
4013 /* convert nice value [19,-20] to rlimit style value [1,40] */
4014 int nice_rlim = 20 - nice;
4016 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4017 capable(CAP_SYS_NICE));
4020 #ifdef __ARCH_WANT_SYS_NICE
4023 * sys_nice - change the priority of the current process.
4024 * @increment: priority increment
4026 * sys_setpriority is a more generic, but much slower function that
4027 * does similar things.
4029 asmlinkage long sys_nice(int increment)
4031 long nice, retval;
4034 * Setpriority might change our priority at the same moment.
4035 * We don't have to worry. Conceptually one call occurs first
4036 * and we have a single winner.
4038 if (increment < -40)
4039 increment = -40;
4040 if (increment > 40)
4041 increment = 40;
4043 nice = PRIO_TO_NICE(current->static_prio) + increment;
4044 if (nice < -20)
4045 nice = -20;
4046 if (nice > 19)
4047 nice = 19;
4049 if (increment < 0 && !can_nice(current, nice))
4050 return -EPERM;
4052 retval = security_task_setnice(current, nice);
4053 if (retval)
4054 return retval;
4056 set_user_nice(current, nice);
4057 return 0;
4060 #endif
4063 * task_prio - return the priority value of a given task.
4064 * @p: the task in question.
4066 * This is the priority value as seen by users in /proc.
4067 * RT tasks are offset by -200. Normal tasks are centered
4068 * around 0, value goes from -16 to +15.
4070 int task_prio(const struct task_struct *p)
4072 return p->prio - MAX_RT_PRIO;
4076 * task_nice - return the nice value of a given task.
4077 * @p: the task in question.
4079 int task_nice(const struct task_struct *p)
4081 return TASK_NICE(p);
4083 EXPORT_SYMBOL_GPL(task_nice);
4086 * idle_cpu - is a given cpu idle currently?
4087 * @cpu: the processor in question.
4089 int idle_cpu(int cpu)
4091 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4095 * idle_task - return the idle task for a given cpu.
4096 * @cpu: the processor in question.
4098 struct task_struct *idle_task(int cpu)
4100 return cpu_rq(cpu)->idle;
4104 * find_process_by_pid - find a process with a matching PID value.
4105 * @pid: the pid in question.
4107 static inline struct task_struct *find_process_by_pid(pid_t pid)
4109 return pid ? find_task_by_pid(pid) : current;
4112 /* Actually do priority change: must hold rq lock. */
4113 static void
4114 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4116 BUG_ON(p->se.on_rq);
4118 p->policy = policy;
4119 switch (p->policy) {
4120 case SCHED_NORMAL:
4121 case SCHED_BATCH:
4122 case SCHED_IDLE:
4123 p->sched_class = &fair_sched_class;
4124 break;
4125 case SCHED_FIFO:
4126 case SCHED_RR:
4127 p->sched_class = &rt_sched_class;
4128 break;
4131 p->rt_priority = prio;
4132 p->normal_prio = normal_prio(p);
4133 /* we are holding p->pi_lock already */
4134 p->prio = rt_mutex_getprio(p);
4135 set_load_weight(p);
4139 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4140 * @p: the task in question.
4141 * @policy: new policy.
4142 * @param: structure containing the new RT priority.
4144 * NOTE that the task may be already dead.
4146 int sched_setscheduler(struct task_struct *p, int policy,
4147 struct sched_param *param)
4149 int retval, oldprio, oldpolicy = -1, on_rq;
4150 unsigned long flags;
4151 struct rq *rq;
4153 /* may grab non-irq protected spin_locks */
4154 BUG_ON(in_interrupt());
4155 recheck:
4156 /* double check policy once rq lock held */
4157 if (policy < 0)
4158 policy = oldpolicy = p->policy;
4159 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4160 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4161 policy != SCHED_IDLE)
4162 return -EINVAL;
4164 * Valid priorities for SCHED_FIFO and SCHED_RR are
4165 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4166 * SCHED_BATCH and SCHED_IDLE is 0.
4168 if (param->sched_priority < 0 ||
4169 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4170 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4171 return -EINVAL;
4172 if (rt_policy(policy) != (param->sched_priority != 0))
4173 return -EINVAL;
4176 * Allow unprivileged RT tasks to decrease priority:
4178 if (!capable(CAP_SYS_NICE)) {
4179 if (rt_policy(policy)) {
4180 unsigned long rlim_rtprio;
4182 if (!lock_task_sighand(p, &flags))
4183 return -ESRCH;
4184 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4185 unlock_task_sighand(p, &flags);
4187 /* can't set/change the rt policy */
4188 if (policy != p->policy && !rlim_rtprio)
4189 return -EPERM;
4191 /* can't increase priority */
4192 if (param->sched_priority > p->rt_priority &&
4193 param->sched_priority > rlim_rtprio)
4194 return -EPERM;
4197 * Like positive nice levels, dont allow tasks to
4198 * move out of SCHED_IDLE either:
4200 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4201 return -EPERM;
4203 /* can't change other user's priorities */
4204 if ((current->euid != p->euid) &&
4205 (current->euid != p->uid))
4206 return -EPERM;
4209 retval = security_task_setscheduler(p, policy, param);
4210 if (retval)
4211 return retval;
4213 * make sure no PI-waiters arrive (or leave) while we are
4214 * changing the priority of the task:
4216 spin_lock_irqsave(&p->pi_lock, flags);
4218 * To be able to change p->policy safely, the apropriate
4219 * runqueue lock must be held.
4221 rq = __task_rq_lock(p);
4222 /* recheck policy now with rq lock held */
4223 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4224 policy = oldpolicy = -1;
4225 __task_rq_unlock(rq);
4226 spin_unlock_irqrestore(&p->pi_lock, flags);
4227 goto recheck;
4229 update_rq_clock(rq);
4230 on_rq = p->se.on_rq;
4231 if (on_rq)
4232 deactivate_task(rq, p, 0);
4233 oldprio = p->prio;
4234 __setscheduler(rq, p, policy, param->sched_priority);
4235 if (on_rq) {
4236 activate_task(rq, p, 0);
4238 * Reschedule if we are currently running on this runqueue and
4239 * our priority decreased, or if we are not currently running on
4240 * this runqueue and our priority is higher than the current's
4242 if (task_running(rq, p)) {
4243 if (p->prio > oldprio)
4244 resched_task(rq->curr);
4245 } else {
4246 check_preempt_curr(rq, p);
4249 __task_rq_unlock(rq);
4250 spin_unlock_irqrestore(&p->pi_lock, flags);
4252 rt_mutex_adjust_pi(p);
4254 return 0;
4256 EXPORT_SYMBOL_GPL(sched_setscheduler);
4258 static int
4259 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4261 struct sched_param lparam;
4262 struct task_struct *p;
4263 int retval;
4265 if (!param || pid < 0)
4266 return -EINVAL;
4267 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4268 return -EFAULT;
4270 rcu_read_lock();
4271 retval = -ESRCH;
4272 p = find_process_by_pid(pid);
4273 if (p != NULL)
4274 retval = sched_setscheduler(p, policy, &lparam);
4275 rcu_read_unlock();
4277 return retval;
4281 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4282 * @pid: the pid in question.
4283 * @policy: new policy.
4284 * @param: structure containing the new RT priority.
4286 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4287 struct sched_param __user *param)
4289 /* negative values for policy are not valid */
4290 if (policy < 0)
4291 return -EINVAL;
4293 return do_sched_setscheduler(pid, policy, param);
4297 * sys_sched_setparam - set/change the RT priority of a thread
4298 * @pid: the pid in question.
4299 * @param: structure containing the new RT priority.
4301 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4303 return do_sched_setscheduler(pid, -1, param);
4307 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4308 * @pid: the pid in question.
4310 asmlinkage long sys_sched_getscheduler(pid_t pid)
4312 struct task_struct *p;
4313 int retval = -EINVAL;
4315 if (pid < 0)
4316 goto out_nounlock;
4318 retval = -ESRCH;
4319 read_lock(&tasklist_lock);
4320 p = find_process_by_pid(pid);
4321 if (p) {
4322 retval = security_task_getscheduler(p);
4323 if (!retval)
4324 retval = p->policy;
4326 read_unlock(&tasklist_lock);
4328 out_nounlock:
4329 return retval;
4333 * sys_sched_getscheduler - get the RT priority of a thread
4334 * @pid: the pid in question.
4335 * @param: structure containing the RT priority.
4337 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4339 struct sched_param lp;
4340 struct task_struct *p;
4341 int retval = -EINVAL;
4343 if (!param || pid < 0)
4344 goto out_nounlock;
4346 read_lock(&tasklist_lock);
4347 p = find_process_by_pid(pid);
4348 retval = -ESRCH;
4349 if (!p)
4350 goto out_unlock;
4352 retval = security_task_getscheduler(p);
4353 if (retval)
4354 goto out_unlock;
4356 lp.sched_priority = p->rt_priority;
4357 read_unlock(&tasklist_lock);
4360 * This one might sleep, we cannot do it with a spinlock held ...
4362 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4364 out_nounlock:
4365 return retval;
4367 out_unlock:
4368 read_unlock(&tasklist_lock);
4369 return retval;
4372 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4374 cpumask_t cpus_allowed;
4375 struct task_struct *p;
4376 int retval;
4378 mutex_lock(&sched_hotcpu_mutex);
4379 read_lock(&tasklist_lock);
4381 p = find_process_by_pid(pid);
4382 if (!p) {
4383 read_unlock(&tasklist_lock);
4384 mutex_unlock(&sched_hotcpu_mutex);
4385 return -ESRCH;
4389 * It is not safe to call set_cpus_allowed with the
4390 * tasklist_lock held. We will bump the task_struct's
4391 * usage count and then drop tasklist_lock.
4393 get_task_struct(p);
4394 read_unlock(&tasklist_lock);
4396 retval = -EPERM;
4397 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4398 !capable(CAP_SYS_NICE))
4399 goto out_unlock;
4401 retval = security_task_setscheduler(p, 0, NULL);
4402 if (retval)
4403 goto out_unlock;
4405 cpus_allowed = cpuset_cpus_allowed(p);
4406 cpus_and(new_mask, new_mask, cpus_allowed);
4407 retval = set_cpus_allowed(p, new_mask);
4409 out_unlock:
4410 put_task_struct(p);
4411 mutex_unlock(&sched_hotcpu_mutex);
4412 return retval;
4415 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4416 cpumask_t *new_mask)
4418 if (len < sizeof(cpumask_t)) {
4419 memset(new_mask, 0, sizeof(cpumask_t));
4420 } else if (len > sizeof(cpumask_t)) {
4421 len = sizeof(cpumask_t);
4423 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4427 * sys_sched_setaffinity - set the cpu affinity of a process
4428 * @pid: pid of the process
4429 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4430 * @user_mask_ptr: user-space pointer to the new cpu mask
4432 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4433 unsigned long __user *user_mask_ptr)
4435 cpumask_t new_mask;
4436 int retval;
4438 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4439 if (retval)
4440 return retval;
4442 return sched_setaffinity(pid, new_mask);
4446 * Represents all cpu's present in the system
4447 * In systems capable of hotplug, this map could dynamically grow
4448 * as new cpu's are detected in the system via any platform specific
4449 * method, such as ACPI for e.g.
4452 cpumask_t cpu_present_map __read_mostly;
4453 EXPORT_SYMBOL(cpu_present_map);
4455 #ifndef CONFIG_SMP
4456 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4457 EXPORT_SYMBOL(cpu_online_map);
4459 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4460 EXPORT_SYMBOL(cpu_possible_map);
4461 #endif
4463 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4465 struct task_struct *p;
4466 int retval;
4468 mutex_lock(&sched_hotcpu_mutex);
4469 read_lock(&tasklist_lock);
4471 retval = -ESRCH;
4472 p = find_process_by_pid(pid);
4473 if (!p)
4474 goto out_unlock;
4476 retval = security_task_getscheduler(p);
4477 if (retval)
4478 goto out_unlock;
4480 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4482 out_unlock:
4483 read_unlock(&tasklist_lock);
4484 mutex_unlock(&sched_hotcpu_mutex);
4486 return retval;
4490 * sys_sched_getaffinity - get the cpu affinity of a process
4491 * @pid: pid of the process
4492 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4493 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4495 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4496 unsigned long __user *user_mask_ptr)
4498 int ret;
4499 cpumask_t mask;
4501 if (len < sizeof(cpumask_t))
4502 return -EINVAL;
4504 ret = sched_getaffinity(pid, &mask);
4505 if (ret < 0)
4506 return ret;
4508 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4509 return -EFAULT;
4511 return sizeof(cpumask_t);
4515 * sys_sched_yield - yield the current processor to other threads.
4517 * This function yields the current CPU to other tasks. If there are no
4518 * other threads running on this CPU then this function will return.
4520 asmlinkage long sys_sched_yield(void)
4522 struct rq *rq = this_rq_lock();
4524 schedstat_inc(rq, yld_cnt);
4525 current->sched_class->yield_task(rq, current);
4528 * Since we are going to call schedule() anyway, there's
4529 * no need to preempt or enable interrupts:
4531 __release(rq->lock);
4532 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4533 _raw_spin_unlock(&rq->lock);
4534 preempt_enable_no_resched();
4536 schedule();
4538 return 0;
4541 static void __cond_resched(void)
4543 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4544 __might_sleep(__FILE__, __LINE__);
4545 #endif
4547 * The BKS might be reacquired before we have dropped
4548 * PREEMPT_ACTIVE, which could trigger a second
4549 * cond_resched() call.
4551 do {
4552 add_preempt_count(PREEMPT_ACTIVE);
4553 schedule();
4554 sub_preempt_count(PREEMPT_ACTIVE);
4555 } while (need_resched());
4558 int __sched cond_resched(void)
4560 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4561 system_state == SYSTEM_RUNNING) {
4562 __cond_resched();
4563 return 1;
4565 return 0;
4567 EXPORT_SYMBOL(cond_resched);
4570 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4571 * call schedule, and on return reacquire the lock.
4573 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4574 * operations here to prevent schedule() from being called twice (once via
4575 * spin_unlock(), once by hand).
4577 int cond_resched_lock(spinlock_t *lock)
4579 int ret = 0;
4581 if (need_lockbreak(lock)) {
4582 spin_unlock(lock);
4583 cpu_relax();
4584 ret = 1;
4585 spin_lock(lock);
4587 if (need_resched() && system_state == SYSTEM_RUNNING) {
4588 spin_release(&lock->dep_map, 1, _THIS_IP_);
4589 _raw_spin_unlock(lock);
4590 preempt_enable_no_resched();
4591 __cond_resched();
4592 ret = 1;
4593 spin_lock(lock);
4595 return ret;
4597 EXPORT_SYMBOL(cond_resched_lock);
4599 int __sched cond_resched_softirq(void)
4601 BUG_ON(!in_softirq());
4603 if (need_resched() && system_state == SYSTEM_RUNNING) {
4604 local_bh_enable();
4605 __cond_resched();
4606 local_bh_disable();
4607 return 1;
4609 return 0;
4611 EXPORT_SYMBOL(cond_resched_softirq);
4614 * yield - yield the current processor to other threads.
4616 * This is a shortcut for kernel-space yielding - it marks the
4617 * thread runnable and calls sys_sched_yield().
4619 void __sched yield(void)
4621 set_current_state(TASK_RUNNING);
4622 sys_sched_yield();
4624 EXPORT_SYMBOL(yield);
4627 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4628 * that process accounting knows that this is a task in IO wait state.
4630 * But don't do that if it is a deliberate, throttling IO wait (this task
4631 * has set its backing_dev_info: the queue against which it should throttle)
4633 void __sched io_schedule(void)
4635 struct rq *rq = &__raw_get_cpu_var(runqueues);
4637 delayacct_blkio_start();
4638 atomic_inc(&rq->nr_iowait);
4639 schedule();
4640 atomic_dec(&rq->nr_iowait);
4641 delayacct_blkio_end();
4643 EXPORT_SYMBOL(io_schedule);
4645 long __sched io_schedule_timeout(long timeout)
4647 struct rq *rq = &__raw_get_cpu_var(runqueues);
4648 long ret;
4650 delayacct_blkio_start();
4651 atomic_inc(&rq->nr_iowait);
4652 ret = schedule_timeout(timeout);
4653 atomic_dec(&rq->nr_iowait);
4654 delayacct_blkio_end();
4655 return ret;
4659 * sys_sched_get_priority_max - return maximum RT priority.
4660 * @policy: scheduling class.
4662 * this syscall returns the maximum rt_priority that can be used
4663 * by a given scheduling class.
4665 asmlinkage long sys_sched_get_priority_max(int policy)
4667 int ret = -EINVAL;
4669 switch (policy) {
4670 case SCHED_FIFO:
4671 case SCHED_RR:
4672 ret = MAX_USER_RT_PRIO-1;
4673 break;
4674 case SCHED_NORMAL:
4675 case SCHED_BATCH:
4676 case SCHED_IDLE:
4677 ret = 0;
4678 break;
4680 return ret;
4684 * sys_sched_get_priority_min - return minimum RT priority.
4685 * @policy: scheduling class.
4687 * this syscall returns the minimum rt_priority that can be used
4688 * by a given scheduling class.
4690 asmlinkage long sys_sched_get_priority_min(int policy)
4692 int ret = -EINVAL;
4694 switch (policy) {
4695 case SCHED_FIFO:
4696 case SCHED_RR:
4697 ret = 1;
4698 break;
4699 case SCHED_NORMAL:
4700 case SCHED_BATCH:
4701 case SCHED_IDLE:
4702 ret = 0;
4704 return ret;
4708 * sys_sched_rr_get_interval - return the default timeslice of a process.
4709 * @pid: pid of the process.
4710 * @interval: userspace pointer to the timeslice value.
4712 * this syscall writes the default timeslice value of a given process
4713 * into the user-space timespec buffer. A value of '0' means infinity.
4715 asmlinkage
4716 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4718 struct task_struct *p;
4719 int retval = -EINVAL;
4720 struct timespec t;
4722 if (pid < 0)
4723 goto out_nounlock;
4725 retval = -ESRCH;
4726 read_lock(&tasklist_lock);
4727 p = find_process_by_pid(pid);
4728 if (!p)
4729 goto out_unlock;
4731 retval = security_task_getscheduler(p);
4732 if (retval)
4733 goto out_unlock;
4735 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4736 0 : static_prio_timeslice(p->static_prio), &t);
4737 read_unlock(&tasklist_lock);
4738 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4739 out_nounlock:
4740 return retval;
4741 out_unlock:
4742 read_unlock(&tasklist_lock);
4743 return retval;
4746 static const char stat_nam[] = "RSDTtZX";
4748 static void show_task(struct task_struct *p)
4750 unsigned long free = 0;
4751 unsigned state;
4753 state = p->state ? __ffs(p->state) + 1 : 0;
4754 printk("%-13.13s %c", p->comm,
4755 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4756 #if BITS_PER_LONG == 32
4757 if (state == TASK_RUNNING)
4758 printk(" running ");
4759 else
4760 printk(" %08lx ", thread_saved_pc(p));
4761 #else
4762 if (state == TASK_RUNNING)
4763 printk(" running task ");
4764 else
4765 printk(" %016lx ", thread_saved_pc(p));
4766 #endif
4767 #ifdef CONFIG_DEBUG_STACK_USAGE
4769 unsigned long *n = end_of_stack(p);
4770 while (!*n)
4771 n++;
4772 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4774 #endif
4775 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4777 if (state != TASK_RUNNING)
4778 show_stack(p, NULL);
4781 void show_state_filter(unsigned long state_filter)
4783 struct task_struct *g, *p;
4785 #if BITS_PER_LONG == 32
4786 printk(KERN_INFO
4787 " task PC stack pid father\n");
4788 #else
4789 printk(KERN_INFO
4790 " task PC stack pid father\n");
4791 #endif
4792 read_lock(&tasklist_lock);
4793 do_each_thread(g, p) {
4795 * reset the NMI-timeout, listing all files on a slow
4796 * console might take alot of time:
4798 touch_nmi_watchdog();
4799 if (!state_filter || (p->state & state_filter))
4800 show_task(p);
4801 } while_each_thread(g, p);
4803 touch_all_softlockup_watchdogs();
4805 #ifdef CONFIG_SCHED_DEBUG
4806 sysrq_sched_debug_show();
4807 #endif
4808 read_unlock(&tasklist_lock);
4810 * Only show locks if all tasks are dumped:
4812 if (state_filter == -1)
4813 debug_show_all_locks();
4816 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4818 idle->sched_class = &idle_sched_class;
4822 * init_idle - set up an idle thread for a given CPU
4823 * @idle: task in question
4824 * @cpu: cpu the idle task belongs to
4826 * NOTE: this function does not set the idle thread's NEED_RESCHED
4827 * flag, to make booting more robust.
4829 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4831 struct rq *rq = cpu_rq(cpu);
4832 unsigned long flags;
4834 __sched_fork(idle);
4835 idle->se.exec_start = sched_clock();
4837 idle->prio = idle->normal_prio = MAX_PRIO;
4838 idle->cpus_allowed = cpumask_of_cpu(cpu);
4839 __set_task_cpu(idle, cpu);
4841 spin_lock_irqsave(&rq->lock, flags);
4842 rq->curr = rq->idle = idle;
4843 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4844 idle->oncpu = 1;
4845 #endif
4846 spin_unlock_irqrestore(&rq->lock, flags);
4848 /* Set the preempt count _outside_ the spinlocks! */
4849 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4850 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4851 #else
4852 task_thread_info(idle)->preempt_count = 0;
4853 #endif
4855 * The idle tasks have their own, simple scheduling class:
4857 idle->sched_class = &idle_sched_class;
4861 * In a system that switches off the HZ timer nohz_cpu_mask
4862 * indicates which cpus entered this state. This is used
4863 * in the rcu update to wait only for active cpus. For system
4864 * which do not switch off the HZ timer nohz_cpu_mask should
4865 * always be CPU_MASK_NONE.
4867 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4869 #ifdef CONFIG_SMP
4871 * This is how migration works:
4873 * 1) we queue a struct migration_req structure in the source CPU's
4874 * runqueue and wake up that CPU's migration thread.
4875 * 2) we down() the locked semaphore => thread blocks.
4876 * 3) migration thread wakes up (implicitly it forces the migrated
4877 * thread off the CPU)
4878 * 4) it gets the migration request and checks whether the migrated
4879 * task is still in the wrong runqueue.
4880 * 5) if it's in the wrong runqueue then the migration thread removes
4881 * it and puts it into the right queue.
4882 * 6) migration thread up()s the semaphore.
4883 * 7) we wake up and the migration is done.
4887 * Change a given task's CPU affinity. Migrate the thread to a
4888 * proper CPU and schedule it away if the CPU it's executing on
4889 * is removed from the allowed bitmask.
4891 * NOTE: the caller must have a valid reference to the task, the
4892 * task must not exit() & deallocate itself prematurely. The
4893 * call is not atomic; no spinlocks may be held.
4895 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4897 struct migration_req req;
4898 unsigned long flags;
4899 struct rq *rq;
4900 int ret = 0;
4902 rq = task_rq_lock(p, &flags);
4903 if (!cpus_intersects(new_mask, cpu_online_map)) {
4904 ret = -EINVAL;
4905 goto out;
4908 p->cpus_allowed = new_mask;
4909 /* Can the task run on the task's current CPU? If so, we're done */
4910 if (cpu_isset(task_cpu(p), new_mask))
4911 goto out;
4913 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4914 /* Need help from migration thread: drop lock and wait. */
4915 task_rq_unlock(rq, &flags);
4916 wake_up_process(rq->migration_thread);
4917 wait_for_completion(&req.done);
4918 tlb_migrate_finish(p->mm);
4919 return 0;
4921 out:
4922 task_rq_unlock(rq, &flags);
4924 return ret;
4926 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4929 * Move (not current) task off this cpu, onto dest cpu. We're doing
4930 * this because either it can't run here any more (set_cpus_allowed()
4931 * away from this CPU, or CPU going down), or because we're
4932 * attempting to rebalance this task on exec (sched_exec).
4934 * So we race with normal scheduler movements, but that's OK, as long
4935 * as the task is no longer on this CPU.
4937 * Returns non-zero if task was successfully migrated.
4939 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4941 struct rq *rq_dest, *rq_src;
4942 int ret = 0, on_rq;
4944 if (unlikely(cpu_is_offline(dest_cpu)))
4945 return ret;
4947 rq_src = cpu_rq(src_cpu);
4948 rq_dest = cpu_rq(dest_cpu);
4950 double_rq_lock(rq_src, rq_dest);
4951 /* Already moved. */
4952 if (task_cpu(p) != src_cpu)
4953 goto out;
4954 /* Affinity changed (again). */
4955 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4956 goto out;
4958 on_rq = p->se.on_rq;
4959 if (on_rq)
4960 deactivate_task(rq_src, p, 0);
4962 set_task_cpu(p, dest_cpu);
4963 if (on_rq) {
4964 activate_task(rq_dest, p, 0);
4965 check_preempt_curr(rq_dest, p);
4967 ret = 1;
4968 out:
4969 double_rq_unlock(rq_src, rq_dest);
4970 return ret;
4974 * migration_thread - this is a highprio system thread that performs
4975 * thread migration by bumping thread off CPU then 'pushing' onto
4976 * another runqueue.
4978 static int migration_thread(void *data)
4980 int cpu = (long)data;
4981 struct rq *rq;
4983 rq = cpu_rq(cpu);
4984 BUG_ON(rq->migration_thread != current);
4986 set_current_state(TASK_INTERRUPTIBLE);
4987 while (!kthread_should_stop()) {
4988 struct migration_req *req;
4989 struct list_head *head;
4991 spin_lock_irq(&rq->lock);
4993 if (cpu_is_offline(cpu)) {
4994 spin_unlock_irq(&rq->lock);
4995 goto wait_to_die;
4998 if (rq->active_balance) {
4999 active_load_balance(rq, cpu);
5000 rq->active_balance = 0;
5003 head = &rq->migration_queue;
5005 if (list_empty(head)) {
5006 spin_unlock_irq(&rq->lock);
5007 schedule();
5008 set_current_state(TASK_INTERRUPTIBLE);
5009 continue;
5011 req = list_entry(head->next, struct migration_req, list);
5012 list_del_init(head->next);
5014 spin_unlock(&rq->lock);
5015 __migrate_task(req->task, cpu, req->dest_cpu);
5016 local_irq_enable();
5018 complete(&req->done);
5020 __set_current_state(TASK_RUNNING);
5021 return 0;
5023 wait_to_die:
5024 /* Wait for kthread_stop */
5025 set_current_state(TASK_INTERRUPTIBLE);
5026 while (!kthread_should_stop()) {
5027 schedule();
5028 set_current_state(TASK_INTERRUPTIBLE);
5030 __set_current_state(TASK_RUNNING);
5031 return 0;
5034 #ifdef CONFIG_HOTPLUG_CPU
5036 * Figure out where task on dead CPU should go, use force if neccessary.
5037 * NOTE: interrupts should be disabled by the caller
5039 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5041 unsigned long flags;
5042 cpumask_t mask;
5043 struct rq *rq;
5044 int dest_cpu;
5046 restart:
5047 /* On same node? */
5048 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5049 cpus_and(mask, mask, p->cpus_allowed);
5050 dest_cpu = any_online_cpu(mask);
5052 /* On any allowed CPU? */
5053 if (dest_cpu == NR_CPUS)
5054 dest_cpu = any_online_cpu(p->cpus_allowed);
5056 /* No more Mr. Nice Guy. */
5057 if (dest_cpu == NR_CPUS) {
5058 rq = task_rq_lock(p, &flags);
5059 cpus_setall(p->cpus_allowed);
5060 dest_cpu = any_online_cpu(p->cpus_allowed);
5061 task_rq_unlock(rq, &flags);
5064 * Don't tell them about moving exiting tasks or
5065 * kernel threads (both mm NULL), since they never
5066 * leave kernel.
5068 if (p->mm && printk_ratelimit())
5069 printk(KERN_INFO "process %d (%s) no "
5070 "longer affine to cpu%d\n",
5071 p->pid, p->comm, dead_cpu);
5073 if (!__migrate_task(p, dead_cpu, dest_cpu))
5074 goto restart;
5078 * While a dead CPU has no uninterruptible tasks queued at this point,
5079 * it might still have a nonzero ->nr_uninterruptible counter, because
5080 * for performance reasons the counter is not stricly tracking tasks to
5081 * their home CPUs. So we just add the counter to another CPU's counter,
5082 * to keep the global sum constant after CPU-down:
5084 static void migrate_nr_uninterruptible(struct rq *rq_src)
5086 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5087 unsigned long flags;
5089 local_irq_save(flags);
5090 double_rq_lock(rq_src, rq_dest);
5091 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5092 rq_src->nr_uninterruptible = 0;
5093 double_rq_unlock(rq_src, rq_dest);
5094 local_irq_restore(flags);
5097 /* Run through task list and migrate tasks from the dead cpu. */
5098 static void migrate_live_tasks(int src_cpu)
5100 struct task_struct *p, *t;
5102 write_lock_irq(&tasklist_lock);
5104 do_each_thread(t, p) {
5105 if (p == current)
5106 continue;
5108 if (task_cpu(p) == src_cpu)
5109 move_task_off_dead_cpu(src_cpu, p);
5110 } while_each_thread(t, p);
5112 write_unlock_irq(&tasklist_lock);
5116 * Schedules idle task to be the next runnable task on current CPU.
5117 * It does so by boosting its priority to highest possible and adding it to
5118 * the _front_ of the runqueue. Used by CPU offline code.
5120 void sched_idle_next(void)
5122 int this_cpu = smp_processor_id();
5123 struct rq *rq = cpu_rq(this_cpu);
5124 struct task_struct *p = rq->idle;
5125 unsigned long flags;
5127 /* cpu has to be offline */
5128 BUG_ON(cpu_online(this_cpu));
5131 * Strictly not necessary since rest of the CPUs are stopped by now
5132 * and interrupts disabled on the current cpu.
5134 spin_lock_irqsave(&rq->lock, flags);
5136 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5138 /* Add idle task to the _front_ of its priority queue: */
5139 activate_idle_task(p, rq);
5141 spin_unlock_irqrestore(&rq->lock, flags);
5145 * Ensures that the idle task is using init_mm right before its cpu goes
5146 * offline.
5148 void idle_task_exit(void)
5150 struct mm_struct *mm = current->active_mm;
5152 BUG_ON(cpu_online(smp_processor_id()));
5154 if (mm != &init_mm)
5155 switch_mm(mm, &init_mm, current);
5156 mmdrop(mm);
5159 /* called under rq->lock with disabled interrupts */
5160 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5162 struct rq *rq = cpu_rq(dead_cpu);
5164 /* Must be exiting, otherwise would be on tasklist. */
5165 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5167 /* Cannot have done final schedule yet: would have vanished. */
5168 BUG_ON(p->state == TASK_DEAD);
5170 get_task_struct(p);
5173 * Drop lock around migration; if someone else moves it,
5174 * that's OK. No task can be added to this CPU, so iteration is
5175 * fine.
5176 * NOTE: interrupts should be left disabled --dev@
5178 spin_unlock(&rq->lock);
5179 move_task_off_dead_cpu(dead_cpu, p);
5180 spin_lock(&rq->lock);
5182 put_task_struct(p);
5185 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5186 static void migrate_dead_tasks(unsigned int dead_cpu)
5188 struct rq *rq = cpu_rq(dead_cpu);
5189 struct task_struct *next;
5191 for ( ; ; ) {
5192 if (!rq->nr_running)
5193 break;
5194 update_rq_clock(rq);
5195 next = pick_next_task(rq, rq->curr);
5196 if (!next)
5197 break;
5198 migrate_dead(dead_cpu, next);
5202 #endif /* CONFIG_HOTPLUG_CPU */
5204 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5206 static struct ctl_table sd_ctl_dir[] = {
5208 .procname = "sched_domain",
5209 .mode = 0555,
5211 {0,},
5214 static struct ctl_table sd_ctl_root[] = {
5216 .ctl_name = CTL_KERN,
5217 .procname = "kernel",
5218 .mode = 0555,
5219 .child = sd_ctl_dir,
5221 {0,},
5224 static struct ctl_table *sd_alloc_ctl_entry(int n)
5226 struct ctl_table *entry =
5227 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5229 BUG_ON(!entry);
5230 memset(entry, 0, n * sizeof(struct ctl_table));
5232 return entry;
5235 static void
5236 set_table_entry(struct ctl_table *entry,
5237 const char *procname, void *data, int maxlen,
5238 mode_t mode, proc_handler *proc_handler)
5240 entry->procname = procname;
5241 entry->data = data;
5242 entry->maxlen = maxlen;
5243 entry->mode = mode;
5244 entry->proc_handler = proc_handler;
5247 static struct ctl_table *
5248 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5250 struct ctl_table *table = sd_alloc_ctl_entry(14);
5252 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5253 sizeof(long), 0644, proc_doulongvec_minmax);
5254 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5255 sizeof(long), 0644, proc_doulongvec_minmax);
5256 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5257 sizeof(int), 0644, proc_dointvec_minmax);
5258 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5259 sizeof(int), 0644, proc_dointvec_minmax);
5260 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5261 sizeof(int), 0644, proc_dointvec_minmax);
5262 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5263 sizeof(int), 0644, proc_dointvec_minmax);
5264 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5265 sizeof(int), 0644, proc_dointvec_minmax);
5266 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5267 sizeof(int), 0644, proc_dointvec_minmax);
5268 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5269 sizeof(int), 0644, proc_dointvec_minmax);
5270 set_table_entry(&table[10], "cache_nice_tries",
5271 &sd->cache_nice_tries,
5272 sizeof(int), 0644, proc_dointvec_minmax);
5273 set_table_entry(&table[12], "flags", &sd->flags,
5274 sizeof(int), 0644, proc_dointvec_minmax);
5276 return table;
5279 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5281 struct ctl_table *entry, *table;
5282 struct sched_domain *sd;
5283 int domain_num = 0, i;
5284 char buf[32];
5286 for_each_domain(cpu, sd)
5287 domain_num++;
5288 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5290 i = 0;
5291 for_each_domain(cpu, sd) {
5292 snprintf(buf, 32, "domain%d", i);
5293 entry->procname = kstrdup(buf, GFP_KERNEL);
5294 entry->mode = 0555;
5295 entry->child = sd_alloc_ctl_domain_table(sd);
5296 entry++;
5297 i++;
5299 return table;
5302 static struct ctl_table_header *sd_sysctl_header;
5303 static void init_sched_domain_sysctl(void)
5305 int i, cpu_num = num_online_cpus();
5306 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5307 char buf[32];
5309 sd_ctl_dir[0].child = entry;
5311 for (i = 0; i < cpu_num; i++, entry++) {
5312 snprintf(buf, 32, "cpu%d", i);
5313 entry->procname = kstrdup(buf, GFP_KERNEL);
5314 entry->mode = 0555;
5315 entry->child = sd_alloc_ctl_cpu_table(i);
5317 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5319 #else
5320 static void init_sched_domain_sysctl(void)
5323 #endif
5326 * migration_call - callback that gets triggered when a CPU is added.
5327 * Here we can start up the necessary migration thread for the new CPU.
5329 static int __cpuinit
5330 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5332 struct task_struct *p;
5333 int cpu = (long)hcpu;
5334 unsigned long flags;
5335 struct rq *rq;
5337 switch (action) {
5338 case CPU_LOCK_ACQUIRE:
5339 mutex_lock(&sched_hotcpu_mutex);
5340 break;
5342 case CPU_UP_PREPARE:
5343 case CPU_UP_PREPARE_FROZEN:
5344 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5345 if (IS_ERR(p))
5346 return NOTIFY_BAD;
5347 kthread_bind(p, cpu);
5348 /* Must be high prio: stop_machine expects to yield to it. */
5349 rq = task_rq_lock(p, &flags);
5350 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5351 task_rq_unlock(rq, &flags);
5352 cpu_rq(cpu)->migration_thread = p;
5353 break;
5355 case CPU_ONLINE:
5356 case CPU_ONLINE_FROZEN:
5357 /* Strictly unneccessary, as first user will wake it. */
5358 wake_up_process(cpu_rq(cpu)->migration_thread);
5359 break;
5361 #ifdef CONFIG_HOTPLUG_CPU
5362 case CPU_UP_CANCELED:
5363 case CPU_UP_CANCELED_FROZEN:
5364 if (!cpu_rq(cpu)->migration_thread)
5365 break;
5366 /* Unbind it from offline cpu so it can run. Fall thru. */
5367 kthread_bind(cpu_rq(cpu)->migration_thread,
5368 any_online_cpu(cpu_online_map));
5369 kthread_stop(cpu_rq(cpu)->migration_thread);
5370 cpu_rq(cpu)->migration_thread = NULL;
5371 break;
5373 case CPU_DEAD:
5374 case CPU_DEAD_FROZEN:
5375 migrate_live_tasks(cpu);
5376 rq = cpu_rq(cpu);
5377 kthread_stop(rq->migration_thread);
5378 rq->migration_thread = NULL;
5379 /* Idle task back to normal (off runqueue, low prio) */
5380 rq = task_rq_lock(rq->idle, &flags);
5381 update_rq_clock(rq);
5382 deactivate_task(rq, rq->idle, 0);
5383 rq->idle->static_prio = MAX_PRIO;
5384 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5385 rq->idle->sched_class = &idle_sched_class;
5386 migrate_dead_tasks(cpu);
5387 task_rq_unlock(rq, &flags);
5388 migrate_nr_uninterruptible(rq);
5389 BUG_ON(rq->nr_running != 0);
5391 /* No need to migrate the tasks: it was best-effort if
5392 * they didn't take sched_hotcpu_mutex. Just wake up
5393 * the requestors. */
5394 spin_lock_irq(&rq->lock);
5395 while (!list_empty(&rq->migration_queue)) {
5396 struct migration_req *req;
5398 req = list_entry(rq->migration_queue.next,
5399 struct migration_req, list);
5400 list_del_init(&req->list);
5401 complete(&req->done);
5403 spin_unlock_irq(&rq->lock);
5404 break;
5405 #endif
5406 case CPU_LOCK_RELEASE:
5407 mutex_unlock(&sched_hotcpu_mutex);
5408 break;
5410 return NOTIFY_OK;
5413 /* Register at highest priority so that task migration (migrate_all_tasks)
5414 * happens before everything else.
5416 static struct notifier_block __cpuinitdata migration_notifier = {
5417 .notifier_call = migration_call,
5418 .priority = 10
5421 int __init migration_init(void)
5423 void *cpu = (void *)(long)smp_processor_id();
5424 int err;
5426 /* Start one for the boot CPU: */
5427 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5428 BUG_ON(err == NOTIFY_BAD);
5429 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5430 register_cpu_notifier(&migration_notifier);
5432 return 0;
5434 #endif
5436 #ifdef CONFIG_SMP
5438 /* Number of possible processor ids */
5439 int nr_cpu_ids __read_mostly = NR_CPUS;
5440 EXPORT_SYMBOL(nr_cpu_ids);
5442 #undef SCHED_DOMAIN_DEBUG
5443 #ifdef SCHED_DOMAIN_DEBUG
5444 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5446 int level = 0;
5448 if (!sd) {
5449 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5450 return;
5453 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5455 do {
5456 int i;
5457 char str[NR_CPUS];
5458 struct sched_group *group = sd->groups;
5459 cpumask_t groupmask;
5461 cpumask_scnprintf(str, NR_CPUS, sd->span);
5462 cpus_clear(groupmask);
5464 printk(KERN_DEBUG);
5465 for (i = 0; i < level + 1; i++)
5466 printk(" ");
5467 printk("domain %d: ", level);
5469 if (!(sd->flags & SD_LOAD_BALANCE)) {
5470 printk("does not load-balance\n");
5471 if (sd->parent)
5472 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5473 " has parent");
5474 break;
5477 printk("span %s\n", str);
5479 if (!cpu_isset(cpu, sd->span))
5480 printk(KERN_ERR "ERROR: domain->span does not contain "
5481 "CPU%d\n", cpu);
5482 if (!cpu_isset(cpu, group->cpumask))
5483 printk(KERN_ERR "ERROR: domain->groups does not contain"
5484 " CPU%d\n", cpu);
5486 printk(KERN_DEBUG);
5487 for (i = 0; i < level + 2; i++)
5488 printk(" ");
5489 printk("groups:");
5490 do {
5491 if (!group) {
5492 printk("\n");
5493 printk(KERN_ERR "ERROR: group is NULL\n");
5494 break;
5497 if (!group->__cpu_power) {
5498 printk("\n");
5499 printk(KERN_ERR "ERROR: domain->cpu_power not "
5500 "set\n");
5503 if (!cpus_weight(group->cpumask)) {
5504 printk("\n");
5505 printk(KERN_ERR "ERROR: empty group\n");
5508 if (cpus_intersects(groupmask, group->cpumask)) {
5509 printk("\n");
5510 printk(KERN_ERR "ERROR: repeated CPUs\n");
5513 cpus_or(groupmask, groupmask, group->cpumask);
5515 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5516 printk(" %s", str);
5518 group = group->next;
5519 } while (group != sd->groups);
5520 printk("\n");
5522 if (!cpus_equal(sd->span, groupmask))
5523 printk(KERN_ERR "ERROR: groups don't span "
5524 "domain->span\n");
5526 level++;
5527 sd = sd->parent;
5528 if (!sd)
5529 continue;
5531 if (!cpus_subset(groupmask, sd->span))
5532 printk(KERN_ERR "ERROR: parent span is not a superset "
5533 "of domain->span\n");
5535 } while (sd);
5537 #else
5538 # define sched_domain_debug(sd, cpu) do { } while (0)
5539 #endif
5541 static int sd_degenerate(struct sched_domain *sd)
5543 if (cpus_weight(sd->span) == 1)
5544 return 1;
5546 /* Following flags need at least 2 groups */
5547 if (sd->flags & (SD_LOAD_BALANCE |
5548 SD_BALANCE_NEWIDLE |
5549 SD_BALANCE_FORK |
5550 SD_BALANCE_EXEC |
5551 SD_SHARE_CPUPOWER |
5552 SD_SHARE_PKG_RESOURCES)) {
5553 if (sd->groups != sd->groups->next)
5554 return 0;
5557 /* Following flags don't use groups */
5558 if (sd->flags & (SD_WAKE_IDLE |
5559 SD_WAKE_AFFINE |
5560 SD_WAKE_BALANCE))
5561 return 0;
5563 return 1;
5566 static int
5567 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5569 unsigned long cflags = sd->flags, pflags = parent->flags;
5571 if (sd_degenerate(parent))
5572 return 1;
5574 if (!cpus_equal(sd->span, parent->span))
5575 return 0;
5577 /* Does parent contain flags not in child? */
5578 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5579 if (cflags & SD_WAKE_AFFINE)
5580 pflags &= ~SD_WAKE_BALANCE;
5581 /* Flags needing groups don't count if only 1 group in parent */
5582 if (parent->groups == parent->groups->next) {
5583 pflags &= ~(SD_LOAD_BALANCE |
5584 SD_BALANCE_NEWIDLE |
5585 SD_BALANCE_FORK |
5586 SD_BALANCE_EXEC |
5587 SD_SHARE_CPUPOWER |
5588 SD_SHARE_PKG_RESOURCES);
5590 if (~cflags & pflags)
5591 return 0;
5593 return 1;
5597 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5598 * hold the hotplug lock.
5600 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5602 struct rq *rq = cpu_rq(cpu);
5603 struct sched_domain *tmp;
5605 /* Remove the sched domains which do not contribute to scheduling. */
5606 for (tmp = sd; tmp; tmp = tmp->parent) {
5607 struct sched_domain *parent = tmp->parent;
5608 if (!parent)
5609 break;
5610 if (sd_parent_degenerate(tmp, parent)) {
5611 tmp->parent = parent->parent;
5612 if (parent->parent)
5613 parent->parent->child = tmp;
5617 if (sd && sd_degenerate(sd)) {
5618 sd = sd->parent;
5619 if (sd)
5620 sd->child = NULL;
5623 sched_domain_debug(sd, cpu);
5625 rcu_assign_pointer(rq->sd, sd);
5628 /* cpus with isolated domains */
5629 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5631 /* Setup the mask of cpus configured for isolated domains */
5632 static int __init isolated_cpu_setup(char *str)
5634 int ints[NR_CPUS], i;
5636 str = get_options(str, ARRAY_SIZE(ints), ints);
5637 cpus_clear(cpu_isolated_map);
5638 for (i = 1; i <= ints[0]; i++)
5639 if (ints[i] < NR_CPUS)
5640 cpu_set(ints[i], cpu_isolated_map);
5641 return 1;
5644 __setup ("isolcpus=", isolated_cpu_setup);
5647 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5648 * to a function which identifies what group(along with sched group) a CPU
5649 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5650 * (due to the fact that we keep track of groups covered with a cpumask_t).
5652 * init_sched_build_groups will build a circular linked list of the groups
5653 * covered by the given span, and will set each group's ->cpumask correctly,
5654 * and ->cpu_power to 0.
5656 static void
5657 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5658 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5659 struct sched_group **sg))
5661 struct sched_group *first = NULL, *last = NULL;
5662 cpumask_t covered = CPU_MASK_NONE;
5663 int i;
5665 for_each_cpu_mask(i, span) {
5666 struct sched_group *sg;
5667 int group = group_fn(i, cpu_map, &sg);
5668 int j;
5670 if (cpu_isset(i, covered))
5671 continue;
5673 sg->cpumask = CPU_MASK_NONE;
5674 sg->__cpu_power = 0;
5676 for_each_cpu_mask(j, span) {
5677 if (group_fn(j, cpu_map, NULL) != group)
5678 continue;
5680 cpu_set(j, covered);
5681 cpu_set(j, sg->cpumask);
5683 if (!first)
5684 first = sg;
5685 if (last)
5686 last->next = sg;
5687 last = sg;
5689 last->next = first;
5692 #define SD_NODES_PER_DOMAIN 16
5694 #ifdef CONFIG_NUMA
5697 * find_next_best_node - find the next node to include in a sched_domain
5698 * @node: node whose sched_domain we're building
5699 * @used_nodes: nodes already in the sched_domain
5701 * Find the next node to include in a given scheduling domain. Simply
5702 * finds the closest node not already in the @used_nodes map.
5704 * Should use nodemask_t.
5706 static int find_next_best_node(int node, unsigned long *used_nodes)
5708 int i, n, val, min_val, best_node = 0;
5710 min_val = INT_MAX;
5712 for (i = 0; i < MAX_NUMNODES; i++) {
5713 /* Start at @node */
5714 n = (node + i) % MAX_NUMNODES;
5716 if (!nr_cpus_node(n))
5717 continue;
5719 /* Skip already used nodes */
5720 if (test_bit(n, used_nodes))
5721 continue;
5723 /* Simple min distance search */
5724 val = node_distance(node, n);
5726 if (val < min_val) {
5727 min_val = val;
5728 best_node = n;
5732 set_bit(best_node, used_nodes);
5733 return best_node;
5737 * sched_domain_node_span - get a cpumask for a node's sched_domain
5738 * @node: node whose cpumask we're constructing
5739 * @size: number of nodes to include in this span
5741 * Given a node, construct a good cpumask for its sched_domain to span. It
5742 * should be one that prevents unnecessary balancing, but also spreads tasks
5743 * out optimally.
5745 static cpumask_t sched_domain_node_span(int node)
5747 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5748 cpumask_t span, nodemask;
5749 int i;
5751 cpus_clear(span);
5752 bitmap_zero(used_nodes, MAX_NUMNODES);
5754 nodemask = node_to_cpumask(node);
5755 cpus_or(span, span, nodemask);
5756 set_bit(node, used_nodes);
5758 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5759 int next_node = find_next_best_node(node, used_nodes);
5761 nodemask = node_to_cpumask(next_node);
5762 cpus_or(span, span, nodemask);
5765 return span;
5767 #endif
5769 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5772 * SMT sched-domains:
5774 #ifdef CONFIG_SCHED_SMT
5775 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5776 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5778 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5779 struct sched_group **sg)
5781 if (sg)
5782 *sg = &per_cpu(sched_group_cpus, cpu);
5783 return cpu;
5785 #endif
5788 * multi-core sched-domains:
5790 #ifdef CONFIG_SCHED_MC
5791 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5792 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5793 #endif
5795 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5796 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5797 struct sched_group **sg)
5799 int group;
5800 cpumask_t mask = cpu_sibling_map[cpu];
5801 cpus_and(mask, mask, *cpu_map);
5802 group = first_cpu(mask);
5803 if (sg)
5804 *sg = &per_cpu(sched_group_core, group);
5805 return group;
5807 #elif defined(CONFIG_SCHED_MC)
5808 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5809 struct sched_group **sg)
5811 if (sg)
5812 *sg = &per_cpu(sched_group_core, cpu);
5813 return cpu;
5815 #endif
5817 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5818 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5820 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5821 struct sched_group **sg)
5823 int group;
5824 #ifdef CONFIG_SCHED_MC
5825 cpumask_t mask = cpu_coregroup_map(cpu);
5826 cpus_and(mask, mask, *cpu_map);
5827 group = first_cpu(mask);
5828 #elif defined(CONFIG_SCHED_SMT)
5829 cpumask_t mask = cpu_sibling_map[cpu];
5830 cpus_and(mask, mask, *cpu_map);
5831 group = first_cpu(mask);
5832 #else
5833 group = cpu;
5834 #endif
5835 if (sg)
5836 *sg = &per_cpu(sched_group_phys, group);
5837 return group;
5840 #ifdef CONFIG_NUMA
5842 * The init_sched_build_groups can't handle what we want to do with node
5843 * groups, so roll our own. Now each node has its own list of groups which
5844 * gets dynamically allocated.
5846 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5847 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5849 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5850 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5852 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5853 struct sched_group **sg)
5855 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5856 int group;
5858 cpus_and(nodemask, nodemask, *cpu_map);
5859 group = first_cpu(nodemask);
5861 if (sg)
5862 *sg = &per_cpu(sched_group_allnodes, group);
5863 return group;
5866 static void init_numa_sched_groups_power(struct sched_group *group_head)
5868 struct sched_group *sg = group_head;
5869 int j;
5871 if (!sg)
5872 return;
5873 next_sg:
5874 for_each_cpu_mask(j, sg->cpumask) {
5875 struct sched_domain *sd;
5877 sd = &per_cpu(phys_domains, j);
5878 if (j != first_cpu(sd->groups->cpumask)) {
5880 * Only add "power" once for each
5881 * physical package.
5883 continue;
5886 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5888 sg = sg->next;
5889 if (sg != group_head)
5890 goto next_sg;
5892 #endif
5894 #ifdef CONFIG_NUMA
5895 /* Free memory allocated for various sched_group structures */
5896 static void free_sched_groups(const cpumask_t *cpu_map)
5898 int cpu, i;
5900 for_each_cpu_mask(cpu, *cpu_map) {
5901 struct sched_group **sched_group_nodes
5902 = sched_group_nodes_bycpu[cpu];
5904 if (!sched_group_nodes)
5905 continue;
5907 for (i = 0; i < MAX_NUMNODES; i++) {
5908 cpumask_t nodemask = node_to_cpumask(i);
5909 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5911 cpus_and(nodemask, nodemask, *cpu_map);
5912 if (cpus_empty(nodemask))
5913 continue;
5915 if (sg == NULL)
5916 continue;
5917 sg = sg->next;
5918 next_sg:
5919 oldsg = sg;
5920 sg = sg->next;
5921 kfree(oldsg);
5922 if (oldsg != sched_group_nodes[i])
5923 goto next_sg;
5925 kfree(sched_group_nodes);
5926 sched_group_nodes_bycpu[cpu] = NULL;
5929 #else
5930 static void free_sched_groups(const cpumask_t *cpu_map)
5933 #endif
5936 * Initialize sched groups cpu_power.
5938 * cpu_power indicates the capacity of sched group, which is used while
5939 * distributing the load between different sched groups in a sched domain.
5940 * Typically cpu_power for all the groups in a sched domain will be same unless
5941 * there are asymmetries in the topology. If there are asymmetries, group
5942 * having more cpu_power will pickup more load compared to the group having
5943 * less cpu_power.
5945 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5946 * the maximum number of tasks a group can handle in the presence of other idle
5947 * or lightly loaded groups in the same sched domain.
5949 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5951 struct sched_domain *child;
5952 struct sched_group *group;
5954 WARN_ON(!sd || !sd->groups);
5956 if (cpu != first_cpu(sd->groups->cpumask))
5957 return;
5959 child = sd->child;
5961 sd->groups->__cpu_power = 0;
5964 * For perf policy, if the groups in child domain share resources
5965 * (for example cores sharing some portions of the cache hierarchy
5966 * or SMT), then set this domain groups cpu_power such that each group
5967 * can handle only one task, when there are other idle groups in the
5968 * same sched domain.
5970 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5971 (child->flags &
5972 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5973 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5974 return;
5978 * add cpu_power of each child group to this groups cpu_power
5980 group = child->groups;
5981 do {
5982 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5983 group = group->next;
5984 } while (group != child->groups);
5988 * Build sched domains for a given set of cpus and attach the sched domains
5989 * to the individual cpus
5991 static int build_sched_domains(const cpumask_t *cpu_map)
5993 int i;
5994 #ifdef CONFIG_NUMA
5995 struct sched_group **sched_group_nodes = NULL;
5996 int sd_allnodes = 0;
5999 * Allocate the per-node list of sched groups
6001 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6002 GFP_KERNEL);
6003 if (!sched_group_nodes) {
6004 printk(KERN_WARNING "Can not alloc sched group node list\n");
6005 return -ENOMEM;
6007 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6008 #endif
6011 * Set up domains for cpus specified by the cpu_map.
6013 for_each_cpu_mask(i, *cpu_map) {
6014 struct sched_domain *sd = NULL, *p;
6015 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6017 cpus_and(nodemask, nodemask, *cpu_map);
6019 #ifdef CONFIG_NUMA
6020 if (cpus_weight(*cpu_map) >
6021 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6022 sd = &per_cpu(allnodes_domains, i);
6023 *sd = SD_ALLNODES_INIT;
6024 sd->span = *cpu_map;
6025 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6026 p = sd;
6027 sd_allnodes = 1;
6028 } else
6029 p = NULL;
6031 sd = &per_cpu(node_domains, i);
6032 *sd = SD_NODE_INIT;
6033 sd->span = sched_domain_node_span(cpu_to_node(i));
6034 sd->parent = p;
6035 if (p)
6036 p->child = sd;
6037 cpus_and(sd->span, sd->span, *cpu_map);
6038 #endif
6040 p = sd;
6041 sd = &per_cpu(phys_domains, i);
6042 *sd = SD_CPU_INIT;
6043 sd->span = nodemask;
6044 sd->parent = p;
6045 if (p)
6046 p->child = sd;
6047 cpu_to_phys_group(i, cpu_map, &sd->groups);
6049 #ifdef CONFIG_SCHED_MC
6050 p = sd;
6051 sd = &per_cpu(core_domains, i);
6052 *sd = SD_MC_INIT;
6053 sd->span = cpu_coregroup_map(i);
6054 cpus_and(sd->span, sd->span, *cpu_map);
6055 sd->parent = p;
6056 p->child = sd;
6057 cpu_to_core_group(i, cpu_map, &sd->groups);
6058 #endif
6060 #ifdef CONFIG_SCHED_SMT
6061 p = sd;
6062 sd = &per_cpu(cpu_domains, i);
6063 *sd = SD_SIBLING_INIT;
6064 sd->span = cpu_sibling_map[i];
6065 cpus_and(sd->span, sd->span, *cpu_map);
6066 sd->parent = p;
6067 p->child = sd;
6068 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6069 #endif
6072 #ifdef CONFIG_SCHED_SMT
6073 /* Set up CPU (sibling) groups */
6074 for_each_cpu_mask(i, *cpu_map) {
6075 cpumask_t this_sibling_map = cpu_sibling_map[i];
6076 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6077 if (i != first_cpu(this_sibling_map))
6078 continue;
6080 init_sched_build_groups(this_sibling_map, cpu_map,
6081 &cpu_to_cpu_group);
6083 #endif
6085 #ifdef CONFIG_SCHED_MC
6086 /* Set up multi-core groups */
6087 for_each_cpu_mask(i, *cpu_map) {
6088 cpumask_t this_core_map = cpu_coregroup_map(i);
6089 cpus_and(this_core_map, this_core_map, *cpu_map);
6090 if (i != first_cpu(this_core_map))
6091 continue;
6092 init_sched_build_groups(this_core_map, cpu_map,
6093 &cpu_to_core_group);
6095 #endif
6097 /* Set up physical groups */
6098 for (i = 0; i < MAX_NUMNODES; i++) {
6099 cpumask_t nodemask = node_to_cpumask(i);
6101 cpus_and(nodemask, nodemask, *cpu_map);
6102 if (cpus_empty(nodemask))
6103 continue;
6105 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6108 #ifdef CONFIG_NUMA
6109 /* Set up node groups */
6110 if (sd_allnodes)
6111 init_sched_build_groups(*cpu_map, cpu_map,
6112 &cpu_to_allnodes_group);
6114 for (i = 0; i < MAX_NUMNODES; i++) {
6115 /* Set up node groups */
6116 struct sched_group *sg, *prev;
6117 cpumask_t nodemask = node_to_cpumask(i);
6118 cpumask_t domainspan;
6119 cpumask_t covered = CPU_MASK_NONE;
6120 int j;
6122 cpus_and(nodemask, nodemask, *cpu_map);
6123 if (cpus_empty(nodemask)) {
6124 sched_group_nodes[i] = NULL;
6125 continue;
6128 domainspan = sched_domain_node_span(i);
6129 cpus_and(domainspan, domainspan, *cpu_map);
6131 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6132 if (!sg) {
6133 printk(KERN_WARNING "Can not alloc domain group for "
6134 "node %d\n", i);
6135 goto error;
6137 sched_group_nodes[i] = sg;
6138 for_each_cpu_mask(j, nodemask) {
6139 struct sched_domain *sd;
6141 sd = &per_cpu(node_domains, j);
6142 sd->groups = sg;
6144 sg->__cpu_power = 0;
6145 sg->cpumask = nodemask;
6146 sg->next = sg;
6147 cpus_or(covered, covered, nodemask);
6148 prev = sg;
6150 for (j = 0; j < MAX_NUMNODES; j++) {
6151 cpumask_t tmp, notcovered;
6152 int n = (i + j) % MAX_NUMNODES;
6154 cpus_complement(notcovered, covered);
6155 cpus_and(tmp, notcovered, *cpu_map);
6156 cpus_and(tmp, tmp, domainspan);
6157 if (cpus_empty(tmp))
6158 break;
6160 nodemask = node_to_cpumask(n);
6161 cpus_and(tmp, tmp, nodemask);
6162 if (cpus_empty(tmp))
6163 continue;
6165 sg = kmalloc_node(sizeof(struct sched_group),
6166 GFP_KERNEL, i);
6167 if (!sg) {
6168 printk(KERN_WARNING
6169 "Can not alloc domain group for node %d\n", j);
6170 goto error;
6172 sg->__cpu_power = 0;
6173 sg->cpumask = tmp;
6174 sg->next = prev->next;
6175 cpus_or(covered, covered, tmp);
6176 prev->next = sg;
6177 prev = sg;
6180 #endif
6182 /* Calculate CPU power for physical packages and nodes */
6183 #ifdef CONFIG_SCHED_SMT
6184 for_each_cpu_mask(i, *cpu_map) {
6185 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6187 init_sched_groups_power(i, sd);
6189 #endif
6190 #ifdef CONFIG_SCHED_MC
6191 for_each_cpu_mask(i, *cpu_map) {
6192 struct sched_domain *sd = &per_cpu(core_domains, i);
6194 init_sched_groups_power(i, sd);
6196 #endif
6198 for_each_cpu_mask(i, *cpu_map) {
6199 struct sched_domain *sd = &per_cpu(phys_domains, i);
6201 init_sched_groups_power(i, sd);
6204 #ifdef CONFIG_NUMA
6205 for (i = 0; i < MAX_NUMNODES; i++)
6206 init_numa_sched_groups_power(sched_group_nodes[i]);
6208 if (sd_allnodes) {
6209 struct sched_group *sg;
6211 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6212 init_numa_sched_groups_power(sg);
6214 #endif
6216 /* Attach the domains */
6217 for_each_cpu_mask(i, *cpu_map) {
6218 struct sched_domain *sd;
6219 #ifdef CONFIG_SCHED_SMT
6220 sd = &per_cpu(cpu_domains, i);
6221 #elif defined(CONFIG_SCHED_MC)
6222 sd = &per_cpu(core_domains, i);
6223 #else
6224 sd = &per_cpu(phys_domains, i);
6225 #endif
6226 cpu_attach_domain(sd, i);
6229 return 0;
6231 #ifdef CONFIG_NUMA
6232 error:
6233 free_sched_groups(cpu_map);
6234 return -ENOMEM;
6235 #endif
6238 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6240 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6242 cpumask_t cpu_default_map;
6243 int err;
6246 * Setup mask for cpus without special case scheduling requirements.
6247 * For now this just excludes isolated cpus, but could be used to
6248 * exclude other special cases in the future.
6250 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6252 err = build_sched_domains(&cpu_default_map);
6254 return err;
6257 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6259 free_sched_groups(cpu_map);
6263 * Detach sched domains from a group of cpus specified in cpu_map
6264 * These cpus will now be attached to the NULL domain
6266 static void detach_destroy_domains(const cpumask_t *cpu_map)
6268 int i;
6270 for_each_cpu_mask(i, *cpu_map)
6271 cpu_attach_domain(NULL, i);
6272 synchronize_sched();
6273 arch_destroy_sched_domains(cpu_map);
6277 * Partition sched domains as specified by the cpumasks below.
6278 * This attaches all cpus from the cpumasks to the NULL domain,
6279 * waits for a RCU quiescent period, recalculates sched
6280 * domain information and then attaches them back to the
6281 * correct sched domains
6282 * Call with hotplug lock held
6284 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6286 cpumask_t change_map;
6287 int err = 0;
6289 cpus_and(*partition1, *partition1, cpu_online_map);
6290 cpus_and(*partition2, *partition2, cpu_online_map);
6291 cpus_or(change_map, *partition1, *partition2);
6293 /* Detach sched domains from all of the affected cpus */
6294 detach_destroy_domains(&change_map);
6295 if (!cpus_empty(*partition1))
6296 err = build_sched_domains(partition1);
6297 if (!err && !cpus_empty(*partition2))
6298 err = build_sched_domains(partition2);
6300 return err;
6303 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6304 static int arch_reinit_sched_domains(void)
6306 int err;
6308 mutex_lock(&sched_hotcpu_mutex);
6309 detach_destroy_domains(&cpu_online_map);
6310 err = arch_init_sched_domains(&cpu_online_map);
6311 mutex_unlock(&sched_hotcpu_mutex);
6313 return err;
6316 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6318 int ret;
6320 if (buf[0] != '0' && buf[0] != '1')
6321 return -EINVAL;
6323 if (smt)
6324 sched_smt_power_savings = (buf[0] == '1');
6325 else
6326 sched_mc_power_savings = (buf[0] == '1');
6328 ret = arch_reinit_sched_domains();
6330 return ret ? ret : count;
6333 #ifdef CONFIG_SCHED_MC
6334 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6336 return sprintf(page, "%u\n", sched_mc_power_savings);
6338 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6339 const char *buf, size_t count)
6341 return sched_power_savings_store(buf, count, 0);
6343 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6344 sched_mc_power_savings_store);
6345 #endif
6347 #ifdef CONFIG_SCHED_SMT
6348 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6350 return sprintf(page, "%u\n", sched_smt_power_savings);
6352 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6353 const char *buf, size_t count)
6355 return sched_power_savings_store(buf, count, 1);
6357 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6358 sched_smt_power_savings_store);
6359 #endif
6361 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6363 int err = 0;
6365 #ifdef CONFIG_SCHED_SMT
6366 if (smt_capable())
6367 err = sysfs_create_file(&cls->kset.kobj,
6368 &attr_sched_smt_power_savings.attr);
6369 #endif
6370 #ifdef CONFIG_SCHED_MC
6371 if (!err && mc_capable())
6372 err = sysfs_create_file(&cls->kset.kobj,
6373 &attr_sched_mc_power_savings.attr);
6374 #endif
6375 return err;
6377 #endif
6380 * Force a reinitialization of the sched domains hierarchy. The domains
6381 * and groups cannot be updated in place without racing with the balancing
6382 * code, so we temporarily attach all running cpus to the NULL domain
6383 * which will prevent rebalancing while the sched domains are recalculated.
6385 static int update_sched_domains(struct notifier_block *nfb,
6386 unsigned long action, void *hcpu)
6388 switch (action) {
6389 case CPU_UP_PREPARE:
6390 case CPU_UP_PREPARE_FROZEN:
6391 case CPU_DOWN_PREPARE:
6392 case CPU_DOWN_PREPARE_FROZEN:
6393 detach_destroy_domains(&cpu_online_map);
6394 return NOTIFY_OK;
6396 case CPU_UP_CANCELED:
6397 case CPU_UP_CANCELED_FROZEN:
6398 case CPU_DOWN_FAILED:
6399 case CPU_DOWN_FAILED_FROZEN:
6400 case CPU_ONLINE:
6401 case CPU_ONLINE_FROZEN:
6402 case CPU_DEAD:
6403 case CPU_DEAD_FROZEN:
6405 * Fall through and re-initialise the domains.
6407 break;
6408 default:
6409 return NOTIFY_DONE;
6412 /* The hotplug lock is already held by cpu_up/cpu_down */
6413 arch_init_sched_domains(&cpu_online_map);
6415 return NOTIFY_OK;
6418 void __init sched_init_smp(void)
6420 cpumask_t non_isolated_cpus;
6422 mutex_lock(&sched_hotcpu_mutex);
6423 arch_init_sched_domains(&cpu_online_map);
6424 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6425 if (cpus_empty(non_isolated_cpus))
6426 cpu_set(smp_processor_id(), non_isolated_cpus);
6427 mutex_unlock(&sched_hotcpu_mutex);
6428 /* XXX: Theoretical race here - CPU may be hotplugged now */
6429 hotcpu_notifier(update_sched_domains, 0);
6431 init_sched_domain_sysctl();
6433 /* Move init over to a non-isolated CPU */
6434 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6435 BUG();
6437 #else
6438 void __init sched_init_smp(void)
6441 #endif /* CONFIG_SMP */
6443 int in_sched_functions(unsigned long addr)
6445 /* Linker adds these: start and end of __sched functions */
6446 extern char __sched_text_start[], __sched_text_end[];
6448 return in_lock_functions(addr) ||
6449 (addr >= (unsigned long)__sched_text_start
6450 && addr < (unsigned long)__sched_text_end);
6453 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6455 cfs_rq->tasks_timeline = RB_ROOT;
6456 cfs_rq->fair_clock = 1;
6457 #ifdef CONFIG_FAIR_GROUP_SCHED
6458 cfs_rq->rq = rq;
6459 #endif
6462 void __init sched_init(void)
6464 int highest_cpu = 0;
6465 int i, j;
6468 * Link up the scheduling class hierarchy:
6470 rt_sched_class.next = &fair_sched_class;
6471 fair_sched_class.next = &idle_sched_class;
6472 idle_sched_class.next = NULL;
6474 for_each_possible_cpu(i) {
6475 struct rt_prio_array *array;
6476 struct rq *rq;
6478 rq = cpu_rq(i);
6479 spin_lock_init(&rq->lock);
6480 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6481 rq->nr_running = 0;
6482 rq->clock = 1;
6483 init_cfs_rq(&rq->cfs, rq);
6484 #ifdef CONFIG_FAIR_GROUP_SCHED
6485 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6486 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6487 #endif
6489 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6490 rq->cpu_load[j] = 0;
6491 #ifdef CONFIG_SMP
6492 rq->sd = NULL;
6493 rq->active_balance = 0;
6494 rq->next_balance = jiffies;
6495 rq->push_cpu = 0;
6496 rq->cpu = i;
6497 rq->migration_thread = NULL;
6498 INIT_LIST_HEAD(&rq->migration_queue);
6499 #endif
6500 atomic_set(&rq->nr_iowait, 0);
6502 array = &rq->rt.active;
6503 for (j = 0; j < MAX_RT_PRIO; j++) {
6504 INIT_LIST_HEAD(array->queue + j);
6505 __clear_bit(j, array->bitmap);
6507 highest_cpu = i;
6508 /* delimiter for bitsearch: */
6509 __set_bit(MAX_RT_PRIO, array->bitmap);
6512 set_load_weight(&init_task);
6514 #ifdef CONFIG_PREEMPT_NOTIFIERS
6515 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6516 #endif
6518 #ifdef CONFIG_SMP
6519 nr_cpu_ids = highest_cpu + 1;
6520 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6521 #endif
6523 #ifdef CONFIG_RT_MUTEXES
6524 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6525 #endif
6528 * The boot idle thread does lazy MMU switching as well:
6530 atomic_inc(&init_mm.mm_count);
6531 enter_lazy_tlb(&init_mm, current);
6534 * Make us the idle thread. Technically, schedule() should not be
6535 * called from this thread, however somewhere below it might be,
6536 * but because we are the idle thread, we just pick up running again
6537 * when this runqueue becomes "idle".
6539 init_idle(current, smp_processor_id());
6541 * During early bootup we pretend to be a normal task:
6543 current->sched_class = &fair_sched_class;
6546 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6547 void __might_sleep(char *file, int line)
6549 #ifdef in_atomic
6550 static unsigned long prev_jiffy; /* ratelimiting */
6552 if ((in_atomic() || irqs_disabled()) &&
6553 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6554 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6555 return;
6556 prev_jiffy = jiffies;
6557 printk(KERN_ERR "BUG: sleeping function called from invalid"
6558 " context at %s:%d\n", file, line);
6559 printk("in_atomic():%d, irqs_disabled():%d\n",
6560 in_atomic(), irqs_disabled());
6561 debug_show_held_locks(current);
6562 if (irqs_disabled())
6563 print_irqtrace_events(current);
6564 dump_stack();
6566 #endif
6568 EXPORT_SYMBOL(__might_sleep);
6569 #endif
6571 #ifdef CONFIG_MAGIC_SYSRQ
6572 void normalize_rt_tasks(void)
6574 struct task_struct *g, *p;
6575 unsigned long flags;
6576 struct rq *rq;
6577 int on_rq;
6579 read_lock_irq(&tasklist_lock);
6580 do_each_thread(g, p) {
6581 p->se.fair_key = 0;
6582 p->se.wait_runtime = 0;
6583 p->se.exec_start = 0;
6584 p->se.wait_start_fair = 0;
6585 p->se.sleep_start_fair = 0;
6586 #ifdef CONFIG_SCHEDSTATS
6587 p->se.wait_start = 0;
6588 p->se.sleep_start = 0;
6589 p->se.block_start = 0;
6590 #endif
6591 task_rq(p)->cfs.fair_clock = 0;
6592 task_rq(p)->clock = 0;
6594 if (!rt_task(p)) {
6596 * Renice negative nice level userspace
6597 * tasks back to 0:
6599 if (TASK_NICE(p) < 0 && p->mm)
6600 set_user_nice(p, 0);
6601 continue;
6604 spin_lock_irqsave(&p->pi_lock, flags);
6605 rq = __task_rq_lock(p);
6606 #ifdef CONFIG_SMP
6608 * Do not touch the migration thread:
6610 if (p == rq->migration_thread)
6611 goto out_unlock;
6612 #endif
6614 update_rq_clock(rq);
6615 on_rq = p->se.on_rq;
6616 if (on_rq)
6617 deactivate_task(rq, p, 0);
6618 __setscheduler(rq, p, SCHED_NORMAL, 0);
6619 if (on_rq) {
6620 activate_task(rq, p, 0);
6621 resched_task(rq->curr);
6623 #ifdef CONFIG_SMP
6624 out_unlock:
6625 #endif
6626 __task_rq_unlock(rq);
6627 spin_unlock_irqrestore(&p->pi_lock, flags);
6628 } while_each_thread(g, p);
6630 read_unlock_irq(&tasklist_lock);
6633 #endif /* CONFIG_MAGIC_SYSRQ */
6635 #ifdef CONFIG_IA64
6637 * These functions are only useful for the IA64 MCA handling.
6639 * They can only be called when the whole system has been
6640 * stopped - every CPU needs to be quiescent, and no scheduling
6641 * activity can take place. Using them for anything else would
6642 * be a serious bug, and as a result, they aren't even visible
6643 * under any other configuration.
6647 * curr_task - return the current task for a given cpu.
6648 * @cpu: the processor in question.
6650 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6652 struct task_struct *curr_task(int cpu)
6654 return cpu_curr(cpu);
6658 * set_curr_task - set the current task for a given cpu.
6659 * @cpu: the processor in question.
6660 * @p: the task pointer to set.
6662 * Description: This function must only be used when non-maskable interrupts
6663 * are serviced on a separate stack. It allows the architecture to switch the
6664 * notion of the current task on a cpu in a non-blocking manner. This function
6665 * must be called with all CPU's synchronized, and interrupts disabled, the
6666 * and caller must save the original value of the current task (see
6667 * curr_task() above) and restore that value before reenabling interrupts and
6668 * re-starting the system.
6670 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6672 void set_curr_task(int cpu, struct task_struct *p)
6674 cpu_curr(cpu) = p;
6677 #endif