sched: rt throttling vs no_hz
[linux-2.6/kmemtrace.git] / kernel / sched_rt.c
blob8bfdb3f8a52d6456b468fa5ddeeb5b872d1cec79
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #ifdef CONFIG_SMP
8 static inline int rt_overloaded(struct rq *rq)
10 return atomic_read(&rq->rd->rto_count);
13 static inline void rt_set_overload(struct rq *rq)
15 cpu_set(rq->cpu, rq->rd->rto_mask);
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
23 wmb();
24 atomic_inc(&rq->rd->rto_count);
27 static inline void rt_clear_overload(struct rq *rq)
29 /* the order here really doesn't matter */
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
34 static void update_rt_migration(struct rq *rq)
36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
41 } else if (rq->rt.overloaded) {
42 rt_clear_overload(rq);
43 rq->rt.overloaded = 0;
46 #endif /* CONFIG_SMP */
48 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
50 return container_of(rt_se, struct task_struct, rt);
53 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
55 return !list_empty(&rt_se->run_list);
58 #ifdef CONFIG_FAIR_GROUP_SCHED
60 static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
62 if (!rt_rq->tg)
63 return SCHED_RT_FRAC;
65 return rt_rq->tg->rt_ratio;
68 #define for_each_leaf_rt_rq(rt_rq, rq) \
69 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
71 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
73 return rt_rq->rq;
76 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
78 return rt_se->rt_rq;
81 #define for_each_sched_rt_entity(rt_se) \
82 for (; rt_se; rt_se = rt_se->parent)
84 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
86 return rt_se->my_q;
89 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
90 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
92 static void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
94 struct sched_rt_entity *rt_se = rt_rq->rt_se;
96 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
97 enqueue_rt_entity(rt_se);
98 resched_task(rq_of_rt_rq(rt_rq)->curr);
102 static void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
104 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106 if (rt_se && on_rt_rq(rt_se))
107 dequeue_rt_entity(rt_se);
110 #else
112 static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
114 return sysctl_sched_rt_ratio;
117 #define for_each_leaf_rt_rq(rt_rq, rq) \
118 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
120 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
122 return container_of(rt_rq, struct rq, rt);
125 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
127 struct task_struct *p = rt_task_of(rt_se);
128 struct rq *rq = task_rq(p);
130 return &rq->rt;
133 #define for_each_sched_rt_entity(rt_se) \
134 for (; rt_se; rt_se = NULL)
136 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
138 return NULL;
141 static inline void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
145 static inline void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
149 #endif
151 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
153 #ifdef CONFIG_FAIR_GROUP_SCHED
154 struct rt_rq *rt_rq = group_rt_rq(rt_se);
156 if (rt_rq)
157 return rt_rq->highest_prio;
158 #endif
160 return rt_task_of(rt_se)->prio;
163 static int sched_rt_ratio_exceeded(struct rt_rq *rt_rq)
165 unsigned int rt_ratio = sched_rt_ratio(rt_rq);
166 u64 period, ratio;
168 if (rt_ratio == SCHED_RT_FRAC)
169 return 0;
171 if (rt_rq->rt_throttled)
172 return 1;
174 period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
175 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;
177 if (rt_rq->rt_time > ratio) {
178 struct rq *rq = rq_of_rt_rq(rt_rq);
180 rq->rt_throttled = 1;
181 rt_rq->rt_throttled = 1;
183 sched_rt_ratio_dequeue(rt_rq);
184 return 1;
187 return 0;
190 static void update_sched_rt_period(struct rq *rq)
192 struct rt_rq *rt_rq;
193 u64 period;
195 while (rq->clock > rq->rt_period_expire) {
196 period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
197 rq->rt_period_expire += period;
199 for_each_leaf_rt_rq(rt_rq, rq) {
200 unsigned long rt_ratio = sched_rt_ratio(rt_rq);
201 u64 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;
203 rt_rq->rt_time -= min(rt_rq->rt_time, ratio);
204 if (rt_rq->rt_throttled) {
205 rt_rq->rt_throttled = 0;
206 sched_rt_ratio_enqueue(rt_rq);
210 rq->rt_throttled = 0;
215 * Update the current task's runtime statistics. Skip current tasks that
216 * are not in our scheduling class.
218 static void update_curr_rt(struct rq *rq)
220 struct task_struct *curr = rq->curr;
221 struct sched_rt_entity *rt_se = &curr->rt;
222 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
223 u64 delta_exec;
225 if (!task_has_rt_policy(curr))
226 return;
228 delta_exec = rq->clock - curr->se.exec_start;
229 if (unlikely((s64)delta_exec < 0))
230 delta_exec = 0;
232 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
234 curr->se.sum_exec_runtime += delta_exec;
235 curr->se.exec_start = rq->clock;
236 cpuacct_charge(curr, delta_exec);
238 rt_rq->rt_time += delta_exec;
240 * might make it a tad more accurate:
242 * update_sched_rt_period(rq);
244 if (sched_rt_ratio_exceeded(rt_rq))
245 resched_task(curr);
248 static inline
249 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
251 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
252 rt_rq->rt_nr_running++;
253 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
254 if (rt_se_prio(rt_se) < rt_rq->highest_prio)
255 rt_rq->highest_prio = rt_se_prio(rt_se);
256 #endif
257 #ifdef CONFIG_SMP
258 if (rt_se->nr_cpus_allowed > 1) {
259 struct rq *rq = rq_of_rt_rq(rt_rq);
260 rq->rt.rt_nr_migratory++;
263 update_rt_migration(rq_of_rt_rq(rt_rq));
264 #endif
267 static inline
268 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
270 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
271 WARN_ON(!rt_rq->rt_nr_running);
272 rt_rq->rt_nr_running--;
273 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
274 if (rt_rq->rt_nr_running) {
275 struct rt_prio_array *array;
277 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
278 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
279 /* recalculate */
280 array = &rt_rq->active;
281 rt_rq->highest_prio =
282 sched_find_first_bit(array->bitmap);
283 } /* otherwise leave rq->highest prio alone */
284 } else
285 rt_rq->highest_prio = MAX_RT_PRIO;
286 #endif
287 #ifdef CONFIG_SMP
288 if (rt_se->nr_cpus_allowed > 1) {
289 struct rq *rq = rq_of_rt_rq(rt_rq);
290 rq->rt.rt_nr_migratory--;
293 update_rt_migration(rq_of_rt_rq(rt_rq));
294 #endif /* CONFIG_SMP */
297 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
299 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
300 struct rt_prio_array *array = &rt_rq->active;
301 struct rt_rq *group_rq = group_rt_rq(rt_se);
303 if (group_rq && group_rq->rt_throttled)
304 return;
306 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
307 __set_bit(rt_se_prio(rt_se), array->bitmap);
309 inc_rt_tasks(rt_se, rt_rq);
312 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
314 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
315 struct rt_prio_array *array = &rt_rq->active;
317 list_del_init(&rt_se->run_list);
318 if (list_empty(array->queue + rt_se_prio(rt_se)))
319 __clear_bit(rt_se_prio(rt_se), array->bitmap);
321 dec_rt_tasks(rt_se, rt_rq);
325 * Because the prio of an upper entry depends on the lower
326 * entries, we must remove entries top - down.
328 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
329 * doesn't matter much for now, as h=2 for GROUP_SCHED.
331 static void dequeue_rt_stack(struct task_struct *p)
333 struct sched_rt_entity *rt_se, *top_se;
336 * dequeue all, top - down.
338 do {
339 rt_se = &p->rt;
340 top_se = NULL;
341 for_each_sched_rt_entity(rt_se) {
342 if (on_rt_rq(rt_se))
343 top_se = rt_se;
345 if (top_se)
346 dequeue_rt_entity(top_se);
347 } while (top_se);
351 * Adding/removing a task to/from a priority array:
353 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
355 struct sched_rt_entity *rt_se = &p->rt;
357 if (wakeup)
358 rt_se->timeout = 0;
360 dequeue_rt_stack(p);
363 * enqueue everybody, bottom - up.
365 for_each_sched_rt_entity(rt_se)
366 enqueue_rt_entity(rt_se);
368 inc_cpu_load(rq, p->se.load.weight);
371 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
373 struct sched_rt_entity *rt_se = &p->rt;
374 struct rt_rq *rt_rq;
376 update_curr_rt(rq);
378 dequeue_rt_stack(p);
381 * re-enqueue all non-empty rt_rq entities.
383 for_each_sched_rt_entity(rt_se) {
384 rt_rq = group_rt_rq(rt_se);
385 if (rt_rq && rt_rq->rt_nr_running)
386 enqueue_rt_entity(rt_se);
389 dec_cpu_load(rq, p->se.load.weight);
393 * Put task to the end of the run list without the overhead of dequeue
394 * followed by enqueue.
396 static
397 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
399 struct rt_prio_array *array = &rt_rq->active;
401 list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
404 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
406 struct sched_rt_entity *rt_se = &p->rt;
407 struct rt_rq *rt_rq;
409 for_each_sched_rt_entity(rt_se) {
410 rt_rq = rt_rq_of_se(rt_se);
411 requeue_rt_entity(rt_rq, rt_se);
415 static void yield_task_rt(struct rq *rq)
417 requeue_task_rt(rq, rq->curr);
420 #ifdef CONFIG_SMP
421 static int find_lowest_rq(struct task_struct *task);
423 static int select_task_rq_rt(struct task_struct *p, int sync)
425 struct rq *rq = task_rq(p);
428 * If the current task is an RT task, then
429 * try to see if we can wake this RT task up on another
430 * runqueue. Otherwise simply start this RT task
431 * on its current runqueue.
433 * We want to avoid overloading runqueues. Even if
434 * the RT task is of higher priority than the current RT task.
435 * RT tasks behave differently than other tasks. If
436 * one gets preempted, we try to push it off to another queue.
437 * So trying to keep a preempting RT task on the same
438 * cache hot CPU will force the running RT task to
439 * a cold CPU. So we waste all the cache for the lower
440 * RT task in hopes of saving some of a RT task
441 * that is just being woken and probably will have
442 * cold cache anyway.
444 if (unlikely(rt_task(rq->curr)) &&
445 (p->rt.nr_cpus_allowed > 1)) {
446 int cpu = find_lowest_rq(p);
448 return (cpu == -1) ? task_cpu(p) : cpu;
452 * Otherwise, just let it ride on the affined RQ and the
453 * post-schedule router will push the preempted task away
455 return task_cpu(p);
457 #endif /* CONFIG_SMP */
460 * Preempt the current task with a newly woken task if needed:
462 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
464 if (p->prio < rq->curr->prio)
465 resched_task(rq->curr);
468 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
469 struct rt_rq *rt_rq)
471 struct rt_prio_array *array = &rt_rq->active;
472 struct sched_rt_entity *next = NULL;
473 struct list_head *queue;
474 int idx;
476 if (sched_rt_ratio_exceeded(rt_rq))
477 goto out;
479 idx = sched_find_first_bit(array->bitmap);
480 BUG_ON(idx >= MAX_RT_PRIO);
482 queue = array->queue + idx;
483 next = list_entry(queue->next, struct sched_rt_entity, run_list);
484 out:
485 return next;
488 static struct task_struct *pick_next_task_rt(struct rq *rq)
490 struct sched_rt_entity *rt_se;
491 struct task_struct *p;
492 struct rt_rq *rt_rq;
494 retry:
495 rt_rq = &rq->rt;
497 if (unlikely(!rt_rq->rt_nr_running))
498 return NULL;
500 if (sched_rt_ratio_exceeded(rt_rq))
501 return NULL;
503 do {
504 rt_se = pick_next_rt_entity(rq, rt_rq);
505 if (unlikely(!rt_se))
506 goto retry;
507 rt_rq = group_rt_rq(rt_se);
508 } while (rt_rq);
510 p = rt_task_of(rt_se);
511 p->se.exec_start = rq->clock;
512 return p;
515 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
517 update_curr_rt(rq);
518 p->se.exec_start = 0;
521 #ifdef CONFIG_SMP
523 /* Only try algorithms three times */
524 #define RT_MAX_TRIES 3
526 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
527 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
529 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
531 if (!task_running(rq, p) &&
532 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
533 (p->rt.nr_cpus_allowed > 1))
534 return 1;
535 return 0;
538 /* Return the second highest RT task, NULL otherwise */
539 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
541 struct task_struct *next = NULL;
542 struct sched_rt_entity *rt_se;
543 struct rt_prio_array *array;
544 struct rt_rq *rt_rq;
545 int idx;
547 for_each_leaf_rt_rq(rt_rq, rq) {
548 array = &rt_rq->active;
549 idx = sched_find_first_bit(array->bitmap);
550 next_idx:
551 if (idx >= MAX_RT_PRIO)
552 continue;
553 if (next && next->prio < idx)
554 continue;
555 list_for_each_entry(rt_se, array->queue + idx, run_list) {
556 struct task_struct *p = rt_task_of(rt_se);
557 if (pick_rt_task(rq, p, cpu)) {
558 next = p;
559 break;
562 if (!next) {
563 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
564 goto next_idx;
568 return next;
571 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
573 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
575 int lowest_prio = -1;
576 int lowest_cpu = -1;
577 int count = 0;
578 int cpu;
580 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
583 * Scan each rq for the lowest prio.
585 for_each_cpu_mask(cpu, *lowest_mask) {
586 struct rq *rq = cpu_rq(cpu);
588 /* We look for lowest RT prio or non-rt CPU */
589 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
591 * if we already found a low RT queue
592 * and now we found this non-rt queue
593 * clear the mask and set our bit.
594 * Otherwise just return the queue as is
595 * and the count==1 will cause the algorithm
596 * to use the first bit found.
598 if (lowest_cpu != -1) {
599 cpus_clear(*lowest_mask);
600 cpu_set(rq->cpu, *lowest_mask);
602 return 1;
605 /* no locking for now */
606 if ((rq->rt.highest_prio > task->prio)
607 && (rq->rt.highest_prio >= lowest_prio)) {
608 if (rq->rt.highest_prio > lowest_prio) {
609 /* new low - clear old data */
610 lowest_prio = rq->rt.highest_prio;
611 lowest_cpu = cpu;
612 count = 0;
614 count++;
615 } else
616 cpu_clear(cpu, *lowest_mask);
620 * Clear out all the set bits that represent
621 * runqueues that were of higher prio than
622 * the lowest_prio.
624 if (lowest_cpu > 0) {
626 * Perhaps we could add another cpumask op to
627 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
628 * Then that could be optimized to use memset and such.
630 for_each_cpu_mask(cpu, *lowest_mask) {
631 if (cpu >= lowest_cpu)
632 break;
633 cpu_clear(cpu, *lowest_mask);
637 return count;
640 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
642 int first;
644 /* "this_cpu" is cheaper to preempt than a remote processor */
645 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
646 return this_cpu;
648 first = first_cpu(*mask);
649 if (first != NR_CPUS)
650 return first;
652 return -1;
655 static int find_lowest_rq(struct task_struct *task)
657 struct sched_domain *sd;
658 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
659 int this_cpu = smp_processor_id();
660 int cpu = task_cpu(task);
661 int count = find_lowest_cpus(task, lowest_mask);
663 if (!count)
664 return -1; /* No targets found */
667 * There is no sense in performing an optimal search if only one
668 * target is found.
670 if (count == 1)
671 return first_cpu(*lowest_mask);
674 * At this point we have built a mask of cpus representing the
675 * lowest priority tasks in the system. Now we want to elect
676 * the best one based on our affinity and topology.
678 * We prioritize the last cpu that the task executed on since
679 * it is most likely cache-hot in that location.
681 if (cpu_isset(cpu, *lowest_mask))
682 return cpu;
685 * Otherwise, we consult the sched_domains span maps to figure
686 * out which cpu is logically closest to our hot cache data.
688 if (this_cpu == cpu)
689 this_cpu = -1; /* Skip this_cpu opt if the same */
691 for_each_domain(cpu, sd) {
692 if (sd->flags & SD_WAKE_AFFINE) {
693 cpumask_t domain_mask;
694 int best_cpu;
696 cpus_and(domain_mask, sd->span, *lowest_mask);
698 best_cpu = pick_optimal_cpu(this_cpu,
699 &domain_mask);
700 if (best_cpu != -1)
701 return best_cpu;
706 * And finally, if there were no matches within the domains
707 * just give the caller *something* to work with from the compatible
708 * locations.
710 return pick_optimal_cpu(this_cpu, lowest_mask);
713 /* Will lock the rq it finds */
714 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
716 struct rq *lowest_rq = NULL;
717 int tries;
718 int cpu;
720 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
721 cpu = find_lowest_rq(task);
723 if ((cpu == -1) || (cpu == rq->cpu))
724 break;
726 lowest_rq = cpu_rq(cpu);
728 /* if the prio of this runqueue changed, try again */
729 if (double_lock_balance(rq, lowest_rq)) {
731 * We had to unlock the run queue. In
732 * the mean time, task could have
733 * migrated already or had its affinity changed.
734 * Also make sure that it wasn't scheduled on its rq.
736 if (unlikely(task_rq(task) != rq ||
737 !cpu_isset(lowest_rq->cpu,
738 task->cpus_allowed) ||
739 task_running(rq, task) ||
740 !task->se.on_rq)) {
742 spin_unlock(&lowest_rq->lock);
743 lowest_rq = NULL;
744 break;
748 /* If this rq is still suitable use it. */
749 if (lowest_rq->rt.highest_prio > task->prio)
750 break;
752 /* try again */
753 spin_unlock(&lowest_rq->lock);
754 lowest_rq = NULL;
757 return lowest_rq;
761 * If the current CPU has more than one RT task, see if the non
762 * running task can migrate over to a CPU that is running a task
763 * of lesser priority.
765 static int push_rt_task(struct rq *rq)
767 struct task_struct *next_task;
768 struct rq *lowest_rq;
769 int ret = 0;
770 int paranoid = RT_MAX_TRIES;
772 if (!rq->rt.overloaded)
773 return 0;
775 next_task = pick_next_highest_task_rt(rq, -1);
776 if (!next_task)
777 return 0;
779 retry:
780 if (unlikely(next_task == rq->curr)) {
781 WARN_ON(1);
782 return 0;
786 * It's possible that the next_task slipped in of
787 * higher priority than current. If that's the case
788 * just reschedule current.
790 if (unlikely(next_task->prio < rq->curr->prio)) {
791 resched_task(rq->curr);
792 return 0;
795 /* We might release rq lock */
796 get_task_struct(next_task);
798 /* find_lock_lowest_rq locks the rq if found */
799 lowest_rq = find_lock_lowest_rq(next_task, rq);
800 if (!lowest_rq) {
801 struct task_struct *task;
803 * find lock_lowest_rq releases rq->lock
804 * so it is possible that next_task has changed.
805 * If it has, then try again.
807 task = pick_next_highest_task_rt(rq, -1);
808 if (unlikely(task != next_task) && task && paranoid--) {
809 put_task_struct(next_task);
810 next_task = task;
811 goto retry;
813 goto out;
816 deactivate_task(rq, next_task, 0);
817 set_task_cpu(next_task, lowest_rq->cpu);
818 activate_task(lowest_rq, next_task, 0);
820 resched_task(lowest_rq->curr);
822 spin_unlock(&lowest_rq->lock);
824 ret = 1;
825 out:
826 put_task_struct(next_task);
828 return ret;
832 * TODO: Currently we just use the second highest prio task on
833 * the queue, and stop when it can't migrate (or there's
834 * no more RT tasks). There may be a case where a lower
835 * priority RT task has a different affinity than the
836 * higher RT task. In this case the lower RT task could
837 * possibly be able to migrate where as the higher priority
838 * RT task could not. We currently ignore this issue.
839 * Enhancements are welcome!
841 static void push_rt_tasks(struct rq *rq)
843 /* push_rt_task will return true if it moved an RT */
844 while (push_rt_task(rq))
848 static int pull_rt_task(struct rq *this_rq)
850 int this_cpu = this_rq->cpu, ret = 0, cpu;
851 struct task_struct *p, *next;
852 struct rq *src_rq;
854 if (likely(!rt_overloaded(this_rq)))
855 return 0;
857 next = pick_next_task_rt(this_rq);
859 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
860 if (this_cpu == cpu)
861 continue;
863 src_rq = cpu_rq(cpu);
865 * We can potentially drop this_rq's lock in
866 * double_lock_balance, and another CPU could
867 * steal our next task - hence we must cause
868 * the caller to recalculate the next task
869 * in that case:
871 if (double_lock_balance(this_rq, src_rq)) {
872 struct task_struct *old_next = next;
874 next = pick_next_task_rt(this_rq);
875 if (next != old_next)
876 ret = 1;
880 * Are there still pullable RT tasks?
882 if (src_rq->rt.rt_nr_running <= 1)
883 goto skip;
885 p = pick_next_highest_task_rt(src_rq, this_cpu);
888 * Do we have an RT task that preempts
889 * the to-be-scheduled task?
891 if (p && (!next || (p->prio < next->prio))) {
892 WARN_ON(p == src_rq->curr);
893 WARN_ON(!p->se.on_rq);
896 * There's a chance that p is higher in priority
897 * than what's currently running on its cpu.
898 * This is just that p is wakeing up and hasn't
899 * had a chance to schedule. We only pull
900 * p if it is lower in priority than the
901 * current task on the run queue or
902 * this_rq next task is lower in prio than
903 * the current task on that rq.
905 if (p->prio < src_rq->curr->prio ||
906 (next && next->prio < src_rq->curr->prio))
907 goto skip;
909 ret = 1;
911 deactivate_task(src_rq, p, 0);
912 set_task_cpu(p, this_cpu);
913 activate_task(this_rq, p, 0);
915 * We continue with the search, just in
916 * case there's an even higher prio task
917 * in another runqueue. (low likelyhood
918 * but possible)
920 * Update next so that we won't pick a task
921 * on another cpu with a priority lower (or equal)
922 * than the one we just picked.
924 next = p;
927 skip:
928 spin_unlock(&src_rq->lock);
931 return ret;
934 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
936 /* Try to pull RT tasks here if we lower this rq's prio */
937 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
938 pull_rt_task(rq);
941 static void post_schedule_rt(struct rq *rq)
944 * If we have more than one rt_task queued, then
945 * see if we can push the other rt_tasks off to other CPUS.
946 * Note we may release the rq lock, and since
947 * the lock was owned by prev, we need to release it
948 * first via finish_lock_switch and then reaquire it here.
950 if (unlikely(rq->rt.overloaded)) {
951 spin_lock_irq(&rq->lock);
952 push_rt_tasks(rq);
953 spin_unlock_irq(&rq->lock);
958 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
960 if (!task_running(rq, p) &&
961 (p->prio >= rq->rt.highest_prio) &&
962 rq->rt.overloaded)
963 push_rt_tasks(rq);
966 static unsigned long
967 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
968 unsigned long max_load_move,
969 struct sched_domain *sd, enum cpu_idle_type idle,
970 int *all_pinned, int *this_best_prio)
972 /* don't touch RT tasks */
973 return 0;
976 static int
977 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
978 struct sched_domain *sd, enum cpu_idle_type idle)
980 /* don't touch RT tasks */
981 return 0;
984 static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
986 int weight = cpus_weight(*new_mask);
988 BUG_ON(!rt_task(p));
991 * Update the migration status of the RQ if we have an RT task
992 * which is running AND changing its weight value.
994 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
995 struct rq *rq = task_rq(p);
997 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
998 rq->rt.rt_nr_migratory++;
999 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1000 BUG_ON(!rq->rt.rt_nr_migratory);
1001 rq->rt.rt_nr_migratory--;
1004 update_rt_migration(rq);
1007 p->cpus_allowed = *new_mask;
1008 p->rt.nr_cpus_allowed = weight;
1011 /* Assumes rq->lock is held */
1012 static void join_domain_rt(struct rq *rq)
1014 if (rq->rt.overloaded)
1015 rt_set_overload(rq);
1018 /* Assumes rq->lock is held */
1019 static void leave_domain_rt(struct rq *rq)
1021 if (rq->rt.overloaded)
1022 rt_clear_overload(rq);
1026 * When switch from the rt queue, we bring ourselves to a position
1027 * that we might want to pull RT tasks from other runqueues.
1029 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1030 int running)
1033 * If there are other RT tasks then we will reschedule
1034 * and the scheduling of the other RT tasks will handle
1035 * the balancing. But if we are the last RT task
1036 * we may need to handle the pulling of RT tasks
1037 * now.
1039 if (!rq->rt.rt_nr_running)
1040 pull_rt_task(rq);
1042 #endif /* CONFIG_SMP */
1045 * When switching a task to RT, we may overload the runqueue
1046 * with RT tasks. In this case we try to push them off to
1047 * other runqueues.
1049 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1050 int running)
1052 int check_resched = 1;
1055 * If we are already running, then there's nothing
1056 * that needs to be done. But if we are not running
1057 * we may need to preempt the current running task.
1058 * If that current running task is also an RT task
1059 * then see if we can move to another run queue.
1061 if (!running) {
1062 #ifdef CONFIG_SMP
1063 if (rq->rt.overloaded && push_rt_task(rq) &&
1064 /* Don't resched if we changed runqueues */
1065 rq != task_rq(p))
1066 check_resched = 0;
1067 #endif /* CONFIG_SMP */
1068 if (check_resched && p->prio < rq->curr->prio)
1069 resched_task(rq->curr);
1074 * Priority of the task has changed. This may cause
1075 * us to initiate a push or pull.
1077 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1078 int oldprio, int running)
1080 if (running) {
1081 #ifdef CONFIG_SMP
1083 * If our priority decreases while running, we
1084 * may need to pull tasks to this runqueue.
1086 if (oldprio < p->prio)
1087 pull_rt_task(rq);
1089 * If there's a higher priority task waiting to run
1090 * then reschedule.
1092 if (p->prio > rq->rt.highest_prio)
1093 resched_task(p);
1094 #else
1095 /* For UP simply resched on drop of prio */
1096 if (oldprio < p->prio)
1097 resched_task(p);
1098 #endif /* CONFIG_SMP */
1099 } else {
1101 * This task is not running, but if it is
1102 * greater than the current running task
1103 * then reschedule.
1105 if (p->prio < rq->curr->prio)
1106 resched_task(rq->curr);
1110 static void watchdog(struct rq *rq, struct task_struct *p)
1112 unsigned long soft, hard;
1114 if (!p->signal)
1115 return;
1117 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1118 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1120 if (soft != RLIM_INFINITY) {
1121 unsigned long next;
1123 p->rt.timeout++;
1124 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1125 if (next > p->rt.timeout) {
1126 u64 next_time = p->se.sum_exec_runtime;
1128 next_time += next * (NSEC_PER_SEC/HZ);
1129 if (p->it_sched_expires > next_time)
1130 p->it_sched_expires = next_time;
1131 } else
1132 p->it_sched_expires = p->se.sum_exec_runtime;
1136 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1138 update_curr_rt(rq);
1140 watchdog(rq, p);
1143 * RR tasks need a special form of timeslice management.
1144 * FIFO tasks have no timeslices.
1146 if (p->policy != SCHED_RR)
1147 return;
1149 if (--p->rt.time_slice)
1150 return;
1152 p->rt.time_slice = DEF_TIMESLICE;
1155 * Requeue to the end of queue if we are not the only element
1156 * on the queue:
1158 if (p->rt.run_list.prev != p->rt.run_list.next) {
1159 requeue_task_rt(rq, p);
1160 set_tsk_need_resched(p);
1164 static void set_curr_task_rt(struct rq *rq)
1166 struct task_struct *p = rq->curr;
1168 p->se.exec_start = rq->clock;
1171 const struct sched_class rt_sched_class = {
1172 .next = &fair_sched_class,
1173 .enqueue_task = enqueue_task_rt,
1174 .dequeue_task = dequeue_task_rt,
1175 .yield_task = yield_task_rt,
1176 #ifdef CONFIG_SMP
1177 .select_task_rq = select_task_rq_rt,
1178 #endif /* CONFIG_SMP */
1180 .check_preempt_curr = check_preempt_curr_rt,
1182 .pick_next_task = pick_next_task_rt,
1183 .put_prev_task = put_prev_task_rt,
1185 #ifdef CONFIG_SMP
1186 .load_balance = load_balance_rt,
1187 .move_one_task = move_one_task_rt,
1188 .set_cpus_allowed = set_cpus_allowed_rt,
1189 .join_domain = join_domain_rt,
1190 .leave_domain = leave_domain_rt,
1191 .pre_schedule = pre_schedule_rt,
1192 .post_schedule = post_schedule_rt,
1193 .task_wake_up = task_wake_up_rt,
1194 .switched_from = switched_from_rt,
1195 #endif
1197 .set_curr_task = set_curr_task_rt,
1198 .task_tick = task_tick_rt,
1200 .prio_changed = prio_changed_rt,
1201 .switched_to = switched_to_rt,