2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
28 #include <asm/byteorder.h>
30 #include <asm/uaccess.h>
34 * Conventional PIO operations for ATA devices
37 static u8
ide_inb (unsigned long port
)
39 return (u8
) inb(port
);
42 static u16
ide_inw (unsigned long port
)
44 return (u16
) inw(port
);
47 static void ide_insw (unsigned long port
, void *addr
, u32 count
)
49 insw(port
, addr
, count
);
52 static void ide_insl (unsigned long port
, void *addr
, u32 count
)
54 insl(port
, addr
, count
);
57 static void ide_outb (u8 val
, unsigned long port
)
62 static void ide_outbsync (ide_drive_t
*drive
, u8 addr
, unsigned long port
)
67 static void ide_outw (u16 val
, unsigned long port
)
72 static void ide_outsw (unsigned long port
, void *addr
, u32 count
)
74 outsw(port
, addr
, count
);
77 static void ide_outsl (unsigned long port
, void *addr
, u32 count
)
79 outsl(port
, addr
, count
);
82 void default_hwif_iops (ide_hwif_t
*hwif
)
84 hwif
->OUTB
= ide_outb
;
85 hwif
->OUTBSYNC
= ide_outbsync
;
86 hwif
->OUTW
= ide_outw
;
87 hwif
->OUTSW
= ide_outsw
;
88 hwif
->OUTSL
= ide_outsl
;
91 hwif
->INSW
= ide_insw
;
92 hwif
->INSL
= ide_insl
;
96 * MMIO operations, typically used for SATA controllers
99 static u8
ide_mm_inb (unsigned long port
)
101 return (u8
) readb((void __iomem
*) port
);
104 static u16
ide_mm_inw (unsigned long port
)
106 return (u16
) readw((void __iomem
*) port
);
109 static void ide_mm_insw (unsigned long port
, void *addr
, u32 count
)
111 __ide_mm_insw((void __iomem
*) port
, addr
, count
);
114 static void ide_mm_insl (unsigned long port
, void *addr
, u32 count
)
116 __ide_mm_insl((void __iomem
*) port
, addr
, count
);
119 static void ide_mm_outb (u8 value
, unsigned long port
)
121 writeb(value
, (void __iomem
*) port
);
124 static void ide_mm_outbsync (ide_drive_t
*drive
, u8 value
, unsigned long port
)
126 writeb(value
, (void __iomem
*) port
);
129 static void ide_mm_outw (u16 value
, unsigned long port
)
131 writew(value
, (void __iomem
*) port
);
134 static void ide_mm_outsw (unsigned long port
, void *addr
, u32 count
)
136 __ide_mm_outsw((void __iomem
*) port
, addr
, count
);
139 static void ide_mm_outsl (unsigned long port
, void *addr
, u32 count
)
141 __ide_mm_outsl((void __iomem
*) port
, addr
, count
);
144 void default_hwif_mmiops (ide_hwif_t
*hwif
)
146 hwif
->OUTB
= ide_mm_outb
;
147 /* Most systems will need to override OUTBSYNC, alas however
148 this one is controller specific! */
149 hwif
->OUTBSYNC
= ide_mm_outbsync
;
150 hwif
->OUTW
= ide_mm_outw
;
151 hwif
->OUTSW
= ide_mm_outsw
;
152 hwif
->OUTSL
= ide_mm_outsl
;
153 hwif
->INB
= ide_mm_inb
;
154 hwif
->INW
= ide_mm_inw
;
155 hwif
->INSW
= ide_mm_insw
;
156 hwif
->INSL
= ide_mm_insl
;
159 EXPORT_SYMBOL(default_hwif_mmiops
);
161 u32
ide_read_24 (ide_drive_t
*drive
)
163 u8 hcyl
= HWIF(drive
)->INB(IDE_HCYL_REG
);
164 u8 lcyl
= HWIF(drive
)->INB(IDE_LCYL_REG
);
165 u8 sect
= HWIF(drive
)->INB(IDE_SECTOR_REG
);
166 return (hcyl
<<16)|(lcyl
<<8)|sect
;
169 void SELECT_DRIVE (ide_drive_t
*drive
)
171 if (HWIF(drive
)->selectproc
)
172 HWIF(drive
)->selectproc(drive
);
173 HWIF(drive
)->OUTB(drive
->select
.all
, IDE_SELECT_REG
);
176 EXPORT_SYMBOL(SELECT_DRIVE
);
178 void SELECT_INTERRUPT (ide_drive_t
*drive
)
180 if (HWIF(drive
)->intrproc
)
181 HWIF(drive
)->intrproc(drive
);
183 HWIF(drive
)->OUTB(drive
->ctl
|2, IDE_CONTROL_REG
);
186 void SELECT_MASK (ide_drive_t
*drive
, int mask
)
188 if (HWIF(drive
)->maskproc
)
189 HWIF(drive
)->maskproc(drive
, mask
);
192 void QUIRK_LIST (ide_drive_t
*drive
)
194 if (HWIF(drive
)->quirkproc
)
195 drive
->quirk_list
= HWIF(drive
)->quirkproc(drive
);
199 * Some localbus EIDE interfaces require a special access sequence
200 * when using 32-bit I/O instructions to transfer data. We call this
201 * the "vlb_sync" sequence, which consists of three successive reads
202 * of the sector count register location, with interrupts disabled
203 * to ensure that the reads all happen together.
205 static void ata_vlb_sync(ide_drive_t
*drive
, unsigned long port
)
207 (void) HWIF(drive
)->INB(port
);
208 (void) HWIF(drive
)->INB(port
);
209 (void) HWIF(drive
)->INB(port
);
213 * This is used for most PIO data transfers *from* the IDE interface
215 static void ata_input_data(ide_drive_t
*drive
, void *buffer
, u32 wcount
)
217 ide_hwif_t
*hwif
= HWIF(drive
);
218 u8 io_32bit
= drive
->io_32bit
;
223 local_irq_save(flags
);
224 ata_vlb_sync(drive
, IDE_NSECTOR_REG
);
225 hwif
->INSL(IDE_DATA_REG
, buffer
, wcount
);
226 local_irq_restore(flags
);
228 hwif
->INSL(IDE_DATA_REG
, buffer
, wcount
);
230 hwif
->INSW(IDE_DATA_REG
, buffer
, wcount
<<1);
235 * This is used for most PIO data transfers *to* the IDE interface
237 static void ata_output_data(ide_drive_t
*drive
, void *buffer
, u32 wcount
)
239 ide_hwif_t
*hwif
= HWIF(drive
);
240 u8 io_32bit
= drive
->io_32bit
;
245 local_irq_save(flags
);
246 ata_vlb_sync(drive
, IDE_NSECTOR_REG
);
247 hwif
->OUTSL(IDE_DATA_REG
, buffer
, wcount
);
248 local_irq_restore(flags
);
250 hwif
->OUTSL(IDE_DATA_REG
, buffer
, wcount
);
252 hwif
->OUTSW(IDE_DATA_REG
, buffer
, wcount
<<1);
257 * The following routines are mainly used by the ATAPI drivers.
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd bytecount is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
264 static void atapi_input_bytes(ide_drive_t
*drive
, void *buffer
, u32 bytecount
)
266 ide_hwif_t
*hwif
= HWIF(drive
);
269 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270 if (MACH_IS_ATARI
|| MACH_IS_Q40
) {
271 /* Atari has a byte-swapped IDE interface */
272 insw_swapw(IDE_DATA_REG
, buffer
, bytecount
/ 2);
275 #endif /* CONFIG_ATARI || CONFIG_Q40 */
276 hwif
->ata_input_data(drive
, buffer
, bytecount
/ 4);
277 if ((bytecount
& 0x03) >= 2)
278 hwif
->INSW(IDE_DATA_REG
, ((u8
*)buffer
)+(bytecount
& ~0x03), 1);
281 static void atapi_output_bytes(ide_drive_t
*drive
, void *buffer
, u32 bytecount
)
283 ide_hwif_t
*hwif
= HWIF(drive
);
286 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287 if (MACH_IS_ATARI
|| MACH_IS_Q40
) {
288 /* Atari has a byte-swapped IDE interface */
289 outsw_swapw(IDE_DATA_REG
, buffer
, bytecount
/ 2);
292 #endif /* CONFIG_ATARI || CONFIG_Q40 */
293 hwif
->ata_output_data(drive
, buffer
, bytecount
/ 4);
294 if ((bytecount
& 0x03) >= 2)
295 hwif
->OUTSW(IDE_DATA_REG
, ((u8
*)buffer
)+(bytecount
& ~0x03), 1);
298 void default_hwif_transport(ide_hwif_t
*hwif
)
300 hwif
->ata_input_data
= ata_input_data
;
301 hwif
->ata_output_data
= ata_output_data
;
302 hwif
->atapi_input_bytes
= atapi_input_bytes
;
303 hwif
->atapi_output_bytes
= atapi_output_bytes
;
306 void ide_fix_driveid (struct hd_driveid
*id
)
308 #ifndef __LITTLE_ENDIAN
313 id
->config
= __le16_to_cpu(id
->config
);
314 id
->cyls
= __le16_to_cpu(id
->cyls
);
315 id
->reserved2
= __le16_to_cpu(id
->reserved2
);
316 id
->heads
= __le16_to_cpu(id
->heads
);
317 id
->track_bytes
= __le16_to_cpu(id
->track_bytes
);
318 id
->sector_bytes
= __le16_to_cpu(id
->sector_bytes
);
319 id
->sectors
= __le16_to_cpu(id
->sectors
);
320 id
->vendor0
= __le16_to_cpu(id
->vendor0
);
321 id
->vendor1
= __le16_to_cpu(id
->vendor1
);
322 id
->vendor2
= __le16_to_cpu(id
->vendor2
);
323 stringcast
= (u16
*)&id
->serial_no
[0];
324 for (i
= 0; i
< (20/2); i
++)
325 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
326 id
->buf_type
= __le16_to_cpu(id
->buf_type
);
327 id
->buf_size
= __le16_to_cpu(id
->buf_size
);
328 id
->ecc_bytes
= __le16_to_cpu(id
->ecc_bytes
);
329 stringcast
= (u16
*)&id
->fw_rev
[0];
330 for (i
= 0; i
< (8/2); i
++)
331 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
332 stringcast
= (u16
*)&id
->model
[0];
333 for (i
= 0; i
< (40/2); i
++)
334 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
335 id
->dword_io
= __le16_to_cpu(id
->dword_io
);
336 id
->reserved50
= __le16_to_cpu(id
->reserved50
);
337 id
->field_valid
= __le16_to_cpu(id
->field_valid
);
338 id
->cur_cyls
= __le16_to_cpu(id
->cur_cyls
);
339 id
->cur_heads
= __le16_to_cpu(id
->cur_heads
);
340 id
->cur_sectors
= __le16_to_cpu(id
->cur_sectors
);
341 id
->cur_capacity0
= __le16_to_cpu(id
->cur_capacity0
);
342 id
->cur_capacity1
= __le16_to_cpu(id
->cur_capacity1
);
343 id
->lba_capacity
= __le32_to_cpu(id
->lba_capacity
);
344 id
->dma_1word
= __le16_to_cpu(id
->dma_1word
);
345 id
->dma_mword
= __le16_to_cpu(id
->dma_mword
);
346 id
->eide_pio_modes
= __le16_to_cpu(id
->eide_pio_modes
);
347 id
->eide_dma_min
= __le16_to_cpu(id
->eide_dma_min
);
348 id
->eide_dma_time
= __le16_to_cpu(id
->eide_dma_time
);
349 id
->eide_pio
= __le16_to_cpu(id
->eide_pio
);
350 id
->eide_pio_iordy
= __le16_to_cpu(id
->eide_pio_iordy
);
351 for (i
= 0; i
< 2; ++i
)
352 id
->words69_70
[i
] = __le16_to_cpu(id
->words69_70
[i
]);
353 for (i
= 0; i
< 4; ++i
)
354 id
->words71_74
[i
] = __le16_to_cpu(id
->words71_74
[i
]);
355 id
->queue_depth
= __le16_to_cpu(id
->queue_depth
);
356 for (i
= 0; i
< 4; ++i
)
357 id
->words76_79
[i
] = __le16_to_cpu(id
->words76_79
[i
]);
358 id
->major_rev_num
= __le16_to_cpu(id
->major_rev_num
);
359 id
->minor_rev_num
= __le16_to_cpu(id
->minor_rev_num
);
360 id
->command_set_1
= __le16_to_cpu(id
->command_set_1
);
361 id
->command_set_2
= __le16_to_cpu(id
->command_set_2
);
362 id
->cfsse
= __le16_to_cpu(id
->cfsse
);
363 id
->cfs_enable_1
= __le16_to_cpu(id
->cfs_enable_1
);
364 id
->cfs_enable_2
= __le16_to_cpu(id
->cfs_enable_2
);
365 id
->csf_default
= __le16_to_cpu(id
->csf_default
);
366 id
->dma_ultra
= __le16_to_cpu(id
->dma_ultra
);
367 id
->trseuc
= __le16_to_cpu(id
->trseuc
);
368 id
->trsEuc
= __le16_to_cpu(id
->trsEuc
);
369 id
->CurAPMvalues
= __le16_to_cpu(id
->CurAPMvalues
);
370 id
->mprc
= __le16_to_cpu(id
->mprc
);
371 id
->hw_config
= __le16_to_cpu(id
->hw_config
);
372 id
->acoustic
= __le16_to_cpu(id
->acoustic
);
373 id
->msrqs
= __le16_to_cpu(id
->msrqs
);
374 id
->sxfert
= __le16_to_cpu(id
->sxfert
);
375 id
->sal
= __le16_to_cpu(id
->sal
);
376 id
->spg
= __le32_to_cpu(id
->spg
);
377 id
->lba_capacity_2
= __le64_to_cpu(id
->lba_capacity_2
);
378 for (i
= 0; i
< 22; i
++)
379 id
->words104_125
[i
] = __le16_to_cpu(id
->words104_125
[i
]);
380 id
->last_lun
= __le16_to_cpu(id
->last_lun
);
381 id
->word127
= __le16_to_cpu(id
->word127
);
382 id
->dlf
= __le16_to_cpu(id
->dlf
);
383 id
->csfo
= __le16_to_cpu(id
->csfo
);
384 for (i
= 0; i
< 26; i
++)
385 id
->words130_155
[i
] = __le16_to_cpu(id
->words130_155
[i
]);
386 id
->word156
= __le16_to_cpu(id
->word156
);
387 for (i
= 0; i
< 3; i
++)
388 id
->words157_159
[i
] = __le16_to_cpu(id
->words157_159
[i
]);
389 id
->cfa_power
= __le16_to_cpu(id
->cfa_power
);
390 for (i
= 0; i
< 14; i
++)
391 id
->words161_175
[i
] = __le16_to_cpu(id
->words161_175
[i
]);
392 for (i
= 0; i
< 31; i
++)
393 id
->words176_205
[i
] = __le16_to_cpu(id
->words176_205
[i
]);
394 for (i
= 0; i
< 48; i
++)
395 id
->words206_254
[i
] = __le16_to_cpu(id
->words206_254
[i
]);
396 id
->integrity_word
= __le16_to_cpu(id
->integrity_word
);
398 # error "Please fix <asm/byteorder.h>"
404 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
405 * removing leading/trailing blanks and compressing internal blanks.
406 * It is primarily used to tidy up the model name/number fields as
407 * returned by the WIN_[P]IDENTIFY commands.
410 void ide_fixstring (u8
*s
, const int bytecount
, const int byteswap
)
412 u8
*p
= s
, *end
= &s
[bytecount
& ~1]; /* bytecount must be even */
415 /* convert from big-endian to host byte order */
416 for (p
= end
; p
!= s
;) {
417 unsigned short *pp
= (unsigned short *) (p
-= 2);
421 /* strip leading blanks */
422 while (s
!= end
&& *s
== ' ')
424 /* compress internal blanks and strip trailing blanks */
425 while (s
!= end
&& *s
) {
426 if (*s
++ != ' ' || (s
!= end
&& *s
&& *s
!= ' '))
429 /* wipe out trailing garbage */
434 EXPORT_SYMBOL(ide_fixstring
);
437 * Needed for PCI irq sharing
439 int drive_is_ready (ide_drive_t
*drive
)
441 ide_hwif_t
*hwif
= HWIF(drive
);
444 if (drive
->waiting_for_dma
)
445 return hwif
->ide_dma_test_irq(drive
);
448 /* need to guarantee 400ns since last command was issued */
452 #ifdef CONFIG_IDEPCI_SHARE_IRQ
454 * We do a passive status test under shared PCI interrupts on
455 * cards that truly share the ATA side interrupt, but may also share
456 * an interrupt with another pci card/device. We make no assumptions
457 * about possible isa-pnp and pci-pnp issues yet.
460 stat
= hwif
->INB(IDE_ALTSTATUS_REG
);
462 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
463 /* Note: this may clear a pending IRQ!! */
464 stat
= hwif
->INB(IDE_STATUS_REG
);
466 if (stat
& BUSY_STAT
)
467 /* drive busy: definitely not interrupting */
470 /* drive ready: *might* be interrupting */
474 EXPORT_SYMBOL(drive_is_ready
);
477 * This routine busy-waits for the drive status to be not "busy".
478 * It then checks the status for all of the "good" bits and none
479 * of the "bad" bits, and if all is okay it returns 0. All other
480 * cases return error -- caller may then invoke ide_error().
482 * This routine should get fixed to not hog the cpu during extra long waits..
483 * That could be done by busy-waiting for the first jiffy or two, and then
484 * setting a timer to wake up at half second intervals thereafter,
485 * until timeout is achieved, before timing out.
487 static int __ide_wait_stat(ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
, u8
*rstat
)
489 ide_hwif_t
*hwif
= drive
->hwif
;
494 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
495 if ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
496 local_irq_set(flags
);
498 while ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
499 if (time_after(jiffies
, timeout
)) {
501 * One last read after the timeout in case
502 * heavy interrupt load made us not make any
503 * progress during the timeout..
505 stat
= hwif
->INB(IDE_STATUS_REG
);
506 if (!(stat
& BUSY_STAT
))
509 local_irq_restore(flags
);
514 local_irq_restore(flags
);
517 * Allow status to settle, then read it again.
518 * A few rare drives vastly violate the 400ns spec here,
519 * so we'll wait up to 10usec for a "good" status
520 * rather than expensively fail things immediately.
521 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
523 for (i
= 0; i
< 10; i
++) {
525 if (OK_STAT((stat
= hwif
->INB(IDE_STATUS_REG
)), good
, bad
)) {
535 * In case of error returns error value after doing "*startstop = ide_error()".
536 * The caller should return the updated value of "startstop" in this case,
537 * "startstop" is unchanged when the function returns 0.
539 int ide_wait_stat(ide_startstop_t
*startstop
, ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
)
544 /* bail early if we've exceeded max_failures */
545 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
546 *startstop
= ide_stopped
;
550 err
= __ide_wait_stat(drive
, good
, bad
, timeout
, &stat
);
553 char *s
= (err
== -EBUSY
) ? "status timeout" : "status error";
554 *startstop
= ide_error(drive
, s
, stat
);
560 EXPORT_SYMBOL(ide_wait_stat
);
563 * ide_in_drive_list - look for drive in black/white list
564 * @id: drive identifier
565 * @drive_table: list to inspect
567 * Look for a drive in the blacklist and the whitelist tables
568 * Returns 1 if the drive is found in the table.
571 int ide_in_drive_list(struct hd_driveid
*id
, const struct drive_list_entry
*drive_table
)
573 for ( ; drive_table
->id_model
; drive_table
++)
574 if ((!strcmp(drive_table
->id_model
, id
->model
)) &&
575 (!drive_table
->id_firmware
||
576 strstr(id
->fw_rev
, drive_table
->id_firmware
)))
581 EXPORT_SYMBOL_GPL(ide_in_drive_list
);
584 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
585 * We list them here and depend on the device side cable detection for them.
587 * Some optical devices with the buggy firmwares have the same problem.
589 static const struct drive_list_entry ivb_list
[] = {
590 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
591 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
592 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
593 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
594 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
599 * All hosts that use the 80c ribbon must use!
600 * The name is derived from upper byte of word 93 and the 80c ribbon.
602 u8
eighty_ninty_three (ide_drive_t
*drive
)
604 ide_hwif_t
*hwif
= drive
->hwif
;
605 struct hd_driveid
*id
= drive
->id
;
606 int ivb
= ide_in_drive_list(id
, ivb_list
);
608 if (hwif
->cbl
== ATA_CBL_PATA40_SHORT
)
612 printk(KERN_DEBUG
"%s: skipping word 93 validity check\n",
615 if (ide_dev_is_sata(id
) && !ivb
)
618 if (hwif
->cbl
!= ATA_CBL_PATA80
&& !ivb
)
623 * - force bit13 (80c cable present) check also for !ivb devices
624 * (unless the slave device is pre-ATA3)
626 if ((id
->hw_config
& 0x4000) || (ivb
&& (id
->hw_config
& 0x2000)))
630 if (drive
->udma33_warned
== 1)
633 printk(KERN_WARNING
"%s: %s side 80-wire cable detection failed, "
634 "limiting max speed to UDMA33\n",
636 hwif
->cbl
== ATA_CBL_PATA80
? "drive" : "host");
638 drive
->udma33_warned
= 1;
643 int ide_ata66_check (ide_drive_t
*drive
, ide_task_t
*args
)
645 if ((args
->tfRegister
[IDE_COMMAND_OFFSET
] == WIN_SETFEATURES
) &&
646 (args
->tfRegister
[IDE_SECTOR_OFFSET
] > XFER_UDMA_2
) &&
647 (args
->tfRegister
[IDE_FEATURE_OFFSET
] == SETFEATURES_XFER
)) {
648 if (eighty_ninty_three(drive
) == 0) {
649 printk(KERN_WARNING
"%s: UDMA speeds >UDMA33 cannot "
650 "be set\n", drive
->name
);
659 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
660 * 1 : Safe to update drive->id DMA registers.
661 * 0 : OOPs not allowed.
663 int set_transfer (ide_drive_t
*drive
, ide_task_t
*args
)
665 if ((args
->tfRegister
[IDE_COMMAND_OFFSET
] == WIN_SETFEATURES
) &&
666 (args
->tfRegister
[IDE_SECTOR_OFFSET
] >= XFER_SW_DMA_0
) &&
667 (args
->tfRegister
[IDE_FEATURE_OFFSET
] == SETFEATURES_XFER
) &&
668 (drive
->id
->dma_ultra
||
669 drive
->id
->dma_mword
||
670 drive
->id
->dma_1word
))
676 #ifdef CONFIG_BLK_DEV_IDEDMA
677 static u8
ide_auto_reduce_xfer (ide_drive_t
*drive
)
679 if (!drive
->crc_count
)
680 return drive
->current_speed
;
681 drive
->crc_count
= 0;
683 switch(drive
->current_speed
) {
684 case XFER_UDMA_7
: return XFER_UDMA_6
;
685 case XFER_UDMA_6
: return XFER_UDMA_5
;
686 case XFER_UDMA_5
: return XFER_UDMA_4
;
687 case XFER_UDMA_4
: return XFER_UDMA_3
;
688 case XFER_UDMA_3
: return XFER_UDMA_2
;
689 case XFER_UDMA_2
: return XFER_UDMA_1
;
690 case XFER_UDMA_1
: return XFER_UDMA_0
;
692 * OOPS we do not goto non Ultra DMA modes
693 * without iCRC's available we force
694 * the system to PIO and make the user
695 * invoke the ATA-1 ATA-2 DMA modes.
698 default: return XFER_PIO_4
;
701 #endif /* CONFIG_BLK_DEV_IDEDMA */
703 int ide_driveid_update(ide_drive_t
*drive
)
705 ide_hwif_t
*hwif
= drive
->hwif
;
706 struct hd_driveid
*id
;
707 unsigned long timeout
, flags
;
710 * Re-read drive->id for possible DMA mode
711 * change (copied from ide-probe.c)
714 SELECT_MASK(drive
, 1);
716 hwif
->OUTB(drive
->ctl
,IDE_CONTROL_REG
);
718 hwif
->OUTB(WIN_IDENTIFY
, IDE_COMMAND_REG
);
719 timeout
= jiffies
+ WAIT_WORSTCASE
;
721 if (time_after(jiffies
, timeout
)) {
722 SELECT_MASK(drive
, 0);
723 return 0; /* drive timed-out */
725 msleep(50); /* give drive a breather */
726 } while (hwif
->INB(IDE_ALTSTATUS_REG
) & BUSY_STAT
);
727 msleep(50); /* wait for IRQ and DRQ_STAT */
728 if (!OK_STAT(hwif
->INB(IDE_STATUS_REG
),DRQ_STAT
,BAD_R_STAT
)) {
729 SELECT_MASK(drive
, 0);
730 printk("%s: CHECK for good STATUS\n", drive
->name
);
733 local_irq_save(flags
);
734 SELECT_MASK(drive
, 0);
735 id
= kmalloc(SECTOR_WORDS
*4, GFP_ATOMIC
);
737 local_irq_restore(flags
);
740 ata_input_data(drive
, id
, SECTOR_WORDS
);
741 (void) hwif
->INB(IDE_STATUS_REG
); /* clear drive IRQ */
743 local_irq_restore(flags
);
746 drive
->id
->dma_ultra
= id
->dma_ultra
;
747 drive
->id
->dma_mword
= id
->dma_mword
;
748 drive
->id
->dma_1word
= id
->dma_1word
;
749 /* anything more ? */
752 if (drive
->using_dma
&& ide_id_dma_bug(drive
))
759 int ide_config_drive_speed(ide_drive_t
*drive
, u8 speed
)
761 ide_hwif_t
*hwif
= drive
->hwif
;
765 // while (HWGROUP(drive)->busy)
768 #ifdef CONFIG_BLK_DEV_IDEDMA
769 if (hwif
->ide_dma_on
) /* check if host supports DMA */
770 hwif
->dma_host_off(drive
);
773 /* Skip setting PIO flow-control modes on pre-EIDE drives */
774 if ((speed
& 0xf8) == XFER_PIO_0
&& !(drive
->id
->capability
& 0x08))
778 * Don't use ide_wait_cmd here - it will
779 * attempt to set_geometry and recalibrate,
780 * but for some reason these don't work at
781 * this point (lost interrupt).
784 * Select the drive, and issue the SETFEATURES command
786 disable_irq_nosync(hwif
->irq
);
789 * FIXME: we race against the running IRQ here if
790 * this is called from non IRQ context. If we use
791 * disable_irq() we hang on the error path. Work
797 SELECT_MASK(drive
, 0);
800 hwif
->OUTB(drive
->ctl
| 2, IDE_CONTROL_REG
);
801 hwif
->OUTB(speed
, IDE_NSECTOR_REG
);
802 hwif
->OUTB(SETFEATURES_XFER
, IDE_FEATURE_REG
);
803 hwif
->OUTBSYNC(drive
, WIN_SETFEATURES
, IDE_COMMAND_REG
);
804 if ((IDE_CONTROL_REG
) && (drive
->quirk_list
== 2))
805 hwif
->OUTB(drive
->ctl
, IDE_CONTROL_REG
);
807 error
= __ide_wait_stat(drive
, drive
->ready_stat
,
808 BUSY_STAT
|DRQ_STAT
|ERR_STAT
,
811 SELECT_MASK(drive
, 0);
813 enable_irq(hwif
->irq
);
816 (void) ide_dump_status(drive
, "set_drive_speed_status", stat
);
820 drive
->id
->dma_ultra
&= ~0xFF00;
821 drive
->id
->dma_mword
&= ~0x0F00;
822 drive
->id
->dma_1word
&= ~0x0F00;
825 #ifdef CONFIG_BLK_DEV_IDEDMA
826 if (speed
>= XFER_SW_DMA_0
)
827 hwif
->dma_host_on(drive
);
828 else if (hwif
->ide_dma_on
) /* check if host supports DMA */
829 hwif
->dma_off_quietly(drive
);
833 case XFER_UDMA_7
: drive
->id
->dma_ultra
|= 0x8080; break;
834 case XFER_UDMA_6
: drive
->id
->dma_ultra
|= 0x4040; break;
835 case XFER_UDMA_5
: drive
->id
->dma_ultra
|= 0x2020; break;
836 case XFER_UDMA_4
: drive
->id
->dma_ultra
|= 0x1010; break;
837 case XFER_UDMA_3
: drive
->id
->dma_ultra
|= 0x0808; break;
838 case XFER_UDMA_2
: drive
->id
->dma_ultra
|= 0x0404; break;
839 case XFER_UDMA_1
: drive
->id
->dma_ultra
|= 0x0202; break;
840 case XFER_UDMA_0
: drive
->id
->dma_ultra
|= 0x0101; break;
841 case XFER_MW_DMA_2
: drive
->id
->dma_mword
|= 0x0404; break;
842 case XFER_MW_DMA_1
: drive
->id
->dma_mword
|= 0x0202; break;
843 case XFER_MW_DMA_0
: drive
->id
->dma_mword
|= 0x0101; break;
844 case XFER_SW_DMA_2
: drive
->id
->dma_1word
|= 0x0404; break;
845 case XFER_SW_DMA_1
: drive
->id
->dma_1word
|= 0x0202; break;
846 case XFER_SW_DMA_0
: drive
->id
->dma_1word
|= 0x0101; break;
849 if (!drive
->init_speed
)
850 drive
->init_speed
= speed
;
851 drive
->current_speed
= speed
;
856 * This should get invoked any time we exit the driver to
857 * wait for an interrupt response from a drive. handler() points
858 * at the appropriate code to handle the next interrupt, and a
859 * timer is started to prevent us from waiting forever in case
860 * something goes wrong (see the ide_timer_expiry() handler later on).
862 * See also ide_execute_command
864 static void __ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
865 unsigned int timeout
, ide_expiry_t
*expiry
)
867 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
869 if (hwgroup
->handler
!= NULL
) {
870 printk(KERN_CRIT
"%s: ide_set_handler: handler not null; "
872 drive
->name
, hwgroup
->handler
, handler
);
874 hwgroup
->handler
= handler
;
875 hwgroup
->expiry
= expiry
;
876 hwgroup
->timer
.expires
= jiffies
+ timeout
;
877 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
878 add_timer(&hwgroup
->timer
);
881 void ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
882 unsigned int timeout
, ide_expiry_t
*expiry
)
885 spin_lock_irqsave(&ide_lock
, flags
);
886 __ide_set_handler(drive
, handler
, timeout
, expiry
);
887 spin_unlock_irqrestore(&ide_lock
, flags
);
890 EXPORT_SYMBOL(ide_set_handler
);
893 * ide_execute_command - execute an IDE command
894 * @drive: IDE drive to issue the command against
895 * @command: command byte to write
896 * @handler: handler for next phase
897 * @timeout: timeout for command
898 * @expiry: handler to run on timeout
900 * Helper function to issue an IDE command. This handles the
901 * atomicity requirements, command timing and ensures that the
902 * handler and IRQ setup do not race. All IDE command kick off
903 * should go via this function or do equivalent locking.
906 void ide_execute_command(ide_drive_t
*drive
, task_ioreg_t cmd
, ide_handler_t
*handler
, unsigned timeout
, ide_expiry_t
*expiry
)
909 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
910 ide_hwif_t
*hwif
= HWIF(drive
);
912 spin_lock_irqsave(&ide_lock
, flags
);
914 BUG_ON(hwgroup
->handler
);
915 hwgroup
->handler
= handler
;
916 hwgroup
->expiry
= expiry
;
917 hwgroup
->timer
.expires
= jiffies
+ timeout
;
918 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
919 add_timer(&hwgroup
->timer
);
920 hwif
->OUTBSYNC(drive
, cmd
, IDE_COMMAND_REG
);
921 /* Drive takes 400nS to respond, we must avoid the IRQ being
922 serviced before that.
924 FIXME: we could skip this delay with care on non shared
928 spin_unlock_irqrestore(&ide_lock
, flags
);
931 EXPORT_SYMBOL(ide_execute_command
);
935 static ide_startstop_t
do_reset1 (ide_drive_t
*, int);
938 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
939 * during an atapi drive reset operation. If the drive has not yet responded,
940 * and we have not yet hit our maximum waiting time, then the timer is restarted
943 static ide_startstop_t
atapi_reset_pollfunc (ide_drive_t
*drive
)
945 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
946 ide_hwif_t
*hwif
= HWIF(drive
);
952 if (OK_STAT(stat
= hwif
->INB(IDE_STATUS_REG
), 0, BUSY_STAT
)) {
953 printk("%s: ATAPI reset complete\n", drive
->name
);
955 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
956 BUG_ON(HWGROUP(drive
)->handler
!= NULL
);
957 ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
958 /* continue polling */
962 hwgroup
->polling
= 0;
963 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
965 /* do it the old fashioned way */
966 return do_reset1(drive
, 1);
969 hwgroup
->polling
= 0;
970 hwgroup
->resetting
= 0;
975 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
976 * during an ide reset operation. If the drives have not yet responded,
977 * and we have not yet hit our maximum waiting time, then the timer is restarted
980 static ide_startstop_t
reset_pollfunc (ide_drive_t
*drive
)
982 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
983 ide_hwif_t
*hwif
= HWIF(drive
);
986 if (hwif
->reset_poll
!= NULL
) {
987 if (hwif
->reset_poll(drive
)) {
988 printk(KERN_ERR
"%s: host reset_poll failure for %s.\n",
989 hwif
->name
, drive
->name
);
994 if (!OK_STAT(tmp
= hwif
->INB(IDE_STATUS_REG
), 0, BUSY_STAT
)) {
995 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
996 BUG_ON(HWGROUP(drive
)->handler
!= NULL
);
997 ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
998 /* continue polling */
1001 printk("%s: reset timed-out, status=0x%02x\n", hwif
->name
, tmp
);
1004 printk("%s: reset: ", hwif
->name
);
1005 if ((tmp
= hwif
->INB(IDE_ERROR_REG
)) == 1) {
1006 printk("success\n");
1007 drive
->failures
= 0;
1011 switch (tmp
& 0x7f) {
1012 case 1: printk("passed");
1014 case 2: printk("formatter device error");
1016 case 3: printk("sector buffer error");
1018 case 4: printk("ECC circuitry error");
1020 case 5: printk("controlling MPU error");
1022 default:printk("error (0x%02x?)", tmp
);
1025 printk("; slave: failed");
1029 hwgroup
->polling
= 0; /* done polling */
1030 hwgroup
->resetting
= 0; /* done reset attempt */
1034 static void check_dma_crc(ide_drive_t
*drive
)
1036 #ifdef CONFIG_BLK_DEV_IDEDMA
1037 if (drive
->crc_count
) {
1038 drive
->hwif
->dma_off_quietly(drive
);
1039 ide_set_xfer_rate(drive
, ide_auto_reduce_xfer(drive
));
1040 if (drive
->current_speed
>= XFER_SW_DMA_0
)
1041 (void) HWIF(drive
)->ide_dma_on(drive
);
1047 static void ide_disk_pre_reset(ide_drive_t
*drive
)
1049 int legacy
= (drive
->id
->cfs_enable_2
& 0x0400) ? 0 : 1;
1051 drive
->special
.all
= 0;
1052 drive
->special
.b
.set_geometry
= legacy
;
1053 drive
->special
.b
.recalibrate
= legacy
;
1054 if (OK_TO_RESET_CONTROLLER
)
1055 drive
->mult_count
= 0;
1056 if (!drive
->keep_settings
&& !drive
->using_dma
)
1057 drive
->mult_req
= 0;
1058 if (drive
->mult_req
!= drive
->mult_count
)
1059 drive
->special
.b
.set_multmode
= 1;
1062 static void pre_reset(ide_drive_t
*drive
)
1064 if (drive
->media
== ide_disk
)
1065 ide_disk_pre_reset(drive
);
1067 drive
->post_reset
= 1;
1069 if (!drive
->keep_settings
) {
1070 if (drive
->using_dma
) {
1071 check_dma_crc(drive
);
1074 drive
->io_32bit
= 0;
1078 if (drive
->using_dma
)
1079 check_dma_crc(drive
);
1081 if (HWIF(drive
)->pre_reset
!= NULL
)
1082 HWIF(drive
)->pre_reset(drive
);
1084 if (drive
->current_speed
!= 0xff)
1085 drive
->desired_speed
= drive
->current_speed
;
1086 drive
->current_speed
= 0xff;
1090 * do_reset1() attempts to recover a confused drive by resetting it.
1091 * Unfortunately, resetting a disk drive actually resets all devices on
1092 * the same interface, so it can really be thought of as resetting the
1093 * interface rather than resetting the drive.
1095 * ATAPI devices have their own reset mechanism which allows them to be
1096 * individually reset without clobbering other devices on the same interface.
1098 * Unfortunately, the IDE interface does not generate an interrupt to let
1099 * us know when the reset operation has finished, so we must poll for this.
1100 * Equally poor, though, is the fact that this may a very long time to complete,
1101 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1102 * we set a timer to poll at 50ms intervals.
1104 static ide_startstop_t
do_reset1 (ide_drive_t
*drive
, int do_not_try_atapi
)
1107 unsigned long flags
;
1109 ide_hwgroup_t
*hwgroup
;
1111 spin_lock_irqsave(&ide_lock
, flags
);
1113 hwgroup
= HWGROUP(drive
);
1115 /* We must not reset with running handlers */
1116 BUG_ON(hwgroup
->handler
!= NULL
);
1118 /* For an ATAPI device, first try an ATAPI SRST. */
1119 if (drive
->media
!= ide_disk
&& !do_not_try_atapi
) {
1120 hwgroup
->resetting
= 1;
1122 SELECT_DRIVE(drive
);
1124 hwif
->OUTBSYNC(drive
, WIN_SRST
, IDE_COMMAND_REG
);
1126 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1127 hwgroup
->polling
= 1;
1128 __ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
1129 spin_unlock_irqrestore(&ide_lock
, flags
);
1134 * First, reset any device state data we were maintaining
1135 * for any of the drives on this interface.
1137 for (unit
= 0; unit
< MAX_DRIVES
; ++unit
)
1138 pre_reset(&hwif
->drives
[unit
]);
1140 #if OK_TO_RESET_CONTROLLER
1141 if (!IDE_CONTROL_REG
) {
1142 spin_unlock_irqrestore(&ide_lock
, flags
);
1146 hwgroup
->resetting
= 1;
1148 * Note that we also set nIEN while resetting the device,
1149 * to mask unwanted interrupts from the interface during the reset.
1150 * However, due to the design of PC hardware, this will cause an
1151 * immediate interrupt due to the edge transition it produces.
1152 * This single interrupt gives us a "fast poll" for drives that
1153 * recover from reset very quickly, saving us the first 50ms wait time.
1155 /* set SRST and nIEN */
1156 hwif
->OUTBSYNC(drive
, drive
->ctl
|6,IDE_CONTROL_REG
);
1157 /* more than enough time */
1159 if (drive
->quirk_list
== 2) {
1160 /* clear SRST and nIEN */
1161 hwif
->OUTBSYNC(drive
, drive
->ctl
, IDE_CONTROL_REG
);
1163 /* clear SRST, leave nIEN */
1164 hwif
->OUTBSYNC(drive
, drive
->ctl
|2, IDE_CONTROL_REG
);
1166 /* more than enough time */
1168 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1169 hwgroup
->polling
= 1;
1170 __ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1173 * Some weird controller like resetting themselves to a strange
1174 * state when the disks are reset this way. At least, the Winbond
1175 * 553 documentation says that
1177 if (hwif
->resetproc
!= NULL
) {
1178 hwif
->resetproc(drive
);
1181 #endif /* OK_TO_RESET_CONTROLLER */
1183 spin_unlock_irqrestore(&ide_lock
, flags
);
1188 * ide_do_reset() is the entry point to the drive/interface reset code.
1191 ide_startstop_t
ide_do_reset (ide_drive_t
*drive
)
1193 return do_reset1(drive
, 0);
1196 EXPORT_SYMBOL(ide_do_reset
);
1199 * ide_wait_not_busy() waits for the currently selected device on the hwif
1200 * to report a non-busy status, see comments in probe_hwif().
1202 int ide_wait_not_busy(ide_hwif_t
*hwif
, unsigned long timeout
)
1208 * Turn this into a schedule() sleep once I'm sure
1209 * about locking issues (2.5 work ?).
1212 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1213 if ((stat
& BUSY_STAT
) == 0)
1216 * Assume a value of 0xff means nothing is connected to
1217 * the interface and it doesn't implement the pull-down
1222 touch_softlockup_watchdog();
1223 touch_nmi_watchdog();
1228 EXPORT_SYMBOL_GPL(ide_wait_not_busy
);