Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-rc-fixes-2.6
[linux-2.6/kmemtrace.git] / drivers / scsi / scsi_lib.c
blob60f77c4b39468d17852e78a503602d42f470f58a
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
34 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE 2
38 * The maximum number of SG segments that we will put inside a scatterlist
39 * (unless chaining is used). Should ideally fit inside a single page, to
40 * avoid a higher order allocation.
42 #define SCSI_MAX_SG_SEGMENTS 128
44 struct scsi_host_sg_pool {
45 size_t size;
46 char *name;
47 struct kmem_cache *slab;
48 mempool_t *pool;
51 #define SP(x) { x, "sgpool-" #x }
52 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53 SP(8),
54 SP(16),
55 #if (SCSI_MAX_SG_SEGMENTS > 16)
56 SP(32),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58 SP(64),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60 SP(128),
61 #endif
62 #endif
63 #endif
65 #undef SP
67 static void scsi_run_queue(struct request_queue *q);
70 * Function: scsi_unprep_request()
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
75 * Arguments: req - request to unprepare
77 * Lock status: Assumed that no locks are held upon entry.
79 * Returns: Nothing.
81 static void scsi_unprep_request(struct request *req)
83 struct scsi_cmnd *cmd = req->special;
85 req->cmd_flags &= ~REQ_DONTPREP;
86 req->special = NULL;
88 scsi_put_command(cmd);
92 * Function: scsi_queue_insert()
94 * Purpose: Insert a command in the midlevel queue.
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
99 * Lock status: Assumed that lock is not held upon entry.
101 * Returns: Nothing.
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
106 * commands.
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
114 struct request_queue *q = device->request_queue;
115 unsigned long flags;
117 SCSI_LOG_MLQUEUE(1,
118 printk("Inserting command %p into mlqueue\n", cmd));
121 * Set the appropriate busy bit for the device/host.
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
142 scsi_device_unbusy(device);
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
155 spin_lock_irqsave(q->queue_lock, flags);
156 blk_requeue_request(q, cmd->request);
157 spin_unlock_irqrestore(q->queue_lock, flags);
159 scsi_run_queue(q);
161 return 0;
165 * scsi_execute - insert request and wait for the result
166 * @sdev: scsi device
167 * @cmd: scsi command
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
176 * returns the req->errors value which is the scsi_cmnd result
177 * field.
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 int data_direction, void *buffer, unsigned bufflen,
181 unsigned char *sense, int timeout, int retries, int flags)
183 struct request *req;
184 int write = (data_direction == DMA_TO_DEVICE);
185 int ret = DRIVER_ERROR << 24;
187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
190 buffer, bufflen, __GFP_WAIT))
191 goto out;
193 req->cmd_len = COMMAND_SIZE(cmd[0]);
194 memcpy(req->cmd, cmd, req->cmd_len);
195 req->sense = sense;
196 req->sense_len = 0;
197 req->retries = retries;
198 req->timeout = timeout;
199 req->cmd_type = REQ_TYPE_BLOCK_PC;
200 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
203 * head injection *required* here otherwise quiesce won't work
205 blk_execute_rq(req->q, NULL, req, 1);
207 ret = req->errors;
208 out:
209 blk_put_request(req);
211 return ret;
213 EXPORT_SYMBOL(scsi_execute);
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 int data_direction, void *buffer, unsigned bufflen,
218 struct scsi_sense_hdr *sshdr, int timeout, int retries)
220 char *sense = NULL;
221 int result;
223 if (sshdr) {
224 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 if (!sense)
226 return DRIVER_ERROR << 24;
228 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 sense, timeout, retries, 0);
230 if (sshdr)
231 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
233 kfree(sense);
234 return result;
236 EXPORT_SYMBOL(scsi_execute_req);
238 struct scsi_io_context {
239 void *data;
240 void (*done)(void *data, char *sense, int result, int resid);
241 char sense[SCSI_SENSE_BUFFERSIZE];
244 static struct kmem_cache *scsi_io_context_cache;
246 static void scsi_end_async(struct request *req, int uptodate)
248 struct scsi_io_context *sioc = req->end_io_data;
250 if (sioc->done)
251 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
253 kmem_cache_free(scsi_io_context_cache, sioc);
254 __blk_put_request(req->q, req);
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
259 struct request_queue *q = rq->q;
261 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 if (rq_data_dir(rq) == WRITE)
263 bio->bi_rw |= (1 << BIO_RW);
264 blk_queue_bounce(q, &bio);
266 return blk_rq_append_bio(q, rq, bio);
269 static void scsi_bi_endio(struct bio *bio, int error)
271 bio_put(bio);
275 * scsi_req_map_sg - map a scatterlist into a request
276 * @rq: request to fill
277 * @sg: scatterlist
278 * @nsegs: number of elements
279 * @bufflen: len of buffer
280 * @gfp: memory allocation flags
282 * scsi_req_map_sg maps a scatterlist into a request so that the
283 * request can be sent to the block layer. We do not trust the scatterlist
284 * sent to use, as some ULDs use that struct to only organize the pages.
286 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287 int nsegs, unsigned bufflen, gfp_t gfp)
289 struct request_queue *q = rq->q;
290 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291 unsigned int data_len = bufflen, len, bytes, off;
292 struct scatterlist *sg;
293 struct page *page;
294 struct bio *bio = NULL;
295 int i, err, nr_vecs = 0;
297 for_each_sg(sgl, sg, nsegs, i) {
298 page = sg_page(sg);
299 off = sg->offset;
300 len = sg->length;
301 data_len += len;
303 while (len > 0 && data_len > 0) {
305 * sg sends a scatterlist that is larger than
306 * the data_len it wants transferred for certain
307 * IO sizes
309 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310 bytes = min(bytes, data_len);
312 if (!bio) {
313 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314 nr_pages -= nr_vecs;
316 bio = bio_alloc(gfp, nr_vecs);
317 if (!bio) {
318 err = -ENOMEM;
319 goto free_bios;
321 bio->bi_end_io = scsi_bi_endio;
324 if (bio_add_pc_page(q, bio, page, bytes, off) !=
325 bytes) {
326 bio_put(bio);
327 err = -EINVAL;
328 goto free_bios;
331 if (bio->bi_vcnt >= nr_vecs) {
332 err = scsi_merge_bio(rq, bio);
333 if (err) {
334 bio_endio(bio, 0);
335 goto free_bios;
337 bio = NULL;
340 page++;
341 len -= bytes;
342 data_len -=bytes;
343 off = 0;
347 rq->buffer = rq->data = NULL;
348 rq->data_len = bufflen;
349 return 0;
351 free_bios:
352 while ((bio = rq->bio) != NULL) {
353 rq->bio = bio->bi_next;
355 * call endio instead of bio_put incase it was bounced
357 bio_endio(bio, 0);
360 return err;
364 * scsi_execute_async - insert request
365 * @sdev: scsi device
366 * @cmd: scsi command
367 * @cmd_len: length of scsi cdb
368 * @data_direction: data direction
369 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
370 * @bufflen: len of buffer
371 * @use_sg: if buffer is a scatterlist this is the number of elements
372 * @timeout: request timeout in seconds
373 * @retries: number of times to retry request
374 * @flags: or into request flags
376 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
377 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
378 int use_sg, int timeout, int retries, void *privdata,
379 void (*done)(void *, char *, int, int), gfp_t gfp)
381 struct request *req;
382 struct scsi_io_context *sioc;
383 int err = 0;
384 int write = (data_direction == DMA_TO_DEVICE);
386 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
387 if (!sioc)
388 return DRIVER_ERROR << 24;
390 req = blk_get_request(sdev->request_queue, write, gfp);
391 if (!req)
392 goto free_sense;
393 req->cmd_type = REQ_TYPE_BLOCK_PC;
394 req->cmd_flags |= REQ_QUIET;
396 if (use_sg)
397 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
398 else if (bufflen)
399 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
401 if (err)
402 goto free_req;
404 req->cmd_len = cmd_len;
405 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
406 memcpy(req->cmd, cmd, req->cmd_len);
407 req->sense = sioc->sense;
408 req->sense_len = 0;
409 req->timeout = timeout;
410 req->retries = retries;
411 req->end_io_data = sioc;
413 sioc->data = privdata;
414 sioc->done = done;
416 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
417 return 0;
419 free_req:
420 blk_put_request(req);
421 free_sense:
422 kmem_cache_free(scsi_io_context_cache, sioc);
423 return DRIVER_ERROR << 24;
425 EXPORT_SYMBOL_GPL(scsi_execute_async);
428 * Function: scsi_init_cmd_errh()
430 * Purpose: Initialize cmd fields related to error handling.
432 * Arguments: cmd - command that is ready to be queued.
434 * Notes: This function has the job of initializing a number of
435 * fields related to error handling. Typically this will
436 * be called once for each command, as required.
438 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
440 cmd->serial_number = 0;
441 cmd->resid = 0;
442 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
443 if (cmd->cmd_len == 0)
444 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
447 void scsi_device_unbusy(struct scsi_device *sdev)
449 struct Scsi_Host *shost = sdev->host;
450 unsigned long flags;
452 spin_lock_irqsave(shost->host_lock, flags);
453 shost->host_busy--;
454 if (unlikely(scsi_host_in_recovery(shost) &&
455 (shost->host_failed || shost->host_eh_scheduled)))
456 scsi_eh_wakeup(shost);
457 spin_unlock(shost->host_lock);
458 spin_lock(sdev->request_queue->queue_lock);
459 sdev->device_busy--;
460 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
464 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
465 * and call blk_run_queue for all the scsi_devices on the target -
466 * including current_sdev first.
468 * Called with *no* scsi locks held.
470 static void scsi_single_lun_run(struct scsi_device *current_sdev)
472 struct Scsi_Host *shost = current_sdev->host;
473 struct scsi_device *sdev, *tmp;
474 struct scsi_target *starget = scsi_target(current_sdev);
475 unsigned long flags;
477 spin_lock_irqsave(shost->host_lock, flags);
478 starget->starget_sdev_user = NULL;
479 spin_unlock_irqrestore(shost->host_lock, flags);
482 * Call blk_run_queue for all LUNs on the target, starting with
483 * current_sdev. We race with others (to set starget_sdev_user),
484 * but in most cases, we will be first. Ideally, each LU on the
485 * target would get some limited time or requests on the target.
487 blk_run_queue(current_sdev->request_queue);
489 spin_lock_irqsave(shost->host_lock, flags);
490 if (starget->starget_sdev_user)
491 goto out;
492 list_for_each_entry_safe(sdev, tmp, &starget->devices,
493 same_target_siblings) {
494 if (sdev == current_sdev)
495 continue;
496 if (scsi_device_get(sdev))
497 continue;
499 spin_unlock_irqrestore(shost->host_lock, flags);
500 blk_run_queue(sdev->request_queue);
501 spin_lock_irqsave(shost->host_lock, flags);
503 scsi_device_put(sdev);
505 out:
506 spin_unlock_irqrestore(shost->host_lock, flags);
510 * Function: scsi_run_queue()
512 * Purpose: Select a proper request queue to serve next
514 * Arguments: q - last request's queue
516 * Returns: Nothing
518 * Notes: The previous command was completely finished, start
519 * a new one if possible.
521 static void scsi_run_queue(struct request_queue *q)
523 struct scsi_device *sdev = q->queuedata;
524 struct Scsi_Host *shost = sdev->host;
525 unsigned long flags;
527 if (sdev->single_lun)
528 scsi_single_lun_run(sdev);
530 spin_lock_irqsave(shost->host_lock, flags);
531 while (!list_empty(&shost->starved_list) &&
532 !shost->host_blocked && !shost->host_self_blocked &&
533 !((shost->can_queue > 0) &&
534 (shost->host_busy >= shost->can_queue))) {
536 * As long as shost is accepting commands and we have
537 * starved queues, call blk_run_queue. scsi_request_fn
538 * drops the queue_lock and can add us back to the
539 * starved_list.
541 * host_lock protects the starved_list and starved_entry.
542 * scsi_request_fn must get the host_lock before checking
543 * or modifying starved_list or starved_entry.
545 sdev = list_entry(shost->starved_list.next,
546 struct scsi_device, starved_entry);
547 list_del_init(&sdev->starved_entry);
548 spin_unlock_irqrestore(shost->host_lock, flags);
551 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
552 !test_and_set_bit(QUEUE_FLAG_REENTER,
553 &sdev->request_queue->queue_flags)) {
554 blk_run_queue(sdev->request_queue);
555 clear_bit(QUEUE_FLAG_REENTER,
556 &sdev->request_queue->queue_flags);
557 } else
558 blk_run_queue(sdev->request_queue);
560 spin_lock_irqsave(shost->host_lock, flags);
561 if (unlikely(!list_empty(&sdev->starved_entry)))
563 * sdev lost a race, and was put back on the
564 * starved list. This is unlikely but without this
565 * in theory we could loop forever.
567 break;
569 spin_unlock_irqrestore(shost->host_lock, flags);
571 blk_run_queue(q);
575 * Function: scsi_requeue_command()
577 * Purpose: Handle post-processing of completed commands.
579 * Arguments: q - queue to operate on
580 * cmd - command that may need to be requeued.
582 * Returns: Nothing
584 * Notes: After command completion, there may be blocks left
585 * over which weren't finished by the previous command
586 * this can be for a number of reasons - the main one is
587 * I/O errors in the middle of the request, in which case
588 * we need to request the blocks that come after the bad
589 * sector.
590 * Notes: Upon return, cmd is a stale pointer.
592 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
594 struct request *req = cmd->request;
595 unsigned long flags;
597 scsi_unprep_request(req);
598 spin_lock_irqsave(q->queue_lock, flags);
599 blk_requeue_request(q, req);
600 spin_unlock_irqrestore(q->queue_lock, flags);
602 scsi_run_queue(q);
605 void scsi_next_command(struct scsi_cmnd *cmd)
607 struct scsi_device *sdev = cmd->device;
608 struct request_queue *q = sdev->request_queue;
610 /* need to hold a reference on the device before we let go of the cmd */
611 get_device(&sdev->sdev_gendev);
613 scsi_put_command(cmd);
614 scsi_run_queue(q);
616 /* ok to remove device now */
617 put_device(&sdev->sdev_gendev);
620 void scsi_run_host_queues(struct Scsi_Host *shost)
622 struct scsi_device *sdev;
624 shost_for_each_device(sdev, shost)
625 scsi_run_queue(sdev->request_queue);
629 * Function: scsi_end_request()
631 * Purpose: Post-processing of completed commands (usually invoked at end
632 * of upper level post-processing and scsi_io_completion).
634 * Arguments: cmd - command that is complete.
635 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
636 * bytes - number of bytes of completed I/O
637 * requeue - indicates whether we should requeue leftovers.
639 * Lock status: Assumed that lock is not held upon entry.
641 * Returns: cmd if requeue required, NULL otherwise.
643 * Notes: This is called for block device requests in order to
644 * mark some number of sectors as complete.
646 * We are guaranteeing that the request queue will be goosed
647 * at some point during this call.
648 * Notes: If cmd was requeued, upon return it will be a stale pointer.
650 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
651 int bytes, int requeue)
653 struct request_queue *q = cmd->device->request_queue;
654 struct request *req = cmd->request;
655 unsigned long flags;
658 * If there are blocks left over at the end, set up the command
659 * to queue the remainder of them.
661 if (end_that_request_chunk(req, uptodate, bytes)) {
662 int leftover = (req->hard_nr_sectors << 9);
664 if (blk_pc_request(req))
665 leftover = req->data_len;
667 /* kill remainder if no retrys */
668 if (!uptodate && blk_noretry_request(req))
669 end_that_request_chunk(req, 0, leftover);
670 else {
671 if (requeue) {
673 * Bleah. Leftovers again. Stick the
674 * leftovers in the front of the
675 * queue, and goose the queue again.
677 scsi_requeue_command(q, cmd);
678 cmd = NULL;
680 return cmd;
684 add_disk_randomness(req->rq_disk);
686 spin_lock_irqsave(q->queue_lock, flags);
687 if (blk_rq_tagged(req))
688 blk_queue_end_tag(q, req);
689 end_that_request_last(req, uptodate);
690 spin_unlock_irqrestore(q->queue_lock, flags);
693 * This will goose the queue request function at the end, so we don't
694 * need to worry about launching another command.
696 scsi_next_command(cmd);
697 return NULL;
701 * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
702 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
704 #define SCSI_MAX_SG_CHAIN_SEGMENTS 2048
706 static inline unsigned int scsi_sgtable_index(unsigned short nents)
708 unsigned int index;
710 switch (nents) {
711 case 1 ... 8:
712 index = 0;
713 break;
714 case 9 ... 16:
715 index = 1;
716 break;
717 #if (SCSI_MAX_SG_SEGMENTS > 16)
718 case 17 ... 32:
719 index = 2;
720 break;
721 #if (SCSI_MAX_SG_SEGMENTS > 32)
722 case 33 ... 64:
723 index = 3;
724 break;
725 #if (SCSI_MAX_SG_SEGMENTS > 64)
726 case 65 ... 128:
727 index = 4;
728 break;
729 #endif
730 #endif
731 #endif
732 default:
733 printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
734 BUG();
737 return index;
740 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
742 struct scsi_host_sg_pool *sgp;
743 struct scatterlist *sgl, *prev, *ret;
744 unsigned int index;
745 int this, left;
747 BUG_ON(!cmd->use_sg);
749 left = cmd->use_sg;
750 ret = prev = NULL;
751 do {
752 this = left;
753 if (this > SCSI_MAX_SG_SEGMENTS) {
754 this = SCSI_MAX_SG_SEGMENTS - 1;
755 index = SG_MEMPOOL_NR - 1;
756 } else
757 index = scsi_sgtable_index(this);
759 left -= this;
761 sgp = scsi_sg_pools + index;
763 sgl = mempool_alloc(sgp->pool, gfp_mask);
764 if (unlikely(!sgl))
765 goto enomem;
767 sg_init_table(sgl, sgp->size);
770 * first loop through, set initial index and return value
772 if (!ret)
773 ret = sgl;
776 * chain previous sglist, if any. we know the previous
777 * sglist must be the biggest one, or we would not have
778 * ended up doing another loop.
780 if (prev)
781 sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
784 * if we have nothing left, mark the last segment as
785 * end-of-list
787 if (!left)
788 sg_mark_end(&sgl[this - 1]);
791 * don't allow subsequent mempool allocs to sleep, it would
792 * violate the mempool principle.
794 gfp_mask &= ~__GFP_WAIT;
795 gfp_mask |= __GFP_HIGH;
796 prev = sgl;
797 } while (left);
800 * ->use_sg may get modified after dma mapping has potentially
801 * shrunk the number of segments, so keep a copy of it for free.
803 cmd->__use_sg = cmd->use_sg;
804 return ret;
805 enomem:
806 if (ret) {
808 * Free entries chained off ret. Since we were trying to
809 * allocate another sglist, we know that all entries are of
810 * the max size.
812 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
813 prev = ret;
814 ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
816 while ((sgl = sg_chain_ptr(ret)) != NULL) {
817 ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
818 mempool_free(sgl, sgp->pool);
821 mempool_free(prev, sgp->pool);
823 return NULL;
826 EXPORT_SYMBOL(scsi_alloc_sgtable);
828 void scsi_free_sgtable(struct scsi_cmnd *cmd)
830 struct scatterlist *sgl = cmd->request_buffer;
831 struct scsi_host_sg_pool *sgp;
834 * if this is the biggest size sglist, check if we have
835 * chained parts we need to free
837 if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
838 unsigned short this, left;
839 struct scatterlist *next;
840 unsigned int index;
842 left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
843 next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
844 while (left && next) {
845 sgl = next;
846 this = left;
847 if (this > SCSI_MAX_SG_SEGMENTS) {
848 this = SCSI_MAX_SG_SEGMENTS - 1;
849 index = SG_MEMPOOL_NR - 1;
850 } else
851 index = scsi_sgtable_index(this);
853 left -= this;
855 sgp = scsi_sg_pools + index;
857 if (left)
858 next = sg_chain_ptr(&sgl[sgp->size - 1]);
860 mempool_free(sgl, sgp->pool);
864 * Restore original, will be freed below
866 sgl = cmd->request_buffer;
867 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
868 } else
869 sgp = scsi_sg_pools + scsi_sgtable_index(cmd->__use_sg);
871 mempool_free(sgl, sgp->pool);
874 EXPORT_SYMBOL(scsi_free_sgtable);
877 * Function: scsi_release_buffers()
879 * Purpose: Completion processing for block device I/O requests.
881 * Arguments: cmd - command that we are bailing.
883 * Lock status: Assumed that no lock is held upon entry.
885 * Returns: Nothing
887 * Notes: In the event that an upper level driver rejects a
888 * command, we must release resources allocated during
889 * the __init_io() function. Primarily this would involve
890 * the scatter-gather table, and potentially any bounce
891 * buffers.
893 static void scsi_release_buffers(struct scsi_cmnd *cmd)
895 if (cmd->use_sg)
896 scsi_free_sgtable(cmd);
899 * Zero these out. They now point to freed memory, and it is
900 * dangerous to hang onto the pointers.
902 cmd->request_buffer = NULL;
903 cmd->request_bufflen = 0;
907 * Function: scsi_io_completion()
909 * Purpose: Completion processing for block device I/O requests.
911 * Arguments: cmd - command that is finished.
913 * Lock status: Assumed that no lock is held upon entry.
915 * Returns: Nothing
917 * Notes: This function is matched in terms of capabilities to
918 * the function that created the scatter-gather list.
919 * In other words, if there are no bounce buffers
920 * (the normal case for most drivers), we don't need
921 * the logic to deal with cleaning up afterwards.
923 * We must do one of several things here:
925 * a) Call scsi_end_request. This will finish off the
926 * specified number of sectors. If we are done, the
927 * command block will be released, and the queue
928 * function will be goosed. If we are not done, then
929 * scsi_end_request will directly goose the queue.
931 * b) We can just use scsi_requeue_command() here. This would
932 * be used if we just wanted to retry, for example.
934 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
936 int result = cmd->result;
937 int this_count = cmd->request_bufflen;
938 struct request_queue *q = cmd->device->request_queue;
939 struct request *req = cmd->request;
940 int clear_errors = 1;
941 struct scsi_sense_hdr sshdr;
942 int sense_valid = 0;
943 int sense_deferred = 0;
945 scsi_release_buffers(cmd);
947 if (result) {
948 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
949 if (sense_valid)
950 sense_deferred = scsi_sense_is_deferred(&sshdr);
953 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
954 req->errors = result;
955 if (result) {
956 clear_errors = 0;
957 if (sense_valid && req->sense) {
959 * SG_IO wants current and deferred errors
961 int len = 8 + cmd->sense_buffer[7];
963 if (len > SCSI_SENSE_BUFFERSIZE)
964 len = SCSI_SENSE_BUFFERSIZE;
965 memcpy(req->sense, cmd->sense_buffer, len);
966 req->sense_len = len;
969 req->data_len = cmd->resid;
973 * Next deal with any sectors which we were able to correctly
974 * handle.
976 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
977 "%d bytes done.\n",
978 req->nr_sectors, good_bytes));
979 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
981 if (clear_errors)
982 req->errors = 0;
984 /* A number of bytes were successfully read. If there
985 * are leftovers and there is some kind of error
986 * (result != 0), retry the rest.
988 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
989 return;
991 /* good_bytes = 0, or (inclusive) there were leftovers and
992 * result = 0, so scsi_end_request couldn't retry.
994 if (sense_valid && !sense_deferred) {
995 switch (sshdr.sense_key) {
996 case UNIT_ATTENTION:
997 if (cmd->device->removable) {
998 /* Detected disc change. Set a bit
999 * and quietly refuse further access.
1001 cmd->device->changed = 1;
1002 scsi_end_request(cmd, 0, this_count, 1);
1003 return;
1004 } else {
1005 /* Must have been a power glitch, or a
1006 * bus reset. Could not have been a
1007 * media change, so we just retry the
1008 * request and see what happens.
1010 scsi_requeue_command(q, cmd);
1011 return;
1013 break;
1014 case ILLEGAL_REQUEST:
1015 /* If we had an ILLEGAL REQUEST returned, then
1016 * we may have performed an unsupported
1017 * command. The only thing this should be
1018 * would be a ten byte read where only a six
1019 * byte read was supported. Also, on a system
1020 * where READ CAPACITY failed, we may have
1021 * read past the end of the disk.
1023 if ((cmd->device->use_10_for_rw &&
1024 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1025 (cmd->cmnd[0] == READ_10 ||
1026 cmd->cmnd[0] == WRITE_10)) {
1027 cmd->device->use_10_for_rw = 0;
1028 /* This will cause a retry with a
1029 * 6-byte command.
1031 scsi_requeue_command(q, cmd);
1032 return;
1033 } else {
1034 scsi_end_request(cmd, 0, this_count, 1);
1035 return;
1037 break;
1038 case NOT_READY:
1039 /* If the device is in the process of becoming
1040 * ready, or has a temporary blockage, retry.
1042 if (sshdr.asc == 0x04) {
1043 switch (sshdr.ascq) {
1044 case 0x01: /* becoming ready */
1045 case 0x04: /* format in progress */
1046 case 0x05: /* rebuild in progress */
1047 case 0x06: /* recalculation in progress */
1048 case 0x07: /* operation in progress */
1049 case 0x08: /* Long write in progress */
1050 case 0x09: /* self test in progress */
1051 scsi_requeue_command(q, cmd);
1052 return;
1053 default:
1054 break;
1057 if (!(req->cmd_flags & REQ_QUIET))
1058 scsi_cmd_print_sense_hdr(cmd,
1059 "Device not ready",
1060 &sshdr);
1062 scsi_end_request(cmd, 0, this_count, 1);
1063 return;
1064 case VOLUME_OVERFLOW:
1065 if (!(req->cmd_flags & REQ_QUIET)) {
1066 scmd_printk(KERN_INFO, cmd,
1067 "Volume overflow, CDB: ");
1068 __scsi_print_command(cmd->cmnd);
1069 scsi_print_sense("", cmd);
1071 /* See SSC3rXX or current. */
1072 scsi_end_request(cmd, 0, this_count, 1);
1073 return;
1074 default:
1075 break;
1078 if (host_byte(result) == DID_RESET) {
1079 /* Third party bus reset or reset for error recovery
1080 * reasons. Just retry the request and see what
1081 * happens.
1083 scsi_requeue_command(q, cmd);
1084 return;
1086 if (result) {
1087 if (!(req->cmd_flags & REQ_QUIET)) {
1088 scsi_print_result(cmd);
1089 if (driver_byte(result) & DRIVER_SENSE)
1090 scsi_print_sense("", cmd);
1093 scsi_end_request(cmd, 0, this_count, !result);
1095 EXPORT_SYMBOL(scsi_io_completion);
1098 * Function: scsi_init_io()
1100 * Purpose: SCSI I/O initialize function.
1102 * Arguments: cmd - Command descriptor we wish to initialize
1104 * Returns: 0 on success
1105 * BLKPREP_DEFER if the failure is retryable
1106 * BLKPREP_KILL if the failure is fatal
1108 static int scsi_init_io(struct scsi_cmnd *cmd)
1110 struct request *req = cmd->request;
1111 int count;
1114 * We used to not use scatter-gather for single segment request,
1115 * but now we do (it makes highmem I/O easier to support without
1116 * kmapping pages)
1118 cmd->use_sg = req->nr_phys_segments;
1121 * If sg table allocation fails, requeue request later.
1123 cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1124 if (unlikely(!cmd->request_buffer)) {
1125 scsi_unprep_request(req);
1126 return BLKPREP_DEFER;
1129 req->buffer = NULL;
1130 if (blk_pc_request(req))
1131 cmd->request_bufflen = req->data_len;
1132 else
1133 cmd->request_bufflen = req->nr_sectors << 9;
1136 * Next, walk the list, and fill in the addresses and sizes of
1137 * each segment.
1139 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1140 if (likely(count <= cmd->use_sg)) {
1141 cmd->use_sg = count;
1142 return BLKPREP_OK;
1145 printk(KERN_ERR "Incorrect number of segments after building list\n");
1146 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1147 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1148 req->current_nr_sectors);
1150 return BLKPREP_KILL;
1153 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1154 struct request *req)
1156 struct scsi_cmnd *cmd;
1158 if (!req->special) {
1159 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1160 if (unlikely(!cmd))
1161 return NULL;
1162 req->special = cmd;
1163 } else {
1164 cmd = req->special;
1167 /* pull a tag out of the request if we have one */
1168 cmd->tag = req->tag;
1169 cmd->request = req;
1171 return cmd;
1174 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1176 BUG_ON(!blk_pc_request(cmd->request));
1178 * This will complete the whole command with uptodate=1 so
1179 * as far as the block layer is concerned the command completed
1180 * successfully. Since this is a REQ_BLOCK_PC command the
1181 * caller should check the request's errors value
1183 scsi_io_completion(cmd, cmd->request_bufflen);
1186 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1188 struct scsi_cmnd *cmd;
1189 int ret = scsi_prep_state_check(sdev, req);
1191 if (ret != BLKPREP_OK)
1192 return ret;
1194 cmd = scsi_get_cmd_from_req(sdev, req);
1195 if (unlikely(!cmd))
1196 return BLKPREP_DEFER;
1199 * BLOCK_PC requests may transfer data, in which case they must
1200 * a bio attached to them. Or they might contain a SCSI command
1201 * that does not transfer data, in which case they may optionally
1202 * submit a request without an attached bio.
1204 if (req->bio) {
1205 int ret;
1207 BUG_ON(!req->nr_phys_segments);
1209 ret = scsi_init_io(cmd);
1210 if (unlikely(ret))
1211 return ret;
1212 } else {
1213 BUG_ON(req->data_len);
1214 BUG_ON(req->data);
1216 cmd->request_bufflen = 0;
1217 cmd->request_buffer = NULL;
1218 cmd->use_sg = 0;
1219 req->buffer = NULL;
1222 BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1223 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1224 cmd->cmd_len = req->cmd_len;
1225 if (!req->data_len)
1226 cmd->sc_data_direction = DMA_NONE;
1227 else if (rq_data_dir(req) == WRITE)
1228 cmd->sc_data_direction = DMA_TO_DEVICE;
1229 else
1230 cmd->sc_data_direction = DMA_FROM_DEVICE;
1232 cmd->transfersize = req->data_len;
1233 cmd->allowed = req->retries;
1234 cmd->timeout_per_command = req->timeout;
1235 cmd->done = scsi_blk_pc_done;
1236 return BLKPREP_OK;
1238 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1241 * Setup a REQ_TYPE_FS command. These are simple read/write request
1242 * from filesystems that still need to be translated to SCSI CDBs from
1243 * the ULD.
1245 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1247 struct scsi_cmnd *cmd;
1248 int ret = scsi_prep_state_check(sdev, req);
1250 if (ret != BLKPREP_OK)
1251 return ret;
1253 * Filesystem requests must transfer data.
1255 BUG_ON(!req->nr_phys_segments);
1257 cmd = scsi_get_cmd_from_req(sdev, req);
1258 if (unlikely(!cmd))
1259 return BLKPREP_DEFER;
1261 return scsi_init_io(cmd);
1263 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1265 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1267 int ret = BLKPREP_OK;
1270 * If the device is not in running state we will reject some
1271 * or all commands.
1273 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1274 switch (sdev->sdev_state) {
1275 case SDEV_OFFLINE:
1277 * If the device is offline we refuse to process any
1278 * commands. The device must be brought online
1279 * before trying any recovery commands.
1281 sdev_printk(KERN_ERR, sdev,
1282 "rejecting I/O to offline device\n");
1283 ret = BLKPREP_KILL;
1284 break;
1285 case SDEV_DEL:
1287 * If the device is fully deleted, we refuse to
1288 * process any commands as well.
1290 sdev_printk(KERN_ERR, sdev,
1291 "rejecting I/O to dead device\n");
1292 ret = BLKPREP_KILL;
1293 break;
1294 case SDEV_QUIESCE:
1295 case SDEV_BLOCK:
1297 * If the devices is blocked we defer normal commands.
1299 if (!(req->cmd_flags & REQ_PREEMPT))
1300 ret = BLKPREP_DEFER;
1301 break;
1302 default:
1304 * For any other not fully online state we only allow
1305 * special commands. In particular any user initiated
1306 * command is not allowed.
1308 if (!(req->cmd_flags & REQ_PREEMPT))
1309 ret = BLKPREP_KILL;
1310 break;
1313 return ret;
1315 EXPORT_SYMBOL(scsi_prep_state_check);
1317 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1319 struct scsi_device *sdev = q->queuedata;
1321 switch (ret) {
1322 case BLKPREP_KILL:
1323 req->errors = DID_NO_CONNECT << 16;
1324 /* release the command and kill it */
1325 if (req->special) {
1326 struct scsi_cmnd *cmd = req->special;
1327 scsi_release_buffers(cmd);
1328 scsi_put_command(cmd);
1329 req->special = NULL;
1331 break;
1332 case BLKPREP_DEFER:
1334 * If we defer, the elv_next_request() returns NULL, but the
1335 * queue must be restarted, so we plug here if no returning
1336 * command will automatically do that.
1338 if (sdev->device_busy == 0)
1339 blk_plug_device(q);
1340 break;
1341 default:
1342 req->cmd_flags |= REQ_DONTPREP;
1345 return ret;
1347 EXPORT_SYMBOL(scsi_prep_return);
1349 int scsi_prep_fn(struct request_queue *q, struct request *req)
1351 struct scsi_device *sdev = q->queuedata;
1352 int ret = BLKPREP_KILL;
1354 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1355 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1356 return scsi_prep_return(q, req, ret);
1360 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1361 * return 0.
1363 * Called with the queue_lock held.
1365 static inline int scsi_dev_queue_ready(struct request_queue *q,
1366 struct scsi_device *sdev)
1368 if (sdev->device_busy >= sdev->queue_depth)
1369 return 0;
1370 if (sdev->device_busy == 0 && sdev->device_blocked) {
1372 * unblock after device_blocked iterates to zero
1374 if (--sdev->device_blocked == 0) {
1375 SCSI_LOG_MLQUEUE(3,
1376 sdev_printk(KERN_INFO, sdev,
1377 "unblocking device at zero depth\n"));
1378 } else {
1379 blk_plug_device(q);
1380 return 0;
1383 if (sdev->device_blocked)
1384 return 0;
1386 return 1;
1390 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1391 * return 0. We must end up running the queue again whenever 0 is
1392 * returned, else IO can hang.
1394 * Called with host_lock held.
1396 static inline int scsi_host_queue_ready(struct request_queue *q,
1397 struct Scsi_Host *shost,
1398 struct scsi_device *sdev)
1400 if (scsi_host_in_recovery(shost))
1401 return 0;
1402 if (shost->host_busy == 0 && shost->host_blocked) {
1404 * unblock after host_blocked iterates to zero
1406 if (--shost->host_blocked == 0) {
1407 SCSI_LOG_MLQUEUE(3,
1408 printk("scsi%d unblocking host at zero depth\n",
1409 shost->host_no));
1410 } else {
1411 blk_plug_device(q);
1412 return 0;
1415 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1416 shost->host_blocked || shost->host_self_blocked) {
1417 if (list_empty(&sdev->starved_entry))
1418 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1419 return 0;
1422 /* We're OK to process the command, so we can't be starved */
1423 if (!list_empty(&sdev->starved_entry))
1424 list_del_init(&sdev->starved_entry);
1426 return 1;
1430 * Kill a request for a dead device
1432 static void scsi_kill_request(struct request *req, struct request_queue *q)
1434 struct scsi_cmnd *cmd = req->special;
1435 struct scsi_device *sdev = cmd->device;
1436 struct Scsi_Host *shost = sdev->host;
1438 blkdev_dequeue_request(req);
1440 if (unlikely(cmd == NULL)) {
1441 printk(KERN_CRIT "impossible request in %s.\n",
1442 __FUNCTION__);
1443 BUG();
1446 scsi_init_cmd_errh(cmd);
1447 cmd->result = DID_NO_CONNECT << 16;
1448 atomic_inc(&cmd->device->iorequest_cnt);
1451 * SCSI request completion path will do scsi_device_unbusy(),
1452 * bump busy counts. To bump the counters, we need to dance
1453 * with the locks as normal issue path does.
1455 sdev->device_busy++;
1456 spin_unlock(sdev->request_queue->queue_lock);
1457 spin_lock(shost->host_lock);
1458 shost->host_busy++;
1459 spin_unlock(shost->host_lock);
1460 spin_lock(sdev->request_queue->queue_lock);
1462 __scsi_done(cmd);
1465 static void scsi_softirq_done(struct request *rq)
1467 struct scsi_cmnd *cmd = rq->completion_data;
1468 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1469 int disposition;
1471 INIT_LIST_HEAD(&cmd->eh_entry);
1473 disposition = scsi_decide_disposition(cmd);
1474 if (disposition != SUCCESS &&
1475 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1476 sdev_printk(KERN_ERR, cmd->device,
1477 "timing out command, waited %lus\n",
1478 wait_for/HZ);
1479 disposition = SUCCESS;
1482 scsi_log_completion(cmd, disposition);
1484 switch (disposition) {
1485 case SUCCESS:
1486 scsi_finish_command(cmd);
1487 break;
1488 case NEEDS_RETRY:
1489 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1490 break;
1491 case ADD_TO_MLQUEUE:
1492 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1493 break;
1494 default:
1495 if (!scsi_eh_scmd_add(cmd, 0))
1496 scsi_finish_command(cmd);
1501 * Function: scsi_request_fn()
1503 * Purpose: Main strategy routine for SCSI.
1505 * Arguments: q - Pointer to actual queue.
1507 * Returns: Nothing
1509 * Lock status: IO request lock assumed to be held when called.
1511 static void scsi_request_fn(struct request_queue *q)
1513 struct scsi_device *sdev = q->queuedata;
1514 struct Scsi_Host *shost;
1515 struct scsi_cmnd *cmd;
1516 struct request *req;
1518 if (!sdev) {
1519 printk("scsi: killing requests for dead queue\n");
1520 while ((req = elv_next_request(q)) != NULL)
1521 scsi_kill_request(req, q);
1522 return;
1525 if(!get_device(&sdev->sdev_gendev))
1526 /* We must be tearing the block queue down already */
1527 return;
1530 * To start with, we keep looping until the queue is empty, or until
1531 * the host is no longer able to accept any more requests.
1533 shost = sdev->host;
1534 while (!blk_queue_plugged(q)) {
1535 int rtn;
1537 * get next queueable request. We do this early to make sure
1538 * that the request is fully prepared even if we cannot
1539 * accept it.
1541 req = elv_next_request(q);
1542 if (!req || !scsi_dev_queue_ready(q, sdev))
1543 break;
1545 if (unlikely(!scsi_device_online(sdev))) {
1546 sdev_printk(KERN_ERR, sdev,
1547 "rejecting I/O to offline device\n");
1548 scsi_kill_request(req, q);
1549 continue;
1554 * Remove the request from the request list.
1556 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1557 blkdev_dequeue_request(req);
1558 sdev->device_busy++;
1560 spin_unlock(q->queue_lock);
1561 cmd = req->special;
1562 if (unlikely(cmd == NULL)) {
1563 printk(KERN_CRIT "impossible request in %s.\n"
1564 "please mail a stack trace to "
1565 "linux-scsi@vger.kernel.org\n",
1566 __FUNCTION__);
1567 blk_dump_rq_flags(req, "foo");
1568 BUG();
1570 spin_lock(shost->host_lock);
1572 if (!scsi_host_queue_ready(q, shost, sdev))
1573 goto not_ready;
1574 if (sdev->single_lun) {
1575 if (scsi_target(sdev)->starget_sdev_user &&
1576 scsi_target(sdev)->starget_sdev_user != sdev)
1577 goto not_ready;
1578 scsi_target(sdev)->starget_sdev_user = sdev;
1580 shost->host_busy++;
1583 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1584 * take the lock again.
1586 spin_unlock_irq(shost->host_lock);
1589 * Finally, initialize any error handling parameters, and set up
1590 * the timers for timeouts.
1592 scsi_init_cmd_errh(cmd);
1595 * Dispatch the command to the low-level driver.
1597 rtn = scsi_dispatch_cmd(cmd);
1598 spin_lock_irq(q->queue_lock);
1599 if(rtn) {
1600 /* we're refusing the command; because of
1601 * the way locks get dropped, we need to
1602 * check here if plugging is required */
1603 if(sdev->device_busy == 0)
1604 blk_plug_device(q);
1606 break;
1610 goto out;
1612 not_ready:
1613 spin_unlock_irq(shost->host_lock);
1616 * lock q, handle tag, requeue req, and decrement device_busy. We
1617 * must return with queue_lock held.
1619 * Decrementing device_busy without checking it is OK, as all such
1620 * cases (host limits or settings) should run the queue at some
1621 * later time.
1623 spin_lock_irq(q->queue_lock);
1624 blk_requeue_request(q, req);
1625 sdev->device_busy--;
1626 if(sdev->device_busy == 0)
1627 blk_plug_device(q);
1628 out:
1629 /* must be careful here...if we trigger the ->remove() function
1630 * we cannot be holding the q lock */
1631 spin_unlock_irq(q->queue_lock);
1632 put_device(&sdev->sdev_gendev);
1633 spin_lock_irq(q->queue_lock);
1636 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1638 struct device *host_dev;
1639 u64 bounce_limit = 0xffffffff;
1641 if (shost->unchecked_isa_dma)
1642 return BLK_BOUNCE_ISA;
1644 * Platforms with virtual-DMA translation
1645 * hardware have no practical limit.
1647 if (!PCI_DMA_BUS_IS_PHYS)
1648 return BLK_BOUNCE_ANY;
1650 host_dev = scsi_get_device(shost);
1651 if (host_dev && host_dev->dma_mask)
1652 bounce_limit = *host_dev->dma_mask;
1654 return bounce_limit;
1656 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1658 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1659 request_fn_proc *request_fn)
1661 struct request_queue *q;
1663 q = blk_init_queue(request_fn, NULL);
1664 if (!q)
1665 return NULL;
1668 * this limit is imposed by hardware restrictions
1670 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1673 * In the future, sg chaining support will be mandatory and this
1674 * ifdef can then go away. Right now we don't have all archs
1675 * converted, so better keep it safe.
1677 #ifdef ARCH_HAS_SG_CHAIN
1678 if (shost->use_sg_chaining)
1679 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1680 else
1681 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1682 #else
1683 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1684 #endif
1686 blk_queue_max_sectors(q, shost->max_sectors);
1687 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1688 blk_queue_segment_boundary(q, shost->dma_boundary);
1690 if (!shost->use_clustering)
1691 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1692 return q;
1694 EXPORT_SYMBOL(__scsi_alloc_queue);
1696 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1698 struct request_queue *q;
1700 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1701 if (!q)
1702 return NULL;
1704 blk_queue_prep_rq(q, scsi_prep_fn);
1705 blk_queue_softirq_done(q, scsi_softirq_done);
1706 return q;
1709 void scsi_free_queue(struct request_queue *q)
1711 blk_cleanup_queue(q);
1715 * Function: scsi_block_requests()
1717 * Purpose: Utility function used by low-level drivers to prevent further
1718 * commands from being queued to the device.
1720 * Arguments: shost - Host in question
1722 * Returns: Nothing
1724 * Lock status: No locks are assumed held.
1726 * Notes: There is no timer nor any other means by which the requests
1727 * get unblocked other than the low-level driver calling
1728 * scsi_unblock_requests().
1730 void scsi_block_requests(struct Scsi_Host *shost)
1732 shost->host_self_blocked = 1;
1734 EXPORT_SYMBOL(scsi_block_requests);
1737 * Function: scsi_unblock_requests()
1739 * Purpose: Utility function used by low-level drivers to allow further
1740 * commands from being queued to the device.
1742 * Arguments: shost - Host in question
1744 * Returns: Nothing
1746 * Lock status: No locks are assumed held.
1748 * Notes: There is no timer nor any other means by which the requests
1749 * get unblocked other than the low-level driver calling
1750 * scsi_unblock_requests().
1752 * This is done as an API function so that changes to the
1753 * internals of the scsi mid-layer won't require wholesale
1754 * changes to drivers that use this feature.
1756 void scsi_unblock_requests(struct Scsi_Host *shost)
1758 shost->host_self_blocked = 0;
1759 scsi_run_host_queues(shost);
1761 EXPORT_SYMBOL(scsi_unblock_requests);
1763 int __init scsi_init_queue(void)
1765 int i;
1767 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1768 sizeof(struct scsi_io_context),
1769 0, 0, NULL);
1770 if (!scsi_io_context_cache) {
1771 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1772 return -ENOMEM;
1775 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1776 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1777 int size = sgp->size * sizeof(struct scatterlist);
1779 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1780 SLAB_HWCACHE_ALIGN, NULL);
1781 if (!sgp->slab) {
1782 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1783 sgp->name);
1786 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1787 sgp->slab);
1788 if (!sgp->pool) {
1789 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1790 sgp->name);
1794 return 0;
1797 void scsi_exit_queue(void)
1799 int i;
1801 kmem_cache_destroy(scsi_io_context_cache);
1803 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1804 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1805 mempool_destroy(sgp->pool);
1806 kmem_cache_destroy(sgp->slab);
1811 * scsi_mode_select - issue a mode select
1812 * @sdev: SCSI device to be queried
1813 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1814 * @sp: Save page bit (0 == don't save, 1 == save)
1815 * @modepage: mode page being requested
1816 * @buffer: request buffer (may not be smaller than eight bytes)
1817 * @len: length of request buffer.
1818 * @timeout: command timeout
1819 * @retries: number of retries before failing
1820 * @data: returns a structure abstracting the mode header data
1821 * @sense: place to put sense data (or NULL if no sense to be collected).
1822 * must be SCSI_SENSE_BUFFERSIZE big.
1824 * Returns zero if successful; negative error number or scsi
1825 * status on error
1829 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1830 unsigned char *buffer, int len, int timeout, int retries,
1831 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1833 unsigned char cmd[10];
1834 unsigned char *real_buffer;
1835 int ret;
1837 memset(cmd, 0, sizeof(cmd));
1838 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1840 if (sdev->use_10_for_ms) {
1841 if (len > 65535)
1842 return -EINVAL;
1843 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1844 if (!real_buffer)
1845 return -ENOMEM;
1846 memcpy(real_buffer + 8, buffer, len);
1847 len += 8;
1848 real_buffer[0] = 0;
1849 real_buffer[1] = 0;
1850 real_buffer[2] = data->medium_type;
1851 real_buffer[3] = data->device_specific;
1852 real_buffer[4] = data->longlba ? 0x01 : 0;
1853 real_buffer[5] = 0;
1854 real_buffer[6] = data->block_descriptor_length >> 8;
1855 real_buffer[7] = data->block_descriptor_length;
1857 cmd[0] = MODE_SELECT_10;
1858 cmd[7] = len >> 8;
1859 cmd[8] = len;
1860 } else {
1861 if (len > 255 || data->block_descriptor_length > 255 ||
1862 data->longlba)
1863 return -EINVAL;
1865 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1866 if (!real_buffer)
1867 return -ENOMEM;
1868 memcpy(real_buffer + 4, buffer, len);
1869 len += 4;
1870 real_buffer[0] = 0;
1871 real_buffer[1] = data->medium_type;
1872 real_buffer[2] = data->device_specific;
1873 real_buffer[3] = data->block_descriptor_length;
1876 cmd[0] = MODE_SELECT;
1877 cmd[4] = len;
1880 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1881 sshdr, timeout, retries);
1882 kfree(real_buffer);
1883 return ret;
1885 EXPORT_SYMBOL_GPL(scsi_mode_select);
1888 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1889 * six bytes if necessary.
1890 * @sdev: SCSI device to be queried
1891 * @dbd: set if mode sense will allow block descriptors to be returned
1892 * @modepage: mode page being requested
1893 * @buffer: request buffer (may not be smaller than eight bytes)
1894 * @len: length of request buffer.
1895 * @timeout: command timeout
1896 * @retries: number of retries before failing
1897 * @data: returns a structure abstracting the mode header data
1898 * @sense: place to put sense data (or NULL if no sense to be collected).
1899 * must be SCSI_SENSE_BUFFERSIZE big.
1901 * Returns zero if unsuccessful, or the header offset (either 4
1902 * or 8 depending on whether a six or ten byte command was
1903 * issued) if successful.
1906 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1907 unsigned char *buffer, int len, int timeout, int retries,
1908 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1910 unsigned char cmd[12];
1911 int use_10_for_ms;
1912 int header_length;
1913 int result;
1914 struct scsi_sense_hdr my_sshdr;
1916 memset(data, 0, sizeof(*data));
1917 memset(&cmd[0], 0, 12);
1918 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1919 cmd[2] = modepage;
1921 /* caller might not be interested in sense, but we need it */
1922 if (!sshdr)
1923 sshdr = &my_sshdr;
1925 retry:
1926 use_10_for_ms = sdev->use_10_for_ms;
1928 if (use_10_for_ms) {
1929 if (len < 8)
1930 len = 8;
1932 cmd[0] = MODE_SENSE_10;
1933 cmd[8] = len;
1934 header_length = 8;
1935 } else {
1936 if (len < 4)
1937 len = 4;
1939 cmd[0] = MODE_SENSE;
1940 cmd[4] = len;
1941 header_length = 4;
1944 memset(buffer, 0, len);
1946 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1947 sshdr, timeout, retries);
1949 /* This code looks awful: what it's doing is making sure an
1950 * ILLEGAL REQUEST sense return identifies the actual command
1951 * byte as the problem. MODE_SENSE commands can return
1952 * ILLEGAL REQUEST if the code page isn't supported */
1954 if (use_10_for_ms && !scsi_status_is_good(result) &&
1955 (driver_byte(result) & DRIVER_SENSE)) {
1956 if (scsi_sense_valid(sshdr)) {
1957 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1958 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1960 * Invalid command operation code
1962 sdev->use_10_for_ms = 0;
1963 goto retry;
1968 if(scsi_status_is_good(result)) {
1969 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1970 (modepage == 6 || modepage == 8))) {
1971 /* Initio breakage? */
1972 header_length = 0;
1973 data->length = 13;
1974 data->medium_type = 0;
1975 data->device_specific = 0;
1976 data->longlba = 0;
1977 data->block_descriptor_length = 0;
1978 } else if(use_10_for_ms) {
1979 data->length = buffer[0]*256 + buffer[1] + 2;
1980 data->medium_type = buffer[2];
1981 data->device_specific = buffer[3];
1982 data->longlba = buffer[4] & 0x01;
1983 data->block_descriptor_length = buffer[6]*256
1984 + buffer[7];
1985 } else {
1986 data->length = buffer[0] + 1;
1987 data->medium_type = buffer[1];
1988 data->device_specific = buffer[2];
1989 data->block_descriptor_length = buffer[3];
1991 data->header_length = header_length;
1994 return result;
1996 EXPORT_SYMBOL(scsi_mode_sense);
1999 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
2001 char cmd[] = {
2002 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2004 struct scsi_sense_hdr sshdr;
2005 int result;
2007 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
2008 timeout, retries);
2010 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
2012 if ((scsi_sense_valid(&sshdr)) &&
2013 ((sshdr.sense_key == UNIT_ATTENTION) ||
2014 (sshdr.sense_key == NOT_READY))) {
2015 sdev->changed = 1;
2016 result = 0;
2019 return result;
2021 EXPORT_SYMBOL(scsi_test_unit_ready);
2024 * scsi_device_set_state - Take the given device through the device
2025 * state model.
2026 * @sdev: scsi device to change the state of.
2027 * @state: state to change to.
2029 * Returns zero if unsuccessful or an error if the requested
2030 * transition is illegal.
2033 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2035 enum scsi_device_state oldstate = sdev->sdev_state;
2037 if (state == oldstate)
2038 return 0;
2040 switch (state) {
2041 case SDEV_CREATED:
2042 /* There are no legal states that come back to
2043 * created. This is the manually initialised start
2044 * state */
2045 goto illegal;
2047 case SDEV_RUNNING:
2048 switch (oldstate) {
2049 case SDEV_CREATED:
2050 case SDEV_OFFLINE:
2051 case SDEV_QUIESCE:
2052 case SDEV_BLOCK:
2053 break;
2054 default:
2055 goto illegal;
2057 break;
2059 case SDEV_QUIESCE:
2060 switch (oldstate) {
2061 case SDEV_RUNNING:
2062 case SDEV_OFFLINE:
2063 break;
2064 default:
2065 goto illegal;
2067 break;
2069 case SDEV_OFFLINE:
2070 switch (oldstate) {
2071 case SDEV_CREATED:
2072 case SDEV_RUNNING:
2073 case SDEV_QUIESCE:
2074 case SDEV_BLOCK:
2075 break;
2076 default:
2077 goto illegal;
2079 break;
2081 case SDEV_BLOCK:
2082 switch (oldstate) {
2083 case SDEV_CREATED:
2084 case SDEV_RUNNING:
2085 break;
2086 default:
2087 goto illegal;
2089 break;
2091 case SDEV_CANCEL:
2092 switch (oldstate) {
2093 case SDEV_CREATED:
2094 case SDEV_RUNNING:
2095 case SDEV_QUIESCE:
2096 case SDEV_OFFLINE:
2097 case SDEV_BLOCK:
2098 break;
2099 default:
2100 goto illegal;
2102 break;
2104 case SDEV_DEL:
2105 switch (oldstate) {
2106 case SDEV_CREATED:
2107 case SDEV_RUNNING:
2108 case SDEV_OFFLINE:
2109 case SDEV_CANCEL:
2110 break;
2111 default:
2112 goto illegal;
2114 break;
2117 sdev->sdev_state = state;
2118 return 0;
2120 illegal:
2121 SCSI_LOG_ERROR_RECOVERY(1,
2122 sdev_printk(KERN_ERR, sdev,
2123 "Illegal state transition %s->%s\n",
2124 scsi_device_state_name(oldstate),
2125 scsi_device_state_name(state))
2127 return -EINVAL;
2129 EXPORT_SYMBOL(scsi_device_set_state);
2132 * sdev_evt_emit - emit a single SCSI device uevent
2133 * @sdev: associated SCSI device
2134 * @evt: event to emit
2136 * Send a single uevent (scsi_event) to the associated scsi_device.
2138 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2140 int idx = 0;
2141 char *envp[3];
2143 switch (evt->evt_type) {
2144 case SDEV_EVT_MEDIA_CHANGE:
2145 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2146 break;
2148 default:
2149 /* do nothing */
2150 break;
2153 envp[idx++] = NULL;
2155 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2159 * sdev_evt_thread - send a uevent for each scsi event
2160 * @work: work struct for scsi_device
2162 * Dispatch queued events to their associated scsi_device kobjects
2163 * as uevents.
2165 void scsi_evt_thread(struct work_struct *work)
2167 struct scsi_device *sdev;
2168 LIST_HEAD(event_list);
2170 sdev = container_of(work, struct scsi_device, event_work);
2172 while (1) {
2173 struct scsi_event *evt;
2174 struct list_head *this, *tmp;
2175 unsigned long flags;
2177 spin_lock_irqsave(&sdev->list_lock, flags);
2178 list_splice_init(&sdev->event_list, &event_list);
2179 spin_unlock_irqrestore(&sdev->list_lock, flags);
2181 if (list_empty(&event_list))
2182 break;
2184 list_for_each_safe(this, tmp, &event_list) {
2185 evt = list_entry(this, struct scsi_event, node);
2186 list_del(&evt->node);
2187 scsi_evt_emit(sdev, evt);
2188 kfree(evt);
2194 * sdev_evt_send - send asserted event to uevent thread
2195 * @sdev: scsi_device event occurred on
2196 * @evt: event to send
2198 * Assert scsi device event asynchronously.
2200 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2202 unsigned long flags;
2204 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2205 kfree(evt);
2206 return;
2209 spin_lock_irqsave(&sdev->list_lock, flags);
2210 list_add_tail(&evt->node, &sdev->event_list);
2211 schedule_work(&sdev->event_work);
2212 spin_unlock_irqrestore(&sdev->list_lock, flags);
2214 EXPORT_SYMBOL_GPL(sdev_evt_send);
2217 * sdev_evt_alloc - allocate a new scsi event
2218 * @evt_type: type of event to allocate
2219 * @gfpflags: GFP flags for allocation
2221 * Allocates and returns a new scsi_event.
2223 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2224 gfp_t gfpflags)
2226 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2227 if (!evt)
2228 return NULL;
2230 evt->evt_type = evt_type;
2231 INIT_LIST_HEAD(&evt->node);
2233 /* evt_type-specific initialization, if any */
2234 switch (evt_type) {
2235 case SDEV_EVT_MEDIA_CHANGE:
2236 default:
2237 /* do nothing */
2238 break;
2241 return evt;
2243 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2246 * sdev_evt_send_simple - send asserted event to uevent thread
2247 * @sdev: scsi_device event occurred on
2248 * @evt_type: type of event to send
2249 * @gfpflags: GFP flags for allocation
2251 * Assert scsi device event asynchronously, given an event type.
2253 void sdev_evt_send_simple(struct scsi_device *sdev,
2254 enum scsi_device_event evt_type, gfp_t gfpflags)
2256 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2257 if (!evt) {
2258 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2259 evt_type);
2260 return;
2263 sdev_evt_send(sdev, evt);
2265 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2268 * scsi_device_quiesce - Block user issued commands.
2269 * @sdev: scsi device to quiesce.
2271 * This works by trying to transition to the SDEV_QUIESCE state
2272 * (which must be a legal transition). When the device is in this
2273 * state, only special requests will be accepted, all others will
2274 * be deferred. Since special requests may also be requeued requests,
2275 * a successful return doesn't guarantee the device will be
2276 * totally quiescent.
2278 * Must be called with user context, may sleep.
2280 * Returns zero if unsuccessful or an error if not.
2283 scsi_device_quiesce(struct scsi_device *sdev)
2285 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2286 if (err)
2287 return err;
2289 scsi_run_queue(sdev->request_queue);
2290 while (sdev->device_busy) {
2291 msleep_interruptible(200);
2292 scsi_run_queue(sdev->request_queue);
2294 return 0;
2296 EXPORT_SYMBOL(scsi_device_quiesce);
2299 * scsi_device_resume - Restart user issued commands to a quiesced device.
2300 * @sdev: scsi device to resume.
2302 * Moves the device from quiesced back to running and restarts the
2303 * queues.
2305 * Must be called with user context, may sleep.
2307 void
2308 scsi_device_resume(struct scsi_device *sdev)
2310 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2311 return;
2312 scsi_run_queue(sdev->request_queue);
2314 EXPORT_SYMBOL(scsi_device_resume);
2316 static void
2317 device_quiesce_fn(struct scsi_device *sdev, void *data)
2319 scsi_device_quiesce(sdev);
2322 void
2323 scsi_target_quiesce(struct scsi_target *starget)
2325 starget_for_each_device(starget, NULL, device_quiesce_fn);
2327 EXPORT_SYMBOL(scsi_target_quiesce);
2329 static void
2330 device_resume_fn(struct scsi_device *sdev, void *data)
2332 scsi_device_resume(sdev);
2335 void
2336 scsi_target_resume(struct scsi_target *starget)
2338 starget_for_each_device(starget, NULL, device_resume_fn);
2340 EXPORT_SYMBOL(scsi_target_resume);
2343 * scsi_internal_device_block - internal function to put a device
2344 * temporarily into the SDEV_BLOCK state
2345 * @sdev: device to block
2347 * Block request made by scsi lld's to temporarily stop all
2348 * scsi commands on the specified device. Called from interrupt
2349 * or normal process context.
2351 * Returns zero if successful or error if not
2353 * Notes:
2354 * This routine transitions the device to the SDEV_BLOCK state
2355 * (which must be a legal transition). When the device is in this
2356 * state, all commands are deferred until the scsi lld reenables
2357 * the device with scsi_device_unblock or device_block_tmo fires.
2358 * This routine assumes the host_lock is held on entry.
2361 scsi_internal_device_block(struct scsi_device *sdev)
2363 struct request_queue *q = sdev->request_queue;
2364 unsigned long flags;
2365 int err = 0;
2367 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2368 if (err)
2369 return err;
2372 * The device has transitioned to SDEV_BLOCK. Stop the
2373 * block layer from calling the midlayer with this device's
2374 * request queue.
2376 spin_lock_irqsave(q->queue_lock, flags);
2377 blk_stop_queue(q);
2378 spin_unlock_irqrestore(q->queue_lock, flags);
2380 return 0;
2382 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2385 * scsi_internal_device_unblock - resume a device after a block request
2386 * @sdev: device to resume
2388 * Called by scsi lld's or the midlayer to restart the device queue
2389 * for the previously suspended scsi device. Called from interrupt or
2390 * normal process context.
2392 * Returns zero if successful or error if not.
2394 * Notes:
2395 * This routine transitions the device to the SDEV_RUNNING state
2396 * (which must be a legal transition) allowing the midlayer to
2397 * goose the queue for this device. This routine assumes the
2398 * host_lock is held upon entry.
2401 scsi_internal_device_unblock(struct scsi_device *sdev)
2403 struct request_queue *q = sdev->request_queue;
2404 int err;
2405 unsigned long flags;
2408 * Try to transition the scsi device to SDEV_RUNNING
2409 * and goose the device queue if successful.
2411 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2412 if (err)
2413 return err;
2415 spin_lock_irqsave(q->queue_lock, flags);
2416 blk_start_queue(q);
2417 spin_unlock_irqrestore(q->queue_lock, flags);
2419 return 0;
2421 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2423 static void
2424 device_block(struct scsi_device *sdev, void *data)
2426 scsi_internal_device_block(sdev);
2429 static int
2430 target_block(struct device *dev, void *data)
2432 if (scsi_is_target_device(dev))
2433 starget_for_each_device(to_scsi_target(dev), NULL,
2434 device_block);
2435 return 0;
2438 void
2439 scsi_target_block(struct device *dev)
2441 if (scsi_is_target_device(dev))
2442 starget_for_each_device(to_scsi_target(dev), NULL,
2443 device_block);
2444 else
2445 device_for_each_child(dev, NULL, target_block);
2447 EXPORT_SYMBOL_GPL(scsi_target_block);
2449 static void
2450 device_unblock(struct scsi_device *sdev, void *data)
2452 scsi_internal_device_unblock(sdev);
2455 static int
2456 target_unblock(struct device *dev, void *data)
2458 if (scsi_is_target_device(dev))
2459 starget_for_each_device(to_scsi_target(dev), NULL,
2460 device_unblock);
2461 return 0;
2464 void
2465 scsi_target_unblock(struct device *dev)
2467 if (scsi_is_target_device(dev))
2468 starget_for_each_device(to_scsi_target(dev), NULL,
2469 device_unblock);
2470 else
2471 device_for_each_child(dev, NULL, target_unblock);
2473 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2476 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2477 * @sg: scatter-gather list
2478 * @sg_count: number of segments in sg
2479 * @offset: offset in bytes into sg, on return offset into the mapped area
2480 * @len: bytes to map, on return number of bytes mapped
2482 * Returns virtual address of the start of the mapped page
2484 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2485 size_t *offset, size_t *len)
2487 int i;
2488 size_t sg_len = 0, len_complete = 0;
2489 struct scatterlist *sg;
2490 struct page *page;
2492 WARN_ON(!irqs_disabled());
2494 for_each_sg(sgl, sg, sg_count, i) {
2495 len_complete = sg_len; /* Complete sg-entries */
2496 sg_len += sg->length;
2497 if (sg_len > *offset)
2498 break;
2501 if (unlikely(i == sg_count)) {
2502 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2503 "elements %d\n",
2504 __FUNCTION__, sg_len, *offset, sg_count);
2505 WARN_ON(1);
2506 return NULL;
2509 /* Offset starting from the beginning of first page in this sg-entry */
2510 *offset = *offset - len_complete + sg->offset;
2512 /* Assumption: contiguous pages can be accessed as "page + i" */
2513 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2514 *offset &= ~PAGE_MASK;
2516 /* Bytes in this sg-entry from *offset to the end of the page */
2517 sg_len = PAGE_SIZE - *offset;
2518 if (*len > sg_len)
2519 *len = sg_len;
2521 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2523 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2526 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2527 * mapped with scsi_kmap_atomic_sg
2528 * @virt: virtual address to be unmapped
2530 void scsi_kunmap_atomic_sg(void *virt)
2532 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2534 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);