3 * Common boot and setup code.
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
37 #include <asm/kdump.h>
39 #include <asm/processor.h>
40 #include <asm/pgtable.h>
43 #include <asm/machdep.h>
46 #include <asm/cputable.h>
47 #include <asm/sections.h>
48 #include <asm/btext.h>
49 #include <asm/nvram.h>
50 #include <asm/setup.h>
51 #include <asm/system.h>
53 #include <asm/iommu.h>
54 #include <asm/serial.h>
55 #include <asm/cache.h>
59 #include <asm/firmware.h>
62 #include <asm/kexec.h>
67 #define DBG(fmt...) udbg_printf(fmt)
76 /* Pick defaults since we might want to patch instructions
77 * before we've read this from the device tree.
79 struct ppc64_caches ppc64_caches
= {
85 EXPORT_SYMBOL_GPL(ppc64_caches
);
88 * These are used in binfmt_elf.c to put aux entries on the stack
89 * for each elf executable being started.
97 static int smt_enabled_cmdline
;
99 /* Look for ibm,smt-enabled OF option */
100 static void check_smt_enabled(void)
102 struct device_node
*dn
;
103 const char *smt_option
;
105 /* Allow the command line to overrule the OF option */
106 if (smt_enabled_cmdline
)
109 dn
= of_find_node_by_path("/options");
112 smt_option
= of_get_property(dn
, "ibm,smt-enabled", NULL
);
115 if (!strcmp(smt_option
, "on"))
116 smt_enabled_at_boot
= 1;
117 else if (!strcmp(smt_option
, "off"))
118 smt_enabled_at_boot
= 0;
123 /* Look for smt-enabled= cmdline option */
124 static int __init
early_smt_enabled(char *p
)
126 smt_enabled_cmdline
= 1;
131 if (!strcmp(p
, "on") || !strcmp(p
, "1"))
132 smt_enabled_at_boot
= 1;
133 else if (!strcmp(p
, "off") || !strcmp(p
, "0"))
134 smt_enabled_at_boot
= 0;
138 early_param("smt-enabled", early_smt_enabled
);
141 #define check_smt_enabled()
142 #endif /* CONFIG_SMP */
144 /* Put the paca pointer into r13 and SPRG3 */
145 void __init
setup_paca(int cpu
)
147 local_paca
= &paca
[cpu
];
148 mtspr(SPRN_SPRG3
, local_paca
);
152 * Early initialization entry point. This is called by head.S
153 * with MMU translation disabled. We rely on the "feature" of
154 * the CPU that ignores the top 2 bits of the address in real
155 * mode so we can access kernel globals normally provided we
156 * only toy with things in the RMO region. From here, we do
157 * some early parsing of the device-tree to setup out LMB
158 * data structures, and allocate & initialize the hash table
159 * and segment tables so we can start running with translation
162 * It is this function which will call the probe() callback of
163 * the various platform types and copy the matching one to the
164 * global ppc_md structure. Your platform can eventually do
165 * some very early initializations from the probe() routine, but
166 * this is not recommended, be very careful as, for example, the
167 * device-tree is not accessible via normal means at this point.
170 void __init
early_setup(unsigned long dt_ptr
)
172 /* Identify CPU type */
173 identify_cpu(0, mfspr(SPRN_PVR
));
175 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
178 /* Enable early debugging if any specified (see udbg.h) */
181 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr
);
184 * Do early initialization using the flattened device
185 * tree, such as retrieving the physical memory map or
186 * calculating/retrieving the hash table size.
188 early_init_devtree(__va(dt_ptr
));
190 /* Now we know the logical id of our boot cpu, setup the paca. */
191 setup_paca(boot_cpuid
);
193 /* Fix up paca fields required for the boot cpu */
194 get_paca()->cpu_start
= 1;
195 get_paca()->stab_real
= __pa((u64
)&initial_stab
);
196 get_paca()->stab_addr
= (u64
)&initial_stab
;
198 /* Probe the machine type */
201 setup_kdump_trampoline();
203 DBG("Found, Initializing memory management...\n");
206 * Initialize the MMU Hash table and create the linear mapping
207 * of memory. Has to be done before stab/slb initialization as
208 * this is currently where the page size encoding is obtained
213 * Initialize stab / SLB management except on iSeries
215 if (cpu_has_feature(CPU_FTR_SLB
))
217 else if (!firmware_has_feature(FW_FEATURE_ISERIES
))
218 stab_initialize(get_paca()->stab_real
);
220 DBG(" <- early_setup()\n");
224 void early_setup_secondary(void)
226 struct paca_struct
*lpaca
= get_paca();
228 /* Mark interrupts enabled in PACA */
229 lpaca
->soft_enabled
= 0;
231 /* Initialize hash table for that CPU */
232 htab_initialize_secondary();
234 /* Initialize STAB/SLB. We use a virtual address as it works
235 * in real mode on pSeries and we want a virutal address on
238 if (cpu_has_feature(CPU_FTR_SLB
))
241 stab_initialize(lpaca
->stab_addr
);
244 #endif /* CONFIG_SMP */
246 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
247 void smp_release_cpus(void)
249 extern unsigned long __secondary_hold_spinloop
;
252 DBG(" -> smp_release_cpus()\n");
254 /* All secondary cpus are spinning on a common spinloop, release them
255 * all now so they can start to spin on their individual paca
256 * spinloops. For non SMP kernels, the secondary cpus never get out
257 * of the common spinloop.
258 * This is useless but harmless on iSeries, secondaries are already
259 * waiting on their paca spinloops. */
261 ptr
= (unsigned long *)((unsigned long)&__secondary_hold_spinloop
266 DBG(" <- smp_release_cpus()\n");
268 #endif /* CONFIG_SMP || CONFIG_KEXEC */
271 * Initialize some remaining members of the ppc64_caches and systemcfg
273 * (at least until we get rid of them completely). This is mostly some
274 * cache informations about the CPU that will be used by cache flush
275 * routines and/or provided to userland
277 static void __init
initialize_cache_info(void)
279 struct device_node
*np
;
280 unsigned long num_cpus
= 0;
282 DBG(" -> initialize_cache_info()\n");
284 for (np
= NULL
; (np
= of_find_node_by_type(np
, "cpu"));) {
287 /* We're assuming *all* of the CPUs have the same
288 * d-cache and i-cache sizes... -Peter
291 if ( num_cpus
== 1 ) {
292 const u32
*sizep
, *lsizep
;
296 lsize
= cur_cpu_spec
->dcache_bsize
;
297 sizep
= of_get_property(np
, "d-cache-size", NULL
);
300 lsizep
= of_get_property(np
, "d-cache-block-size", NULL
);
301 /* fallback if block size missing */
303 lsizep
= of_get_property(np
, "d-cache-line-size", NULL
);
306 if (sizep
== 0 || lsizep
== 0)
307 DBG("Argh, can't find dcache properties ! "
308 "sizep: %p, lsizep: %p\n", sizep
, lsizep
);
310 ppc64_caches
.dsize
= size
;
311 ppc64_caches
.dline_size
= lsize
;
312 ppc64_caches
.log_dline_size
= __ilog2(lsize
);
313 ppc64_caches
.dlines_per_page
= PAGE_SIZE
/ lsize
;
316 lsize
= cur_cpu_spec
->icache_bsize
;
317 sizep
= of_get_property(np
, "i-cache-size", NULL
);
320 lsizep
= of_get_property(np
, "i-cache-block-size", NULL
);
322 lsizep
= of_get_property(np
, "i-cache-line-size", NULL
);
325 if (sizep
== 0 || lsizep
== 0)
326 DBG("Argh, can't find icache properties ! "
327 "sizep: %p, lsizep: %p\n", sizep
, lsizep
);
329 ppc64_caches
.isize
= size
;
330 ppc64_caches
.iline_size
= lsize
;
331 ppc64_caches
.log_iline_size
= __ilog2(lsize
);
332 ppc64_caches
.ilines_per_page
= PAGE_SIZE
/ lsize
;
336 DBG(" <- initialize_cache_info()\n");
341 * Do some initial setup of the system. The parameters are those which
342 * were passed in from the bootloader.
344 void __init
setup_system(void)
346 DBG(" -> setup_system()\n");
348 /* Apply the CPUs-specific and firmware specific fixups to kernel
349 * text (nop out sections not relevant to this CPU or this firmware)
351 do_feature_fixups(cur_cpu_spec
->cpu_features
,
352 &__start___ftr_fixup
, &__stop___ftr_fixup
);
353 do_feature_fixups(powerpc_firmware_features
,
354 &__start___fw_ftr_fixup
, &__stop___fw_ftr_fixup
);
357 * Unflatten the device-tree passed by prom_init or kexec
359 unflatten_device_tree();
362 * Fill the ppc64_caches & systemcfg structures with informations
363 * retrieved from the device-tree.
365 initialize_cache_info();
368 * Initialize irq remapping subsystem
372 #ifdef CONFIG_PPC_RTAS
374 * Initialize RTAS if available
377 #endif /* CONFIG_PPC_RTAS */
380 * Check if we have an initrd provided via the device-tree
385 * Do some platform specific early initializations, that includes
386 * setting up the hash table pointers. It also sets up some interrupt-mapping
387 * related options that will be used by finish_device_tree()
389 if (ppc_md
.init_early
)
393 * We can discover serial ports now since the above did setup the
394 * hash table management for us, thus ioremap works. We do that early
395 * so that further code can be debugged
397 find_legacy_serial_ports();
400 * Register early console
402 register_early_udbg_console();
410 smp_setup_cpu_maps();
413 /* Release secondary cpus out of their spinloops at 0x60 now that
414 * we can map physical -> logical CPU ids
419 printk("Starting Linux PPC64 %s\n", init_utsname()->version
);
421 printk("-----------------------------------------------------\n");
422 printk("ppc64_pft_size = 0x%lx\n", ppc64_pft_size
);
423 printk("physicalMemorySize = 0x%lx\n", lmb_phys_mem_size());
424 if (ppc64_caches
.dline_size
!= 0x80)
425 printk("ppc64_caches.dcache_line_size = 0x%x\n",
426 ppc64_caches
.dline_size
);
427 if (ppc64_caches
.iline_size
!= 0x80)
428 printk("ppc64_caches.icache_line_size = 0x%x\n",
429 ppc64_caches
.iline_size
);
431 printk("htab_address = 0x%p\n", htab_address
);
432 printk("htab_hash_mask = 0x%lx\n", htab_hash_mask
);
433 #if PHYSICAL_START > 0
434 printk("physical_start = 0x%x\n", PHYSICAL_START
);
436 printk("-----------------------------------------------------\n");
438 DBG(" <- setup_system()\n");
441 #ifdef CONFIG_IRQSTACKS
442 static void __init
irqstack_early_init(void)
447 * interrupt stacks must be under 256MB, we cannot afford to take
448 * SLB misses on them.
450 for_each_possible_cpu(i
) {
451 softirq_ctx
[i
] = (struct thread_info
*)
452 __va(lmb_alloc_base(THREAD_SIZE
,
453 THREAD_SIZE
, 0x10000000));
454 hardirq_ctx
[i
] = (struct thread_info
*)
455 __va(lmb_alloc_base(THREAD_SIZE
,
456 THREAD_SIZE
, 0x10000000));
460 #define irqstack_early_init()
464 * Stack space used when we detect a bad kernel stack pointer, and
465 * early in SMP boots before relocation is enabled.
467 static void __init
emergency_stack_init(void)
473 * Emergency stacks must be under 256MB, we cannot afford to take
474 * SLB misses on them. The ABI also requires them to be 128-byte
477 * Since we use these as temporary stacks during secondary CPU
478 * bringup, we need to get at them in real mode. This means they
479 * must also be within the RMO region.
481 limit
= min(0x10000000UL
, lmb
.rmo_size
);
483 for_each_possible_cpu(i
)
484 paca
[i
].emergency_sp
=
485 __va(lmb_alloc_base(HW_PAGE_SIZE
, 128, limit
)) + HW_PAGE_SIZE
;
489 * Called into from start_kernel, after lock_kernel has been called.
490 * Initializes bootmem, which is unsed to manage page allocation until
491 * mem_init is called.
493 void __init
setup_arch(char **cmdline_p
)
495 ppc64_boot_msg(0x12, "Setup Arch");
497 *cmdline_p
= cmd_line
;
500 * Set cache line size based on type of cpu as a default.
501 * Systems with OF can look in the properties on the cpu node(s)
502 * for a possibly more accurate value.
504 dcache_bsize
= ppc64_caches
.dline_size
;
505 icache_bsize
= ppc64_caches
.iline_size
;
507 /* reboot on panic */
513 init_mm
.start_code
= PAGE_OFFSET
;
514 init_mm
.end_code
= (unsigned long) _etext
;
515 init_mm
.end_data
= (unsigned long) _edata
;
516 init_mm
.brk
= klimit
;
518 irqstack_early_init();
519 emergency_stack_init();
523 /* set up the bootmem stuff with available memory */
527 #ifdef CONFIG_DUMMY_CONSOLE
528 conswitchp
= &dummy_con
;
531 if (ppc_md
.setup_arch
)
535 ppc64_boot_msg(0x15, "Setup Done");
539 /* ToDo: do something useful if ppc_md is not yet setup. */
540 #define PPC64_LINUX_FUNCTION 0x0f000000
541 #define PPC64_IPL_MESSAGE 0xc0000000
542 #define PPC64_TERM_MESSAGE 0xb0000000
544 static void ppc64_do_msg(unsigned int src
, const char *msg
)
546 if (ppc_md
.progress
) {
549 sprintf(buf
, "%08X\n", src
);
550 ppc_md
.progress(buf
, 0);
551 snprintf(buf
, 128, "%s", msg
);
552 ppc_md
.progress(buf
, 0);
556 /* Print a boot progress message. */
557 void ppc64_boot_msg(unsigned int src
, const char *msg
)
559 ppc64_do_msg(PPC64_LINUX_FUNCTION
|PPC64_IPL_MESSAGE
|src
, msg
);
560 printk("[boot]%04x %s\n", src
, msg
);
563 /* Print a termination message (print only -- does not stop the kernel) */
564 void ppc64_terminate_msg(unsigned int src
, const char *msg
)
566 ppc64_do_msg(PPC64_LINUX_FUNCTION
|PPC64_TERM_MESSAGE
|src
, msg
);
567 printk("[terminate]%04x %s\n", src
, msg
);
577 void __init
setup_per_cpu_areas(void)
583 /* Copy section for each CPU (we discard the original) */
584 size
= ALIGN(__per_cpu_end
- __per_cpu_start
, PAGE_SIZE
);
585 #ifdef CONFIG_MODULES
586 if (size
< PERCPU_ENOUGH_ROOM
)
587 size
= PERCPU_ENOUGH_ROOM
;
590 for_each_possible_cpu(i
) {
591 ptr
= alloc_bootmem_pages_node(NODE_DATA(cpu_to_node(i
)), size
);
593 panic("Cannot allocate cpu data for CPU %d\n", i
);
595 paca
[i
].data_offset
= ptr
- __per_cpu_start
;
596 memcpy(ptr
, __per_cpu_start
, __per_cpu_end
- __per_cpu_start
);
599 /* Now that per_cpu is setup, initialize cpu_sibling_map */
600 smp_setup_cpu_sibling_map();
605 #ifdef CONFIG_PPC_INDIRECT_IO
606 struct ppc_pci_io ppc_pci_io
;
607 EXPORT_SYMBOL(ppc_pci_io
);
608 #endif /* CONFIG_PPC_INDIRECT_IO */