[IA64] kprobe: make kreturn probe handler stack unwind correct
[linux-2.6/kmemtrace.git] / arch / ia64 / kernel / kprobes.c
blobfc4d2676264f363d766ce4d9b6c5f76176fd4cb4
1 /*
2 * Kernel Probes (KProbes)
3 * arch/ia64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
20 * Copyright (C) Intel Corporation, 2005
22 * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23 * <anil.s.keshavamurthy@intel.com> adapted from i386
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/moduleloader.h>
32 #include <linux/kdebug.h>
34 #include <asm/pgtable.h>
35 #include <asm/sections.h>
36 #include <asm/uaccess.h>
38 extern void jprobe_inst_return(void);
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
45 enum instruction_type {A, I, M, F, B, L, X, u};
46 static enum instruction_type bundle_encoding[32][3] = {
47 { M, I, I }, /* 00 */
48 { M, I, I }, /* 01 */
49 { M, I, I }, /* 02 */
50 { M, I, I }, /* 03 */
51 { M, L, X }, /* 04 */
52 { M, L, X }, /* 05 */
53 { u, u, u }, /* 06 */
54 { u, u, u }, /* 07 */
55 { M, M, I }, /* 08 */
56 { M, M, I }, /* 09 */
57 { M, M, I }, /* 0A */
58 { M, M, I }, /* 0B */
59 { M, F, I }, /* 0C */
60 { M, F, I }, /* 0D */
61 { M, M, F }, /* 0E */
62 { M, M, F }, /* 0F */
63 { M, I, B }, /* 10 */
64 { M, I, B }, /* 11 */
65 { M, B, B }, /* 12 */
66 { M, B, B }, /* 13 */
67 { u, u, u }, /* 14 */
68 { u, u, u }, /* 15 */
69 { B, B, B }, /* 16 */
70 { B, B, B }, /* 17 */
71 { M, M, B }, /* 18 */
72 { M, M, B }, /* 19 */
73 { u, u, u }, /* 1A */
74 { u, u, u }, /* 1B */
75 { M, F, B }, /* 1C */
76 { M, F, B }, /* 1D */
77 { u, u, u }, /* 1E */
78 { u, u, u }, /* 1F */
82 * In this function we check to see if the instruction
83 * is IP relative instruction and update the kprobe
84 * inst flag accordingly
86 static void __kprobes update_kprobe_inst_flag(uint template, uint slot,
87 uint major_opcode,
88 unsigned long kprobe_inst,
89 struct kprobe *p)
91 p->ainsn.inst_flag = 0;
92 p->ainsn.target_br_reg = 0;
93 p->ainsn.slot = slot;
95 /* Check for Break instruction
96 * Bits 37:40 Major opcode to be zero
97 * Bits 27:32 X6 to be zero
98 * Bits 32:35 X3 to be zero
100 if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
101 /* is a break instruction */
102 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
103 return;
106 if (bundle_encoding[template][slot] == B) {
107 switch (major_opcode) {
108 case INDIRECT_CALL_OPCODE:
109 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
110 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
111 break;
112 case IP_RELATIVE_PREDICT_OPCODE:
113 case IP_RELATIVE_BRANCH_OPCODE:
114 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
115 break;
116 case IP_RELATIVE_CALL_OPCODE:
117 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
118 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
119 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
120 break;
122 } else if (bundle_encoding[template][slot] == X) {
123 switch (major_opcode) {
124 case LONG_CALL_OPCODE:
125 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
126 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
127 break;
130 return;
134 * In this function we check to see if the instruction
135 * (qp) cmpx.crel.ctype p1,p2=r2,r3
136 * on which we are inserting kprobe is cmp instruction
137 * with ctype as unc.
139 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
140 uint major_opcode,
141 unsigned long kprobe_inst)
143 cmp_inst_t cmp_inst;
144 uint ctype_unc = 0;
146 if (!((bundle_encoding[template][slot] == I) ||
147 (bundle_encoding[template][slot] == M)))
148 goto out;
150 if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
151 (major_opcode == 0xE)))
152 goto out;
154 cmp_inst.l = kprobe_inst;
155 if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
156 /* Integer compare - Register Register (A6 type)*/
157 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
158 &&(cmp_inst.f.c == 1))
159 ctype_unc = 1;
160 } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
161 /* Integer compare - Immediate Register (A8 type)*/
162 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
163 ctype_unc = 1;
165 out:
166 return ctype_unc;
170 * In this function we check to see if the instruction
171 * on which we are inserting kprobe is supported.
172 * Returns qp value if supported
173 * Returns -EINVAL if unsupported
175 static int __kprobes unsupported_inst(uint template, uint slot,
176 uint major_opcode,
177 unsigned long kprobe_inst,
178 unsigned long addr)
180 int qp;
182 qp = kprobe_inst & 0x3f;
183 if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
184 if (slot == 1 && qp) {
185 printk(KERN_WARNING "Kprobes on cmp unc "
186 "instruction on slot 1 at <0x%lx> "
187 "is not supported\n", addr);
188 return -EINVAL;
191 qp = 0;
193 else if (bundle_encoding[template][slot] == I) {
194 if (major_opcode == 0) {
196 * Check for Integer speculation instruction
197 * - Bit 33-35 to be equal to 0x1
199 if (((kprobe_inst >> 33) & 0x7) == 1) {
200 printk(KERN_WARNING
201 "Kprobes on speculation inst at <0x%lx> not supported\n",
202 addr);
203 return -EINVAL;
206 * IP relative mov instruction
207 * - Bit 27-35 to be equal to 0x30
209 if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
210 printk(KERN_WARNING
211 "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
212 addr);
213 return -EINVAL;
217 else if ((major_opcode == 5) && !(kprobe_inst & (0xFUl << 33)) &&
218 (kprobe_inst & (0x1UL << 12))) {
219 /* test bit instructions, tbit,tnat,tf
220 * bit 33-36 to be equal to 0
221 * bit 12 to be equal to 1
223 if (slot == 1 && qp) {
224 printk(KERN_WARNING "Kprobes on test bit "
225 "instruction on slot at <0x%lx> "
226 "is not supported\n", addr);
227 return -EINVAL;
229 qp = 0;
232 else if (bundle_encoding[template][slot] == B) {
233 if (major_opcode == 7) {
234 /* IP-Relative Predict major code is 7 */
235 printk(KERN_WARNING "Kprobes on IP-Relative"
236 "Predict is not supported\n");
237 return -EINVAL;
239 else if (major_opcode == 2) {
240 /* Indirect Predict, major code is 2
241 * bit 27-32 to be equal to 10 or 11
243 int x6=(kprobe_inst >> 27) & 0x3F;
244 if ((x6 == 0x10) || (x6 == 0x11)) {
245 printk(KERN_WARNING "Kprobes on "
246 "Indirect Predict is not supported\n");
247 return -EINVAL;
251 /* kernel does not use float instruction, here for safety kprobe
252 * will judge whether it is fcmp/flass/float approximation instruction
254 else if (unlikely(bundle_encoding[template][slot] == F)) {
255 if ((major_opcode == 4 || major_opcode == 5) &&
256 (kprobe_inst & (0x1 << 12))) {
257 /* fcmp/fclass unc instruction */
258 if (slot == 1 && qp) {
259 printk(KERN_WARNING "Kprobes on fcmp/fclass "
260 "instruction on slot at <0x%lx> "
261 "is not supported\n", addr);
262 return -EINVAL;
265 qp = 0;
267 if ((major_opcode == 0 || major_opcode == 1) &&
268 (kprobe_inst & (0x1UL << 33))) {
269 /* float Approximation instruction */
270 if (slot == 1 && qp) {
271 printk(KERN_WARNING "Kprobes on float Approx "
272 "instr at <0x%lx> is not supported\n",
273 addr);
274 return -EINVAL;
276 qp = 0;
279 return qp;
283 * In this function we override the bundle with
284 * the break instruction at the given slot.
286 static void __kprobes prepare_break_inst(uint template, uint slot,
287 uint major_opcode,
288 unsigned long kprobe_inst,
289 struct kprobe *p,
290 int qp)
292 unsigned long break_inst = BREAK_INST;
293 bundle_t *bundle = &p->opcode.bundle;
296 * Copy the original kprobe_inst qualifying predicate(qp)
297 * to the break instruction
299 break_inst |= qp;
301 switch (slot) {
302 case 0:
303 bundle->quad0.slot0 = break_inst;
304 break;
305 case 1:
306 bundle->quad0.slot1_p0 = break_inst;
307 bundle->quad1.slot1_p1 = break_inst >> (64-46);
308 break;
309 case 2:
310 bundle->quad1.slot2 = break_inst;
311 break;
315 * Update the instruction flag, so that we can
316 * emulate the instruction properly after we
317 * single step on original instruction
319 update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
322 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
323 unsigned long *kprobe_inst, uint *major_opcode)
325 unsigned long kprobe_inst_p0, kprobe_inst_p1;
326 unsigned int template;
328 template = bundle->quad0.template;
330 switch (slot) {
331 case 0:
332 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
333 *kprobe_inst = bundle->quad0.slot0;
334 break;
335 case 1:
336 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
337 kprobe_inst_p0 = bundle->quad0.slot1_p0;
338 kprobe_inst_p1 = bundle->quad1.slot1_p1;
339 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
340 break;
341 case 2:
342 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
343 *kprobe_inst = bundle->quad1.slot2;
344 break;
348 /* Returns non-zero if the addr is in the Interrupt Vector Table */
349 static int __kprobes in_ivt_functions(unsigned long addr)
351 return (addr >= (unsigned long)__start_ivt_text
352 && addr < (unsigned long)__end_ivt_text);
355 static int __kprobes valid_kprobe_addr(int template, int slot,
356 unsigned long addr)
358 if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
359 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
360 "at 0x%lx\n", addr);
361 return -EINVAL;
364 if (in_ivt_functions(addr)) {
365 printk(KERN_WARNING "Kprobes can't be inserted inside "
366 "IVT functions at 0x%lx\n", addr);
367 return -EINVAL;
370 return 0;
373 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
375 unsigned int i;
376 i = atomic_add_return(1, &kcb->prev_kprobe_index);
377 kcb->prev_kprobe[i-1].kp = kprobe_running();
378 kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
381 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
383 unsigned int i;
384 i = atomic_sub_return(1, &kcb->prev_kprobe_index);
385 __get_cpu_var(current_kprobe) = kcb->prev_kprobe[i].kp;
386 kcb->kprobe_status = kcb->prev_kprobe[i].status;
389 static void __kprobes set_current_kprobe(struct kprobe *p,
390 struct kprobe_ctlblk *kcb)
392 __get_cpu_var(current_kprobe) = p;
395 static void kretprobe_trampoline(void)
400 * At this point the target function has been tricked into
401 * returning into our trampoline. Lookup the associated instance
402 * and then:
403 * - call the handler function
404 * - cleanup by marking the instance as unused
405 * - long jump back to the original return address
407 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
409 struct kretprobe_instance *ri = NULL;
410 struct hlist_head *head, empty_rp;
411 struct hlist_node *node, *tmp;
412 unsigned long flags, orig_ret_address = 0;
413 unsigned long trampoline_address =
414 ((struct fnptr *)kretprobe_trampoline)->ip;
416 INIT_HLIST_HEAD(&empty_rp);
417 spin_lock_irqsave(&kretprobe_lock, flags);
418 head = kretprobe_inst_table_head(current);
421 * It is possible to have multiple instances associated with a given
422 * task either because an multiple functions in the call path
423 * have a return probe installed on them, and/or more then one return
424 * return probe was registered for a target function.
426 * We can handle this because:
427 * - instances are always inserted at the head of the list
428 * - when multiple return probes are registered for the same
429 * function, the first instance's ret_addr will point to the
430 * real return address, and all the rest will point to
431 * kretprobe_trampoline
433 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
434 if (ri->task != current)
435 /* another task is sharing our hash bucket */
436 continue;
438 orig_ret_address = (unsigned long)ri->ret_addr;
439 if (orig_ret_address != trampoline_address)
441 * This is the real return address. Any other
442 * instances associated with this task are for
443 * other calls deeper on the call stack
445 break;
448 regs->cr_iip = orig_ret_address;
450 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
451 if (ri->task != current)
452 /* another task is sharing our hash bucket */
453 continue;
455 if (ri->rp && ri->rp->handler)
456 ri->rp->handler(ri, regs);
458 orig_ret_address = (unsigned long)ri->ret_addr;
459 recycle_rp_inst(ri, &empty_rp);
461 if (orig_ret_address != trampoline_address)
463 * This is the real return address. Any other
464 * instances associated with this task are for
465 * other calls deeper on the call stack
467 break;
470 kretprobe_assert(ri, orig_ret_address, trampoline_address);
472 reset_current_kprobe();
473 spin_unlock_irqrestore(&kretprobe_lock, flags);
474 preempt_enable_no_resched();
476 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
477 hlist_del(&ri->hlist);
478 kfree(ri);
481 * By returning a non-zero value, we are telling
482 * kprobe_handler() that we don't want the post_handler
483 * to run (and have re-enabled preemption)
485 return 1;
488 /* Called with kretprobe_lock held */
489 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
490 struct pt_regs *regs)
492 ri->ret_addr = (kprobe_opcode_t *)regs->b0;
494 /* Replace the return addr with trampoline addr */
495 regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
498 int __kprobes arch_prepare_kprobe(struct kprobe *p)
500 unsigned long addr = (unsigned long) p->addr;
501 unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
502 unsigned long kprobe_inst=0;
503 unsigned int slot = addr & 0xf, template, major_opcode = 0;
504 bundle_t *bundle;
505 int qp;
507 bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
508 template = bundle->quad0.template;
510 if(valid_kprobe_addr(template, slot, addr))
511 return -EINVAL;
513 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
514 if (slot == 1 && bundle_encoding[template][1] == L)
515 slot++;
517 /* Get kprobe_inst and major_opcode from the bundle */
518 get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
520 qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
521 if (qp < 0)
522 return -EINVAL;
524 p->ainsn.insn = get_insn_slot();
525 if (!p->ainsn.insn)
526 return -ENOMEM;
527 memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
528 memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
530 prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
532 return 0;
535 void __kprobes arch_arm_kprobe(struct kprobe *p)
537 unsigned long arm_addr;
538 bundle_t *src, *dest;
540 arm_addr = ((unsigned long)p->addr) & ~0xFUL;
541 dest = &((kprobe_opcode_t *)arm_addr)->bundle;
542 src = &p->opcode.bundle;
544 flush_icache_range((unsigned long)p->ainsn.insn,
545 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
546 switch (p->ainsn.slot) {
547 case 0:
548 dest->quad0.slot0 = src->quad0.slot0;
549 break;
550 case 1:
551 dest->quad1.slot1_p1 = src->quad1.slot1_p1;
552 break;
553 case 2:
554 dest->quad1.slot2 = src->quad1.slot2;
555 break;
557 flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
560 void __kprobes arch_disarm_kprobe(struct kprobe *p)
562 unsigned long arm_addr;
563 bundle_t *src, *dest;
565 arm_addr = ((unsigned long)p->addr) & ~0xFUL;
566 dest = &((kprobe_opcode_t *)arm_addr)->bundle;
567 /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
568 src = &p->ainsn.insn->bundle;
569 switch (p->ainsn.slot) {
570 case 0:
571 dest->quad0.slot0 = src->quad0.slot0;
572 break;
573 case 1:
574 dest->quad1.slot1_p1 = src->quad1.slot1_p1;
575 break;
576 case 2:
577 dest->quad1.slot2 = src->quad1.slot2;
578 break;
580 flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
583 void __kprobes arch_remove_kprobe(struct kprobe *p)
585 mutex_lock(&kprobe_mutex);
586 free_insn_slot(p->ainsn.insn, 0);
587 mutex_unlock(&kprobe_mutex);
590 * We are resuming execution after a single step fault, so the pt_regs
591 * structure reflects the register state after we executed the instruction
592 * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust
593 * the ip to point back to the original stack address. To set the IP address
594 * to original stack address, handle the case where we need to fixup the
595 * relative IP address and/or fixup branch register.
597 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
599 unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
600 unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
601 unsigned long template;
602 int slot = ((unsigned long)p->addr & 0xf);
604 template = p->ainsn.insn->bundle.quad0.template;
606 if (slot == 1 && bundle_encoding[template][1] == L)
607 slot = 2;
609 if (p->ainsn.inst_flag) {
611 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
612 /* Fix relative IP address */
613 regs->cr_iip = (regs->cr_iip - bundle_addr) +
614 resume_addr;
617 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
619 * Fix target branch register, software convention is
620 * to use either b0 or b6 or b7, so just checking
621 * only those registers
623 switch (p->ainsn.target_br_reg) {
624 case 0:
625 if ((regs->b0 == bundle_addr) ||
626 (regs->b0 == bundle_addr + 0x10)) {
627 regs->b0 = (regs->b0 - bundle_addr) +
628 resume_addr;
630 break;
631 case 6:
632 if ((regs->b6 == bundle_addr) ||
633 (regs->b6 == bundle_addr + 0x10)) {
634 regs->b6 = (regs->b6 - bundle_addr) +
635 resume_addr;
637 break;
638 case 7:
639 if ((regs->b7 == bundle_addr) ||
640 (regs->b7 == bundle_addr + 0x10)) {
641 regs->b7 = (regs->b7 - bundle_addr) +
642 resume_addr;
644 break;
645 } /* end switch */
647 goto turn_ss_off;
650 if (slot == 2) {
651 if (regs->cr_iip == bundle_addr + 0x10) {
652 regs->cr_iip = resume_addr + 0x10;
654 } else {
655 if (regs->cr_iip == bundle_addr) {
656 regs->cr_iip = resume_addr;
660 turn_ss_off:
661 /* Turn off Single Step bit */
662 ia64_psr(regs)->ss = 0;
665 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
667 unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
668 unsigned long slot = (unsigned long)p->addr & 0xf;
670 /* single step inline if break instruction */
671 if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
672 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
673 else
674 regs->cr_iip = bundle_addr & ~0xFULL;
676 if (slot > 2)
677 slot = 0;
679 ia64_psr(regs)->ri = slot;
681 /* turn on single stepping */
682 ia64_psr(regs)->ss = 1;
685 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
687 unsigned int slot = ia64_psr(regs)->ri;
688 unsigned int template, major_opcode;
689 unsigned long kprobe_inst;
690 unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
691 bundle_t bundle;
693 memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
694 template = bundle.quad0.template;
696 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
697 if (slot == 1 && bundle_encoding[template][1] == L)
698 slot++;
700 /* Get Kprobe probe instruction at given slot*/
701 get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
703 /* For break instruction,
704 * Bits 37:40 Major opcode to be zero
705 * Bits 27:32 X6 to be zero
706 * Bits 32:35 X3 to be zero
708 if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
709 /* Not a break instruction */
710 return 0;
713 /* Is a break instruction */
714 return 1;
717 static int __kprobes pre_kprobes_handler(struct die_args *args)
719 struct kprobe *p;
720 int ret = 0;
721 struct pt_regs *regs = args->regs;
722 kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
723 struct kprobe_ctlblk *kcb;
726 * We don't want to be preempted for the entire
727 * duration of kprobe processing
729 preempt_disable();
730 kcb = get_kprobe_ctlblk();
732 /* Handle recursion cases */
733 if (kprobe_running()) {
734 p = get_kprobe(addr);
735 if (p) {
736 if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
737 (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
738 ia64_psr(regs)->ss = 0;
739 goto no_kprobe;
741 /* We have reentered the pre_kprobe_handler(), since
742 * another probe was hit while within the handler.
743 * We here save the original kprobes variables and
744 * just single step on the instruction of the new probe
745 * without calling any user handlers.
747 save_previous_kprobe(kcb);
748 set_current_kprobe(p, kcb);
749 kprobes_inc_nmissed_count(p);
750 prepare_ss(p, regs);
751 kcb->kprobe_status = KPROBE_REENTER;
752 return 1;
753 } else if (args->err == __IA64_BREAK_JPROBE) {
755 * jprobe instrumented function just completed
757 p = __get_cpu_var(current_kprobe);
758 if (p->break_handler && p->break_handler(p, regs)) {
759 goto ss_probe;
761 } else if (!is_ia64_break_inst(regs)) {
762 /* The breakpoint instruction was removed by
763 * another cpu right after we hit, no further
764 * handling of this interrupt is appropriate
766 ret = 1;
767 goto no_kprobe;
768 } else {
769 /* Not our break */
770 goto no_kprobe;
774 p = get_kprobe(addr);
775 if (!p) {
776 if (!is_ia64_break_inst(regs)) {
778 * The breakpoint instruction was removed right
779 * after we hit it. Another cpu has removed
780 * either a probepoint or a debugger breakpoint
781 * at this address. In either case, no further
782 * handling of this interrupt is appropriate.
784 ret = 1;
788 /* Not one of our break, let kernel handle it */
789 goto no_kprobe;
792 set_current_kprobe(p, kcb);
793 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
795 if (p->pre_handler && p->pre_handler(p, regs))
797 * Our pre-handler is specifically requesting that we just
798 * do a return. This is used for both the jprobe pre-handler
799 * and the kretprobe trampoline
801 return 1;
803 ss_probe:
804 prepare_ss(p, regs);
805 kcb->kprobe_status = KPROBE_HIT_SS;
806 return 1;
808 no_kprobe:
809 preempt_enable_no_resched();
810 return ret;
813 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
815 struct kprobe *cur = kprobe_running();
816 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
818 if (!cur)
819 return 0;
821 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
822 kcb->kprobe_status = KPROBE_HIT_SSDONE;
823 cur->post_handler(cur, regs, 0);
826 resume_execution(cur, regs);
828 /*Restore back the original saved kprobes variables and continue. */
829 if (kcb->kprobe_status == KPROBE_REENTER) {
830 restore_previous_kprobe(kcb);
831 goto out;
833 reset_current_kprobe();
835 out:
836 preempt_enable_no_resched();
837 return 1;
840 int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
842 struct kprobe *cur = kprobe_running();
843 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
846 switch(kcb->kprobe_status) {
847 case KPROBE_HIT_SS:
848 case KPROBE_REENTER:
850 * We are here because the instruction being single
851 * stepped caused a page fault. We reset the current
852 * kprobe and the instruction pointer points back to
853 * the probe address and allow the page fault handler
854 * to continue as a normal page fault.
856 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
857 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
858 if (kcb->kprobe_status == KPROBE_REENTER)
859 restore_previous_kprobe(kcb);
860 else
861 reset_current_kprobe();
862 preempt_enable_no_resched();
863 break;
864 case KPROBE_HIT_ACTIVE:
865 case KPROBE_HIT_SSDONE:
867 * We increment the nmissed count for accounting,
868 * we can also use npre/npostfault count for accouting
869 * these specific fault cases.
871 kprobes_inc_nmissed_count(cur);
874 * We come here because instructions in the pre/post
875 * handler caused the page_fault, this could happen
876 * if handler tries to access user space by
877 * copy_from_user(), get_user() etc. Let the
878 * user-specified handler try to fix it first.
880 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
881 return 1;
883 * In case the user-specified fault handler returned
884 * zero, try to fix up.
886 if (ia64_done_with_exception(regs))
887 return 1;
890 * Let ia64_do_page_fault() fix it.
892 break;
893 default:
894 break;
897 return 0;
900 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
901 unsigned long val, void *data)
903 struct die_args *args = (struct die_args *)data;
904 int ret = NOTIFY_DONE;
906 if (args->regs && user_mode(args->regs))
907 return ret;
909 switch(val) {
910 case DIE_BREAK:
911 /* err is break number from ia64_bad_break() */
912 if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
913 || args->err == __IA64_BREAK_JPROBE
914 || args->err == 0)
915 if (pre_kprobes_handler(args))
916 ret = NOTIFY_STOP;
917 break;
918 case DIE_FAULT:
919 /* err is vector number from ia64_fault() */
920 if (args->err == 36)
921 if (post_kprobes_handler(args->regs))
922 ret = NOTIFY_STOP;
923 break;
924 default:
925 break;
927 return ret;
930 struct param_bsp_cfm {
931 unsigned long ip;
932 unsigned long *bsp;
933 unsigned long cfm;
936 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
938 unsigned long ip;
939 struct param_bsp_cfm *lp = arg;
941 do {
942 unw_get_ip(info, &ip);
943 if (ip == 0)
944 break;
945 if (ip == lp->ip) {
946 unw_get_bsp(info, (unsigned long*)&lp->bsp);
947 unw_get_cfm(info, (unsigned long*)&lp->cfm);
948 return;
950 } while (unw_unwind(info) >= 0);
951 lp->bsp = NULL;
952 lp->cfm = 0;
953 return;
956 unsigned long arch_deref_entry_point(void *entry)
958 return ((struct fnptr *)entry)->ip;
961 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
963 struct jprobe *jp = container_of(p, struct jprobe, kp);
964 unsigned long addr = arch_deref_entry_point(jp->entry);
965 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
966 struct param_bsp_cfm pa;
967 int bytes;
970 * Callee owns the argument space and could overwrite it, eg
971 * tail call optimization. So to be absolutely safe
972 * we save the argument space before transferring the control
973 * to instrumented jprobe function which runs in
974 * the process context
976 pa.ip = regs->cr_iip;
977 unw_init_running(ia64_get_bsp_cfm, &pa);
978 bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
979 - (char *)pa.bsp;
980 memcpy( kcb->jprobes_saved_stacked_regs,
981 pa.bsp,
982 bytes );
983 kcb->bsp = pa.bsp;
984 kcb->cfm = pa.cfm;
986 /* save architectural state */
987 kcb->jprobe_saved_regs = *regs;
989 /* after rfi, execute the jprobe instrumented function */
990 regs->cr_iip = addr & ~0xFULL;
991 ia64_psr(regs)->ri = addr & 0xf;
992 regs->r1 = ((struct fnptr *)(jp->entry))->gp;
995 * fix the return address to our jprobe_inst_return() function
996 * in the jprobes.S file
998 regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
1000 return 1;
1003 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1005 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1006 int bytes;
1008 /* restoring architectural state */
1009 *regs = kcb->jprobe_saved_regs;
1011 /* restoring the original argument space */
1012 flush_register_stack();
1013 bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
1014 - (char *)kcb->bsp;
1015 memcpy( kcb->bsp,
1016 kcb->jprobes_saved_stacked_regs,
1017 bytes );
1018 invalidate_stacked_regs();
1020 preempt_enable_no_resched();
1021 return 1;
1024 static struct kprobe trampoline_p = {
1025 .pre_handler = trampoline_probe_handler
1028 int __init arch_init_kprobes(void)
1030 trampoline_p.addr =
1031 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
1032 return register_kprobe(&trampoline_p);
1035 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1037 if (p->addr ==
1038 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
1039 return 1;
1041 return 0;