4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
44 #include <linux/swapops.h>
49 /* Incremented by the number of inactive pages that were scanned */
50 unsigned long nr_scanned
;
52 /* This context's GFP mask */
57 /* Can pages be swapped as part of reclaim? */
60 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
61 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62 * In this context, it doesn't matter that we scan the
63 * whole list at once. */
68 int all_unreclaimable
;
73 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
75 #ifdef ARCH_HAS_PREFETCH
76 #define prefetch_prev_lru_page(_page, _base, _field) \
78 if ((_page)->lru.prev != _base) { \
81 prev = lru_to_page(&(_page->lru)); \
82 prefetch(&prev->_field); \
86 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
89 #ifdef ARCH_HAS_PREFETCHW
90 #define prefetchw_prev_lru_page(_page, _base, _field) \
92 if ((_page)->lru.prev != _base) { \
95 prev = lru_to_page(&(_page->lru)); \
96 prefetchw(&prev->_field); \
100 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
104 * From 0 .. 100. Higher means more swappy.
106 int vm_swappiness
= 60;
107 long vm_total_pages
; /* The total number of pages which the VM controls */
109 static LIST_HEAD(shrinker_list
);
110 static DECLARE_RWSEM(shrinker_rwsem
);
113 * Add a shrinker callback to be called from the vm
115 void register_shrinker(struct shrinker
*shrinker
)
118 down_write(&shrinker_rwsem
);
119 list_add_tail(&shrinker
->list
, &shrinker_list
);
120 up_write(&shrinker_rwsem
);
122 EXPORT_SYMBOL(register_shrinker
);
127 void unregister_shrinker(struct shrinker
*shrinker
)
129 down_write(&shrinker_rwsem
);
130 list_del(&shrinker
->list
);
131 up_write(&shrinker_rwsem
);
133 EXPORT_SYMBOL(unregister_shrinker
);
135 #define SHRINK_BATCH 128
137 * Call the shrink functions to age shrinkable caches
139 * Here we assume it costs one seek to replace a lru page and that it also
140 * takes a seek to recreate a cache object. With this in mind we age equal
141 * percentages of the lru and ageable caches. This should balance the seeks
142 * generated by these structures.
144 * If the vm encounted mapped pages on the LRU it increase the pressure on
145 * slab to avoid swapping.
147 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
149 * `lru_pages' represents the number of on-LRU pages in all the zones which
150 * are eligible for the caller's allocation attempt. It is used for balancing
151 * slab reclaim versus page reclaim.
153 * Returns the number of slab objects which we shrunk.
155 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
156 unsigned long lru_pages
)
158 struct shrinker
*shrinker
;
159 unsigned long ret
= 0;
162 scanned
= SWAP_CLUSTER_MAX
;
164 if (!down_read_trylock(&shrinker_rwsem
))
165 return 1; /* Assume we'll be able to shrink next time */
167 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
168 unsigned long long delta
;
169 unsigned long total_scan
;
170 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
172 delta
= (4 * scanned
) / shrinker
->seeks
;
174 do_div(delta
, lru_pages
+ 1);
175 shrinker
->nr
+= delta
;
176 if (shrinker
->nr
< 0) {
177 printk(KERN_ERR
"%s: nr=%ld\n",
178 __FUNCTION__
, shrinker
->nr
);
179 shrinker
->nr
= max_pass
;
183 * Avoid risking looping forever due to too large nr value:
184 * never try to free more than twice the estimate number of
187 if (shrinker
->nr
> max_pass
* 2)
188 shrinker
->nr
= max_pass
* 2;
190 total_scan
= shrinker
->nr
;
193 while (total_scan
>= SHRINK_BATCH
) {
194 long this_scan
= SHRINK_BATCH
;
198 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
199 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
200 if (shrink_ret
== -1)
202 if (shrink_ret
< nr_before
)
203 ret
+= nr_before
- shrink_ret
;
204 count_vm_events(SLABS_SCANNED
, this_scan
);
205 total_scan
-= this_scan
;
210 shrinker
->nr
+= total_scan
;
212 up_read(&shrinker_rwsem
);
216 /* Called without lock on whether page is mapped, so answer is unstable */
217 static inline int page_mapping_inuse(struct page
*page
)
219 struct address_space
*mapping
;
221 /* Page is in somebody's page tables. */
222 if (page_mapped(page
))
225 /* Be more reluctant to reclaim swapcache than pagecache */
226 if (PageSwapCache(page
))
229 mapping
= page_mapping(page
);
233 /* File is mmap'd by somebody? */
234 return mapping_mapped(mapping
);
237 static inline int is_page_cache_freeable(struct page
*page
)
239 return page_count(page
) - !!PagePrivate(page
) == 2;
242 static int may_write_to_queue(struct backing_dev_info
*bdi
)
244 if (current
->flags
& PF_SWAPWRITE
)
246 if (!bdi_write_congested(bdi
))
248 if (bdi
== current
->backing_dev_info
)
254 * We detected a synchronous write error writing a page out. Probably
255 * -ENOSPC. We need to propagate that into the address_space for a subsequent
256 * fsync(), msync() or close().
258 * The tricky part is that after writepage we cannot touch the mapping: nothing
259 * prevents it from being freed up. But we have a ref on the page and once
260 * that page is locked, the mapping is pinned.
262 * We're allowed to run sleeping lock_page() here because we know the caller has
265 static void handle_write_error(struct address_space
*mapping
,
266 struct page
*page
, int error
)
269 if (page_mapping(page
) == mapping
)
270 mapping_set_error(mapping
, error
);
274 /* Request for sync pageout. */
280 /* possible outcome of pageout() */
282 /* failed to write page out, page is locked */
284 /* move page to the active list, page is locked */
286 /* page has been sent to the disk successfully, page is unlocked */
288 /* page is clean and locked */
293 * pageout is called by shrink_page_list() for each dirty page.
294 * Calls ->writepage().
296 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
297 enum pageout_io sync_writeback
)
300 * If the page is dirty, only perform writeback if that write
301 * will be non-blocking. To prevent this allocation from being
302 * stalled by pagecache activity. But note that there may be
303 * stalls if we need to run get_block(). We could test
304 * PagePrivate for that.
306 * If this process is currently in generic_file_write() against
307 * this page's queue, we can perform writeback even if that
310 * If the page is swapcache, write it back even if that would
311 * block, for some throttling. This happens by accident, because
312 * swap_backing_dev_info is bust: it doesn't reflect the
313 * congestion state of the swapdevs. Easy to fix, if needed.
314 * See swapfile.c:page_queue_congested().
316 if (!is_page_cache_freeable(page
))
320 * Some data journaling orphaned pages can have
321 * page->mapping == NULL while being dirty with clean buffers.
323 if (PagePrivate(page
)) {
324 if (try_to_free_buffers(page
)) {
325 ClearPageDirty(page
);
326 printk("%s: orphaned page\n", __FUNCTION__
);
332 if (mapping
->a_ops
->writepage
== NULL
)
333 return PAGE_ACTIVATE
;
334 if (!may_write_to_queue(mapping
->backing_dev_info
))
337 if (clear_page_dirty_for_io(page
)) {
339 struct writeback_control wbc
= {
340 .sync_mode
= WB_SYNC_NONE
,
341 .nr_to_write
= SWAP_CLUSTER_MAX
,
343 .range_end
= LLONG_MAX
,
348 SetPageReclaim(page
);
349 res
= mapping
->a_ops
->writepage(page
, &wbc
);
351 handle_write_error(mapping
, page
, res
);
352 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
353 ClearPageReclaim(page
);
354 return PAGE_ACTIVATE
;
358 * Wait on writeback if requested to. This happens when
359 * direct reclaiming a large contiguous area and the
360 * first attempt to free a range of pages fails.
362 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
363 wait_on_page_writeback(page
);
365 if (!PageWriteback(page
)) {
366 /* synchronous write or broken a_ops? */
367 ClearPageReclaim(page
);
369 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
377 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
378 * someone else has a ref on the page, abort and return 0. If it was
379 * successfully detached, return 1. Assumes the caller has a single ref on
382 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
384 BUG_ON(!PageLocked(page
));
385 BUG_ON(mapping
!= page_mapping(page
));
387 write_lock_irq(&mapping
->tree_lock
);
389 * The non racy check for a busy page.
391 * Must be careful with the order of the tests. When someone has
392 * a ref to the page, it may be possible that they dirty it then
393 * drop the reference. So if PageDirty is tested before page_count
394 * here, then the following race may occur:
396 * get_user_pages(&page);
397 * [user mapping goes away]
399 * !PageDirty(page) [good]
400 * SetPageDirty(page);
402 * !page_count(page) [good, discard it]
404 * [oops, our write_to data is lost]
406 * Reversing the order of the tests ensures such a situation cannot
407 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
408 * load is not satisfied before that of page->_count.
410 * Note that if SetPageDirty is always performed via set_page_dirty,
411 * and thus under tree_lock, then this ordering is not required.
413 if (unlikely(page_count(page
) != 2))
416 if (unlikely(PageDirty(page
)))
419 if (PageSwapCache(page
)) {
420 swp_entry_t swap
= { .val
= page_private(page
) };
421 __delete_from_swap_cache(page
);
422 write_unlock_irq(&mapping
->tree_lock
);
424 __put_page(page
); /* The pagecache ref */
428 __remove_from_page_cache(page
);
429 write_unlock_irq(&mapping
->tree_lock
);
434 write_unlock_irq(&mapping
->tree_lock
);
439 * shrink_page_list() returns the number of reclaimed pages
441 static unsigned long shrink_page_list(struct list_head
*page_list
,
442 struct scan_control
*sc
,
443 enum pageout_io sync_writeback
)
445 LIST_HEAD(ret_pages
);
446 struct pagevec freed_pvec
;
448 unsigned long nr_reclaimed
= 0;
452 pagevec_init(&freed_pvec
, 1);
453 while (!list_empty(page_list
)) {
454 struct address_space
*mapping
;
461 page
= lru_to_page(page_list
);
462 list_del(&page
->lru
);
464 if (TestSetPageLocked(page
))
467 VM_BUG_ON(PageActive(page
));
471 if (!sc
->may_swap
&& page_mapped(page
))
474 /* Double the slab pressure for mapped and swapcache pages */
475 if (page_mapped(page
) || PageSwapCache(page
))
478 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
479 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
481 if (PageWriteback(page
)) {
483 * Synchronous reclaim is performed in two passes,
484 * first an asynchronous pass over the list to
485 * start parallel writeback, and a second synchronous
486 * pass to wait for the IO to complete. Wait here
487 * for any page for which writeback has already
490 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
491 wait_on_page_writeback(page
);
496 referenced
= page_referenced(page
, 1);
497 /* In active use or really unfreeable? Activate it. */
498 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
499 referenced
&& page_mapping_inuse(page
))
500 goto activate_locked
;
504 * Anonymous process memory has backing store?
505 * Try to allocate it some swap space here.
507 if (PageAnon(page
) && !PageSwapCache(page
))
508 if (!add_to_swap(page
, GFP_ATOMIC
))
509 goto activate_locked
;
510 #endif /* CONFIG_SWAP */
512 mapping
= page_mapping(page
);
515 * The page is mapped into the page tables of one or more
516 * processes. Try to unmap it here.
518 if (page_mapped(page
) && mapping
) {
519 switch (try_to_unmap(page
, 0)) {
521 goto activate_locked
;
525 ; /* try to free the page below */
529 if (PageDirty(page
)) {
530 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
534 if (!sc
->may_writepage
)
537 /* Page is dirty, try to write it out here */
538 switch (pageout(page
, mapping
, sync_writeback
)) {
542 goto activate_locked
;
544 if (PageWriteback(page
) || PageDirty(page
))
547 * A synchronous write - probably a ramdisk. Go
548 * ahead and try to reclaim the page.
550 if (TestSetPageLocked(page
))
552 if (PageDirty(page
) || PageWriteback(page
))
554 mapping
= page_mapping(page
);
556 ; /* try to free the page below */
561 * If the page has buffers, try to free the buffer mappings
562 * associated with this page. If we succeed we try to free
565 * We do this even if the page is PageDirty().
566 * try_to_release_page() does not perform I/O, but it is
567 * possible for a page to have PageDirty set, but it is actually
568 * clean (all its buffers are clean). This happens if the
569 * buffers were written out directly, with submit_bh(). ext3
570 * will do this, as well as the blockdev mapping.
571 * try_to_release_page() will discover that cleanness and will
572 * drop the buffers and mark the page clean - it can be freed.
574 * Rarely, pages can have buffers and no ->mapping. These are
575 * the pages which were not successfully invalidated in
576 * truncate_complete_page(). We try to drop those buffers here
577 * and if that worked, and the page is no longer mapped into
578 * process address space (page_count == 1) it can be freed.
579 * Otherwise, leave the page on the LRU so it is swappable.
581 if (PagePrivate(page
)) {
582 if (!try_to_release_page(page
, sc
->gfp_mask
))
583 goto activate_locked
;
584 if (!mapping
&& page_count(page
) == 1)
588 if (!mapping
|| !remove_mapping(mapping
, page
))
594 if (!pagevec_add(&freed_pvec
, page
))
595 __pagevec_release_nonlru(&freed_pvec
);
604 list_add(&page
->lru
, &ret_pages
);
605 VM_BUG_ON(PageLRU(page
));
607 list_splice(&ret_pages
, page_list
);
608 if (pagevec_count(&freed_pvec
))
609 __pagevec_release_nonlru(&freed_pvec
);
610 count_vm_events(PGACTIVATE
, pgactivate
);
614 /* LRU Isolation modes. */
615 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
616 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
617 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
620 * Attempt to remove the specified page from its LRU. Only take this page
621 * if it is of the appropriate PageActive status. Pages which are being
622 * freed elsewhere are also ignored.
624 * page: page to consider
625 * mode: one of the LRU isolation modes defined above
627 * returns 0 on success, -ve errno on failure.
629 static int __isolate_lru_page(struct page
*page
, int mode
)
633 /* Only take pages on the LRU. */
638 * When checking the active state, we need to be sure we are
639 * dealing with comparible boolean values. Take the logical not
642 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
646 if (likely(get_page_unless_zero(page
))) {
648 * Be careful not to clear PageLRU until after we're
649 * sure the page is not being freed elsewhere -- the
650 * page release code relies on it.
660 * zone->lru_lock is heavily contended. Some of the functions that
661 * shrink the lists perform better by taking out a batch of pages
662 * and working on them outside the LRU lock.
664 * For pagecache intensive workloads, this function is the hottest
665 * spot in the kernel (apart from copy_*_user functions).
667 * Appropriate locks must be held before calling this function.
669 * @nr_to_scan: The number of pages to look through on the list.
670 * @src: The LRU list to pull pages off.
671 * @dst: The temp list to put pages on to.
672 * @scanned: The number of pages that were scanned.
673 * @order: The caller's attempted allocation order
674 * @mode: One of the LRU isolation modes
676 * returns how many pages were moved onto *@dst.
678 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
679 struct list_head
*src
, struct list_head
*dst
,
680 unsigned long *scanned
, int order
, int mode
)
682 unsigned long nr_taken
= 0;
685 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
688 unsigned long end_pfn
;
689 unsigned long page_pfn
;
692 page
= lru_to_page(src
);
693 prefetchw_prev_lru_page(page
, src
, flags
);
695 VM_BUG_ON(!PageLRU(page
));
697 switch (__isolate_lru_page(page
, mode
)) {
699 list_move(&page
->lru
, dst
);
704 /* else it is being freed elsewhere */
705 list_move(&page
->lru
, src
);
716 * Attempt to take all pages in the order aligned region
717 * surrounding the tag page. Only take those pages of
718 * the same active state as that tag page. We may safely
719 * round the target page pfn down to the requested order
720 * as the mem_map is guarenteed valid out to MAX_ORDER,
721 * where that page is in a different zone we will detect
722 * it from its zone id and abort this block scan.
724 zone_id
= page_zone_id(page
);
725 page_pfn
= page_to_pfn(page
);
726 pfn
= page_pfn
& ~((1 << order
) - 1);
727 end_pfn
= pfn
+ (1 << order
);
728 for (; pfn
< end_pfn
; pfn
++) {
729 struct page
*cursor_page
;
731 /* The target page is in the block, ignore it. */
732 if (unlikely(pfn
== page_pfn
))
735 /* Avoid holes within the zone. */
736 if (unlikely(!pfn_valid_within(pfn
)))
739 cursor_page
= pfn_to_page(pfn
);
740 /* Check that we have not crossed a zone boundary. */
741 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
743 switch (__isolate_lru_page(cursor_page
, mode
)) {
745 list_move(&cursor_page
->lru
, dst
);
751 /* else it is being freed elsewhere */
752 list_move(&cursor_page
->lru
, src
);
764 * clear_active_flags() is a helper for shrink_active_list(), clearing
765 * any active bits from the pages in the list.
767 static unsigned long clear_active_flags(struct list_head
*page_list
)
772 list_for_each_entry(page
, page_list
, lru
)
773 if (PageActive(page
)) {
774 ClearPageActive(page
);
782 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
785 static unsigned long shrink_inactive_list(unsigned long max_scan
,
786 struct zone
*zone
, struct scan_control
*sc
)
788 LIST_HEAD(page_list
);
790 unsigned long nr_scanned
= 0;
791 unsigned long nr_reclaimed
= 0;
793 pagevec_init(&pvec
, 1);
796 spin_lock_irq(&zone
->lru_lock
);
799 unsigned long nr_taken
;
800 unsigned long nr_scan
;
801 unsigned long nr_freed
;
802 unsigned long nr_active
;
804 nr_taken
= isolate_lru_pages(sc
->swap_cluster_max
,
805 &zone
->inactive_list
,
806 &page_list
, &nr_scan
, sc
->order
,
807 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)?
808 ISOLATE_BOTH
: ISOLATE_INACTIVE
);
809 nr_active
= clear_active_flags(&page_list
);
810 __count_vm_events(PGDEACTIVATE
, nr_active
);
812 __mod_zone_page_state(zone
, NR_ACTIVE
, -nr_active
);
813 __mod_zone_page_state(zone
, NR_INACTIVE
,
814 -(nr_taken
- nr_active
));
815 zone
->pages_scanned
+= nr_scan
;
816 spin_unlock_irq(&zone
->lru_lock
);
818 nr_scanned
+= nr_scan
;
819 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
822 * If we are direct reclaiming for contiguous pages and we do
823 * not reclaim everything in the list, try again and wait
824 * for IO to complete. This will stall high-order allocations
825 * but that should be acceptable to the caller
827 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
828 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
) {
829 congestion_wait(WRITE
, HZ
/10);
832 * The attempt at page out may have made some
833 * of the pages active, mark them inactive again.
835 nr_active
= clear_active_flags(&page_list
);
836 count_vm_events(PGDEACTIVATE
, nr_active
);
838 nr_freed
+= shrink_page_list(&page_list
, sc
,
842 nr_reclaimed
+= nr_freed
;
844 if (current_is_kswapd()) {
845 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
846 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
848 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
849 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
854 spin_lock(&zone
->lru_lock
);
856 * Put back any unfreeable pages.
858 while (!list_empty(&page_list
)) {
859 page
= lru_to_page(&page_list
);
860 VM_BUG_ON(PageLRU(page
));
862 list_del(&page
->lru
);
863 if (PageActive(page
))
864 add_page_to_active_list(zone
, page
);
866 add_page_to_inactive_list(zone
, page
);
867 if (!pagevec_add(&pvec
, page
)) {
868 spin_unlock_irq(&zone
->lru_lock
);
869 __pagevec_release(&pvec
);
870 spin_lock_irq(&zone
->lru_lock
);
873 } while (nr_scanned
< max_scan
);
874 spin_unlock(&zone
->lru_lock
);
877 pagevec_release(&pvec
);
882 * We are about to scan this zone at a certain priority level. If that priority
883 * level is smaller (ie: more urgent) than the previous priority, then note
884 * that priority level within the zone. This is done so that when the next
885 * process comes in to scan this zone, it will immediately start out at this
886 * priority level rather than having to build up its own scanning priority.
887 * Here, this priority affects only the reclaim-mapped threshold.
889 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
891 if (priority
< zone
->prev_priority
)
892 zone
->prev_priority
= priority
;
895 static inline int zone_is_near_oom(struct zone
*zone
)
897 return zone
->pages_scanned
>= (zone_page_state(zone
, NR_ACTIVE
)
898 + zone_page_state(zone
, NR_INACTIVE
))*3;
902 * This moves pages from the active list to the inactive list.
904 * We move them the other way if the page is referenced by one or more
905 * processes, from rmap.
907 * If the pages are mostly unmapped, the processing is fast and it is
908 * appropriate to hold zone->lru_lock across the whole operation. But if
909 * the pages are mapped, the processing is slow (page_referenced()) so we
910 * should drop zone->lru_lock around each page. It's impossible to balance
911 * this, so instead we remove the pages from the LRU while processing them.
912 * It is safe to rely on PG_active against the non-LRU pages in here because
913 * nobody will play with that bit on a non-LRU page.
915 * The downside is that we have to touch page->_count against each page.
916 * But we had to alter page->flags anyway.
918 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
919 struct scan_control
*sc
, int priority
)
921 unsigned long pgmoved
;
922 int pgdeactivate
= 0;
923 unsigned long pgscanned
;
924 LIST_HEAD(l_hold
); /* The pages which were snipped off */
925 LIST_HEAD(l_inactive
); /* Pages to go onto the inactive_list */
926 LIST_HEAD(l_active
); /* Pages to go onto the active_list */
929 int reclaim_mapped
= 0;
937 if (zone_is_near_oom(zone
))
938 goto force_reclaim_mapped
;
941 * `distress' is a measure of how much trouble we're having
942 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
944 distress
= 100 >> min(zone
->prev_priority
, priority
);
947 * The point of this algorithm is to decide when to start
948 * reclaiming mapped memory instead of just pagecache. Work out
952 mapped_ratio
= ((global_page_state(NR_FILE_MAPPED
) +
953 global_page_state(NR_ANON_PAGES
)) * 100) /
957 * Now decide how much we really want to unmap some pages. The
958 * mapped ratio is downgraded - just because there's a lot of
959 * mapped memory doesn't necessarily mean that page reclaim
962 * The distress ratio is important - we don't want to start
965 * A 100% value of vm_swappiness overrides this algorithm
968 swap_tendency
= mapped_ratio
/ 2 + distress
+ sc
->swappiness
;
971 * If there's huge imbalance between active and inactive
972 * (think active 100 times larger than inactive) we should
973 * become more permissive, or the system will take too much
974 * cpu before it start swapping during memory pressure.
975 * Distress is about avoiding early-oom, this is about
976 * making swappiness graceful despite setting it to low
979 * Avoid div by zero with nr_inactive+1, and max resulting
980 * value is vm_total_pages.
982 imbalance
= zone_page_state(zone
, NR_ACTIVE
);
983 imbalance
/= zone_page_state(zone
, NR_INACTIVE
) + 1;
986 * Reduce the effect of imbalance if swappiness is low,
987 * this means for a swappiness very low, the imbalance
988 * must be much higher than 100 for this logic to make
991 * Max temporary value is vm_total_pages*100.
993 imbalance
*= (vm_swappiness
+ 1);
997 * If not much of the ram is mapped, makes the imbalance
998 * less relevant, it's high priority we refill the inactive
999 * list with mapped pages only in presence of high ratio of
1002 * Max temporary value is vm_total_pages*100.
1004 imbalance
*= mapped_ratio
;
1007 /* apply imbalance feedback to swap_tendency */
1008 swap_tendency
+= imbalance
;
1011 * Now use this metric to decide whether to start moving mapped
1012 * memory onto the inactive list.
1014 if (swap_tendency
>= 100)
1015 force_reclaim_mapped
:
1020 spin_lock_irq(&zone
->lru_lock
);
1021 pgmoved
= isolate_lru_pages(nr_pages
, &zone
->active_list
,
1022 &l_hold
, &pgscanned
, sc
->order
, ISOLATE_ACTIVE
);
1023 zone
->pages_scanned
+= pgscanned
;
1024 __mod_zone_page_state(zone
, NR_ACTIVE
, -pgmoved
);
1025 spin_unlock_irq(&zone
->lru_lock
);
1027 while (!list_empty(&l_hold
)) {
1029 page
= lru_to_page(&l_hold
);
1030 list_del(&page
->lru
);
1031 if (page_mapped(page
)) {
1032 if (!reclaim_mapped
||
1033 (total_swap_pages
== 0 && PageAnon(page
)) ||
1034 page_referenced(page
, 0)) {
1035 list_add(&page
->lru
, &l_active
);
1039 list_add(&page
->lru
, &l_inactive
);
1042 pagevec_init(&pvec
, 1);
1044 spin_lock_irq(&zone
->lru_lock
);
1045 while (!list_empty(&l_inactive
)) {
1046 page
= lru_to_page(&l_inactive
);
1047 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
1048 VM_BUG_ON(PageLRU(page
));
1050 VM_BUG_ON(!PageActive(page
));
1051 ClearPageActive(page
);
1053 list_move(&page
->lru
, &zone
->inactive_list
);
1055 if (!pagevec_add(&pvec
, page
)) {
1056 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
1057 spin_unlock_irq(&zone
->lru_lock
);
1058 pgdeactivate
+= pgmoved
;
1060 if (buffer_heads_over_limit
)
1061 pagevec_strip(&pvec
);
1062 __pagevec_release(&pvec
);
1063 spin_lock_irq(&zone
->lru_lock
);
1066 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
1067 pgdeactivate
+= pgmoved
;
1068 if (buffer_heads_over_limit
) {
1069 spin_unlock_irq(&zone
->lru_lock
);
1070 pagevec_strip(&pvec
);
1071 spin_lock_irq(&zone
->lru_lock
);
1075 while (!list_empty(&l_active
)) {
1076 page
= lru_to_page(&l_active
);
1077 prefetchw_prev_lru_page(page
, &l_active
, flags
);
1078 VM_BUG_ON(PageLRU(page
));
1080 VM_BUG_ON(!PageActive(page
));
1081 list_move(&page
->lru
, &zone
->active_list
);
1083 if (!pagevec_add(&pvec
, page
)) {
1084 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
1086 spin_unlock_irq(&zone
->lru_lock
);
1087 __pagevec_release(&pvec
);
1088 spin_lock_irq(&zone
->lru_lock
);
1091 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
1093 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1094 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
1095 spin_unlock_irq(&zone
->lru_lock
);
1097 pagevec_release(&pvec
);
1101 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1103 static unsigned long shrink_zone(int priority
, struct zone
*zone
,
1104 struct scan_control
*sc
)
1106 unsigned long nr_active
;
1107 unsigned long nr_inactive
;
1108 unsigned long nr_to_scan
;
1109 unsigned long nr_reclaimed
= 0;
1111 atomic_inc(&zone
->reclaim_in_progress
);
1114 * Add one to `nr_to_scan' just to make sure that the kernel will
1115 * slowly sift through the active list.
1117 zone
->nr_scan_active
+=
1118 (zone_page_state(zone
, NR_ACTIVE
) >> priority
) + 1;
1119 nr_active
= zone
->nr_scan_active
;
1120 if (nr_active
>= sc
->swap_cluster_max
)
1121 zone
->nr_scan_active
= 0;
1125 zone
->nr_scan_inactive
+=
1126 (zone_page_state(zone
, NR_INACTIVE
) >> priority
) + 1;
1127 nr_inactive
= zone
->nr_scan_inactive
;
1128 if (nr_inactive
>= sc
->swap_cluster_max
)
1129 zone
->nr_scan_inactive
= 0;
1133 while (nr_active
|| nr_inactive
) {
1135 nr_to_scan
= min(nr_active
,
1136 (unsigned long)sc
->swap_cluster_max
);
1137 nr_active
-= nr_to_scan
;
1138 shrink_active_list(nr_to_scan
, zone
, sc
, priority
);
1142 nr_to_scan
= min(nr_inactive
,
1143 (unsigned long)sc
->swap_cluster_max
);
1144 nr_inactive
-= nr_to_scan
;
1145 nr_reclaimed
+= shrink_inactive_list(nr_to_scan
, zone
,
1150 throttle_vm_writeout(sc
->gfp_mask
);
1152 atomic_dec(&zone
->reclaim_in_progress
);
1153 return nr_reclaimed
;
1157 * This is the direct reclaim path, for page-allocating processes. We only
1158 * try to reclaim pages from zones which will satisfy the caller's allocation
1161 * We reclaim from a zone even if that zone is over pages_high. Because:
1162 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1164 * b) The zones may be over pages_high but they must go *over* pages_high to
1165 * satisfy the `incremental min' zone defense algorithm.
1167 * Returns the number of reclaimed pages.
1169 * If a zone is deemed to be full of pinned pages then just give it a light
1170 * scan then give up on it.
1172 static unsigned long shrink_zones(int priority
, struct zone
**zones
,
1173 struct scan_control
*sc
)
1175 unsigned long nr_reclaimed
= 0;
1178 sc
->all_unreclaimable
= 1;
1179 for (i
= 0; zones
[i
] != NULL
; i
++) {
1180 struct zone
*zone
= zones
[i
];
1182 if (!populated_zone(zone
))
1185 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1188 note_zone_scanning_priority(zone
, priority
);
1190 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1191 continue; /* Let kswapd poll it */
1193 sc
->all_unreclaimable
= 0;
1195 nr_reclaimed
+= shrink_zone(priority
, zone
, sc
);
1197 return nr_reclaimed
;
1201 * This is the main entry point to direct page reclaim.
1203 * If a full scan of the inactive list fails to free enough memory then we
1204 * are "out of memory" and something needs to be killed.
1206 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1207 * high - the zone may be full of dirty or under-writeback pages, which this
1208 * caller can't do much about. We kick pdflush and take explicit naps in the
1209 * hope that some of these pages can be written. But if the allocating task
1210 * holds filesystem locks which prevent writeout this might not work, and the
1211 * allocation attempt will fail.
1213 unsigned long try_to_free_pages(struct zone
**zones
, int order
, gfp_t gfp_mask
)
1217 unsigned long total_scanned
= 0;
1218 unsigned long nr_reclaimed
= 0;
1219 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1220 unsigned long lru_pages
= 0;
1222 struct scan_control sc
= {
1223 .gfp_mask
= gfp_mask
,
1224 .may_writepage
= !laptop_mode
,
1225 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1227 .swappiness
= vm_swappiness
,
1231 count_vm_event(ALLOCSTALL
);
1233 for (i
= 0; zones
[i
] != NULL
; i
++) {
1234 struct zone
*zone
= zones
[i
];
1236 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1239 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1240 + zone_page_state(zone
, NR_INACTIVE
);
1243 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1246 disable_swap_token();
1247 nr_reclaimed
+= shrink_zones(priority
, zones
, &sc
);
1248 shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
);
1249 if (reclaim_state
) {
1250 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1251 reclaim_state
->reclaimed_slab
= 0;
1253 total_scanned
+= sc
.nr_scanned
;
1254 if (nr_reclaimed
>= sc
.swap_cluster_max
) {
1260 * Try to write back as many pages as we just scanned. This
1261 * tends to cause slow streaming writers to write data to the
1262 * disk smoothly, at the dirtying rate, which is nice. But
1263 * that's undesirable in laptop mode, where we *want* lumpy
1264 * writeout. So in laptop mode, write out the whole world.
1266 if (total_scanned
> sc
.swap_cluster_max
+
1267 sc
.swap_cluster_max
/ 2) {
1268 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1269 sc
.may_writepage
= 1;
1272 /* Take a nap, wait for some writeback to complete */
1273 if (sc
.nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1274 congestion_wait(WRITE
, HZ
/10);
1276 /* top priority shrink_caches still had more to do? don't OOM, then */
1277 if (!sc
.all_unreclaimable
)
1281 * Now that we've scanned all the zones at this priority level, note
1282 * that level within the zone so that the next thread which performs
1283 * scanning of this zone will immediately start out at this priority
1284 * level. This affects only the decision whether or not to bring
1285 * mapped pages onto the inactive list.
1289 for (i
= 0; zones
[i
] != 0; i
++) {
1290 struct zone
*zone
= zones
[i
];
1292 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1295 zone
->prev_priority
= priority
;
1301 * For kswapd, balance_pgdat() will work across all this node's zones until
1302 * they are all at pages_high.
1304 * Returns the number of pages which were actually freed.
1306 * There is special handling here for zones which are full of pinned pages.
1307 * This can happen if the pages are all mlocked, or if they are all used by
1308 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1309 * What we do is to detect the case where all pages in the zone have been
1310 * scanned twice and there has been zero successful reclaim. Mark the zone as
1311 * dead and from now on, only perform a short scan. Basically we're polling
1312 * the zone for when the problem goes away.
1314 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1315 * zones which have free_pages > pages_high, but once a zone is found to have
1316 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1317 * of the number of free pages in the lower zones. This interoperates with
1318 * the page allocator fallback scheme to ensure that aging of pages is balanced
1321 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1326 unsigned long total_scanned
;
1327 unsigned long nr_reclaimed
;
1328 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1329 struct scan_control sc
= {
1330 .gfp_mask
= GFP_KERNEL
,
1332 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1333 .swappiness
= vm_swappiness
,
1337 * temp_priority is used to remember the scanning priority at which
1338 * this zone was successfully refilled to free_pages == pages_high.
1340 int temp_priority
[MAX_NR_ZONES
];
1345 sc
.may_writepage
= !laptop_mode
;
1346 count_vm_event(PAGEOUTRUN
);
1348 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1349 temp_priority
[i
] = DEF_PRIORITY
;
1351 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1352 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1353 unsigned long lru_pages
= 0;
1355 /* The swap token gets in the way of swapout... */
1357 disable_swap_token();
1362 * Scan in the highmem->dma direction for the highest
1363 * zone which needs scanning
1365 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1366 struct zone
*zone
= pgdat
->node_zones
+ i
;
1368 if (!populated_zone(zone
))
1371 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1374 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1383 for (i
= 0; i
<= end_zone
; i
++) {
1384 struct zone
*zone
= pgdat
->node_zones
+ i
;
1386 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1387 + zone_page_state(zone
, NR_INACTIVE
);
1391 * Now scan the zone in the dma->highmem direction, stopping
1392 * at the last zone which needs scanning.
1394 * We do this because the page allocator works in the opposite
1395 * direction. This prevents the page allocator from allocating
1396 * pages behind kswapd's direction of progress, which would
1397 * cause too much scanning of the lower zones.
1399 for (i
= 0; i
<= end_zone
; i
++) {
1400 struct zone
*zone
= pgdat
->node_zones
+ i
;
1403 if (!populated_zone(zone
))
1406 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1409 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1412 temp_priority
[i
] = priority
;
1414 note_zone_scanning_priority(zone
, priority
);
1416 * We put equal pressure on every zone, unless one
1417 * zone has way too many pages free already.
1419 if (!zone_watermark_ok(zone
, order
, 8*zone
->pages_high
,
1421 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1422 reclaim_state
->reclaimed_slab
= 0;
1423 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1425 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1426 total_scanned
+= sc
.nr_scanned
;
1427 if (zone
->all_unreclaimable
)
1429 if (nr_slab
== 0 && zone
->pages_scanned
>=
1430 (zone_page_state(zone
, NR_ACTIVE
)
1431 + zone_page_state(zone
, NR_INACTIVE
)) * 6)
1432 zone
->all_unreclaimable
= 1;
1434 * If we've done a decent amount of scanning and
1435 * the reclaim ratio is low, start doing writepage
1436 * even in laptop mode
1438 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1439 total_scanned
> nr_reclaimed
+ nr_reclaimed
/ 2)
1440 sc
.may_writepage
= 1;
1443 break; /* kswapd: all done */
1445 * OK, kswapd is getting into trouble. Take a nap, then take
1446 * another pass across the zones.
1448 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1449 congestion_wait(WRITE
, HZ
/10);
1452 * We do this so kswapd doesn't build up large priorities for
1453 * example when it is freeing in parallel with allocators. It
1454 * matches the direct reclaim path behaviour in terms of impact
1455 * on zone->*_priority.
1457 if (nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1462 * Note within each zone the priority level at which this zone was
1463 * brought into a happy state. So that the next thread which scans this
1464 * zone will start out at that priority level.
1466 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1467 struct zone
*zone
= pgdat
->node_zones
+ i
;
1469 zone
->prev_priority
= temp_priority
[i
];
1471 if (!all_zones_ok
) {
1479 return nr_reclaimed
;
1483 * The background pageout daemon, started as a kernel thread
1484 * from the init process.
1486 * This basically trickles out pages so that we have _some_
1487 * free memory available even if there is no other activity
1488 * that frees anything up. This is needed for things like routing
1489 * etc, where we otherwise might have all activity going on in
1490 * asynchronous contexts that cannot page things out.
1492 * If there are applications that are active memory-allocators
1493 * (most normal use), this basically shouldn't matter.
1495 static int kswapd(void *p
)
1497 unsigned long order
;
1498 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1499 struct task_struct
*tsk
= current
;
1501 struct reclaim_state reclaim_state
= {
1502 .reclaimed_slab
= 0,
1506 cpumask
= node_to_cpumask(pgdat
->node_id
);
1507 if (!cpus_empty(cpumask
))
1508 set_cpus_allowed(tsk
, cpumask
);
1509 current
->reclaim_state
= &reclaim_state
;
1512 * Tell the memory management that we're a "memory allocator",
1513 * and that if we need more memory we should get access to it
1514 * regardless (see "__alloc_pages()"). "kswapd" should
1515 * never get caught in the normal page freeing logic.
1517 * (Kswapd normally doesn't need memory anyway, but sometimes
1518 * you need a small amount of memory in order to be able to
1519 * page out something else, and this flag essentially protects
1520 * us from recursively trying to free more memory as we're
1521 * trying to free the first piece of memory in the first place).
1523 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1528 unsigned long new_order
;
1530 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1531 new_order
= pgdat
->kswapd_max_order
;
1532 pgdat
->kswapd_max_order
= 0;
1533 if (order
< new_order
) {
1535 * Don't sleep if someone wants a larger 'order'
1540 if (!freezing(current
))
1543 order
= pgdat
->kswapd_max_order
;
1545 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1547 if (!try_to_freeze()) {
1548 /* We can speed up thawing tasks if we don't call
1549 * balance_pgdat after returning from the refrigerator
1551 balance_pgdat(pgdat
, order
);
1558 * A zone is low on free memory, so wake its kswapd task to service it.
1560 void wakeup_kswapd(struct zone
*zone
, int order
)
1564 if (!populated_zone(zone
))
1567 pgdat
= zone
->zone_pgdat
;
1568 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1570 if (pgdat
->kswapd_max_order
< order
)
1571 pgdat
->kswapd_max_order
= order
;
1572 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1574 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1576 wake_up_interruptible(&pgdat
->kswapd_wait
);
1581 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1582 * from LRU lists system-wide, for given pass and priority, and returns the
1583 * number of reclaimed pages
1585 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1587 static unsigned long shrink_all_zones(unsigned long nr_pages
, int prio
,
1588 int pass
, struct scan_control
*sc
)
1591 unsigned long nr_to_scan
, ret
= 0;
1593 for_each_zone(zone
) {
1595 if (!populated_zone(zone
))
1598 if (zone
->all_unreclaimable
&& prio
!= DEF_PRIORITY
)
1601 /* For pass = 0 we don't shrink the active list */
1603 zone
->nr_scan_active
+=
1604 (zone_page_state(zone
, NR_ACTIVE
) >> prio
) + 1;
1605 if (zone
->nr_scan_active
>= nr_pages
|| pass
> 3) {
1606 zone
->nr_scan_active
= 0;
1607 nr_to_scan
= min(nr_pages
,
1608 zone_page_state(zone
, NR_ACTIVE
));
1609 shrink_active_list(nr_to_scan
, zone
, sc
, prio
);
1613 zone
->nr_scan_inactive
+=
1614 (zone_page_state(zone
, NR_INACTIVE
) >> prio
) + 1;
1615 if (zone
->nr_scan_inactive
>= nr_pages
|| pass
> 3) {
1616 zone
->nr_scan_inactive
= 0;
1617 nr_to_scan
= min(nr_pages
,
1618 zone_page_state(zone
, NR_INACTIVE
));
1619 ret
+= shrink_inactive_list(nr_to_scan
, zone
, sc
);
1620 if (ret
>= nr_pages
)
1628 static unsigned long count_lru_pages(void)
1630 return global_page_state(NR_ACTIVE
) + global_page_state(NR_INACTIVE
);
1634 * Try to free `nr_pages' of memory, system-wide, and return the number of
1637 * Rather than trying to age LRUs the aim is to preserve the overall
1638 * LRU order by reclaiming preferentially
1639 * inactive > active > active referenced > active mapped
1641 unsigned long shrink_all_memory(unsigned long nr_pages
)
1643 unsigned long lru_pages
, nr_slab
;
1644 unsigned long ret
= 0;
1646 struct reclaim_state reclaim_state
;
1647 struct scan_control sc
= {
1648 .gfp_mask
= GFP_KERNEL
,
1650 .swap_cluster_max
= nr_pages
,
1652 .swappiness
= vm_swappiness
,
1655 current
->reclaim_state
= &reclaim_state
;
1657 lru_pages
= count_lru_pages();
1658 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
1659 /* If slab caches are huge, it's better to hit them first */
1660 while (nr_slab
>= lru_pages
) {
1661 reclaim_state
.reclaimed_slab
= 0;
1662 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
1663 if (!reclaim_state
.reclaimed_slab
)
1666 ret
+= reclaim_state
.reclaimed_slab
;
1667 if (ret
>= nr_pages
)
1670 nr_slab
-= reclaim_state
.reclaimed_slab
;
1674 * We try to shrink LRUs in 5 passes:
1675 * 0 = Reclaim from inactive_list only
1676 * 1 = Reclaim from active list but don't reclaim mapped
1677 * 2 = 2nd pass of type 1
1678 * 3 = Reclaim mapped (normal reclaim)
1679 * 4 = 2nd pass of type 3
1681 for (pass
= 0; pass
< 5; pass
++) {
1684 /* Force reclaiming mapped pages in the passes #3 and #4 */
1687 sc
.swappiness
= 100;
1690 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
1691 unsigned long nr_to_scan
= nr_pages
- ret
;
1694 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
1695 if (ret
>= nr_pages
)
1698 reclaim_state
.reclaimed_slab
= 0;
1699 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
1701 ret
+= reclaim_state
.reclaimed_slab
;
1702 if (ret
>= nr_pages
)
1705 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
1706 congestion_wait(WRITE
, HZ
/ 10);
1711 * If ret = 0, we could not shrink LRUs, but there may be something
1716 reclaim_state
.reclaimed_slab
= 0;
1717 shrink_slab(nr_pages
, sc
.gfp_mask
, count_lru_pages());
1718 ret
+= reclaim_state
.reclaimed_slab
;
1719 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
1723 current
->reclaim_state
= NULL
;
1729 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1730 not required for correctness. So if the last cpu in a node goes
1731 away, we get changed to run anywhere: as the first one comes back,
1732 restore their cpu bindings. */
1733 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
1734 unsigned long action
, void *hcpu
)
1740 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
1741 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1742 pgdat
= NODE_DATA(nid
);
1743 mask
= node_to_cpumask(pgdat
->node_id
);
1744 if (any_online_cpu(mask
) != NR_CPUS
)
1745 /* One of our CPUs online: restore mask */
1746 set_cpus_allowed(pgdat
->kswapd
, mask
);
1753 * This kswapd start function will be called by init and node-hot-add.
1754 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1756 int kswapd_run(int nid
)
1758 pg_data_t
*pgdat
= NODE_DATA(nid
);
1764 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
1765 if (IS_ERR(pgdat
->kswapd
)) {
1766 /* failure at boot is fatal */
1767 BUG_ON(system_state
== SYSTEM_BOOTING
);
1768 printk("Failed to start kswapd on node %d\n",nid
);
1774 static int __init
kswapd_init(void)
1779 for_each_node_state(nid
, N_HIGH_MEMORY
)
1781 hotcpu_notifier(cpu_callback
, 0);
1785 module_init(kswapd_init
)
1791 * If non-zero call zone_reclaim when the number of free pages falls below
1794 int zone_reclaim_mode __read_mostly
;
1796 #define RECLAIM_OFF 0
1797 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1798 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1799 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1802 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1803 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1806 #define ZONE_RECLAIM_PRIORITY 4
1809 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1812 int sysctl_min_unmapped_ratio
= 1;
1815 * If the number of slab pages in a zone grows beyond this percentage then
1816 * slab reclaim needs to occur.
1818 int sysctl_min_slab_ratio
= 5;
1821 * Try to free up some pages from this zone through reclaim.
1823 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1825 /* Minimum pages needed in order to stay on node */
1826 const unsigned long nr_pages
= 1 << order
;
1827 struct task_struct
*p
= current
;
1828 struct reclaim_state reclaim_state
;
1830 unsigned long nr_reclaimed
= 0;
1831 struct scan_control sc
= {
1832 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
1833 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
1834 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
1836 .gfp_mask
= gfp_mask
,
1837 .swappiness
= vm_swappiness
,
1839 unsigned long slab_reclaimable
;
1841 disable_swap_token();
1844 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1845 * and we also need to be able to write out pages for RECLAIM_WRITE
1848 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
1849 reclaim_state
.reclaimed_slab
= 0;
1850 p
->reclaim_state
= &reclaim_state
;
1852 if (zone_page_state(zone
, NR_FILE_PAGES
) -
1853 zone_page_state(zone
, NR_FILE_MAPPED
) >
1854 zone
->min_unmapped_pages
) {
1856 * Free memory by calling shrink zone with increasing
1857 * priorities until we have enough memory freed.
1859 priority
= ZONE_RECLAIM_PRIORITY
;
1861 note_zone_scanning_priority(zone
, priority
);
1862 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1864 } while (priority
>= 0 && nr_reclaimed
< nr_pages
);
1867 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
1868 if (slab_reclaimable
> zone
->min_slab_pages
) {
1870 * shrink_slab() does not currently allow us to determine how
1871 * many pages were freed in this zone. So we take the current
1872 * number of slab pages and shake the slab until it is reduced
1873 * by the same nr_pages that we used for reclaiming unmapped
1876 * Note that shrink_slab will free memory on all zones and may
1879 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
1880 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
1881 slab_reclaimable
- nr_pages
)
1885 * Update nr_reclaimed by the number of slab pages we
1886 * reclaimed from this zone.
1888 nr_reclaimed
+= slab_reclaimable
-
1889 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
1892 p
->reclaim_state
= NULL
;
1893 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
1894 return nr_reclaimed
>= nr_pages
;
1897 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1902 * Zone reclaim reclaims unmapped file backed pages and
1903 * slab pages if we are over the defined limits.
1905 * A small portion of unmapped file backed pages is needed for
1906 * file I/O otherwise pages read by file I/O will be immediately
1907 * thrown out if the zone is overallocated. So we do not reclaim
1908 * if less than a specified percentage of the zone is used by
1909 * unmapped file backed pages.
1911 if (zone_page_state(zone
, NR_FILE_PAGES
) -
1912 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
1913 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
1914 <= zone
->min_slab_pages
)
1918 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1919 * not have reclaimable pages and if we should not delay the allocation
1922 if (!(gfp_mask
& __GFP_WAIT
) ||
1923 zone
->all_unreclaimable
||
1924 atomic_read(&zone
->reclaim_in_progress
) > 0 ||
1925 (current
->flags
& PF_MEMALLOC
))
1929 * Only run zone reclaim on the local zone or on zones that do not
1930 * have associated processors. This will favor the local processor
1931 * over remote processors and spread off node memory allocations
1932 * as wide as possible.
1934 node_id
= zone_to_nid(zone
);
1935 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
1937 return __zone_reclaim(zone
, gfp_mask
, order
);