2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
52 #include <asm/tlbflush.h>
54 struct kmem_cache
*anon_vma_cachep
;
56 /* This must be called under the mmap_sem. */
57 int anon_vma_prepare(struct vm_area_struct
*vma
)
59 struct anon_vma
*anon_vma
= vma
->anon_vma
;
62 if (unlikely(!anon_vma
)) {
63 struct mm_struct
*mm
= vma
->vm_mm
;
64 struct anon_vma
*allocated
, *locked
;
66 anon_vma
= find_mergeable_anon_vma(vma
);
70 spin_lock(&locked
->lock
);
72 anon_vma
= anon_vma_alloc();
73 if (unlikely(!anon_vma
))
79 /* page_table_lock to protect against threads */
80 spin_lock(&mm
->page_table_lock
);
81 if (likely(!vma
->anon_vma
)) {
82 vma
->anon_vma
= anon_vma
;
83 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
86 spin_unlock(&mm
->page_table_lock
);
89 spin_unlock(&locked
->lock
);
90 if (unlikely(allocated
))
91 anon_vma_free(allocated
);
96 void __anon_vma_merge(struct vm_area_struct
*vma
, struct vm_area_struct
*next
)
98 BUG_ON(vma
->anon_vma
!= next
->anon_vma
);
99 list_del(&next
->anon_vma_node
);
102 void __anon_vma_link(struct vm_area_struct
*vma
)
104 struct anon_vma
*anon_vma
= vma
->anon_vma
;
107 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
110 void anon_vma_link(struct vm_area_struct
*vma
)
112 struct anon_vma
*anon_vma
= vma
->anon_vma
;
115 spin_lock(&anon_vma
->lock
);
116 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
117 spin_unlock(&anon_vma
->lock
);
121 void anon_vma_unlink(struct vm_area_struct
*vma
)
123 struct anon_vma
*anon_vma
= vma
->anon_vma
;
129 spin_lock(&anon_vma
->lock
);
130 list_del(&vma
->anon_vma_node
);
132 /* We must garbage collect the anon_vma if it's empty */
133 empty
= list_empty(&anon_vma
->head
);
134 spin_unlock(&anon_vma
->lock
);
137 anon_vma_free(anon_vma
);
140 static void anon_vma_ctor(void *data
, struct kmem_cache
*cachep
,
143 struct anon_vma
*anon_vma
= data
;
145 spin_lock_init(&anon_vma
->lock
);
146 INIT_LIST_HEAD(&anon_vma
->head
);
149 void __init
anon_vma_init(void)
151 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
152 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
156 * Getting a lock on a stable anon_vma from a page off the LRU is
157 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
159 static struct anon_vma
*page_lock_anon_vma(struct page
*page
)
161 struct anon_vma
*anon_vma
;
162 unsigned long anon_mapping
;
165 anon_mapping
= (unsigned long) page
->mapping
;
166 if (!(anon_mapping
& PAGE_MAPPING_ANON
))
168 if (!page_mapped(page
))
171 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
172 spin_lock(&anon_vma
->lock
);
179 static void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
181 spin_unlock(&anon_vma
->lock
);
186 * At what user virtual address is page expected in vma?
188 static inline unsigned long
189 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
191 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
192 unsigned long address
;
194 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
195 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
196 /* page should be within any vma from prio_tree_next */
197 BUG_ON(!PageAnon(page
));
204 * At what user virtual address is page expected in vma? checking that the
205 * page matches the vma: currently only used on anon pages, by unuse_vma;
207 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
209 if (PageAnon(page
)) {
210 if ((void *)vma
->anon_vma
!=
211 (void *)page
->mapping
- PAGE_MAPPING_ANON
)
213 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
215 vma
->vm_file
->f_mapping
!= page
->mapping
)
219 return vma_address(page
, vma
);
223 * Check that @page is mapped at @address into @mm.
225 * On success returns with pte mapped and locked.
227 pte_t
*page_check_address(struct page
*page
, struct mm_struct
*mm
,
228 unsigned long address
, spinlock_t
**ptlp
)
236 pgd
= pgd_offset(mm
, address
);
237 if (!pgd_present(*pgd
))
240 pud
= pud_offset(pgd
, address
);
241 if (!pud_present(*pud
))
244 pmd
= pmd_offset(pud
, address
);
245 if (!pmd_present(*pmd
))
248 pte
= pte_offset_map(pmd
, address
);
249 /* Make a quick check before getting the lock */
250 if (!pte_present(*pte
)) {
255 ptl
= pte_lockptr(mm
, pmd
);
257 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
261 pte_unmap_unlock(pte
, ptl
);
266 * Subfunctions of page_referenced: page_referenced_one called
267 * repeatedly from either page_referenced_anon or page_referenced_file.
269 static int page_referenced_one(struct page
*page
,
270 struct vm_area_struct
*vma
, unsigned int *mapcount
)
272 struct mm_struct
*mm
= vma
->vm_mm
;
273 unsigned long address
;
278 address
= vma_address(page
, vma
);
279 if (address
== -EFAULT
)
282 pte
= page_check_address(page
, mm
, address
, &ptl
);
286 if (ptep_clear_flush_young(vma
, address
, pte
))
289 /* Pretend the page is referenced if the task has the
290 swap token and is in the middle of a page fault. */
291 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
292 rwsem_is_locked(&mm
->mmap_sem
))
296 pte_unmap_unlock(pte
, ptl
);
301 static int page_referenced_anon(struct page
*page
)
303 unsigned int mapcount
;
304 struct anon_vma
*anon_vma
;
305 struct vm_area_struct
*vma
;
308 anon_vma
= page_lock_anon_vma(page
);
312 mapcount
= page_mapcount(page
);
313 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
314 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
319 page_unlock_anon_vma(anon_vma
);
324 * page_referenced_file - referenced check for object-based rmap
325 * @page: the page we're checking references on.
327 * For an object-based mapped page, find all the places it is mapped and
328 * check/clear the referenced flag. This is done by following the page->mapping
329 * pointer, then walking the chain of vmas it holds. It returns the number
330 * of references it found.
332 * This function is only called from page_referenced for object-based pages.
334 static int page_referenced_file(struct page
*page
)
336 unsigned int mapcount
;
337 struct address_space
*mapping
= page
->mapping
;
338 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
339 struct vm_area_struct
*vma
;
340 struct prio_tree_iter iter
;
344 * The caller's checks on page->mapping and !PageAnon have made
345 * sure that this is a file page: the check for page->mapping
346 * excludes the case just before it gets set on an anon page.
348 BUG_ON(PageAnon(page
));
351 * The page lock not only makes sure that page->mapping cannot
352 * suddenly be NULLified by truncation, it makes sure that the
353 * structure at mapping cannot be freed and reused yet,
354 * so we can safely take mapping->i_mmap_lock.
356 BUG_ON(!PageLocked(page
));
358 spin_lock(&mapping
->i_mmap_lock
);
361 * i_mmap_lock does not stabilize mapcount at all, but mapcount
362 * is more likely to be accurate if we note it after spinning.
364 mapcount
= page_mapcount(page
);
366 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
367 if ((vma
->vm_flags
& (VM_LOCKED
|VM_MAYSHARE
))
368 == (VM_LOCKED
|VM_MAYSHARE
)) {
372 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
377 spin_unlock(&mapping
->i_mmap_lock
);
382 * page_referenced - test if the page was referenced
383 * @page: the page to test
384 * @is_locked: caller holds lock on the page
386 * Quick test_and_clear_referenced for all mappings to a page,
387 * returns the number of ptes which referenced the page.
389 int page_referenced(struct page
*page
, int is_locked
)
393 if (page_test_and_clear_young(page
))
396 if (TestClearPageReferenced(page
))
399 if (page_mapped(page
) && page
->mapping
) {
401 referenced
+= page_referenced_anon(page
);
403 referenced
+= page_referenced_file(page
);
404 else if (TestSetPageLocked(page
))
408 referenced
+= page_referenced_file(page
);
415 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
)
417 struct mm_struct
*mm
= vma
->vm_mm
;
418 unsigned long address
;
423 address
= vma_address(page
, vma
);
424 if (address
== -EFAULT
)
427 pte
= page_check_address(page
, mm
, address
, &ptl
);
431 if (pte_dirty(*pte
) || pte_write(*pte
)) {
434 flush_cache_page(vma
, address
, pte_pfn(*pte
));
435 entry
= ptep_clear_flush(vma
, address
, pte
);
436 entry
= pte_wrprotect(entry
);
437 entry
= pte_mkclean(entry
);
438 set_pte_at(mm
, address
, pte
, entry
);
442 pte_unmap_unlock(pte
, ptl
);
447 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
449 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
450 struct vm_area_struct
*vma
;
451 struct prio_tree_iter iter
;
454 BUG_ON(PageAnon(page
));
456 spin_lock(&mapping
->i_mmap_lock
);
457 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
458 if (vma
->vm_flags
& VM_SHARED
)
459 ret
+= page_mkclean_one(page
, vma
);
461 spin_unlock(&mapping
->i_mmap_lock
);
465 int page_mkclean(struct page
*page
)
469 BUG_ON(!PageLocked(page
));
471 if (page_mapped(page
)) {
472 struct address_space
*mapping
= page_mapping(page
);
474 ret
= page_mkclean_file(mapping
, page
);
475 if (page_test_dirty(page
)) {
476 page_clear_dirty(page
);
483 EXPORT_SYMBOL_GPL(page_mkclean
);
486 * page_set_anon_rmap - setup new anonymous rmap
487 * @page: the page to add the mapping to
488 * @vma: the vm area in which the mapping is added
489 * @address: the user virtual address mapped
491 static void __page_set_anon_rmap(struct page
*page
,
492 struct vm_area_struct
*vma
, unsigned long address
)
494 struct anon_vma
*anon_vma
= vma
->anon_vma
;
497 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
498 page
->mapping
= (struct address_space
*) anon_vma
;
500 page
->index
= linear_page_index(vma
, address
);
503 * nr_mapped state can be updated without turning off
504 * interrupts because it is not modified via interrupt.
506 __inc_zone_page_state(page
, NR_ANON_PAGES
);
510 * page_set_anon_rmap - sanity check anonymous rmap addition
511 * @page: the page to add the mapping to
512 * @vma: the vm area in which the mapping is added
513 * @address: the user virtual address mapped
515 static void __page_check_anon_rmap(struct page
*page
,
516 struct vm_area_struct
*vma
, unsigned long address
)
518 #ifdef CONFIG_DEBUG_VM
520 * The page's anon-rmap details (mapping and index) are guaranteed to
521 * be set up correctly at this point.
523 * We have exclusion against page_add_anon_rmap because the caller
524 * always holds the page locked, except if called from page_dup_rmap,
525 * in which case the page is already known to be setup.
527 * We have exclusion against page_add_new_anon_rmap because those pages
528 * are initially only visible via the pagetables, and the pte is locked
529 * over the call to page_add_new_anon_rmap.
531 struct anon_vma
*anon_vma
= vma
->anon_vma
;
532 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
533 BUG_ON(page
->mapping
!= (struct address_space
*)anon_vma
);
534 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
539 * page_add_anon_rmap - add pte mapping to an anonymous page
540 * @page: the page to add the mapping to
541 * @vma: the vm area in which the mapping is added
542 * @address: the user virtual address mapped
544 * The caller needs to hold the pte lock and the page must be locked.
546 void page_add_anon_rmap(struct page
*page
,
547 struct vm_area_struct
*vma
, unsigned long address
)
549 VM_BUG_ON(!PageLocked(page
));
550 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
551 if (atomic_inc_and_test(&page
->_mapcount
))
552 __page_set_anon_rmap(page
, vma
, address
);
554 __page_check_anon_rmap(page
, vma
, address
);
558 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
559 * @page: the page to add the mapping to
560 * @vma: the vm area in which the mapping is added
561 * @address: the user virtual address mapped
563 * Same as page_add_anon_rmap but must only be called on *new* pages.
564 * This means the inc-and-test can be bypassed.
565 * Page does not have to be locked.
567 void page_add_new_anon_rmap(struct page
*page
,
568 struct vm_area_struct
*vma
, unsigned long address
)
570 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
571 atomic_set(&page
->_mapcount
, 0); /* elevate count by 1 (starts at -1) */
572 __page_set_anon_rmap(page
, vma
, address
);
576 * page_add_file_rmap - add pte mapping to a file page
577 * @page: the page to add the mapping to
579 * The caller needs to hold the pte lock.
581 void page_add_file_rmap(struct page
*page
)
583 if (atomic_inc_and_test(&page
->_mapcount
))
584 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
587 #ifdef CONFIG_DEBUG_VM
589 * page_dup_rmap - duplicate pte mapping to a page
590 * @page: the page to add the mapping to
592 * For copy_page_range only: minimal extract from page_add_file_rmap /
593 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
596 * The caller needs to hold the pte lock.
598 void page_dup_rmap(struct page
*page
, struct vm_area_struct
*vma
, unsigned long address
)
600 BUG_ON(page_mapcount(page
) == 0);
602 __page_check_anon_rmap(page
, vma
, address
);
603 atomic_inc(&page
->_mapcount
);
608 * page_remove_rmap - take down pte mapping from a page
609 * @page: page to remove mapping from
611 * The caller needs to hold the pte lock.
613 void page_remove_rmap(struct page
*page
, struct vm_area_struct
*vma
)
615 if (atomic_add_negative(-1, &page
->_mapcount
)) {
616 if (unlikely(page_mapcount(page
) < 0)) {
617 printk (KERN_EMERG
"Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page
));
618 printk (KERN_EMERG
" page pfn = %lx\n", page_to_pfn(page
));
619 printk (KERN_EMERG
" page->flags = %lx\n", page
->flags
);
620 printk (KERN_EMERG
" page->count = %x\n", page_count(page
));
621 printk (KERN_EMERG
" page->mapping = %p\n", page
->mapping
);
622 print_symbol (KERN_EMERG
" vma->vm_ops = %s\n", (unsigned long)vma
->vm_ops
);
624 print_symbol (KERN_EMERG
" vma->vm_ops->nopage = %s\n", (unsigned long)vma
->vm_ops
->nopage
);
625 print_symbol (KERN_EMERG
" vma->vm_ops->fault = %s\n", (unsigned long)vma
->vm_ops
->fault
);
627 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
628 print_symbol (KERN_EMERG
" vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma
->vm_file
->f_op
->mmap
);
633 * It would be tidy to reset the PageAnon mapping here,
634 * but that might overwrite a racing page_add_anon_rmap
635 * which increments mapcount after us but sets mapping
636 * before us: so leave the reset to free_hot_cold_page,
637 * and remember that it's only reliable while mapped.
638 * Leaving it set also helps swapoff to reinstate ptes
639 * faster for those pages still in swapcache.
641 if (page_test_dirty(page
)) {
642 page_clear_dirty(page
);
643 set_page_dirty(page
);
645 __dec_zone_page_state(page
,
646 PageAnon(page
) ? NR_ANON_PAGES
: NR_FILE_MAPPED
);
651 * Subfunctions of try_to_unmap: try_to_unmap_one called
652 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
654 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
657 struct mm_struct
*mm
= vma
->vm_mm
;
658 unsigned long address
;
662 int ret
= SWAP_AGAIN
;
664 address
= vma_address(page
, vma
);
665 if (address
== -EFAULT
)
668 pte
= page_check_address(page
, mm
, address
, &ptl
);
673 * If the page is mlock()d, we cannot swap it out.
674 * If it's recently referenced (perhaps page_referenced
675 * skipped over this mm) then we should reactivate it.
677 if (!migration
&& ((vma
->vm_flags
& VM_LOCKED
) ||
678 (ptep_clear_flush_young(vma
, address
, pte
)))) {
683 /* Nuke the page table entry. */
684 flush_cache_page(vma
, address
, page_to_pfn(page
));
685 pteval
= ptep_clear_flush(vma
, address
, pte
);
687 /* Move the dirty bit to the physical page now the pte is gone. */
688 if (pte_dirty(pteval
))
689 set_page_dirty(page
);
691 /* Update high watermark before we lower rss */
692 update_hiwater_rss(mm
);
694 if (PageAnon(page
)) {
695 swp_entry_t entry
= { .val
= page_private(page
) };
697 if (PageSwapCache(page
)) {
699 * Store the swap location in the pte.
700 * See handle_pte_fault() ...
702 swap_duplicate(entry
);
703 if (list_empty(&mm
->mmlist
)) {
704 spin_lock(&mmlist_lock
);
705 if (list_empty(&mm
->mmlist
))
706 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
707 spin_unlock(&mmlist_lock
);
709 dec_mm_counter(mm
, anon_rss
);
710 #ifdef CONFIG_MIGRATION
713 * Store the pfn of the page in a special migration
714 * pte. do_swap_page() will wait until the migration
715 * pte is removed and then restart fault handling.
718 entry
= make_migration_entry(page
, pte_write(pteval
));
721 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
722 BUG_ON(pte_file(*pte
));
724 #ifdef CONFIG_MIGRATION
726 /* Establish migration entry for a file page */
728 entry
= make_migration_entry(page
, pte_write(pteval
));
729 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
732 dec_mm_counter(mm
, file_rss
);
735 page_remove_rmap(page
, vma
);
736 page_cache_release(page
);
739 pte_unmap_unlock(pte
, ptl
);
745 * objrmap doesn't work for nonlinear VMAs because the assumption that
746 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
747 * Consequently, given a particular page and its ->index, we cannot locate the
748 * ptes which are mapping that page without an exhaustive linear search.
750 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
751 * maps the file to which the target page belongs. The ->vm_private_data field
752 * holds the current cursor into that scan. Successive searches will circulate
753 * around the vma's virtual address space.
755 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
756 * more scanning pressure is placed against them as well. Eventually pages
757 * will become fully unmapped and are eligible for eviction.
759 * For very sparsely populated VMAs this is a little inefficient - chances are
760 * there there won't be many ptes located within the scan cluster. In this case
761 * maybe we could scan further - to the end of the pte page, perhaps.
763 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
764 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
766 static void try_to_unmap_cluster(unsigned long cursor
,
767 unsigned int *mapcount
, struct vm_area_struct
*vma
)
769 struct mm_struct
*mm
= vma
->vm_mm
;
777 unsigned long address
;
780 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
781 end
= address
+ CLUSTER_SIZE
;
782 if (address
< vma
->vm_start
)
783 address
= vma
->vm_start
;
784 if (end
> vma
->vm_end
)
787 pgd
= pgd_offset(mm
, address
);
788 if (!pgd_present(*pgd
))
791 pud
= pud_offset(pgd
, address
);
792 if (!pud_present(*pud
))
795 pmd
= pmd_offset(pud
, address
);
796 if (!pmd_present(*pmd
))
799 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
801 /* Update high watermark before we lower rss */
802 update_hiwater_rss(mm
);
804 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
805 if (!pte_present(*pte
))
807 page
= vm_normal_page(vma
, address
, *pte
);
808 BUG_ON(!page
|| PageAnon(page
));
810 if (ptep_clear_flush_young(vma
, address
, pte
))
813 /* Nuke the page table entry. */
814 flush_cache_page(vma
, address
, pte_pfn(*pte
));
815 pteval
= ptep_clear_flush(vma
, address
, pte
);
817 /* If nonlinear, store the file page offset in the pte. */
818 if (page
->index
!= linear_page_index(vma
, address
))
819 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
821 /* Move the dirty bit to the physical page now the pte is gone. */
822 if (pte_dirty(pteval
))
823 set_page_dirty(page
);
825 page_remove_rmap(page
, vma
);
826 page_cache_release(page
);
827 dec_mm_counter(mm
, file_rss
);
830 pte_unmap_unlock(pte
- 1, ptl
);
833 static int try_to_unmap_anon(struct page
*page
, int migration
)
835 struct anon_vma
*anon_vma
;
836 struct vm_area_struct
*vma
;
837 int ret
= SWAP_AGAIN
;
839 anon_vma
= page_lock_anon_vma(page
);
843 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
844 ret
= try_to_unmap_one(page
, vma
, migration
);
845 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
849 page_unlock_anon_vma(anon_vma
);
854 * try_to_unmap_file - unmap file page using the object-based rmap method
855 * @page: the page to unmap
857 * Find all the mappings of a page using the mapping pointer and the vma chains
858 * contained in the address_space struct it points to.
860 * This function is only called from try_to_unmap for object-based pages.
862 static int try_to_unmap_file(struct page
*page
, int migration
)
864 struct address_space
*mapping
= page
->mapping
;
865 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
866 struct vm_area_struct
*vma
;
867 struct prio_tree_iter iter
;
868 int ret
= SWAP_AGAIN
;
869 unsigned long cursor
;
870 unsigned long max_nl_cursor
= 0;
871 unsigned long max_nl_size
= 0;
872 unsigned int mapcount
;
874 spin_lock(&mapping
->i_mmap_lock
);
875 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
876 ret
= try_to_unmap_one(page
, vma
, migration
);
877 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
881 if (list_empty(&mapping
->i_mmap_nonlinear
))
884 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
885 shared
.vm_set
.list
) {
886 if ((vma
->vm_flags
& VM_LOCKED
) && !migration
)
888 cursor
= (unsigned long) vma
->vm_private_data
;
889 if (cursor
> max_nl_cursor
)
890 max_nl_cursor
= cursor
;
891 cursor
= vma
->vm_end
- vma
->vm_start
;
892 if (cursor
> max_nl_size
)
893 max_nl_size
= cursor
;
896 if (max_nl_size
== 0) { /* any nonlinears locked or reserved */
902 * We don't try to search for this page in the nonlinear vmas,
903 * and page_referenced wouldn't have found it anyway. Instead
904 * just walk the nonlinear vmas trying to age and unmap some.
905 * The mapcount of the page we came in with is irrelevant,
906 * but even so use it as a guide to how hard we should try?
908 mapcount
= page_mapcount(page
);
911 cond_resched_lock(&mapping
->i_mmap_lock
);
913 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
914 if (max_nl_cursor
== 0)
915 max_nl_cursor
= CLUSTER_SIZE
;
918 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
919 shared
.vm_set
.list
) {
920 if ((vma
->vm_flags
& VM_LOCKED
) && !migration
)
922 cursor
= (unsigned long) vma
->vm_private_data
;
923 while ( cursor
< max_nl_cursor
&&
924 cursor
< vma
->vm_end
- vma
->vm_start
) {
925 try_to_unmap_cluster(cursor
, &mapcount
, vma
);
926 cursor
+= CLUSTER_SIZE
;
927 vma
->vm_private_data
= (void *) cursor
;
928 if ((int)mapcount
<= 0)
931 vma
->vm_private_data
= (void *) max_nl_cursor
;
933 cond_resched_lock(&mapping
->i_mmap_lock
);
934 max_nl_cursor
+= CLUSTER_SIZE
;
935 } while (max_nl_cursor
<= max_nl_size
);
938 * Don't loop forever (perhaps all the remaining pages are
939 * in locked vmas). Reset cursor on all unreserved nonlinear
940 * vmas, now forgetting on which ones it had fallen behind.
942 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
943 vma
->vm_private_data
= NULL
;
945 spin_unlock(&mapping
->i_mmap_lock
);
950 * try_to_unmap - try to remove all page table mappings to a page
951 * @page: the page to get unmapped
953 * Tries to remove all the page table entries which are mapping this
954 * page, used in the pageout path. Caller must hold the page lock.
957 * SWAP_SUCCESS - we succeeded in removing all mappings
958 * SWAP_AGAIN - we missed a mapping, try again later
959 * SWAP_FAIL - the page is unswappable
961 int try_to_unmap(struct page
*page
, int migration
)
965 BUG_ON(!PageLocked(page
));
968 ret
= try_to_unmap_anon(page
, migration
);
970 ret
= try_to_unmap_file(page
, migration
);
972 if (!page_mapped(page
))