4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cpuset.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
53 extern void sem_exit (void);
55 static void exit_mm(struct task_struct
* tsk
);
57 static void __unhash_process(struct task_struct
*p
)
60 detach_pid(p
, PIDTYPE_PID
);
61 if (thread_group_leader(p
)) {
62 detach_pid(p
, PIDTYPE_PGID
);
63 detach_pid(p
, PIDTYPE_SID
);
65 list_del_rcu(&p
->tasks
);
66 __get_cpu_var(process_counts
)--;
68 list_del_rcu(&p
->thread_group
);
73 * This function expects the tasklist_lock write-locked.
75 static void __exit_signal(struct task_struct
*tsk
)
77 struct signal_struct
*sig
= tsk
->signal
;
78 struct sighand_struct
*sighand
;
81 BUG_ON(!atomic_read(&sig
->count
));
84 sighand
= rcu_dereference(tsk
->sighand
);
85 spin_lock(&sighand
->siglock
);
87 posix_cpu_timers_exit(tsk
);
88 if (atomic_dec_and_test(&sig
->count
))
89 posix_cpu_timers_exit_group(tsk
);
92 * If there is any task waiting for the group exit
95 if (sig
->group_exit_task
&& atomic_read(&sig
->count
) == sig
->notify_count
) {
96 wake_up_process(sig
->group_exit_task
);
97 sig
->group_exit_task
= NULL
;
99 if (tsk
== sig
->curr_target
)
100 sig
->curr_target
= next_thread(tsk
);
102 * Accumulate here the counters for all threads but the
103 * group leader as they die, so they can be added into
104 * the process-wide totals when those are taken.
105 * The group leader stays around as a zombie as long
106 * as there are other threads. When it gets reaped,
107 * the exit.c code will add its counts into these totals.
108 * We won't ever get here for the group leader, since it
109 * will have been the last reference on the signal_struct.
111 sig
->utime
= cputime_add(sig
->utime
, tsk
->utime
);
112 sig
->stime
= cputime_add(sig
->stime
, tsk
->stime
);
113 sig
->gtime
= cputime_add(sig
->gtime
, tsk
->gtime
);
114 sig
->min_flt
+= tsk
->min_flt
;
115 sig
->maj_flt
+= tsk
->maj_flt
;
116 sig
->nvcsw
+= tsk
->nvcsw
;
117 sig
->nivcsw
+= tsk
->nivcsw
;
118 sig
->inblock
+= task_io_get_inblock(tsk
);
119 sig
->oublock
+= task_io_get_oublock(tsk
);
120 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
121 sig
= NULL
; /* Marker for below. */
124 __unhash_process(tsk
);
128 spin_unlock(&sighand
->siglock
);
131 __cleanup_sighand(sighand
);
132 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
133 flush_sigqueue(&tsk
->pending
);
135 flush_sigqueue(&sig
->shared_pending
);
136 taskstats_tgid_free(sig
);
137 __cleanup_signal(sig
);
141 static void delayed_put_task_struct(struct rcu_head
*rhp
)
143 put_task_struct(container_of(rhp
, struct task_struct
, rcu
));
146 void release_task(struct task_struct
* p
)
148 struct task_struct
*leader
;
151 atomic_dec(&p
->user
->processes
);
152 write_lock_irq(&tasklist_lock
);
154 BUG_ON(!list_empty(&p
->ptrace_list
) || !list_empty(&p
->ptrace_children
));
158 * If we are the last non-leader member of the thread
159 * group, and the leader is zombie, then notify the
160 * group leader's parent process. (if it wants notification.)
163 leader
= p
->group_leader
;
164 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
165 BUG_ON(leader
->exit_signal
== -1);
166 do_notify_parent(leader
, leader
->exit_signal
);
168 * If we were the last child thread and the leader has
169 * exited already, and the leader's parent ignores SIGCHLD,
170 * then we are the one who should release the leader.
172 * do_notify_parent() will have marked it self-reaping in
175 zap_leader
= (leader
->exit_signal
== -1);
178 write_unlock_irq(&tasklist_lock
);
181 call_rcu(&p
->rcu
, delayed_put_task_struct
);
184 if (unlikely(zap_leader
))
189 * This checks not only the pgrp, but falls back on the pid if no
190 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
193 * The caller must hold rcu lock or the tasklist lock.
195 struct pid
*session_of_pgrp(struct pid
*pgrp
)
197 struct task_struct
*p
;
198 struct pid
*sid
= NULL
;
200 p
= pid_task(pgrp
, PIDTYPE_PGID
);
202 p
= pid_task(pgrp
, PIDTYPE_PID
);
204 sid
= task_session(p
);
210 * Determine if a process group is "orphaned", according to the POSIX
211 * definition in 2.2.2.52. Orphaned process groups are not to be affected
212 * by terminal-generated stop signals. Newly orphaned process groups are
213 * to receive a SIGHUP and a SIGCONT.
215 * "I ask you, have you ever known what it is to be an orphan?"
217 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
219 struct task_struct
*p
;
222 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
223 if (p
== ignored_task
225 || is_init(p
->real_parent
))
227 if (task_pgrp(p
->real_parent
) != pgrp
&&
228 task_session(p
->real_parent
) == task_session(p
)) {
232 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
233 return ret
; /* (sighing) "Often!" */
236 int is_current_pgrp_orphaned(void)
240 read_lock(&tasklist_lock
);
241 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
242 read_unlock(&tasklist_lock
);
247 static int has_stopped_jobs(struct pid
*pgrp
)
250 struct task_struct
*p
;
252 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
253 if (p
->state
!= TASK_STOPPED
)
257 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
262 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
264 * If a kernel thread is launched as a result of a system call, or if
265 * it ever exits, it should generally reparent itself to kthreadd so it
266 * isn't in the way of other processes and is correctly cleaned up on exit.
268 * The various task state such as scheduling policy and priority may have
269 * been inherited from a user process, so we reset them to sane values here.
271 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
273 static void reparent_to_kthreadd(void)
275 write_lock_irq(&tasklist_lock
);
277 ptrace_unlink(current
);
278 /* Reparent to init */
279 remove_parent(current
);
280 current
->real_parent
= current
->parent
= kthreadd_task
;
283 /* Set the exit signal to SIGCHLD so we signal init on exit */
284 current
->exit_signal
= SIGCHLD
;
286 if (task_nice(current
) < 0)
287 set_user_nice(current
, 0);
291 security_task_reparent_to_init(current
);
292 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
293 sizeof(current
->signal
->rlim
));
294 atomic_inc(&(INIT_USER
->__count
));
295 write_unlock_irq(&tasklist_lock
);
296 switch_uid(INIT_USER
);
299 void __set_special_pids(pid_t session
, pid_t pgrp
)
301 struct task_struct
*curr
= current
->group_leader
;
303 if (process_session(curr
) != session
) {
304 detach_pid(curr
, PIDTYPE_SID
);
305 set_signal_session(curr
->signal
, session
);
306 attach_pid(curr
, PIDTYPE_SID
, find_pid(session
));
308 if (process_group(curr
) != pgrp
) {
309 detach_pid(curr
, PIDTYPE_PGID
);
310 curr
->signal
->pgrp
= pgrp
;
311 attach_pid(curr
, PIDTYPE_PGID
, find_pid(pgrp
));
315 static void set_special_pids(pid_t session
, pid_t pgrp
)
317 write_lock_irq(&tasklist_lock
);
318 __set_special_pids(session
, pgrp
);
319 write_unlock_irq(&tasklist_lock
);
323 * Let kernel threads use this to say that they
324 * allow a certain signal (since daemonize() will
325 * have disabled all of them by default).
327 int allow_signal(int sig
)
329 if (!valid_signal(sig
) || sig
< 1)
332 spin_lock_irq(¤t
->sighand
->siglock
);
333 sigdelset(¤t
->blocked
, sig
);
335 /* Kernel threads handle their own signals.
336 Let the signal code know it'll be handled, so
337 that they don't get converted to SIGKILL or
338 just silently dropped */
339 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
342 spin_unlock_irq(¤t
->sighand
->siglock
);
346 EXPORT_SYMBOL(allow_signal
);
348 int disallow_signal(int sig
)
350 if (!valid_signal(sig
) || sig
< 1)
353 spin_lock_irq(¤t
->sighand
->siglock
);
354 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
356 spin_unlock_irq(¤t
->sighand
->siglock
);
360 EXPORT_SYMBOL(disallow_signal
);
363 * Put all the gunge required to become a kernel thread without
364 * attached user resources in one place where it belongs.
367 void daemonize(const char *name
, ...)
370 struct fs_struct
*fs
;
373 va_start(args
, name
);
374 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
378 * If we were started as result of loading a module, close all of the
379 * user space pages. We don't need them, and if we didn't close them
380 * they would be locked into memory.
384 * We don't want to have TIF_FREEZE set if the system-wide hibernation
385 * or suspend transition begins right now.
387 current
->flags
|= PF_NOFREEZE
;
389 set_special_pids(1, 1);
390 proc_clear_tty(current
);
392 /* Block and flush all signals */
393 sigfillset(&blocked
);
394 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
395 flush_signals(current
);
397 /* Become as one with the init task */
399 exit_fs(current
); /* current->fs->count--; */
402 atomic_inc(&fs
->count
);
404 exit_task_namespaces(current
);
405 current
->nsproxy
= init_task
.nsproxy
;
406 get_task_namespaces(current
);
409 current
->files
= init_task
.files
;
410 atomic_inc(¤t
->files
->count
);
412 reparent_to_kthreadd();
415 EXPORT_SYMBOL(daemonize
);
417 static void close_files(struct files_struct
* files
)
425 * It is safe to dereference the fd table without RCU or
426 * ->file_lock because this is the last reference to the
429 fdt
= files_fdtable(files
);
433 if (i
>= fdt
->max_fds
)
435 set
= fdt
->open_fds
->fds_bits
[j
++];
438 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
440 filp_close(file
, files
);
450 struct files_struct
*get_files_struct(struct task_struct
*task
)
452 struct files_struct
*files
;
457 atomic_inc(&files
->count
);
463 void fastcall
put_files_struct(struct files_struct
*files
)
467 if (atomic_dec_and_test(&files
->count
)) {
470 * Free the fd and fdset arrays if we expanded them.
471 * If the fdtable was embedded, pass files for freeing
472 * at the end of the RCU grace period. Otherwise,
473 * you can free files immediately.
475 fdt
= files_fdtable(files
);
476 if (fdt
!= &files
->fdtab
)
477 kmem_cache_free(files_cachep
, files
);
482 EXPORT_SYMBOL(put_files_struct
);
484 void reset_files_struct(struct task_struct
*tsk
, struct files_struct
*files
)
486 struct files_struct
*old
;
492 put_files_struct(old
);
494 EXPORT_SYMBOL(reset_files_struct
);
496 static inline void __exit_files(struct task_struct
*tsk
)
498 struct files_struct
* files
= tsk
->files
;
504 put_files_struct(files
);
508 void exit_files(struct task_struct
*tsk
)
513 static inline void __put_fs_struct(struct fs_struct
*fs
)
515 /* No need to hold fs->lock if we are killing it */
516 if (atomic_dec_and_test(&fs
->count
)) {
523 mntput(fs
->altrootmnt
);
525 kmem_cache_free(fs_cachep
, fs
);
529 void put_fs_struct(struct fs_struct
*fs
)
534 static inline void __exit_fs(struct task_struct
*tsk
)
536 struct fs_struct
* fs
= tsk
->fs
;
546 void exit_fs(struct task_struct
*tsk
)
551 EXPORT_SYMBOL_GPL(exit_fs
);
554 * Turn us into a lazy TLB process if we
557 static void exit_mm(struct task_struct
* tsk
)
559 struct mm_struct
*mm
= tsk
->mm
;
565 * Serialize with any possible pending coredump.
566 * We must hold mmap_sem around checking core_waiters
567 * and clearing tsk->mm. The core-inducing thread
568 * will increment core_waiters for each thread in the
569 * group with ->mm != NULL.
571 down_read(&mm
->mmap_sem
);
572 if (mm
->core_waiters
) {
573 up_read(&mm
->mmap_sem
);
574 down_write(&mm
->mmap_sem
);
575 if (!--mm
->core_waiters
)
576 complete(mm
->core_startup_done
);
577 up_write(&mm
->mmap_sem
);
579 wait_for_completion(&mm
->core_done
);
580 down_read(&mm
->mmap_sem
);
582 atomic_inc(&mm
->mm_count
);
583 BUG_ON(mm
!= tsk
->active_mm
);
584 /* more a memory barrier than a real lock */
587 up_read(&mm
->mmap_sem
);
588 enter_lazy_tlb(mm
, current
);
589 /* We don't want this task to be frozen prematurely */
590 clear_freeze_flag(tsk
);
596 reparent_thread(struct task_struct
*p
, struct task_struct
*father
, int traced
)
598 if (p
->pdeath_signal
)
599 /* We already hold the tasklist_lock here. */
600 group_send_sig_info(p
->pdeath_signal
, SEND_SIG_NOINFO
, p
);
602 /* Move the child from its dying parent to the new one. */
603 if (unlikely(traced
)) {
604 /* Preserve ptrace links if someone else is tracing this child. */
605 list_del_init(&p
->ptrace_list
);
606 if (p
->parent
!= p
->real_parent
)
607 list_add(&p
->ptrace_list
, &p
->real_parent
->ptrace_children
);
609 /* If this child is being traced, then we're the one tracing it
610 * anyway, so let go of it.
614 p
->parent
= p
->real_parent
;
617 if (p
->state
== TASK_TRACED
) {
619 * If it was at a trace stop, turn it into
620 * a normal stop since it's no longer being
627 /* If this is a threaded reparent there is no need to
628 * notify anyone anything has happened.
630 if (p
->real_parent
->group_leader
== father
->group_leader
)
633 /* We don't want people slaying init. */
634 if (p
->exit_signal
!= -1)
635 p
->exit_signal
= SIGCHLD
;
637 /* If we'd notified the old parent about this child's death,
638 * also notify the new parent.
640 if (!traced
&& p
->exit_state
== EXIT_ZOMBIE
&&
641 p
->exit_signal
!= -1 && thread_group_empty(p
))
642 do_notify_parent(p
, p
->exit_signal
);
645 * process group orphan check
646 * Case ii: Our child is in a different pgrp
647 * than we are, and it was the only connection
648 * outside, so the child pgrp is now orphaned.
650 if ((task_pgrp(p
) != task_pgrp(father
)) &&
651 (task_session(p
) == task_session(father
))) {
652 struct pid
*pgrp
= task_pgrp(p
);
654 if (will_become_orphaned_pgrp(pgrp
, NULL
) &&
655 has_stopped_jobs(pgrp
)) {
656 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
657 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
663 * When we die, we re-parent all our children.
664 * Try to give them to another thread in our thread
665 * group, and if no such member exists, give it to
666 * the child reaper process (ie "init") in our pid
670 forget_original_parent(struct task_struct
*father
, struct list_head
*to_release
)
672 struct task_struct
*p
, *reaper
= father
;
673 struct list_head
*_p
, *_n
;
676 reaper
= next_thread(reaper
);
677 if (reaper
== father
) {
678 reaper
= child_reaper(father
);
681 } while (reaper
->exit_state
);
684 * There are only two places where our children can be:
686 * - in our child list
687 * - in our ptraced child list
689 * Search them and reparent children.
691 list_for_each_safe(_p
, _n
, &father
->children
) {
693 p
= list_entry(_p
, struct task_struct
, sibling
);
697 /* if father isn't the real parent, then ptrace must be enabled */
698 BUG_ON(father
!= p
->real_parent
&& !ptrace
);
700 if (father
== p
->real_parent
) {
701 /* reparent with a reaper, real father it's us */
702 p
->real_parent
= reaper
;
703 reparent_thread(p
, father
, 0);
705 /* reparent ptraced task to its real parent */
707 if (p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
!= -1 &&
708 thread_group_empty(p
))
709 do_notify_parent(p
, p
->exit_signal
);
713 * if the ptraced child is a zombie with exit_signal == -1
714 * we must collect it before we exit, or it will remain
715 * zombie forever since we prevented it from self-reap itself
716 * while it was being traced by us, to be able to see it in wait4.
718 if (unlikely(ptrace
&& p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
== -1))
719 list_add(&p
->ptrace_list
, to_release
);
721 list_for_each_safe(_p
, _n
, &father
->ptrace_children
) {
722 p
= list_entry(_p
, struct task_struct
, ptrace_list
);
723 p
->real_parent
= reaper
;
724 reparent_thread(p
, father
, 1);
729 * Send signals to all our closest relatives so that they know
730 * to properly mourn us..
732 static void exit_notify(struct task_struct
*tsk
)
735 struct task_struct
*t
;
736 struct list_head ptrace_dead
, *_p
, *_n
;
739 if (signal_pending(tsk
) && !(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
)
740 && !thread_group_empty(tsk
)) {
742 * This occurs when there was a race between our exit
743 * syscall and a group signal choosing us as the one to
744 * wake up. It could be that we are the only thread
745 * alerted to check for pending signals, but another thread
746 * should be woken now to take the signal since we will not.
747 * Now we'll wake all the threads in the group just to make
748 * sure someone gets all the pending signals.
750 spin_lock_irq(&tsk
->sighand
->siglock
);
751 for (t
= next_thread(tsk
); t
!= tsk
; t
= next_thread(t
))
752 if (!signal_pending(t
) && !(t
->flags
& PF_EXITING
))
753 recalc_sigpending_and_wake(t
);
754 spin_unlock_irq(&tsk
->sighand
->siglock
);
757 write_lock_irq(&tasklist_lock
);
760 * This does two things:
762 * A. Make init inherit all the child processes
763 * B. Check to see if any process groups have become orphaned
764 * as a result of our exiting, and if they have any stopped
765 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
768 INIT_LIST_HEAD(&ptrace_dead
);
769 forget_original_parent(tsk
, &ptrace_dead
);
770 BUG_ON(!list_empty(&tsk
->children
));
771 BUG_ON(!list_empty(&tsk
->ptrace_children
));
774 * Check to see if any process groups have become orphaned
775 * as a result of our exiting, and if they have any stopped
776 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
778 * Case i: Our father is in a different pgrp than we are
779 * and we were the only connection outside, so our pgrp
780 * is about to become orphaned.
782 t
= tsk
->real_parent
;
784 pgrp
= task_pgrp(tsk
);
785 if ((task_pgrp(t
) != pgrp
) &&
786 (task_session(t
) == task_session(tsk
)) &&
787 will_become_orphaned_pgrp(pgrp
, tsk
) &&
788 has_stopped_jobs(pgrp
)) {
789 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
790 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
793 /* Let father know we died
795 * Thread signals are configurable, but you aren't going to use
796 * that to send signals to arbitary processes.
797 * That stops right now.
799 * If the parent exec id doesn't match the exec id we saved
800 * when we started then we know the parent has changed security
803 * If our self_exec id doesn't match our parent_exec_id then
804 * we have changed execution domain as these two values started
805 * the same after a fork.
807 if (tsk
->exit_signal
!= SIGCHLD
&& tsk
->exit_signal
!= -1 &&
808 ( tsk
->parent_exec_id
!= t
->self_exec_id
||
809 tsk
->self_exec_id
!= tsk
->parent_exec_id
)
810 && !capable(CAP_KILL
))
811 tsk
->exit_signal
= SIGCHLD
;
814 /* If something other than our normal parent is ptracing us, then
815 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
816 * only has special meaning to our real parent.
818 if (tsk
->exit_signal
!= -1 && thread_group_empty(tsk
)) {
819 int signal
= tsk
->parent
== tsk
->real_parent
? tsk
->exit_signal
: SIGCHLD
;
820 do_notify_parent(tsk
, signal
);
821 } else if (tsk
->ptrace
) {
822 do_notify_parent(tsk
, SIGCHLD
);
826 if (tsk
->exit_signal
== -1 && likely(!tsk
->ptrace
))
828 tsk
->exit_state
= state
;
830 write_unlock_irq(&tasklist_lock
);
832 list_for_each_safe(_p
, _n
, &ptrace_dead
) {
834 t
= list_entry(_p
, struct task_struct
, ptrace_list
);
838 /* If the process is dead, release it - nobody will wait for it */
839 if (state
== EXIT_DEAD
)
843 #ifdef CONFIG_DEBUG_STACK_USAGE
844 static void check_stack_usage(void)
846 static DEFINE_SPINLOCK(low_water_lock
);
847 static int lowest_to_date
= THREAD_SIZE
;
848 unsigned long *n
= end_of_stack(current
);
853 free
= (unsigned long)n
- (unsigned long)end_of_stack(current
);
855 if (free
>= lowest_to_date
)
858 spin_lock(&low_water_lock
);
859 if (free
< lowest_to_date
) {
860 printk(KERN_WARNING
"%s used greatest stack depth: %lu bytes "
862 current
->comm
, free
);
863 lowest_to_date
= free
;
865 spin_unlock(&low_water_lock
);
868 static inline void check_stack_usage(void) {}
871 static inline void exit_child_reaper(struct task_struct
*tsk
)
873 if (likely(tsk
->group_leader
!= child_reaper(tsk
)))
876 panic("Attempted to kill init!");
879 fastcall NORET_TYPE
void do_exit(long code
)
881 struct task_struct
*tsk
= current
;
884 profile_task_exit(tsk
);
886 WARN_ON(atomic_read(&tsk
->fs_excl
));
888 if (unlikely(in_interrupt()))
889 panic("Aiee, killing interrupt handler!");
890 if (unlikely(!tsk
->pid
))
891 panic("Attempted to kill the idle task!");
893 if (unlikely(current
->ptrace
& PT_TRACE_EXIT
)) {
894 current
->ptrace_message
= code
;
895 ptrace_notify((PTRACE_EVENT_EXIT
<< 8) | SIGTRAP
);
899 * We're taking recursive faults here in do_exit. Safest is to just
900 * leave this task alone and wait for reboot.
902 if (unlikely(tsk
->flags
& PF_EXITING
)) {
904 "Fixing recursive fault but reboot is needed!\n");
906 * We can do this unlocked here. The futex code uses
907 * this flag just to verify whether the pi state
908 * cleanup has been done or not. In the worst case it
909 * loops once more. We pretend that the cleanup was
910 * done as there is no way to return. Either the
911 * OWNER_DIED bit is set by now or we push the blocked
912 * task into the wait for ever nirwana as well.
914 tsk
->flags
|= PF_EXITPIDONE
;
917 set_current_state(TASK_UNINTERRUPTIBLE
);
921 tsk
->flags
|= PF_EXITING
;
923 * tsk->flags are checked in the futex code to protect against
924 * an exiting task cleaning up the robust pi futexes.
927 spin_unlock_wait(&tsk
->pi_lock
);
929 if (unlikely(in_atomic()))
930 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
931 current
->comm
, current
->pid
,
934 acct_update_integrals(tsk
);
936 update_hiwater_rss(tsk
->mm
);
937 update_hiwater_vm(tsk
->mm
);
939 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
941 exit_child_reaper(tsk
);
942 hrtimer_cancel(&tsk
->signal
->real_timer
);
943 exit_itimers(tsk
->signal
);
945 acct_collect(code
, group_dead
);
946 if (unlikely(tsk
->robust_list
))
947 exit_robust_list(tsk
);
948 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
949 if (unlikely(tsk
->compat_robust_list
))
950 compat_exit_robust_list(tsk
);
954 if (unlikely(tsk
->audit_context
))
957 tsk
->exit_code
= code
;
958 taskstats_exit(tsk
, group_dead
);
972 if (group_dead
&& tsk
->signal
->leader
)
973 disassociate_ctty(1);
975 module_put(task_thread_info(tsk
)->exec_domain
->module
);
977 module_put(tsk
->binfmt
->module
);
979 proc_exit_connector(tsk
);
980 exit_task_namespaces(tsk
);
983 mpol_free(tsk
->mempolicy
);
984 tsk
->mempolicy
= NULL
;
987 * This must happen late, after the PID is not
990 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
991 exit_pi_state_list(tsk
);
992 if (unlikely(current
->pi_state_cache
))
993 kfree(current
->pi_state_cache
);
995 * Make sure we are holding no locks:
997 debug_check_no_locks_held(tsk
);
999 * We can do this unlocked here. The futex code uses this flag
1000 * just to verify whether the pi state cleanup has been done
1001 * or not. In the worst case it loops once more.
1003 tsk
->flags
|= PF_EXITPIDONE
;
1005 if (tsk
->io_context
)
1008 if (tsk
->splice_pipe
)
1009 __free_pipe_info(tsk
->splice_pipe
);
1012 /* causes final put_task_struct in finish_task_switch(). */
1013 tsk
->state
= TASK_DEAD
;
1017 /* Avoid "noreturn function does return". */
1019 cpu_relax(); /* For when BUG is null */
1022 EXPORT_SYMBOL_GPL(do_exit
);
1024 NORET_TYPE
void complete_and_exit(struct completion
*comp
, long code
)
1032 EXPORT_SYMBOL(complete_and_exit
);
1034 asmlinkage
long sys_exit(int error_code
)
1036 do_exit((error_code
&0xff)<<8);
1040 * Take down every thread in the group. This is called by fatal signals
1041 * as well as by sys_exit_group (below).
1044 do_group_exit(int exit_code
)
1046 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
1048 if (current
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1049 exit_code
= current
->signal
->group_exit_code
;
1050 else if (!thread_group_empty(current
)) {
1051 struct signal_struct
*const sig
= current
->signal
;
1052 struct sighand_struct
*const sighand
= current
->sighand
;
1053 spin_lock_irq(&sighand
->siglock
);
1054 if (sig
->flags
& SIGNAL_GROUP_EXIT
)
1055 /* Another thread got here before we took the lock. */
1056 exit_code
= sig
->group_exit_code
;
1058 sig
->group_exit_code
= exit_code
;
1059 zap_other_threads(current
);
1061 spin_unlock_irq(&sighand
->siglock
);
1069 * this kills every thread in the thread group. Note that any externally
1070 * wait4()-ing process will get the correct exit code - even if this
1071 * thread is not the thread group leader.
1073 asmlinkage
void sys_exit_group(int error_code
)
1075 do_group_exit((error_code
& 0xff) << 8);
1078 static int eligible_child(pid_t pid
, int options
, struct task_struct
*p
)
1086 if (process_group(p
) != process_group(current
))
1088 } else if (pid
!= -1) {
1089 if (process_group(p
) != -pid
)
1094 * Do not consider detached threads that are
1097 if (p
->exit_signal
== -1 && !p
->ptrace
)
1100 /* Wait for all children (clone and not) if __WALL is set;
1101 * otherwise, wait for clone children *only* if __WCLONE is
1102 * set; otherwise, wait for non-clone children *only*. (Note:
1103 * A "clone" child here is one that reports to its parent
1104 * using a signal other than SIGCHLD.) */
1105 if (((p
->exit_signal
!= SIGCHLD
) ^ ((options
& __WCLONE
) != 0))
1106 && !(options
& __WALL
))
1109 * Do not consider thread group leaders that are
1110 * in a non-empty thread group:
1112 if (delay_group_leader(p
))
1115 err
= security_task_wait(p
);
1122 static int wait_noreap_copyout(struct task_struct
*p
, pid_t pid
, uid_t uid
,
1123 int why
, int status
,
1124 struct siginfo __user
*infop
,
1125 struct rusage __user
*rusagep
)
1127 int retval
= rusagep
? getrusage(p
, RUSAGE_BOTH
, rusagep
) : 0;
1131 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1133 retval
= put_user(0, &infop
->si_errno
);
1135 retval
= put_user((short)why
, &infop
->si_code
);
1137 retval
= put_user(pid
, &infop
->si_pid
);
1139 retval
= put_user(uid
, &infop
->si_uid
);
1141 retval
= put_user(status
, &infop
->si_status
);
1148 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1149 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1150 * the lock and this task is uninteresting. If we return nonzero, we have
1151 * released the lock and the system call should return.
1153 static int wait_task_zombie(struct task_struct
*p
, int noreap
,
1154 struct siginfo __user
*infop
,
1155 int __user
*stat_addr
, struct rusage __user
*ru
)
1157 unsigned long state
;
1158 int retval
, status
, traced
;
1160 if (unlikely(noreap
)) {
1163 int exit_code
= p
->exit_code
;
1166 if (unlikely(p
->exit_state
!= EXIT_ZOMBIE
))
1168 if (unlikely(p
->exit_signal
== -1 && p
->ptrace
== 0))
1171 read_unlock(&tasklist_lock
);
1172 if ((exit_code
& 0x7f) == 0) {
1174 status
= exit_code
>> 8;
1176 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1177 status
= exit_code
& 0x7f;
1179 return wait_noreap_copyout(p
, pid
, uid
, why
,
1184 * Try to move the task's state to DEAD
1185 * only one thread is allowed to do this:
1187 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1188 if (state
!= EXIT_ZOMBIE
) {
1189 BUG_ON(state
!= EXIT_DEAD
);
1193 /* traced means p->ptrace, but not vice versa */
1194 traced
= (p
->real_parent
!= p
->parent
);
1196 if (likely(!traced
)) {
1197 struct signal_struct
*psig
;
1198 struct signal_struct
*sig
;
1201 * The resource counters for the group leader are in its
1202 * own task_struct. Those for dead threads in the group
1203 * are in its signal_struct, as are those for the child
1204 * processes it has previously reaped. All these
1205 * accumulate in the parent's signal_struct c* fields.
1207 * We don't bother to take a lock here to protect these
1208 * p->signal fields, because they are only touched by
1209 * __exit_signal, which runs with tasklist_lock
1210 * write-locked anyway, and so is excluded here. We do
1211 * need to protect the access to p->parent->signal fields,
1212 * as other threads in the parent group can be right
1213 * here reaping other children at the same time.
1215 spin_lock_irq(&p
->parent
->sighand
->siglock
);
1216 psig
= p
->parent
->signal
;
1219 cputime_add(psig
->cutime
,
1220 cputime_add(p
->utime
,
1221 cputime_add(sig
->utime
,
1224 cputime_add(psig
->cstime
,
1225 cputime_add(p
->stime
,
1226 cputime_add(sig
->stime
,
1229 cputime_add(psig
->cgtime
,
1230 cputime_add(p
->gtime
,
1231 cputime_add(sig
->gtime
,
1234 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1236 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1238 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1240 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1242 task_io_get_inblock(p
) +
1243 sig
->inblock
+ sig
->cinblock
;
1245 task_io_get_oublock(p
) +
1246 sig
->oublock
+ sig
->coublock
;
1247 spin_unlock_irq(&p
->parent
->sighand
->siglock
);
1251 * Now we are sure this task is interesting, and no other
1252 * thread can reap it because we set its state to EXIT_DEAD.
1254 read_unlock(&tasklist_lock
);
1256 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1257 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1258 ? p
->signal
->group_exit_code
: p
->exit_code
;
1259 if (!retval
&& stat_addr
)
1260 retval
= put_user(status
, stat_addr
);
1261 if (!retval
&& infop
)
1262 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1263 if (!retval
&& infop
)
1264 retval
= put_user(0, &infop
->si_errno
);
1265 if (!retval
&& infop
) {
1268 if ((status
& 0x7f) == 0) {
1272 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1275 retval
= put_user((short)why
, &infop
->si_code
);
1277 retval
= put_user(status
, &infop
->si_status
);
1279 if (!retval
&& infop
)
1280 retval
= put_user(p
->pid
, &infop
->si_pid
);
1281 if (!retval
&& infop
)
1282 retval
= put_user(p
->uid
, &infop
->si_uid
);
1287 write_lock_irq(&tasklist_lock
);
1288 /* We dropped tasklist, ptracer could die and untrace */
1291 * If this is not a detached task, notify the parent.
1292 * If it's still not detached after that, don't release
1295 if (p
->exit_signal
!= -1) {
1296 do_notify_parent(p
, p
->exit_signal
);
1297 if (p
->exit_signal
!= -1) {
1298 p
->exit_state
= EXIT_ZOMBIE
;
1302 write_unlock_irq(&tasklist_lock
);
1311 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1312 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1313 * the lock and this task is uninteresting. If we return nonzero, we have
1314 * released the lock and the system call should return.
1316 static int wait_task_stopped(struct task_struct
*p
, int delayed_group_leader
,
1317 int noreap
, struct siginfo __user
*infop
,
1318 int __user
*stat_addr
, struct rusage __user
*ru
)
1320 int retval
, exit_code
;
1324 if (delayed_group_leader
&& !(p
->ptrace
& PT_PTRACED
) &&
1325 p
->signal
->group_stop_count
> 0)
1327 * A group stop is in progress and this is the group leader.
1328 * We won't report until all threads have stopped.
1333 * Now we are pretty sure this task is interesting.
1334 * Make sure it doesn't get reaped out from under us while we
1335 * give up the lock and then examine it below. We don't want to
1336 * keep holding onto the tasklist_lock while we call getrusage and
1337 * possibly take page faults for user memory.
1340 read_unlock(&tasklist_lock
);
1342 if (unlikely(noreap
)) {
1345 int why
= (p
->ptrace
& PT_PTRACED
) ? CLD_TRAPPED
: CLD_STOPPED
;
1347 exit_code
= p
->exit_code
;
1348 if (unlikely(!exit_code
) ||
1349 unlikely(p
->state
& TASK_TRACED
))
1351 return wait_noreap_copyout(p
, pid
, uid
,
1352 why
, (exit_code
<< 8) | 0x7f,
1356 write_lock_irq(&tasklist_lock
);
1359 * This uses xchg to be atomic with the thread resuming and setting
1360 * it. It must also be done with the write lock held to prevent a
1361 * race with the EXIT_ZOMBIE case.
1363 exit_code
= xchg(&p
->exit_code
, 0);
1364 if (unlikely(p
->exit_state
)) {
1366 * The task resumed and then died. Let the next iteration
1367 * catch it in EXIT_ZOMBIE. Note that exit_code might
1368 * already be zero here if it resumed and did _exit(0).
1369 * The task itself is dead and won't touch exit_code again;
1370 * other processors in this function are locked out.
1372 p
->exit_code
= exit_code
;
1375 if (unlikely(exit_code
== 0)) {
1377 * Another thread in this function got to it first, or it
1378 * resumed, or it resumed and then died.
1380 write_unlock_irq(&tasklist_lock
);
1384 * We are returning to the wait loop without having successfully
1385 * removed the process and having released the lock. We cannot
1386 * continue, since the "p" task pointer is potentially stale.
1388 * Return -EAGAIN, and do_wait() will restart the loop from the
1389 * beginning. Do _not_ re-acquire the lock.
1394 /* move to end of parent's list to avoid starvation */
1398 write_unlock_irq(&tasklist_lock
);
1400 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1401 if (!retval
&& stat_addr
)
1402 retval
= put_user((exit_code
<< 8) | 0x7f, stat_addr
);
1403 if (!retval
&& infop
)
1404 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1405 if (!retval
&& infop
)
1406 retval
= put_user(0, &infop
->si_errno
);
1407 if (!retval
&& infop
)
1408 retval
= put_user((short)((p
->ptrace
& PT_PTRACED
)
1409 ? CLD_TRAPPED
: CLD_STOPPED
),
1411 if (!retval
&& infop
)
1412 retval
= put_user(exit_code
, &infop
->si_status
);
1413 if (!retval
&& infop
)
1414 retval
= put_user(p
->pid
, &infop
->si_pid
);
1415 if (!retval
&& infop
)
1416 retval
= put_user(p
->uid
, &infop
->si_uid
);
1426 * Handle do_wait work for one task in a live, non-stopped state.
1427 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1428 * the lock and this task is uninteresting. If we return nonzero, we have
1429 * released the lock and the system call should return.
1431 static int wait_task_continued(struct task_struct
*p
, int noreap
,
1432 struct siginfo __user
*infop
,
1433 int __user
*stat_addr
, struct rusage __user
*ru
)
1439 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1442 spin_lock_irq(&p
->sighand
->siglock
);
1443 /* Re-check with the lock held. */
1444 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1445 spin_unlock_irq(&p
->sighand
->siglock
);
1449 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1450 spin_unlock_irq(&p
->sighand
->siglock
);
1455 read_unlock(&tasklist_lock
);
1458 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1460 if (!retval
&& stat_addr
)
1461 retval
= put_user(0xffff, stat_addr
);
1465 retval
= wait_noreap_copyout(p
, pid
, uid
,
1466 CLD_CONTINUED
, SIGCONT
,
1468 BUG_ON(retval
== 0);
1475 static inline int my_ptrace_child(struct task_struct
*p
)
1477 if (!(p
->ptrace
& PT_PTRACED
))
1479 if (!(p
->ptrace
& PT_ATTACHED
))
1482 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1483 * we are the attacher. If we are the real parent, this is a race
1484 * inside ptrace_attach. It is waiting for the tasklist_lock,
1485 * which we have to switch the parent links, but has already set
1486 * the flags in p->ptrace.
1488 return (p
->parent
!= p
->real_parent
);
1491 static long do_wait(pid_t pid
, int options
, struct siginfo __user
*infop
,
1492 int __user
*stat_addr
, struct rusage __user
*ru
)
1494 DECLARE_WAITQUEUE(wait
, current
);
1495 struct task_struct
*tsk
;
1497 int allowed
, denied
;
1499 add_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1502 * We will set this flag if we see any child that might later
1503 * match our criteria, even if we are not able to reap it yet.
1506 allowed
= denied
= 0;
1507 current
->state
= TASK_INTERRUPTIBLE
;
1508 read_lock(&tasklist_lock
);
1511 struct task_struct
*p
;
1512 struct list_head
*_p
;
1515 list_for_each(_p
,&tsk
->children
) {
1516 p
= list_entry(_p
, struct task_struct
, sibling
);
1518 ret
= eligible_child(pid
, options
, p
);
1522 if (unlikely(ret
< 0)) {
1531 * When we hit the race with PTRACE_ATTACH,
1532 * we will not report this child. But the
1533 * race means it has not yet been moved to
1534 * our ptrace_children list, so we need to
1535 * set the flag here to avoid a spurious ECHILD
1536 * when the race happens with the only child.
1539 if (!my_ptrace_child(p
))
1544 * It's stopped now, so it might later
1545 * continue, exit, or stop again.
1548 if (!(options
& WUNTRACED
) &&
1549 !my_ptrace_child(p
))
1551 retval
= wait_task_stopped(p
, ret
== 2,
1552 (options
& WNOWAIT
),
1555 if (retval
== -EAGAIN
)
1557 if (retval
!= 0) /* He released the lock. */
1562 if (p
->exit_state
== EXIT_DEAD
)
1564 // case EXIT_ZOMBIE:
1565 if (p
->exit_state
== EXIT_ZOMBIE
) {
1567 * Eligible but we cannot release
1571 goto check_continued
;
1572 if (!likely(options
& WEXITED
))
1574 retval
= wait_task_zombie(
1575 p
, (options
& WNOWAIT
),
1576 infop
, stat_addr
, ru
);
1577 /* He released the lock. */
1584 * It's running now, so it might later
1585 * exit, stop, or stop and then continue.
1588 if (!unlikely(options
& WCONTINUED
))
1590 retval
= wait_task_continued(
1591 p
, (options
& WNOWAIT
),
1592 infop
, stat_addr
, ru
);
1593 if (retval
!= 0) /* He released the lock. */
1599 list_for_each(_p
, &tsk
->ptrace_children
) {
1600 p
= list_entry(_p
, struct task_struct
,
1602 if (!eligible_child(pid
, options
, p
))
1608 if (options
& __WNOTHREAD
)
1610 tsk
= next_thread(tsk
);
1611 BUG_ON(tsk
->signal
!= current
->signal
);
1612 } while (tsk
!= current
);
1614 read_unlock(&tasklist_lock
);
1617 if (options
& WNOHANG
)
1619 retval
= -ERESTARTSYS
;
1620 if (signal_pending(current
))
1626 if (unlikely(denied
) && !allowed
)
1629 current
->state
= TASK_RUNNING
;
1630 remove_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1636 * For a WNOHANG return, clear out all the fields
1637 * we would set so the user can easily tell the
1641 retval
= put_user(0, &infop
->si_signo
);
1643 retval
= put_user(0, &infop
->si_errno
);
1645 retval
= put_user(0, &infop
->si_code
);
1647 retval
= put_user(0, &infop
->si_pid
);
1649 retval
= put_user(0, &infop
->si_uid
);
1651 retval
= put_user(0, &infop
->si_status
);
1657 asmlinkage
long sys_waitid(int which
, pid_t pid
,
1658 struct siginfo __user
*infop
, int options
,
1659 struct rusage __user
*ru
)
1663 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1665 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1685 ret
= do_wait(pid
, options
, infop
, NULL
, ru
);
1687 /* avoid REGPARM breakage on x86: */
1688 prevent_tail_call(ret
);
1692 asmlinkage
long sys_wait4(pid_t pid
, int __user
*stat_addr
,
1693 int options
, struct rusage __user
*ru
)
1697 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1698 __WNOTHREAD
|__WCLONE
|__WALL
))
1700 ret
= do_wait(pid
, options
| WEXITED
, NULL
, stat_addr
, ru
);
1702 /* avoid REGPARM breakage on x86: */
1703 prevent_tail_call(ret
);
1707 #ifdef __ARCH_WANT_SYS_WAITPID
1710 * sys_waitpid() remains for compatibility. waitpid() should be
1711 * implemented by calling sys_wait4() from libc.a.
1713 asmlinkage
long sys_waitpid(pid_t pid
, int __user
*stat_addr
, int options
)
1715 return sys_wait4(pid
, stat_addr
, options
, NULL
);