2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
37 const_debug
unsigned int sysctl_sched_latency
= 20000000ULL;
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
43 const_debug
unsigned int sysctl_sched_child_runs_first
= 1;
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
49 unsigned int sysctl_sched_min_granularity __read_mostly
= 2000000ULL;
52 * sys_sched_yield() compat mode
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
57 unsigned int __read_mostly sysctl_sched_compat_yield
;
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
67 const_debug
unsigned int sysctl_sched_batch_wakeup_granularity
= 25000000UL;
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
77 const_debug
unsigned int sysctl_sched_wakeup_granularity
= 2000000UL;
79 extern struct sched_class fair_sched_class
;
81 /**************************************************************
82 * CFS operations on generic schedulable entities:
85 #ifdef CONFIG_FAIR_GROUP_SCHED
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
96 #else /* CONFIG_FAIR_GROUP_SCHED */
98 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
100 return container_of(cfs_rq
, struct rq
, cfs
);
103 #define entity_is_task(se) 1
105 #endif /* CONFIG_FAIR_GROUP_SCHED */
107 static inline struct task_struct
*task_of(struct sched_entity
*se
)
109 return container_of(se
, struct task_struct
, se
);
113 /**************************************************************
114 * Scheduling class tree data structure manipulation methods:
118 max_vruntime(u64 min_vruntime
, u64 vruntime
)
120 s64 delta
= (s64
)(vruntime
- min_vruntime
);
122 min_vruntime
= vruntime
;
128 entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
130 return se
->vruntime
- cfs_rq
->min_vruntime
;
134 * Enqueue an entity into the rb-tree:
137 __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
139 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
140 struct rb_node
*parent
= NULL
;
141 struct sched_entity
*entry
;
142 s64 key
= entity_key(cfs_rq
, se
);
146 * Find the right place in the rbtree:
150 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
152 * We dont care about collisions. Nodes with
153 * the same key stay together.
155 if (key
< entity_key(cfs_rq
, entry
)) {
156 link
= &parent
->rb_left
;
158 link
= &parent
->rb_right
;
164 * Maintain a cache of leftmost tree entries (it is frequently
168 cfs_rq
->rb_leftmost
= &se
->run_node
;
170 rb_link_node(&se
->run_node
, parent
, link
);
171 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
175 __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
177 if (cfs_rq
->rb_leftmost
== &se
->run_node
)
178 cfs_rq
->rb_leftmost
= rb_next(&se
->run_node
);
180 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
183 static inline struct rb_node
*first_fair(struct cfs_rq
*cfs_rq
)
185 return cfs_rq
->rb_leftmost
;
188 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
190 return rb_entry(first_fair(cfs_rq
), struct sched_entity
, run_node
);
193 static inline struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
195 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
196 struct sched_entity
*se
= NULL
;
197 struct rb_node
*parent
;
201 se
= rb_entry(parent
, struct sched_entity
, run_node
);
202 link
= &parent
->rb_right
;
208 /**************************************************************
209 * Scheduling class statistics methods:
212 static u64
__sched_period(unsigned long nr_running
)
214 u64 period
= sysctl_sched_latency
;
215 unsigned long nr_latency
=
216 sysctl_sched_latency
/ sysctl_sched_min_granularity
;
218 if (unlikely(nr_running
> nr_latency
)) {
219 period
*= nr_running
;
220 do_div(period
, nr_latency
);
226 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
228 u64 period
= __sched_period(cfs_rq
->nr_running
);
230 period
*= se
->load
.weight
;
231 do_div(period
, cfs_rq
->load
.weight
);
236 static u64
__sched_vslice(unsigned long nr_running
)
238 u64 period
= __sched_period(nr_running
);
240 do_div(period
, nr_running
);
246 * Update the current task's runtime statistics. Skip current tasks that
247 * are not in our scheduling class.
250 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
251 unsigned long delta_exec
)
253 unsigned long delta_exec_weighted
;
254 u64 next_vruntime
, min_vruntime
;
256 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
258 curr
->sum_exec_runtime
+= delta_exec
;
259 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
260 delta_exec_weighted
= delta_exec
;
261 if (unlikely(curr
->load
.weight
!= NICE_0_LOAD
)) {
262 delta_exec_weighted
= calc_delta_fair(delta_exec_weighted
,
265 curr
->vruntime
+= delta_exec_weighted
;
268 * maintain cfs_rq->min_vruntime to be a monotonic increasing
269 * value tracking the leftmost vruntime in the tree.
271 if (first_fair(cfs_rq
)) {
272 next_vruntime
= __pick_next_entity(cfs_rq
)->vruntime
;
274 /* min_vruntime() := !max_vruntime() */
275 min_vruntime
= max_vruntime(curr
->vruntime
, next_vruntime
);
276 if (min_vruntime
== next_vruntime
)
277 min_vruntime
= curr
->vruntime
;
279 min_vruntime
= next_vruntime
;
281 min_vruntime
= curr
->vruntime
;
283 cfs_rq
->min_vruntime
=
284 max_vruntime(cfs_rq
->min_vruntime
, min_vruntime
);
287 static void update_curr(struct cfs_rq
*cfs_rq
)
289 struct sched_entity
*curr
= cfs_rq
->curr
;
290 u64 now
= rq_of(cfs_rq
)->clock
;
291 unsigned long delta_exec
;
297 * Get the amount of time the current task was running
298 * since the last time we changed load (this cannot
299 * overflow on 32 bits):
301 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
303 __update_curr(cfs_rq
, curr
, delta_exec
);
304 curr
->exec_start
= now
;
308 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
310 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
313 static inline unsigned long
314 calc_weighted(unsigned long delta
, struct sched_entity
*se
)
316 unsigned long weight
= se
->load
.weight
;
318 if (unlikely(weight
!= NICE_0_LOAD
))
319 return (u64
)delta
* se
->load
.weight
>> NICE_0_SHIFT
;
325 * Task is being enqueued - update stats:
327 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
330 * Are we enqueueing a waiting task? (for current tasks
331 * a dequeue/enqueue event is a NOP)
333 if (se
!= cfs_rq
->curr
)
334 update_stats_wait_start(cfs_rq
, se
);
338 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
340 schedstat_set(se
->wait_max
, max(se
->wait_max
,
341 rq_of(cfs_rq
)->clock
- se
->wait_start
));
342 schedstat_set(se
->wait_start
, 0);
346 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
350 * Mark the end of the wait period if dequeueing a
353 if (se
!= cfs_rq
->curr
)
354 update_stats_wait_end(cfs_rq
, se
);
358 * We are picking a new current task - update its stats:
361 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
364 * We are starting a new run period:
366 se
->exec_start
= rq_of(cfs_rq
)->clock
;
370 * We are descheduling a task - update its stats:
373 update_stats_curr_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
378 /**************************************************
379 * Scheduling class queueing methods:
383 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
385 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
386 cfs_rq
->nr_running
++;
391 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
393 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
394 cfs_rq
->nr_running
--;
398 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
400 #ifdef CONFIG_SCHEDSTATS
401 if (se
->sleep_start
) {
402 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
407 if (unlikely(delta
> se
->sleep_max
))
408 se
->sleep_max
= delta
;
411 se
->sum_sleep_runtime
+= delta
;
413 if (se
->block_start
) {
414 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
419 if (unlikely(delta
> se
->block_max
))
420 se
->block_max
= delta
;
423 se
->sum_sleep_runtime
+= delta
;
426 * Blocking time is in units of nanosecs, so shift by 20 to
427 * get a milliseconds-range estimation of the amount of
428 * time that the task spent sleeping:
430 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
431 struct task_struct
*tsk
= task_of(se
);
433 profile_hits(SLEEP_PROFILING
, (void *)get_wchan(tsk
),
440 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
442 #ifdef CONFIG_SCHED_DEBUG
443 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
448 if (d
> 3*sysctl_sched_latency
)
449 schedstat_inc(cfs_rq
, nr_spread_over
);
454 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
458 vruntime
= cfs_rq
->min_vruntime
;
460 if (sched_feat(USE_TREE_AVG
)) {
461 struct sched_entity
*last
= __pick_last_entity(cfs_rq
);
463 vruntime
+= last
->vruntime
;
466 } else if (sched_feat(APPROX_AVG
) && cfs_rq
->nr_running
)
467 vruntime
+= __sched_vslice(cfs_rq
->nr_running
)/2;
469 if (initial
&& sched_feat(START_DEBIT
))
470 vruntime
+= __sched_vslice(cfs_rq
->nr_running
+ 1);
473 if (sched_feat(NEW_FAIR_SLEEPERS
))
474 vruntime
-= sysctl_sched_latency
;
476 vruntime
= max_t(s64
, vruntime
, se
->vruntime
);
479 se
->vruntime
= vruntime
;
484 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
487 * Update the fair clock.
492 /* se->vruntime += cfs_rq->min_vruntime; */
493 place_entity(cfs_rq
, se
, 0);
494 enqueue_sleeper(cfs_rq
, se
);
497 update_stats_enqueue(cfs_rq
, se
);
498 check_spread(cfs_rq
, se
);
499 if (se
!= cfs_rq
->curr
)
500 __enqueue_entity(cfs_rq
, se
);
501 account_entity_enqueue(cfs_rq
, se
);
505 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
507 update_stats_dequeue(cfs_rq
, se
);
509 #ifdef CONFIG_SCHEDSTATS
510 if (entity_is_task(se
)) {
511 struct task_struct
*tsk
= task_of(se
);
513 if (tsk
->state
& TASK_INTERRUPTIBLE
)
514 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
515 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
516 se
->block_start
= rq_of(cfs_rq
)->clock
;
521 if (se
!= cfs_rq
->curr
)
522 __dequeue_entity(cfs_rq
, se
);
523 account_entity_dequeue(cfs_rq
, se
);
527 * Preempt the current task with a newly woken task if needed:
530 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
532 unsigned long ideal_runtime
, delta_exec
;
534 ideal_runtime
= sched_slice(cfs_rq
, curr
);
535 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
536 if (delta_exec
> ideal_runtime
)
537 resched_task(rq_of(cfs_rq
)->curr
);
541 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
543 /* 'current' is not kept within the tree. */
546 * Any task has to be enqueued before it get to execute on
547 * a CPU. So account for the time it spent waiting on the
550 update_stats_wait_end(cfs_rq
, se
);
551 __dequeue_entity(cfs_rq
, se
);
554 update_stats_curr_start(cfs_rq
, se
);
556 #ifdef CONFIG_SCHEDSTATS
558 * Track our maximum slice length, if the CPU's load is at
559 * least twice that of our own weight (i.e. dont track it
560 * when there are only lesser-weight tasks around):
562 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
563 se
->slice_max
= max(se
->slice_max
,
564 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
567 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
570 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
572 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
574 set_next_entity(cfs_rq
, se
);
579 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
582 * If still on the runqueue then deactivate_task()
583 * was not called and update_curr() has to be done:
588 update_stats_curr_end(cfs_rq
, prev
);
590 check_spread(cfs_rq
, prev
);
592 update_stats_wait_start(cfs_rq
, prev
);
593 /* Put 'current' back into the tree. */
594 __enqueue_entity(cfs_rq
, prev
);
599 static void entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
602 * Update run-time statistics of the 'current'.
606 if (cfs_rq
->nr_running
> 1)
607 check_preempt_tick(cfs_rq
, curr
);
610 /**************************************************
611 * CFS operations on tasks:
614 #ifdef CONFIG_FAIR_GROUP_SCHED
616 /* Walk up scheduling entities hierarchy */
617 #define for_each_sched_entity(se) \
618 for (; se; se = se->parent)
620 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
625 /* runqueue on which this entity is (to be) queued */
626 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
631 /* runqueue "owned" by this group */
632 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
637 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
638 * another cpu ('this_cpu')
640 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
642 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
645 /* Iterate thr' all leaf cfs_rq's on a runqueue */
646 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
647 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
649 /* Do the two (enqueued) tasks belong to the same group ? */
650 static inline int is_same_group(struct task_struct
*curr
, struct task_struct
*p
)
652 if (curr
->se
.cfs_rq
== p
->se
.cfs_rq
)
658 #else /* CONFIG_FAIR_GROUP_SCHED */
660 #define for_each_sched_entity(se) \
661 for (; se; se = NULL)
663 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
665 return &task_rq(p
)->cfs
;
668 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
670 struct task_struct
*p
= task_of(se
);
671 struct rq
*rq
= task_rq(p
);
676 /* runqueue "owned" by this group */
677 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
682 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
684 return &cpu_rq(this_cpu
)->cfs
;
687 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
688 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
690 static inline int is_same_group(struct task_struct
*curr
, struct task_struct
*p
)
695 #endif /* CONFIG_FAIR_GROUP_SCHED */
698 * The enqueue_task method is called before nr_running is
699 * increased. Here we update the fair scheduling stats and
700 * then put the task into the rbtree:
702 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
704 struct cfs_rq
*cfs_rq
;
705 struct sched_entity
*se
= &p
->se
;
707 for_each_sched_entity(se
) {
710 cfs_rq
= cfs_rq_of(se
);
711 enqueue_entity(cfs_rq
, se
, wakeup
);
716 * The dequeue_task method is called before nr_running is
717 * decreased. We remove the task from the rbtree and
718 * update the fair scheduling stats:
720 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
722 struct cfs_rq
*cfs_rq
;
723 struct sched_entity
*se
= &p
->se
;
725 for_each_sched_entity(se
) {
726 cfs_rq
= cfs_rq_of(se
);
727 dequeue_entity(cfs_rq
, se
, sleep
);
728 /* Don't dequeue parent if it has other entities besides us */
729 if (cfs_rq
->load
.weight
)
735 * sched_yield() support is very simple - we dequeue and enqueue.
737 * If compat_yield is turned on then we requeue to the end of the tree.
739 static void yield_task_fair(struct rq
*rq
)
741 struct cfs_rq
*cfs_rq
= task_cfs_rq(rq
->curr
);
742 struct sched_entity
*rightmost
, *se
= &rq
->curr
->se
;
745 * Are we the only task in the tree?
747 if (unlikely(cfs_rq
->nr_running
== 1))
750 if (likely(!sysctl_sched_compat_yield
)) {
751 __update_rq_clock(rq
);
753 * Dequeue and enqueue the task to update its
754 * position within the tree:
761 * Find the rightmost entry in the rbtree:
763 rightmost
= __pick_last_entity(cfs_rq
);
765 * Already in the rightmost position?
767 if (unlikely(rightmost
->vruntime
< se
->vruntime
))
771 * Minimally necessary key value to be last in the tree:
772 * Upon rescheduling, sched_class::put_prev_task() will place
773 * 'current' within the tree based on its new key value.
775 se
->vruntime
= rightmost
->vruntime
+ 1;
779 * Preempt the current task with a newly woken task if needed:
781 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
)
783 struct task_struct
*curr
= rq
->curr
;
784 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
), *pcfs_rq
;
785 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
787 if (unlikely(rt_prio(p
->prio
))) {
794 for_each_sched_entity(se
) {
795 cfs_rq
= cfs_rq_of(se
);
796 pcfs_rq
= cfs_rq_of(pse
);
798 if (cfs_rq
== pcfs_rq
) {
799 s64 delta
= se
->vruntime
- pse
->vruntime
;
801 if (delta
> (s64
)sysctl_sched_wakeup_granularity
)
805 #ifdef CONFIG_FAIR_GROUP_SCHED
811 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
813 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
814 struct sched_entity
*se
;
816 if (unlikely(!cfs_rq
->nr_running
))
820 se
= pick_next_entity(cfs_rq
);
821 cfs_rq
= group_cfs_rq(se
);
828 * Account for a descheduled task:
830 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
832 struct sched_entity
*se
= &prev
->se
;
833 struct cfs_rq
*cfs_rq
;
835 for_each_sched_entity(se
) {
836 cfs_rq
= cfs_rq_of(se
);
837 put_prev_entity(cfs_rq
, se
);
841 /**************************************************
842 * Fair scheduling class load-balancing methods:
846 * Load-balancing iterator. Note: while the runqueue stays locked
847 * during the whole iteration, the current task might be
848 * dequeued so the iterator has to be dequeue-safe. Here we
849 * achieve that by always pre-iterating before returning
852 static inline struct task_struct
*
853 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct rb_node
*curr
)
855 struct task_struct
*p
;
860 p
= rb_entry(curr
, struct task_struct
, se
.run_node
);
861 cfs_rq
->rb_load_balance_curr
= rb_next(curr
);
866 static struct task_struct
*load_balance_start_fair(void *arg
)
868 struct cfs_rq
*cfs_rq
= arg
;
870 return __load_balance_iterator(cfs_rq
, first_fair(cfs_rq
));
873 static struct task_struct
*load_balance_next_fair(void *arg
)
875 struct cfs_rq
*cfs_rq
= arg
;
877 return __load_balance_iterator(cfs_rq
, cfs_rq
->rb_load_balance_curr
);
880 #ifdef CONFIG_FAIR_GROUP_SCHED
881 static int cfs_rq_best_prio(struct cfs_rq
*cfs_rq
)
883 struct sched_entity
*curr
;
884 struct task_struct
*p
;
886 if (!cfs_rq
->nr_running
)
891 curr
= __pick_next_entity(cfs_rq
);
900 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
901 unsigned long max_nr_move
, unsigned long max_load_move
,
902 struct sched_domain
*sd
, enum cpu_idle_type idle
,
903 int *all_pinned
, int *this_best_prio
)
905 struct cfs_rq
*busy_cfs_rq
;
906 unsigned long load_moved
, total_nr_moved
= 0, nr_moved
;
907 long rem_load_move
= max_load_move
;
908 struct rq_iterator cfs_rq_iterator
;
910 cfs_rq_iterator
.start
= load_balance_start_fair
;
911 cfs_rq_iterator
.next
= load_balance_next_fair
;
913 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
914 #ifdef CONFIG_FAIR_GROUP_SCHED
915 struct cfs_rq
*this_cfs_rq
;
917 unsigned long maxload
;
919 this_cfs_rq
= cpu_cfs_rq(busy_cfs_rq
, this_cpu
);
921 imbalance
= busy_cfs_rq
->load
.weight
- this_cfs_rq
->load
.weight
;
922 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
926 /* Don't pull more than imbalance/2 */
928 maxload
= min(rem_load_move
, imbalance
);
930 *this_best_prio
= cfs_rq_best_prio(this_cfs_rq
);
932 # define maxload rem_load_move
934 /* pass busy_cfs_rq argument into
935 * load_balance_[start|next]_fair iterators
937 cfs_rq_iterator
.arg
= busy_cfs_rq
;
938 nr_moved
= balance_tasks(this_rq
, this_cpu
, busiest
,
939 max_nr_move
, maxload
, sd
, idle
, all_pinned
,
940 &load_moved
, this_best_prio
, &cfs_rq_iterator
);
942 total_nr_moved
+= nr_moved
;
943 max_nr_move
-= nr_moved
;
944 rem_load_move
-= load_moved
;
946 if (max_nr_move
<= 0 || rem_load_move
<= 0)
950 return max_load_move
- rem_load_move
;
954 * scheduler tick hitting a task of our scheduling class:
956 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
)
958 struct cfs_rq
*cfs_rq
;
959 struct sched_entity
*se
= &curr
->se
;
961 for_each_sched_entity(se
) {
962 cfs_rq
= cfs_rq_of(se
);
963 entity_tick(cfs_rq
, se
);
967 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
970 * Share the fairness runtime between parent and child, thus the
971 * total amount of pressure for CPU stays equal - new tasks
972 * get a chance to run but frequent forkers are not allowed to
973 * monopolize the CPU. Note: the parent runqueue is locked,
974 * the child is not running yet.
976 static void task_new_fair(struct rq
*rq
, struct task_struct
*p
)
978 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
979 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
981 sched_info_queued(p
);
984 place_entity(cfs_rq
, se
, 1);
986 if (sysctl_sched_child_runs_first
&&
987 curr
->vruntime
< se
->vruntime
) {
989 * Upon rescheduling, sched_class::put_prev_task() will place
990 * 'current' within the tree based on its new key value.
992 swap(curr
->vruntime
, se
->vruntime
);
995 update_stats_enqueue(cfs_rq
, se
);
996 check_spread(cfs_rq
, se
);
997 check_spread(cfs_rq
, curr
);
998 __enqueue_entity(cfs_rq
, se
);
999 account_entity_enqueue(cfs_rq
, se
);
1000 resched_task(rq
->curr
);
1003 /* Account for a task changing its policy or group.
1005 * This routine is mostly called to set cfs_rq->curr field when a task
1006 * migrates between groups/classes.
1008 static void set_curr_task_fair(struct rq
*rq
)
1010 struct sched_entity
*se
= &rq
->curr
->se
;
1012 for_each_sched_entity(se
)
1013 set_next_entity(cfs_rq_of(se
), se
);
1017 * All the scheduling class methods:
1019 struct sched_class fair_sched_class __read_mostly
= {
1020 .enqueue_task
= enqueue_task_fair
,
1021 .dequeue_task
= dequeue_task_fair
,
1022 .yield_task
= yield_task_fair
,
1024 .check_preempt_curr
= check_preempt_wakeup
,
1026 .pick_next_task
= pick_next_task_fair
,
1027 .put_prev_task
= put_prev_task_fair
,
1029 .load_balance
= load_balance_fair
,
1031 .set_curr_task
= set_curr_task_fair
,
1032 .task_tick
= task_tick_fair
,
1033 .task_new
= task_new_fair
,
1036 #ifdef CONFIG_SCHED_DEBUG
1037 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
1039 struct cfs_rq
*cfs_rq
;
1041 #ifdef CONFIG_FAIR_GROUP_SCHED
1042 print_cfs_rq(m
, cpu
, &cpu_rq(cpu
)->cfs
);
1044 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
1045 print_cfs_rq(m
, cpu
, cfs_rq
);