1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
29 #define MLOG_MASK_PREFIX ML_FILE_IO
30 #include <cluster/masklog.h>
37 #include "extent_map.h"
45 #include "buffer_head_io.h"
47 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
48 struct buffer_head
*bh_result
, int create
)
52 struct ocfs2_dinode
*fe
= NULL
;
53 struct buffer_head
*bh
= NULL
;
54 struct buffer_head
*buffer_cache_bh
= NULL
;
55 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
58 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
59 (unsigned long long)iblock
, bh_result
, create
);
61 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
63 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
64 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
65 (unsigned long long)iblock
);
69 status
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
70 OCFS2_I(inode
)->ip_blkno
,
71 &bh
, OCFS2_BH_CACHED
, inode
);
76 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
78 if (!OCFS2_IS_VALID_DINODE(fe
)) {
79 mlog(ML_ERROR
, "Invalid dinode #%llu: signature = %.*s\n",
80 (unsigned long long)fe
->i_blkno
, 7, fe
->i_signature
);
84 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
85 le32_to_cpu(fe
->i_clusters
))) {
86 mlog(ML_ERROR
, "block offset is outside the allocated size: "
87 "%llu\n", (unsigned long long)iblock
);
91 /* We don't use the page cache to create symlink data, so if
92 * need be, copy it over from the buffer cache. */
93 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
94 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
96 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
97 if (!buffer_cache_bh
) {
98 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
102 /* we haven't locked out transactions, so a commit
103 * could've happened. Since we've got a reference on
104 * the bh, even if it commits while we're doing the
105 * copy, the data is still good. */
106 if (buffer_jbd(buffer_cache_bh
)
107 && ocfs2_inode_is_new(inode
)) {
108 kaddr
= kmap_atomic(bh_result
->b_page
, KM_USER0
);
110 mlog(ML_ERROR
, "couldn't kmap!\n");
113 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
114 buffer_cache_bh
->b_data
,
116 kunmap_atomic(kaddr
, KM_USER0
);
117 set_buffer_uptodate(bh_result
);
119 brelse(buffer_cache_bh
);
122 map_bh(bh_result
, inode
->i_sb
,
123 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
135 static int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
136 struct buffer_head
*bh_result
, int create
)
139 u64 p_blkno
, past_eof
;
140 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
142 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
143 (unsigned long long)iblock
, bh_result
, create
);
145 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
146 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
147 inode
, inode
->i_ino
);
149 if (S_ISLNK(inode
->i_mode
)) {
150 /* this always does I/O for some reason. */
151 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
155 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, NULL
);
157 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
158 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
159 (unsigned long long)p_blkno
);
164 * ocfs2 never allocates in this function - the only time we
165 * need to use BH_New is when we're extending i_size on a file
166 * system which doesn't support holes, in which case BH_New
167 * allows block_prepare_write() to zero.
169 mlog_bug_on_msg(create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
),
170 "ino %lu, iblock %llu\n", inode
->i_ino
,
171 (unsigned long long)iblock
);
174 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
176 if (!ocfs2_sparse_alloc(osb
)) {
180 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
181 (unsigned long long)iblock
,
182 (unsigned long long)p_blkno
,
183 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
184 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
188 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
189 mlog(0, "Inode %lu, past_eof = %llu\n", inode
->i_ino
,
190 (unsigned long long)past_eof
);
192 if (create
&& (iblock
>= past_eof
))
193 set_buffer_new(bh_result
);
204 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
206 struct inode
*inode
= page
->mapping
->host
;
207 loff_t start
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
210 mlog_entry("(0x%p, %lu)\n", file
, (page
? page
->index
: 0));
212 ret
= ocfs2_meta_lock_with_page(inode
, NULL
, 0, page
);
214 if (ret
== AOP_TRUNCATED_PAGE
)
220 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
223 * i_size might have just been updated as we grabed the meta lock. We
224 * might now be discovering a truncate that hit on another node.
225 * block_read_full_page->get_block freaks out if it is asked to read
226 * beyond the end of a file, so we check here. Callers
227 * (generic_file_read, fault->nopage) are clever enough to check i_size
228 * and notice that the page they just read isn't needed.
230 * XXX sys_readahead() seems to get that wrong?
232 if (start
>= i_size_read(inode
)) {
233 char *addr
= kmap(page
);
234 memset(addr
, 0, PAGE_SIZE
);
235 flush_dcache_page(page
);
237 SetPageUptodate(page
);
242 ret
= ocfs2_data_lock_with_page(inode
, 0, page
);
244 if (ret
== AOP_TRUNCATED_PAGE
)
250 ret
= block_read_full_page(page
, ocfs2_get_block
);
253 ocfs2_data_unlock(inode
, 0);
255 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
256 ocfs2_meta_unlock(inode
, 0);
264 /* Note: Because we don't support holes, our allocation has
265 * already happened (allocation writes zeros to the file data)
266 * so we don't have to worry about ordered writes in
269 * ->writepage is called during the process of invalidating the page cache
270 * during blocked lock processing. It can't block on any cluster locks
271 * to during block mapping. It's relying on the fact that the block
272 * mapping can't have disappeared under the dirty pages that it is
273 * being asked to write back.
275 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
279 mlog_entry("(0x%p)\n", page
);
281 ret
= block_write_full_page(page
, ocfs2_get_block
, wbc
);
289 * This is called from ocfs2_write_zero_page() which has handled it's
290 * own cluster locking and has ensured allocation exists for those
291 * blocks to be written.
293 int ocfs2_prepare_write_nolock(struct inode
*inode
, struct page
*page
,
294 unsigned from
, unsigned to
)
298 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
300 ret
= block_prepare_write(page
, from
, to
, ocfs2_get_block
);
302 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
307 /* Taken from ext3. We don't necessarily need the full blown
308 * functionality yet, but IMHO it's better to cut and paste the whole
309 * thing so we can avoid introducing our own bugs (and easily pick up
310 * their fixes when they happen) --Mark */
311 static int walk_page_buffers( handle_t
*handle
,
312 struct buffer_head
*head
,
316 int (*fn
)( handle_t
*handle
,
317 struct buffer_head
*bh
))
319 struct buffer_head
*bh
;
320 unsigned block_start
, block_end
;
321 unsigned blocksize
= head
->b_size
;
323 struct buffer_head
*next
;
325 for ( bh
= head
, block_start
= 0;
326 ret
== 0 && (bh
!= head
|| !block_start
);
327 block_start
= block_end
, bh
= next
)
329 next
= bh
->b_this_page
;
330 block_end
= block_start
+ blocksize
;
331 if (block_end
<= from
|| block_start
>= to
) {
332 if (partial
&& !buffer_uptodate(bh
))
336 err
= (*fn
)(handle
, bh
);
343 handle_t
*ocfs2_start_walk_page_trans(struct inode
*inode
,
348 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
349 handle_t
*handle
= NULL
;
352 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
359 if (ocfs2_should_order_data(inode
)) {
360 ret
= walk_page_buffers(handle
,
363 ocfs2_journal_dirty_data
);
370 ocfs2_commit_trans(osb
, handle
);
371 handle
= ERR_PTR(ret
);
376 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
381 struct inode
*inode
= mapping
->host
;
383 mlog_entry("(block = %llu)\n", (unsigned long long)block
);
385 /* We don't need to lock journal system files, since they aren't
386 * accessed concurrently from multiple nodes.
388 if (!INODE_JOURNAL(inode
)) {
389 err
= ocfs2_meta_lock(inode
, NULL
, 0);
395 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
398 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
);
400 if (!INODE_JOURNAL(inode
)) {
401 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
402 ocfs2_meta_unlock(inode
, 0);
406 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
407 (unsigned long long)block
);
414 status
= err
? 0 : p_blkno
;
416 mlog_exit((int)status
);
422 * TODO: Make this into a generic get_blocks function.
424 * From do_direct_io in direct-io.c:
425 * "So what we do is to permit the ->get_blocks function to populate
426 * bh.b_size with the size of IO which is permitted at this offset and
429 * This function is called directly from get_more_blocks in direct-io.c.
431 * called like this: dio->get_blocks(dio->inode, fs_startblk,
432 * fs_count, map_bh, dio->rw == WRITE);
434 static int ocfs2_direct_IO_get_blocks(struct inode
*inode
, sector_t iblock
,
435 struct buffer_head
*bh_result
, int create
)
438 u64 p_blkno
, inode_blocks
;
440 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
441 unsigned long max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
443 /* This function won't even be called if the request isn't all
444 * nicely aligned and of the right size, so there's no need
445 * for us to check any of that. */
447 inode_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
450 * Any write past EOF is not allowed because we'd be extending.
452 if (create
&& (iblock
+ max_blocks
) > inode_blocks
) {
457 /* This figures out the size of the next contiguous block, and
458 * our logical offset */
459 ret
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
,
462 mlog(ML_ERROR
, "get_blocks() failed iblock=%llu\n",
463 (unsigned long long)iblock
);
468 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)) && !p_blkno
) {
469 ocfs2_error(inode
->i_sb
,
470 "Inode %llu has a hole at block %llu\n",
471 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
472 (unsigned long long)iblock
);
478 * get_more_blocks() expects us to describe a hole by clearing
479 * the mapped bit on bh_result().
482 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
485 * ocfs2_prepare_inode_for_write() should have caught
486 * the case where we'd be filling a hole and triggered
487 * a buffered write instead.
495 clear_buffer_mapped(bh_result
);
498 /* make sure we don't map more than max_blocks blocks here as
499 that's all the kernel will handle at this point. */
500 if (max_blocks
< contig_blocks
)
501 contig_blocks
= max_blocks
;
502 bh_result
->b_size
= contig_blocks
<< blocksize_bits
;
508 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
509 * particularly interested in the aio/dio case. Like the core uses
510 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
511 * truncation on another.
513 static void ocfs2_dio_end_io(struct kiocb
*iocb
,
518 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
520 /* this io's submitter should not have unlocked this before we could */
521 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
522 ocfs2_iocb_clear_rw_locked(iocb
);
523 up_read(&inode
->i_alloc_sem
);
524 ocfs2_rw_unlock(inode
, 0);
528 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
529 * from ext3. PageChecked() bits have been removed as OCFS2 does not
530 * do journalled data.
532 static void ocfs2_invalidatepage(struct page
*page
, unsigned long offset
)
534 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
536 journal_invalidatepage(journal
, page
, offset
);
539 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
541 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
543 if (!page_has_buffers(page
))
545 return journal_try_to_free_buffers(journal
, page
, wait
);
548 static ssize_t
ocfs2_direct_IO(int rw
,
550 const struct iovec
*iov
,
552 unsigned long nr_segs
)
554 struct file
*file
= iocb
->ki_filp
;
555 struct inode
*inode
= file
->f_path
.dentry
->d_inode
->i_mapping
->host
;
560 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
))) {
562 * We get PR data locks even for O_DIRECT. This
563 * allows concurrent O_DIRECT I/O but doesn't let
564 * O_DIRECT with extending and buffered zeroing writes
565 * race. If they did race then the buffered zeroing
566 * could be written back after the O_DIRECT I/O. It's
567 * one thing to tell people not to mix buffered and
568 * O_DIRECT writes, but expecting them to understand
569 * that file extension is also an implicit buffered
570 * write is too much. By getting the PR we force
571 * writeback of the buffered zeroing before
574 ret
= ocfs2_data_lock(inode
, 0);
579 ocfs2_data_unlock(inode
, 0);
582 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
583 inode
->i_sb
->s_bdev
, iov
, offset
,
585 ocfs2_direct_IO_get_blocks
,
592 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
597 unsigned int cluster_start
= 0, cluster_end
= PAGE_CACHE_SIZE
;
599 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
)) {
602 cpp
= 1 << (PAGE_CACHE_SHIFT
- osb
->s_clustersize_bits
);
604 cluster_start
= cpos
% cpp
;
605 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
607 cluster_end
= cluster_start
+ osb
->s_clustersize
;
610 BUG_ON(cluster_start
> PAGE_SIZE
);
611 BUG_ON(cluster_end
> PAGE_SIZE
);
614 *start
= cluster_start
;
620 * 'from' and 'to' are the region in the page to avoid zeroing.
622 * If pagesize > clustersize, this function will avoid zeroing outside
623 * of the cluster boundary.
625 * from == to == 0 is code for "zero the entire cluster region"
627 static void ocfs2_clear_page_regions(struct page
*page
,
628 struct ocfs2_super
*osb
, u32 cpos
,
629 unsigned from
, unsigned to
)
632 unsigned int cluster_start
, cluster_end
;
634 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
636 kaddr
= kmap_atomic(page
, KM_USER0
);
639 if (from
> cluster_start
)
640 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
641 if (to
< cluster_end
)
642 memset(kaddr
+ to
, 0, cluster_end
- to
);
644 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
647 kunmap_atomic(kaddr
, KM_USER0
);
651 * Some of this taken from block_prepare_write(). We already have our
652 * mapping by now though, and the entire write will be allocating or
653 * it won't, so not much need to use BH_New.
655 * This will also skip zeroing, which is handled externally.
657 static int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
658 struct inode
*inode
, unsigned int from
,
659 unsigned int to
, int new)
662 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
663 unsigned int block_end
, block_start
;
664 unsigned int bsize
= 1 << inode
->i_blkbits
;
666 if (!page_has_buffers(page
))
667 create_empty_buffers(page
, bsize
, 0);
669 head
= page_buffers(page
);
670 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
671 bh
= bh
->b_this_page
, block_start
+= bsize
) {
672 block_end
= block_start
+ bsize
;
675 * Ignore blocks outside of our i/o range -
676 * they may belong to unallocated clusters.
678 if (block_start
>= to
||
679 (block_start
+ bsize
) <= from
) {
680 if (PageUptodate(page
))
681 set_buffer_uptodate(bh
);
686 * For an allocating write with cluster size >= page
687 * size, we always write the entire page.
691 clear_buffer_new(bh
);
693 if (!buffer_mapped(bh
)) {
694 map_bh(bh
, inode
->i_sb
, *p_blkno
);
695 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
698 if (PageUptodate(page
)) {
699 if (!buffer_uptodate(bh
))
700 set_buffer_uptodate(bh
);
701 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
702 (block_start
< from
|| block_end
> to
)) {
703 ll_rw_block(READ
, 1, &bh
);
707 *p_blkno
= *p_blkno
+ 1;
711 * If we issued read requests - let them complete.
713 while(wait_bh
> wait
) {
714 wait_on_buffer(*--wait_bh
);
715 if (!buffer_uptodate(*wait_bh
))
719 if (ret
== 0 || !new)
723 * If we get -EIO above, zero out any newly allocated blocks
724 * to avoid exposing stale data.
731 block_end
= block_start
+ bsize
;
732 if (block_end
<= from
)
734 if (block_start
>= to
)
737 kaddr
= kmap_atomic(page
, KM_USER0
);
738 memset(kaddr
+block_start
, 0, bh
->b_size
);
739 flush_dcache_page(page
);
740 kunmap_atomic(kaddr
, KM_USER0
);
741 set_buffer_uptodate(bh
);
742 mark_buffer_dirty(bh
);
745 block_start
= block_end
;
746 bh
= bh
->b_this_page
;
747 } while (bh
!= head
);
753 * This will copy user data from the iovec in the buffered write
756 int ocfs2_map_and_write_user_data(struct inode
*inode
,
757 struct ocfs2_write_ctxt
*wc
, u64
*p_blkno
,
758 unsigned int *ret_from
, unsigned int *ret_to
)
761 unsigned int to
, from
, cluster_start
, cluster_end
;
762 unsigned long bytes
, src_from
;
764 struct ocfs2_buffered_write_priv
*bp
= wc
->w_private
;
765 const struct iovec
*cur_iov
= bp
->b_cur_iov
;
767 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
769 ocfs2_figure_cluster_boundaries(osb
, wc
->w_cpos
, &cluster_start
,
772 buf
= cur_iov
->iov_base
+ bp
->b_cur_off
;
773 src_from
= (unsigned long)buf
& ~PAGE_CACHE_MASK
;
775 from
= wc
->w_pos
& (PAGE_CACHE_SIZE
- 1);
778 * This is a lot of comparisons, but it reads quite
779 * easily, which is important here.
781 /* Stay within the src page */
782 bytes
= PAGE_SIZE
- src_from
;
783 /* Stay within the vector */
785 (unsigned long)(cur_iov
->iov_len
- bp
->b_cur_off
));
786 /* Stay within count */
787 bytes
= min(bytes
, (unsigned long)wc
->w_count
);
789 * For clustersize > page size, just stay within
790 * target page, otherwise we have to calculate pos
791 * within the cluster and obey the rightmost
794 if (wc
->w_large_pages
) {
796 * For cluster size < page size, we have to
797 * calculate pos within the cluster and obey
798 * the rightmost boundary.
800 bytes
= min(bytes
, (unsigned long)(osb
->s_clustersize
801 - (wc
->w_pos
& (osb
->s_clustersize
- 1))));
804 * cluster size > page size is the most common
805 * case - we just stay within the target page
808 bytes
= min(bytes
, PAGE_CACHE_SIZE
- from
);
813 if (wc
->w_this_page_new
)
814 ret
= ocfs2_map_page_blocks(wc
->w_this_page
, p_blkno
, inode
,
815 cluster_start
, cluster_end
, 1);
817 ret
= ocfs2_map_page_blocks(wc
->w_this_page
, p_blkno
, inode
,
824 BUG_ON(from
> PAGE_CACHE_SIZE
);
825 BUG_ON(to
> PAGE_CACHE_SIZE
);
826 BUG_ON(from
> osb
->s_clustersize
);
827 BUG_ON(to
> osb
->s_clustersize
);
829 dst
= kmap(wc
->w_this_page
);
830 memcpy(dst
+ from
, bp
->b_src_buf
+ src_from
, bytes
);
831 kunmap(wc
->w_this_page
);
834 * XXX: This is slow, but simple. The caller of
835 * ocfs2_buffered_write_cluster() is responsible for
836 * passing through the iovecs, so it's difficult to
837 * predict what our next step is in here after our
838 * initial write. A future version should be pushing
839 * that iovec manipulation further down.
841 * By setting this, we indicate that a copy from user
842 * data was done, and subsequent calls for this
843 * cluster will skip copying more data.
845 wc
->w_finished_copy
= 1;
851 return bytes
? (unsigned int)bytes
: ret
;
855 * Map, fill and write a page to disk.
857 * The work of copying data is done via callback. Newly allocated
858 * pages which don't take user data will be zero'd (set 'new' to
859 * indicate an allocating write)
861 * Returns a negative error code or the number of bytes copied into
864 int ocfs2_write_data_page(struct inode
*inode
, handle_t
*handle
,
865 u64
*p_blkno
, struct page
*page
,
866 struct ocfs2_write_ctxt
*wc
, int new)
869 unsigned int from
= 0, to
= 0;
870 unsigned int cluster_start
, cluster_end
;
871 unsigned int zero_from
= 0, zero_to
= 0;
873 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), wc
->w_cpos
,
874 &cluster_start
, &cluster_end
);
876 if ((wc
->w_pos
>> PAGE_CACHE_SHIFT
) == page
->index
877 && !wc
->w_finished_copy
) {
879 wc
->w_this_page
= page
;
880 wc
->w_this_page_new
= new;
881 ret
= wc
->w_write_data_page(inode
, wc
, p_blkno
, &from
, &to
);
892 from
= cluster_start
;
897 * If we haven't allocated the new page yet, we
898 * shouldn't be writing it out without copying user
899 * data. This is likely a math error from the caller.
903 from
= cluster_start
;
906 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
907 cluster_start
, cluster_end
, 1);
915 * Parts of newly allocated pages need to be zero'd.
917 * Above, we have also rewritten 'to' and 'from' - as far as
918 * the rest of the function is concerned, the entire cluster
919 * range inside of a page needs to be written.
921 * We can skip this if the page is up to date - it's already
922 * been zero'd from being read in as a hole.
924 if (new && !PageUptodate(page
))
925 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
926 wc
->w_cpos
, zero_from
, zero_to
);
928 flush_dcache_page(page
);
930 if (ocfs2_should_order_data(inode
)) {
931 ret
= walk_page_buffers(handle
,
934 ocfs2_journal_dirty_data
);
940 * We don't use generic_commit_write() because we need to
941 * handle our own i_size update.
943 ret
= block_commit_write(page
, from
, to
);
948 return copied
? copied
: ret
;
952 * Do the actual write of some data into an inode. Optionally allocate
953 * in order to fulfill the write.
955 * cpos is the logical cluster offset within the file to write at
957 * 'phys' is the physical mapping of that offset. a 'phys' value of
958 * zero indicates that allocation is required. In this case, data_ac
959 * and meta_ac should be valid (meta_ac can be null if metadata
960 * allocation isn't required).
962 static ssize_t
ocfs2_write(struct file
*file
, u32 phys
, handle_t
*handle
,
963 struct buffer_head
*di_bh
,
964 struct ocfs2_alloc_context
*data_ac
,
965 struct ocfs2_alloc_context
*meta_ac
,
966 struct ocfs2_write_ctxt
*wc
)
968 int ret
, i
, numpages
= 1, new;
969 unsigned int copied
= 0;
971 u64 v_blkno
, p_blkno
;
972 struct address_space
*mapping
= file
->f_mapping
;
973 struct inode
*inode
= mapping
->host
;
974 unsigned int cbits
= OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
975 unsigned long index
, start
;
976 struct page
**cpages
;
978 new = phys
== 0 ? 1 : 0;
981 * Figure out how many pages we'll be manipulating here. For
982 * non-allocating write, or any writes where cluster size is
983 * less than page size, we only need one page. Otherwise,
984 * allocating writes of cluster size larger than page size
985 * need cluster size pages.
987 if (new && !wc
->w_large_pages
)
988 numpages
= (1 << cbits
) / PAGE_SIZE
;
990 cpages
= kzalloc(sizeof(*cpages
) * numpages
, GFP_NOFS
);
998 * Fill our page array first. That way we've grabbed enough so
999 * that we can zero and flush if we error after adding the
1003 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
,
1005 v_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, wc
->w_cpos
);
1007 start
= wc
->w_pos
>> PAGE_CACHE_SHIFT
;
1008 v_blkno
= wc
->w_pos
>> inode
->i_sb
->s_blocksize_bits
;
1011 for(i
= 0; i
< numpages
; i
++) {
1014 cpages
[i
] = grab_cache_page(mapping
, index
);
1024 * This is safe to call with the page locks - it won't take
1025 * any additional semaphores or cluster locks.
1027 tmp_pos
= wc
->w_cpos
;
1028 ret
= ocfs2_do_extend_allocation(OCFS2_SB(inode
->i_sb
), inode
,
1029 &tmp_pos
, 1, di_bh
, handle
,
1030 data_ac
, meta_ac
, NULL
);
1032 * This shouldn't happen because we must have already
1033 * calculated the correct meta data allocation required. The
1034 * internal tree allocation code should know how to increase
1035 * transaction credits itself.
1037 * If need be, we could handle -EAGAIN for a
1038 * RESTART_TRANS here.
1040 mlog_bug_on_msg(ret
== -EAGAIN
,
1041 "Inode %llu: EAGAIN return during allocation.\n",
1042 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1049 ret
= ocfs2_extent_map_get_blocks(inode
, v_blkno
, &p_blkno
, NULL
);
1053 * XXX: Should we go readonly here?
1060 BUG_ON(p_blkno
== 0);
1062 for(i
= 0; i
< numpages
; i
++) {
1063 ret
= ocfs2_write_data_page(inode
, handle
, &p_blkno
, cpages
[i
],
1074 for(i
= 0; i
< numpages
; i
++) {
1075 unlock_page(cpages
[i
]);
1076 mark_page_accessed(cpages
[i
]);
1077 page_cache_release(cpages
[i
]);
1081 return copied
? copied
: ret
;
1084 static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt
*wc
,
1085 struct ocfs2_super
*osb
, loff_t pos
,
1086 size_t count
, ocfs2_page_writer
*cb
,
1089 wc
->w_count
= count
;
1091 wc
->w_cpos
= wc
->w_pos
>> osb
->s_clustersize_bits
;
1092 wc
->w_finished_copy
= 0;
1094 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
))
1095 wc
->w_large_pages
= 1;
1097 wc
->w_large_pages
= 0;
1099 wc
->w_write_data_page
= cb
;
1100 wc
->w_private
= cb_priv
;
1104 * Write a cluster to an inode. The cluster may not be allocated yet,
1105 * in which case it will be. This only exists for buffered writes -
1106 * O_DIRECT takes a more "traditional" path through the kernel.
1108 * The caller is responsible for incrementing pos, written counts, etc
1110 * For file systems that don't support sparse files, pre-allocation
1111 * and page zeroing up until cpos should be done prior to this
1114 * Callers should be holding i_sem, and the rw cluster lock.
1116 * Returns the number of user bytes written, or less than zero for
1119 ssize_t
ocfs2_buffered_write_cluster(struct file
*file
, loff_t pos
,
1120 size_t count
, ocfs2_page_writer
*actor
,
1123 int ret
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1124 ssize_t written
= 0;
1126 struct inode
*inode
= file
->f_mapping
->host
;
1127 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1128 struct buffer_head
*di_bh
= NULL
;
1129 struct ocfs2_dinode
*di
;
1130 struct ocfs2_alloc_context
*data_ac
= NULL
;
1131 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1133 struct ocfs2_write_ctxt wc
;
1135 ocfs2_write_ctxt_init(&wc
, osb
, pos
, count
, actor
, priv
);
1137 ret
= ocfs2_meta_lock(inode
, &di_bh
, 1);
1142 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1145 * Take alloc sem here to prevent concurrent lookups. That way
1146 * the mapping, zeroing and tree manipulation within
1147 * ocfs2_write() will be safe against ->readpage(). This
1148 * should also serve to lock out allocation from a shared
1151 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1153 ret
= ocfs2_get_clusters(inode
, wc
.w_cpos
, &phys
, NULL
);
1159 /* phys == 0 means that allocation is required. */
1161 ret
= ocfs2_lock_allocators(inode
, di
, 1, &data_ac
, &meta_ac
);
1167 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, di
, 1);
1170 ret
= ocfs2_data_lock(inode
, 1);
1176 handle
= ocfs2_start_trans(osb
, credits
);
1177 if (IS_ERR(handle
)) {
1178 ret
= PTR_ERR(handle
);
1183 written
= ocfs2_write(file
, phys
, handle
, di_bh
, data_ac
,
1191 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
1192 OCFS2_JOURNAL_ACCESS_WRITE
);
1199 if (pos
> inode
->i_size
) {
1200 i_size_write(inode
, pos
);
1201 mark_inode_dirty(inode
);
1203 inode
->i_blocks
= ocfs2_align_bytes_to_sectors((u64
)(i_size_read(inode
)));
1204 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
1205 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1206 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
1207 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
1209 ret
= ocfs2_journal_dirty(handle
, di_bh
);
1214 ocfs2_commit_trans(osb
, handle
);
1217 ocfs2_data_unlock(inode
, 1);
1220 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1221 ocfs2_meta_unlock(inode
, 1);
1226 ocfs2_free_alloc_context(data_ac
);
1228 ocfs2_free_alloc_context(meta_ac
);
1230 return written
? written
: ret
;
1233 const struct address_space_operations ocfs2_aops
= {
1234 .readpage
= ocfs2_readpage
,
1235 .writepage
= ocfs2_writepage
,
1237 .sync_page
= block_sync_page
,
1238 .direct_IO
= ocfs2_direct_IO
,
1239 .invalidatepage
= ocfs2_invalidatepage
,
1240 .releasepage
= ocfs2_releasepage
,
1241 .migratepage
= buffer_migrate_page
,