[XFS] remove unused vars, args, & unneeded intermediate vars from zeroing
[linux-2.6/kmemtrace.git] / block / elevator.c
blob99a4d7b2f8ad335079ae1eebeab71136f20acc35
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@suse.de> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/config.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/compiler.h>
35 #include <linux/delay.h>
37 #include <asm/uaccess.h>
39 static DEFINE_SPINLOCK(elv_list_lock);
40 static LIST_HEAD(elv_list);
43 * can we safely merge with this request?
45 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
47 if (!rq_mergeable(rq))
48 return 0;
51 * different data direction or already started, don't merge
53 if (bio_data_dir(bio) != rq_data_dir(rq))
54 return 0;
57 * same device and no special stuff set, merge is ok
59 if (rq->rq_disk == bio->bi_bdev->bd_disk &&
60 !rq->waiting && !rq->special)
61 return 1;
63 return 0;
65 EXPORT_SYMBOL(elv_rq_merge_ok);
67 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
69 int ret = ELEVATOR_NO_MERGE;
72 * we can merge and sequence is ok, check if it's possible
74 if (elv_rq_merge_ok(__rq, bio)) {
75 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
76 ret = ELEVATOR_BACK_MERGE;
77 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
78 ret = ELEVATOR_FRONT_MERGE;
81 return ret;
84 static struct elevator_type *elevator_find(const char *name)
86 struct elevator_type *e = NULL;
87 struct list_head *entry;
89 list_for_each(entry, &elv_list) {
90 struct elevator_type *__e;
92 __e = list_entry(entry, struct elevator_type, list);
94 if (!strcmp(__e->elevator_name, name)) {
95 e = __e;
96 break;
100 return e;
103 static void elevator_put(struct elevator_type *e)
105 module_put(e->elevator_owner);
108 static struct elevator_type *elevator_get(const char *name)
110 struct elevator_type *e;
112 spin_lock_irq(&elv_list_lock);
114 e = elevator_find(name);
115 if (e && !try_module_get(e->elevator_owner))
116 e = NULL;
118 spin_unlock_irq(&elv_list_lock);
120 return e;
123 static int elevator_attach(request_queue_t *q, struct elevator_type *e,
124 struct elevator_queue *eq)
126 int ret = 0;
128 memset(eq, 0, sizeof(*eq));
129 eq->ops = &e->ops;
130 eq->elevator_type = e;
132 q->elevator = eq;
134 if (eq->ops->elevator_init_fn)
135 ret = eq->ops->elevator_init_fn(q, eq);
137 return ret;
140 static char chosen_elevator[16];
142 static void elevator_setup_default(void)
144 struct elevator_type *e;
147 * If default has not been set, use the compiled-in selection.
149 if (!chosen_elevator[0])
150 strcpy(chosen_elevator, CONFIG_DEFAULT_IOSCHED);
153 * If the given scheduler is not available, fall back to no-op.
155 if ((e = elevator_find(chosen_elevator)))
156 elevator_put(e);
157 else
158 strcpy(chosen_elevator, "noop");
161 static int __init elevator_setup(char *str)
163 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
164 return 0;
167 __setup("elevator=", elevator_setup);
169 int elevator_init(request_queue_t *q, char *name)
171 struct elevator_type *e = NULL;
172 struct elevator_queue *eq;
173 int ret = 0;
175 INIT_LIST_HEAD(&q->queue_head);
176 q->last_merge = NULL;
177 q->end_sector = 0;
178 q->boundary_rq = NULL;
180 elevator_setup_default();
182 if (!name)
183 name = chosen_elevator;
185 e = elevator_get(name);
186 if (!e)
187 return -EINVAL;
189 eq = kmalloc(sizeof(struct elevator_queue), GFP_KERNEL);
190 if (!eq) {
191 elevator_put(e);
192 return -ENOMEM;
195 ret = elevator_attach(q, e, eq);
196 if (ret) {
197 kfree(eq);
198 elevator_put(e);
201 return ret;
204 void elevator_exit(elevator_t *e)
206 if (e->ops->elevator_exit_fn)
207 e->ops->elevator_exit_fn(e);
209 elevator_put(e->elevator_type);
210 e->elevator_type = NULL;
211 kfree(e);
215 * Insert rq into dispatch queue of q. Queue lock must be held on
216 * entry. If sort != 0, rq is sort-inserted; otherwise, rq will be
217 * appended to the dispatch queue. To be used by specific elevators.
219 void elv_dispatch_sort(request_queue_t *q, struct request *rq)
221 sector_t boundary;
222 struct list_head *entry;
224 if (q->last_merge == rq)
225 q->last_merge = NULL;
226 q->nr_sorted--;
228 boundary = q->end_sector;
230 list_for_each_prev(entry, &q->queue_head) {
231 struct request *pos = list_entry_rq(entry);
233 if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
234 break;
235 if (rq->sector >= boundary) {
236 if (pos->sector < boundary)
237 continue;
238 } else {
239 if (pos->sector >= boundary)
240 break;
242 if (rq->sector >= pos->sector)
243 break;
246 list_add(&rq->queuelist, entry);
249 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
251 elevator_t *e = q->elevator;
252 int ret;
254 if (q->last_merge) {
255 ret = elv_try_merge(q->last_merge, bio);
256 if (ret != ELEVATOR_NO_MERGE) {
257 *req = q->last_merge;
258 return ret;
262 if (e->ops->elevator_merge_fn)
263 return e->ops->elevator_merge_fn(q, req, bio);
265 return ELEVATOR_NO_MERGE;
268 void elv_merged_request(request_queue_t *q, struct request *rq)
270 elevator_t *e = q->elevator;
272 if (e->ops->elevator_merged_fn)
273 e->ops->elevator_merged_fn(q, rq);
275 q->last_merge = rq;
278 void elv_merge_requests(request_queue_t *q, struct request *rq,
279 struct request *next)
281 elevator_t *e = q->elevator;
283 if (e->ops->elevator_merge_req_fn)
284 e->ops->elevator_merge_req_fn(q, rq, next);
285 q->nr_sorted--;
287 q->last_merge = rq;
290 void elv_requeue_request(request_queue_t *q, struct request *rq)
292 elevator_t *e = q->elevator;
295 * it already went through dequeue, we need to decrement the
296 * in_flight count again
298 if (blk_account_rq(rq)) {
299 q->in_flight--;
300 if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
301 e->ops->elevator_deactivate_req_fn(q, rq);
304 rq->flags &= ~REQ_STARTED;
306 __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE, 0);
309 static void elv_drain_elevator(request_queue_t *q)
311 static int printed;
312 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
314 if (q->nr_sorted == 0)
315 return;
316 if (printed++ < 10) {
317 printk(KERN_ERR "%s: forced dispatching is broken "
318 "(nr_sorted=%u), please report this\n",
319 q->elevator->elevator_type->elevator_name, q->nr_sorted);
323 void __elv_add_request(request_queue_t *q, struct request *rq, int where,
324 int plug)
326 struct list_head *pos;
327 unsigned ordseq;
329 if (q->ordcolor)
330 rq->flags |= REQ_ORDERED_COLOR;
332 if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
334 * toggle ordered color
336 q->ordcolor ^= 1;
339 * barriers implicitly indicate back insertion
341 if (where == ELEVATOR_INSERT_SORT)
342 where = ELEVATOR_INSERT_BACK;
345 * this request is scheduling boundary, update end_sector
347 if (blk_fs_request(rq)) {
348 q->end_sector = rq_end_sector(rq);
349 q->boundary_rq = rq;
351 } else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
352 where = ELEVATOR_INSERT_BACK;
354 if (plug)
355 blk_plug_device(q);
357 rq->q = q;
359 switch (where) {
360 case ELEVATOR_INSERT_FRONT:
361 rq->flags |= REQ_SOFTBARRIER;
363 list_add(&rq->queuelist, &q->queue_head);
364 break;
366 case ELEVATOR_INSERT_BACK:
367 rq->flags |= REQ_SOFTBARRIER;
368 elv_drain_elevator(q);
369 list_add_tail(&rq->queuelist, &q->queue_head);
371 * We kick the queue here for the following reasons.
372 * - The elevator might have returned NULL previously
373 * to delay requests and returned them now. As the
374 * queue wasn't empty before this request, ll_rw_blk
375 * won't run the queue on return, resulting in hang.
376 * - Usually, back inserted requests won't be merged
377 * with anything. There's no point in delaying queue
378 * processing.
380 blk_remove_plug(q);
381 q->request_fn(q);
382 break;
384 case ELEVATOR_INSERT_SORT:
385 BUG_ON(!blk_fs_request(rq));
386 rq->flags |= REQ_SORTED;
387 q->nr_sorted++;
388 if (q->last_merge == NULL && rq_mergeable(rq))
389 q->last_merge = rq;
391 * Some ioscheds (cfq) run q->request_fn directly, so
392 * rq cannot be accessed after calling
393 * elevator_add_req_fn.
395 q->elevator->ops->elevator_add_req_fn(q, rq);
396 break;
398 case ELEVATOR_INSERT_REQUEUE:
400 * If ordered flush isn't in progress, we do front
401 * insertion; otherwise, requests should be requeued
402 * in ordseq order.
404 rq->flags |= REQ_SOFTBARRIER;
406 if (q->ordseq == 0) {
407 list_add(&rq->queuelist, &q->queue_head);
408 break;
411 ordseq = blk_ordered_req_seq(rq);
413 list_for_each(pos, &q->queue_head) {
414 struct request *pos_rq = list_entry_rq(pos);
415 if (ordseq <= blk_ordered_req_seq(pos_rq))
416 break;
419 list_add_tail(&rq->queuelist, pos);
420 break;
422 default:
423 printk(KERN_ERR "%s: bad insertion point %d\n",
424 __FUNCTION__, where);
425 BUG();
428 if (blk_queue_plugged(q)) {
429 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
430 - q->in_flight;
432 if (nrq >= q->unplug_thresh)
433 __generic_unplug_device(q);
437 void elv_add_request(request_queue_t *q, struct request *rq, int where,
438 int plug)
440 unsigned long flags;
442 spin_lock_irqsave(q->queue_lock, flags);
443 __elv_add_request(q, rq, where, plug);
444 spin_unlock_irqrestore(q->queue_lock, flags);
447 static inline struct request *__elv_next_request(request_queue_t *q)
449 struct request *rq;
451 while (1) {
452 while (!list_empty(&q->queue_head)) {
453 rq = list_entry_rq(q->queue_head.next);
454 if (blk_do_ordered(q, &rq))
455 return rq;
458 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
459 return NULL;
463 struct request *elv_next_request(request_queue_t *q)
465 struct request *rq;
466 int ret;
468 while ((rq = __elv_next_request(q)) != NULL) {
469 if (!(rq->flags & REQ_STARTED)) {
470 elevator_t *e = q->elevator;
473 * This is the first time the device driver
474 * sees this request (possibly after
475 * requeueing). Notify IO scheduler.
477 if (blk_sorted_rq(rq) &&
478 e->ops->elevator_activate_req_fn)
479 e->ops->elevator_activate_req_fn(q, rq);
482 * just mark as started even if we don't start
483 * it, a request that has been delayed should
484 * not be passed by new incoming requests
486 rq->flags |= REQ_STARTED;
489 if (!q->boundary_rq || q->boundary_rq == rq) {
490 q->end_sector = rq_end_sector(rq);
491 q->boundary_rq = NULL;
494 if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn)
495 break;
497 ret = q->prep_rq_fn(q, rq);
498 if (ret == BLKPREP_OK) {
499 break;
500 } else if (ret == BLKPREP_DEFER) {
502 * the request may have been (partially) prepped.
503 * we need to keep this request in the front to
504 * avoid resource deadlock. REQ_STARTED will
505 * prevent other fs requests from passing this one.
507 rq = NULL;
508 break;
509 } else if (ret == BLKPREP_KILL) {
510 int nr_bytes = rq->hard_nr_sectors << 9;
512 if (!nr_bytes)
513 nr_bytes = rq->data_len;
515 blkdev_dequeue_request(rq);
516 rq->flags |= REQ_QUIET;
517 end_that_request_chunk(rq, 0, nr_bytes);
518 end_that_request_last(rq, 0);
519 } else {
520 printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
521 ret);
522 break;
526 return rq;
529 void elv_dequeue_request(request_queue_t *q, struct request *rq)
531 BUG_ON(list_empty(&rq->queuelist));
533 list_del_init(&rq->queuelist);
536 * the time frame between a request being removed from the lists
537 * and to it is freed is accounted as io that is in progress at
538 * the driver side.
540 if (blk_account_rq(rq))
541 q->in_flight++;
544 int elv_queue_empty(request_queue_t *q)
546 elevator_t *e = q->elevator;
548 if (!list_empty(&q->queue_head))
549 return 0;
551 if (e->ops->elevator_queue_empty_fn)
552 return e->ops->elevator_queue_empty_fn(q);
554 return 1;
557 struct request *elv_latter_request(request_queue_t *q, struct request *rq)
559 elevator_t *e = q->elevator;
561 if (e->ops->elevator_latter_req_fn)
562 return e->ops->elevator_latter_req_fn(q, rq);
563 return NULL;
566 struct request *elv_former_request(request_queue_t *q, struct request *rq)
568 elevator_t *e = q->elevator;
570 if (e->ops->elevator_former_req_fn)
571 return e->ops->elevator_former_req_fn(q, rq);
572 return NULL;
575 int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
576 gfp_t gfp_mask)
578 elevator_t *e = q->elevator;
580 if (e->ops->elevator_set_req_fn)
581 return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
583 rq->elevator_private = NULL;
584 return 0;
587 void elv_put_request(request_queue_t *q, struct request *rq)
589 elevator_t *e = q->elevator;
591 if (e->ops->elevator_put_req_fn)
592 e->ops->elevator_put_req_fn(q, rq);
595 int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
597 elevator_t *e = q->elevator;
599 if (e->ops->elevator_may_queue_fn)
600 return e->ops->elevator_may_queue_fn(q, rw, bio);
602 return ELV_MQUEUE_MAY;
605 void elv_completed_request(request_queue_t *q, struct request *rq)
607 elevator_t *e = q->elevator;
610 * request is released from the driver, io must be done
612 if (blk_account_rq(rq)) {
613 struct request *first_rq = list_entry_rq(q->queue_head.next);
615 q->in_flight--;
618 * Check if the queue is waiting for fs requests to be
619 * drained for flush sequence.
621 if (q->ordseq && q->in_flight == 0 &&
622 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
623 blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
624 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
625 q->request_fn(q);
628 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
629 e->ops->elevator_completed_req_fn(q, rq);
633 int elv_register_queue(struct request_queue *q)
635 elevator_t *e = q->elevator;
637 e->kobj.parent = kobject_get(&q->kobj);
638 if (!e->kobj.parent)
639 return -EBUSY;
641 snprintf(e->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
642 e->kobj.ktype = e->elevator_type->elevator_ktype;
644 return kobject_register(&e->kobj);
647 void elv_unregister_queue(struct request_queue *q)
649 if (q) {
650 elevator_t *e = q->elevator;
651 kobject_unregister(&e->kobj);
652 kobject_put(&q->kobj);
656 int elv_register(struct elevator_type *e)
658 spin_lock_irq(&elv_list_lock);
659 if (elevator_find(e->elevator_name))
660 BUG();
661 list_add_tail(&e->list, &elv_list);
662 spin_unlock_irq(&elv_list_lock);
664 printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
665 if (!strcmp(e->elevator_name, chosen_elevator))
666 printk(" (default)");
667 printk("\n");
668 return 0;
670 EXPORT_SYMBOL_GPL(elv_register);
672 void elv_unregister(struct elevator_type *e)
674 struct task_struct *g, *p;
677 * Iterate every thread in the process to remove the io contexts.
679 read_lock(&tasklist_lock);
680 do_each_thread(g, p) {
681 struct io_context *ioc = p->io_context;
682 if (ioc && ioc->cic) {
683 ioc->cic->exit(ioc->cic);
684 ioc->cic->dtor(ioc->cic);
685 ioc->cic = NULL;
687 if (ioc && ioc->aic) {
688 ioc->aic->exit(ioc->aic);
689 ioc->aic->dtor(ioc->aic);
690 ioc->aic = NULL;
692 } while_each_thread(g, p);
693 read_unlock(&tasklist_lock);
695 spin_lock_irq(&elv_list_lock);
696 list_del_init(&e->list);
697 spin_unlock_irq(&elv_list_lock);
699 EXPORT_SYMBOL_GPL(elv_unregister);
702 * switch to new_e io scheduler. be careful not to introduce deadlocks -
703 * we don't free the old io scheduler, before we have allocated what we
704 * need for the new one. this way we have a chance of going back to the old
705 * one, if the new one fails init for some reason.
707 static void elevator_switch(request_queue_t *q, struct elevator_type *new_e)
709 elevator_t *old_elevator, *e;
712 * Allocate new elevator
714 e = kmalloc(sizeof(elevator_t), GFP_KERNEL);
715 if (!e)
716 goto error;
719 * Turn on BYPASS and drain all requests w/ elevator private data
721 spin_lock_irq(q->queue_lock);
723 set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
725 elv_drain_elevator(q);
727 while (q->rq.elvpriv) {
728 blk_remove_plug(q);
729 q->request_fn(q);
730 spin_unlock_irq(q->queue_lock);
731 msleep(10);
732 spin_lock_irq(q->queue_lock);
733 elv_drain_elevator(q);
736 spin_unlock_irq(q->queue_lock);
739 * unregister old elevator data
741 elv_unregister_queue(q);
742 old_elevator = q->elevator;
745 * attach and start new elevator
747 if (elevator_attach(q, new_e, e))
748 goto fail;
750 if (elv_register_queue(q))
751 goto fail_register;
754 * finally exit old elevator and turn off BYPASS.
756 elevator_exit(old_elevator);
757 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
758 return;
760 fail_register:
762 * switch failed, exit the new io scheduler and reattach the old
763 * one again (along with re-adding the sysfs dir)
765 elevator_exit(e);
766 e = NULL;
767 fail:
768 q->elevator = old_elevator;
769 elv_register_queue(q);
770 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
771 kfree(e);
772 error:
773 elevator_put(new_e);
774 printk(KERN_ERR "elevator: switch to %s failed\n",new_e->elevator_name);
777 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
779 char elevator_name[ELV_NAME_MAX];
780 size_t len;
781 struct elevator_type *e;
783 elevator_name[sizeof(elevator_name) - 1] = '\0';
784 strncpy(elevator_name, name, sizeof(elevator_name) - 1);
785 len = strlen(elevator_name);
787 if (len && elevator_name[len - 1] == '\n')
788 elevator_name[len - 1] = '\0';
790 e = elevator_get(elevator_name);
791 if (!e) {
792 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
793 return -EINVAL;
796 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
797 elevator_put(e);
798 return count;
801 elevator_switch(q, e);
802 return count;
805 ssize_t elv_iosched_show(request_queue_t *q, char *name)
807 elevator_t *e = q->elevator;
808 struct elevator_type *elv = e->elevator_type;
809 struct list_head *entry;
810 int len = 0;
812 spin_lock_irq(q->queue_lock);
813 list_for_each(entry, &elv_list) {
814 struct elevator_type *__e;
816 __e = list_entry(entry, struct elevator_type, list);
817 if (!strcmp(elv->elevator_name, __e->elevator_name))
818 len += sprintf(name+len, "[%s] ", elv->elevator_name);
819 else
820 len += sprintf(name+len, "%s ", __e->elevator_name);
822 spin_unlock_irq(q->queue_lock);
824 len += sprintf(len+name, "\n");
825 return len;
828 EXPORT_SYMBOL(elv_dispatch_sort);
829 EXPORT_SYMBOL(elv_add_request);
830 EXPORT_SYMBOL(__elv_add_request);
831 EXPORT_SYMBOL(elv_requeue_request);
832 EXPORT_SYMBOL(elv_next_request);
833 EXPORT_SYMBOL(elv_dequeue_request);
834 EXPORT_SYMBOL(elv_queue_empty);
835 EXPORT_SYMBOL(elv_completed_request);
836 EXPORT_SYMBOL(elevator_exit);
837 EXPORT_SYMBOL(elevator_init);