2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
43 #include <linux/slab.h>
44 #include <linux/poll.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
59 #include <asm/futex.h>
61 #include "rtmutex_common.h"
63 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66 * Priority Inheritance state:
68 struct futex_pi_state
{
70 * list of 'owned' pi_state instances - these have to be
71 * cleaned up in do_exit() if the task exits prematurely:
73 struct list_head list
;
78 struct rt_mutex pi_mutex
;
80 struct task_struct
*owner
;
87 * We use this hashed waitqueue instead of a normal wait_queue_t, so
88 * we can wake only the relevant ones (hashed queues may be shared).
90 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
91 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
92 * The order of wakup is always to make the first condition true, then
93 * wake up q->waiters, then make the second condition true.
96 struct plist_node list
;
97 wait_queue_head_t waiters
;
99 /* Which hash list lock to use: */
100 spinlock_t
*lock_ptr
;
102 /* Key which the futex is hashed on: */
105 /* For fd, sigio sent using these: */
109 /* Optional priority inheritance state: */
110 struct futex_pi_state
*pi_state
;
111 struct task_struct
*task
;
115 * Split the global futex_lock into every hash list lock.
117 struct futex_hash_bucket
{
119 struct plist_head chain
;
122 static struct futex_hash_bucket futex_queues
[1<<FUTEX_HASHBITS
];
124 /* Futex-fs vfsmount entry: */
125 static struct vfsmount
*futex_mnt
;
128 * Take mm->mmap_sem, when futex is shared
130 static inline void futex_lock_mm(struct rw_semaphore
*fshared
)
137 * Release mm->mmap_sem, when the futex is shared
139 static inline void futex_unlock_mm(struct rw_semaphore
*fshared
)
146 * We hash on the keys returned from get_futex_key (see below).
148 static struct futex_hash_bucket
*hash_futex(union futex_key
*key
)
150 u32 hash
= jhash2((u32
*)&key
->both
.word
,
151 (sizeof(key
->both
.word
)+sizeof(key
->both
.ptr
))/4,
153 return &futex_queues
[hash
& ((1 << FUTEX_HASHBITS
)-1)];
157 * Return 1 if two futex_keys are equal, 0 otherwise.
159 static inline int match_futex(union futex_key
*key1
, union futex_key
*key2
)
161 return (key1
->both
.word
== key2
->both
.word
162 && key1
->both
.ptr
== key2
->both
.ptr
163 && key1
->both
.offset
== key2
->both
.offset
);
167 * get_futex_key - Get parameters which are the keys for a futex.
168 * @uaddr: virtual address of the futex
169 * @shared: NULL for a PROCESS_PRIVATE futex,
170 * ¤t->mm->mmap_sem for a PROCESS_SHARED futex
171 * @key: address where result is stored.
173 * Returns a negative error code or 0
174 * The key words are stored in *key on success.
176 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
177 * offset_within_page). For private mappings, it's (uaddr, current->mm).
178 * We can usually work out the index without swapping in the page.
180 * fshared is NULL for PROCESS_PRIVATE futexes
181 * For other futexes, it points to ¤t->mm->mmap_sem and
182 * caller must have taken the reader lock. but NOT any spinlocks.
184 static int get_futex_key(u32 __user
*uaddr
, struct rw_semaphore
*fshared
,
185 union futex_key
*key
)
187 unsigned long address
= (unsigned long)uaddr
;
188 struct mm_struct
*mm
= current
->mm
;
189 struct vm_area_struct
*vma
;
194 * The futex address must be "naturally" aligned.
196 key
->both
.offset
= address
% PAGE_SIZE
;
197 if (unlikely((address
% sizeof(u32
)) != 0))
199 address
-= key
->both
.offset
;
202 * PROCESS_PRIVATE futexes are fast.
203 * As the mm cannot disappear under us and the 'key' only needs
204 * virtual address, we dont even have to find the underlying vma.
205 * Note : We do have to check 'uaddr' is a valid user address,
206 * but access_ok() should be faster than find_vma()
209 if (unlikely(!access_ok(VERIFY_WRITE
, uaddr
, sizeof(u32
))))
211 key
->private.mm
= mm
;
212 key
->private.address
= address
;
216 * The futex is hashed differently depending on whether
217 * it's in a shared or private mapping. So check vma first.
219 vma
= find_extend_vma(mm
, address
);
226 if (unlikely((vma
->vm_flags
& (VM_IO
|VM_READ
)) != VM_READ
))
227 return (vma
->vm_flags
& VM_IO
) ? -EPERM
: -EACCES
;
230 * Private mappings are handled in a simple way.
232 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
233 * it's a read-only handle, it's expected that futexes attach to
234 * the object not the particular process. Therefore we use
235 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
236 * mappings of _writable_ handles.
238 if (likely(!(vma
->vm_flags
& VM_MAYSHARE
))) {
239 key
->both
.offset
|= FUT_OFF_MMSHARED
; /* reference taken on mm */
240 key
->private.mm
= mm
;
241 key
->private.address
= address
;
246 * Linear file mappings are also simple.
248 key
->shared
.inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
249 key
->both
.offset
|= FUT_OFF_INODE
; /* inode-based key. */
250 if (likely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
251 key
->shared
.pgoff
= (((address
- vma
->vm_start
) >> PAGE_SHIFT
)
257 * We could walk the page table to read the non-linear
258 * pte, and get the page index without fetching the page
259 * from swap. But that's a lot of code to duplicate here
260 * for a rare case, so we simply fetch the page.
262 err
= get_user_pages(current
, mm
, address
, 1, 0, 0, &page
, NULL
);
265 page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
273 * Take a reference to the resource addressed by a key.
274 * Can be called while holding spinlocks.
277 static void get_futex_key_refs(union futex_key
*key
)
279 if (key
->both
.ptr
== 0)
281 switch (key
->both
.offset
& (FUT_OFF_INODE
|FUT_OFF_MMSHARED
)) {
283 atomic_inc(&key
->shared
.inode
->i_count
);
285 case FUT_OFF_MMSHARED
:
286 atomic_inc(&key
->private.mm
->mm_count
);
292 * Drop a reference to the resource addressed by a key.
293 * The hash bucket spinlock must not be held.
295 static void drop_futex_key_refs(union futex_key
*key
)
299 switch (key
->both
.offset
& (FUT_OFF_INODE
|FUT_OFF_MMSHARED
)) {
301 iput(key
->shared
.inode
);
303 case FUT_OFF_MMSHARED
:
304 mmdrop(key
->private.mm
);
309 static u32
cmpxchg_futex_value_locked(u32 __user
*uaddr
, u32 uval
, u32 newval
)
314 curval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, newval
);
320 static int get_futex_value_locked(u32
*dest
, u32 __user
*from
)
325 ret
= __copy_from_user_inatomic(dest
, from
, sizeof(u32
));
328 return ret
? -EFAULT
: 0;
333 * if fshared is non NULL, current->mm->mmap_sem is already held
335 static int futex_handle_fault(unsigned long address
,
336 struct rw_semaphore
*fshared
, int attempt
)
338 struct vm_area_struct
* vma
;
339 struct mm_struct
*mm
= current
->mm
;
346 down_read(&mm
->mmap_sem
);
347 vma
= find_vma(mm
, address
);
348 if (vma
&& address
>= vma
->vm_start
&&
349 (vma
->vm_flags
& VM_WRITE
)) {
351 fault
= handle_mm_fault(mm
, vma
, address
, 1);
352 if (unlikely((fault
& VM_FAULT_ERROR
))) {
354 /* XXX: let's do this when we verify it is OK */
355 if (ret
& VM_FAULT_OOM
)
360 if (fault
& VM_FAULT_MAJOR
)
367 up_read(&mm
->mmap_sem
);
374 static int refill_pi_state_cache(void)
376 struct futex_pi_state
*pi_state
;
378 if (likely(current
->pi_state_cache
))
381 pi_state
= kzalloc(sizeof(*pi_state
), GFP_KERNEL
);
386 INIT_LIST_HEAD(&pi_state
->list
);
387 /* pi_mutex gets initialized later */
388 pi_state
->owner
= NULL
;
389 atomic_set(&pi_state
->refcount
, 1);
391 current
->pi_state_cache
= pi_state
;
396 static struct futex_pi_state
* alloc_pi_state(void)
398 struct futex_pi_state
*pi_state
= current
->pi_state_cache
;
401 current
->pi_state_cache
= NULL
;
406 static void free_pi_state(struct futex_pi_state
*pi_state
)
408 if (!atomic_dec_and_test(&pi_state
->refcount
))
412 * If pi_state->owner is NULL, the owner is most probably dying
413 * and has cleaned up the pi_state already
415 if (pi_state
->owner
) {
416 spin_lock_irq(&pi_state
->owner
->pi_lock
);
417 list_del_init(&pi_state
->list
);
418 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
420 rt_mutex_proxy_unlock(&pi_state
->pi_mutex
, pi_state
->owner
);
423 if (current
->pi_state_cache
)
427 * pi_state->list is already empty.
428 * clear pi_state->owner.
429 * refcount is at 0 - put it back to 1.
431 pi_state
->owner
= NULL
;
432 atomic_set(&pi_state
->refcount
, 1);
433 current
->pi_state_cache
= pi_state
;
438 * Look up the task based on what TID userspace gave us.
441 static struct task_struct
* futex_find_get_task(pid_t pid
)
443 struct task_struct
*p
;
446 p
= find_task_by_vpid(pid
);
447 if (!p
|| ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
)))
458 * This task is holding PI mutexes at exit time => bad.
459 * Kernel cleans up PI-state, but userspace is likely hosed.
460 * (Robust-futex cleanup is separate and might save the day for userspace.)
462 void exit_pi_state_list(struct task_struct
*curr
)
464 struct list_head
*next
, *head
= &curr
->pi_state_list
;
465 struct futex_pi_state
*pi_state
;
466 struct futex_hash_bucket
*hb
;
470 * We are a ZOMBIE and nobody can enqueue itself on
471 * pi_state_list anymore, but we have to be careful
472 * versus waiters unqueueing themselves:
474 spin_lock_irq(&curr
->pi_lock
);
475 while (!list_empty(head
)) {
478 pi_state
= list_entry(next
, struct futex_pi_state
, list
);
480 hb
= hash_futex(&key
);
481 spin_unlock_irq(&curr
->pi_lock
);
483 spin_lock(&hb
->lock
);
485 spin_lock_irq(&curr
->pi_lock
);
487 * We dropped the pi-lock, so re-check whether this
488 * task still owns the PI-state:
490 if (head
->next
!= next
) {
491 spin_unlock(&hb
->lock
);
495 WARN_ON(pi_state
->owner
!= curr
);
496 WARN_ON(list_empty(&pi_state
->list
));
497 list_del_init(&pi_state
->list
);
498 pi_state
->owner
= NULL
;
499 spin_unlock_irq(&curr
->pi_lock
);
501 rt_mutex_unlock(&pi_state
->pi_mutex
);
503 spin_unlock(&hb
->lock
);
505 spin_lock_irq(&curr
->pi_lock
);
507 spin_unlock_irq(&curr
->pi_lock
);
511 lookup_pi_state(u32 uval
, struct futex_hash_bucket
*hb
,
512 union futex_key
*key
, struct futex_pi_state
**ps
)
514 struct futex_pi_state
*pi_state
= NULL
;
515 struct futex_q
*this, *next
;
516 struct plist_head
*head
;
517 struct task_struct
*p
;
518 pid_t pid
= uval
& FUTEX_TID_MASK
;
522 plist_for_each_entry_safe(this, next
, head
, list
) {
523 if (match_futex(&this->key
, key
)) {
525 * Another waiter already exists - bump up
526 * the refcount and return its pi_state:
528 pi_state
= this->pi_state
;
530 * Userspace might have messed up non PI and PI futexes
532 if (unlikely(!pi_state
))
535 WARN_ON(!atomic_read(&pi_state
->refcount
));
536 WARN_ON(pid
&& pi_state
->owner
&&
537 pi_state
->owner
->pid
!= pid
);
539 atomic_inc(&pi_state
->refcount
);
547 * We are the first waiter - try to look up the real owner and attach
548 * the new pi_state to it, but bail out when TID = 0
552 p
= futex_find_get_task(pid
);
557 * We need to look at the task state flags to figure out,
558 * whether the task is exiting. To protect against the do_exit
559 * change of the task flags, we do this protected by
562 spin_lock_irq(&p
->pi_lock
);
563 if (unlikely(p
->flags
& PF_EXITING
)) {
565 * The task is on the way out. When PF_EXITPIDONE is
566 * set, we know that the task has finished the
569 int ret
= (p
->flags
& PF_EXITPIDONE
) ? -ESRCH
: -EAGAIN
;
571 spin_unlock_irq(&p
->pi_lock
);
576 pi_state
= alloc_pi_state();
579 * Initialize the pi_mutex in locked state and make 'p'
582 rt_mutex_init_proxy_locked(&pi_state
->pi_mutex
, p
);
584 /* Store the key for possible exit cleanups: */
585 pi_state
->key
= *key
;
587 WARN_ON(!list_empty(&pi_state
->list
));
588 list_add(&pi_state
->list
, &p
->pi_state_list
);
590 spin_unlock_irq(&p
->pi_lock
);
600 * The hash bucket lock must be held when this is called.
601 * Afterwards, the futex_q must not be accessed.
603 static void wake_futex(struct futex_q
*q
)
605 plist_del(&q
->list
, &q
->list
.plist
);
607 send_sigio(&q
->filp
->f_owner
, q
->fd
, POLL_IN
);
609 * The lock in wake_up_all() is a crucial memory barrier after the
610 * plist_del() and also before assigning to q->lock_ptr.
612 wake_up_all(&q
->waiters
);
614 * The waiting task can free the futex_q as soon as this is written,
615 * without taking any locks. This must come last.
617 * A memory barrier is required here to prevent the following store
618 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
619 * at the end of wake_up_all() does not prevent this store from
626 static int wake_futex_pi(u32 __user
*uaddr
, u32 uval
, struct futex_q
*this)
628 struct task_struct
*new_owner
;
629 struct futex_pi_state
*pi_state
= this->pi_state
;
635 spin_lock(&pi_state
->pi_mutex
.wait_lock
);
636 new_owner
= rt_mutex_next_owner(&pi_state
->pi_mutex
);
639 * This happens when we have stolen the lock and the original
640 * pending owner did not enqueue itself back on the rt_mutex.
641 * Thats not a tragedy. We know that way, that a lock waiter
642 * is on the fly. We make the futex_q waiter the pending owner.
645 new_owner
= this->task
;
648 * We pass it to the next owner. (The WAITERS bit is always
649 * kept enabled while there is PI state around. We must also
650 * preserve the owner died bit.)
652 if (!(uval
& FUTEX_OWNER_DIED
)) {
655 newval
= FUTEX_WAITERS
| task_pid_vnr(new_owner
);
657 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
659 if (curval
== -EFAULT
)
661 else if (curval
!= uval
)
664 spin_unlock(&pi_state
->pi_mutex
.wait_lock
);
669 spin_lock_irq(&pi_state
->owner
->pi_lock
);
670 WARN_ON(list_empty(&pi_state
->list
));
671 list_del_init(&pi_state
->list
);
672 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
674 spin_lock_irq(&new_owner
->pi_lock
);
675 WARN_ON(!list_empty(&pi_state
->list
));
676 list_add(&pi_state
->list
, &new_owner
->pi_state_list
);
677 pi_state
->owner
= new_owner
;
678 spin_unlock_irq(&new_owner
->pi_lock
);
680 spin_unlock(&pi_state
->pi_mutex
.wait_lock
);
681 rt_mutex_unlock(&pi_state
->pi_mutex
);
686 static int unlock_futex_pi(u32 __user
*uaddr
, u32 uval
)
691 * There is no waiter, so we unlock the futex. The owner died
692 * bit has not to be preserved here. We are the owner:
694 oldval
= cmpxchg_futex_value_locked(uaddr
, uval
, 0);
696 if (oldval
== -EFAULT
)
705 * Express the locking dependencies for lockdep:
708 double_lock_hb(struct futex_hash_bucket
*hb1
, struct futex_hash_bucket
*hb2
)
711 spin_lock(&hb1
->lock
);
713 spin_lock_nested(&hb2
->lock
, SINGLE_DEPTH_NESTING
);
714 } else { /* hb1 > hb2 */
715 spin_lock(&hb2
->lock
);
716 spin_lock_nested(&hb1
->lock
, SINGLE_DEPTH_NESTING
);
721 * Wake up all waiters hashed on the physical page that is mapped
722 * to this virtual address:
724 static int futex_wake(u32 __user
*uaddr
, struct rw_semaphore
*fshared
,
727 struct futex_hash_bucket
*hb
;
728 struct futex_q
*this, *next
;
729 struct plist_head
*head
;
733 futex_lock_mm(fshared
);
735 ret
= get_futex_key(uaddr
, fshared
, &key
);
736 if (unlikely(ret
!= 0))
739 hb
= hash_futex(&key
);
740 spin_lock(&hb
->lock
);
743 plist_for_each_entry_safe(this, next
, head
, list
) {
744 if (match_futex (&this->key
, &key
)) {
745 if (this->pi_state
) {
750 if (++ret
>= nr_wake
)
755 spin_unlock(&hb
->lock
);
757 futex_unlock_mm(fshared
);
762 * Wake up all waiters hashed on the physical page that is mapped
763 * to this virtual address:
766 futex_wake_op(u32 __user
*uaddr1
, struct rw_semaphore
*fshared
,
768 int nr_wake
, int nr_wake2
, int op
)
770 union futex_key key1
, key2
;
771 struct futex_hash_bucket
*hb1
, *hb2
;
772 struct plist_head
*head
;
773 struct futex_q
*this, *next
;
774 int ret
, op_ret
, attempt
= 0;
777 futex_lock_mm(fshared
);
779 ret
= get_futex_key(uaddr1
, fshared
, &key1
);
780 if (unlikely(ret
!= 0))
782 ret
= get_futex_key(uaddr2
, fshared
, &key2
);
783 if (unlikely(ret
!= 0))
786 hb1
= hash_futex(&key1
);
787 hb2
= hash_futex(&key2
);
790 double_lock_hb(hb1
, hb2
);
792 op_ret
= futex_atomic_op_inuser(op
, uaddr2
);
793 if (unlikely(op_ret
< 0)) {
796 spin_unlock(&hb1
->lock
);
798 spin_unlock(&hb2
->lock
);
802 * we don't get EFAULT from MMU faults if we don't have an MMU,
803 * but we might get them from range checking
809 if (unlikely(op_ret
!= -EFAULT
)) {
815 * futex_atomic_op_inuser needs to both read and write
816 * *(int __user *)uaddr2, but we can't modify it
817 * non-atomically. Therefore, if get_user below is not
818 * enough, we need to handle the fault ourselves, while
819 * still holding the mmap_sem.
822 ret
= futex_handle_fault((unsigned long)uaddr2
,
830 * If we would have faulted, release mmap_sem,
831 * fault it in and start all over again.
833 futex_unlock_mm(fshared
);
835 ret
= get_user(dummy
, uaddr2
);
844 plist_for_each_entry_safe(this, next
, head
, list
) {
845 if (match_futex (&this->key
, &key1
)) {
847 if (++ret
>= nr_wake
)
856 plist_for_each_entry_safe(this, next
, head
, list
) {
857 if (match_futex (&this->key
, &key2
)) {
859 if (++op_ret
>= nr_wake2
)
866 spin_unlock(&hb1
->lock
);
868 spin_unlock(&hb2
->lock
);
870 futex_unlock_mm(fshared
);
876 * Requeue all waiters hashed on one physical page to another
879 static int futex_requeue(u32 __user
*uaddr1
, struct rw_semaphore
*fshared
,
881 int nr_wake
, int nr_requeue
, u32
*cmpval
)
883 union futex_key key1
, key2
;
884 struct futex_hash_bucket
*hb1
, *hb2
;
885 struct plist_head
*head1
;
886 struct futex_q
*this, *next
;
887 int ret
, drop_count
= 0;
890 futex_lock_mm(fshared
);
892 ret
= get_futex_key(uaddr1
, fshared
, &key1
);
893 if (unlikely(ret
!= 0))
895 ret
= get_futex_key(uaddr2
, fshared
, &key2
);
896 if (unlikely(ret
!= 0))
899 hb1
= hash_futex(&key1
);
900 hb2
= hash_futex(&key2
);
902 double_lock_hb(hb1
, hb2
);
904 if (likely(cmpval
!= NULL
)) {
907 ret
= get_futex_value_locked(&curval
, uaddr1
);
910 spin_unlock(&hb1
->lock
);
912 spin_unlock(&hb2
->lock
);
915 * If we would have faulted, release mmap_sem, fault
916 * it in and start all over again.
918 futex_unlock_mm(fshared
);
920 ret
= get_user(curval
, uaddr1
);
927 if (curval
!= *cmpval
) {
934 plist_for_each_entry_safe(this, next
, head1
, list
) {
935 if (!match_futex (&this->key
, &key1
))
937 if (++ret
<= nr_wake
) {
941 * If key1 and key2 hash to the same bucket, no need to
944 if (likely(head1
!= &hb2
->chain
)) {
945 plist_del(&this->list
, &hb1
->chain
);
946 plist_add(&this->list
, &hb2
->chain
);
947 this->lock_ptr
= &hb2
->lock
;
948 #ifdef CONFIG_DEBUG_PI_LIST
949 this->list
.plist
.lock
= &hb2
->lock
;
953 get_futex_key_refs(&key2
);
956 if (ret
- nr_wake
>= nr_requeue
)
962 spin_unlock(&hb1
->lock
);
964 spin_unlock(&hb2
->lock
);
966 /* drop_futex_key_refs() must be called outside the spinlocks. */
967 while (--drop_count
>= 0)
968 drop_futex_key_refs(&key1
);
971 futex_unlock_mm(fshared
);
975 /* The key must be already stored in q->key. */
976 static inline struct futex_hash_bucket
*
977 queue_lock(struct futex_q
*q
, int fd
, struct file
*filp
)
979 struct futex_hash_bucket
*hb
;
984 init_waitqueue_head(&q
->waiters
);
986 get_futex_key_refs(&q
->key
);
987 hb
= hash_futex(&q
->key
);
988 q
->lock_ptr
= &hb
->lock
;
990 spin_lock(&hb
->lock
);
994 static inline void __queue_me(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
999 * The priority used to register this element is
1000 * - either the real thread-priority for the real-time threads
1001 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1002 * - or MAX_RT_PRIO for non-RT threads.
1003 * Thus, all RT-threads are woken first in priority order, and
1004 * the others are woken last, in FIFO order.
1006 prio
= min(current
->normal_prio
, MAX_RT_PRIO
);
1008 plist_node_init(&q
->list
, prio
);
1009 #ifdef CONFIG_DEBUG_PI_LIST
1010 q
->list
.plist
.lock
= &hb
->lock
;
1012 plist_add(&q
->list
, &hb
->chain
);
1014 spin_unlock(&hb
->lock
);
1018 queue_unlock(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
1020 spin_unlock(&hb
->lock
);
1021 drop_futex_key_refs(&q
->key
);
1025 * queue_me and unqueue_me must be called as a pair, each
1026 * exactly once. They are called with the hashed spinlock held.
1029 /* The key must be already stored in q->key. */
1030 static void queue_me(struct futex_q
*q
, int fd
, struct file
*filp
)
1032 struct futex_hash_bucket
*hb
;
1034 hb
= queue_lock(q
, fd
, filp
);
1038 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1039 static int unqueue_me(struct futex_q
*q
)
1041 spinlock_t
*lock_ptr
;
1044 /* In the common case we don't take the spinlock, which is nice. */
1046 lock_ptr
= q
->lock_ptr
;
1048 if (lock_ptr
!= NULL
) {
1049 spin_lock(lock_ptr
);
1051 * q->lock_ptr can change between reading it and
1052 * spin_lock(), causing us to take the wrong lock. This
1053 * corrects the race condition.
1055 * Reasoning goes like this: if we have the wrong lock,
1056 * q->lock_ptr must have changed (maybe several times)
1057 * between reading it and the spin_lock(). It can
1058 * change again after the spin_lock() but only if it was
1059 * already changed before the spin_lock(). It cannot,
1060 * however, change back to the original value. Therefore
1061 * we can detect whether we acquired the correct lock.
1063 if (unlikely(lock_ptr
!= q
->lock_ptr
)) {
1064 spin_unlock(lock_ptr
);
1067 WARN_ON(plist_node_empty(&q
->list
));
1068 plist_del(&q
->list
, &q
->list
.plist
);
1070 BUG_ON(q
->pi_state
);
1072 spin_unlock(lock_ptr
);
1076 drop_futex_key_refs(&q
->key
);
1081 * PI futexes can not be requeued and must remove themself from the
1082 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1085 static void unqueue_me_pi(struct futex_q
*q
)
1087 WARN_ON(plist_node_empty(&q
->list
));
1088 plist_del(&q
->list
, &q
->list
.plist
);
1090 BUG_ON(!q
->pi_state
);
1091 free_pi_state(q
->pi_state
);
1094 spin_unlock(q
->lock_ptr
);
1096 drop_futex_key_refs(&q
->key
);
1100 * Fixup the pi_state owner with the new owner.
1102 * Must be called with hash bucket lock held and mm->sem held for non
1105 static int fixup_pi_state_owner(u32 __user
*uaddr
, struct futex_q
*q
,
1106 struct task_struct
*newowner
)
1108 u32 newtid
= task_pid_vnr(newowner
) | FUTEX_WAITERS
;
1109 struct futex_pi_state
*pi_state
= q
->pi_state
;
1110 u32 uval
, curval
, newval
;
1114 if (pi_state
->owner
!= NULL
) {
1115 spin_lock_irq(&pi_state
->owner
->pi_lock
);
1116 WARN_ON(list_empty(&pi_state
->list
));
1117 list_del_init(&pi_state
->list
);
1118 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
1120 newtid
|= FUTEX_OWNER_DIED
;
1122 pi_state
->owner
= newowner
;
1124 spin_lock_irq(&newowner
->pi_lock
);
1125 WARN_ON(!list_empty(&pi_state
->list
));
1126 list_add(&pi_state
->list
, &newowner
->pi_state_list
);
1127 spin_unlock_irq(&newowner
->pi_lock
);
1130 * We own it, so we have to replace the pending owner
1131 * TID. This must be atomic as we have preserve the
1132 * owner died bit here.
1134 ret
= get_futex_value_locked(&uval
, uaddr
);
1137 newval
= (uval
& FUTEX_OWNER_DIED
) | newtid
;
1139 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
1141 if (curval
== -EFAULT
)
1151 * In case we must use restart_block to restart a futex_wait,
1152 * we encode in the 'flags' shared capability
1154 #define FLAGS_SHARED 1
1156 static long futex_wait_restart(struct restart_block
*restart
);
1158 static int futex_wait(u32 __user
*uaddr
, struct rw_semaphore
*fshared
,
1159 u32 val
, ktime_t
*abs_time
)
1161 struct task_struct
*curr
= current
;
1162 DECLARE_WAITQUEUE(wait
, curr
);
1163 struct futex_hash_bucket
*hb
;
1167 struct hrtimer_sleeper t
;
1172 futex_lock_mm(fshared
);
1174 ret
= get_futex_key(uaddr
, fshared
, &q
.key
);
1175 if (unlikely(ret
!= 0))
1176 goto out_release_sem
;
1178 hb
= queue_lock(&q
, -1, NULL
);
1181 * Access the page AFTER the futex is queued.
1182 * Order is important:
1184 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1185 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1187 * The basic logical guarantee of a futex is that it blocks ONLY
1188 * if cond(var) is known to be true at the time of blocking, for
1189 * any cond. If we queued after testing *uaddr, that would open
1190 * a race condition where we could block indefinitely with
1191 * cond(var) false, which would violate the guarantee.
1193 * A consequence is that futex_wait() can return zero and absorb
1194 * a wakeup when *uaddr != val on entry to the syscall. This is
1197 * for shared futexes, we hold the mmap semaphore, so the mapping
1198 * cannot have changed since we looked it up in get_futex_key.
1200 ret
= get_futex_value_locked(&uval
, uaddr
);
1202 if (unlikely(ret
)) {
1203 queue_unlock(&q
, hb
);
1206 * If we would have faulted, release mmap_sem, fault it in and
1207 * start all over again.
1209 futex_unlock_mm(fshared
);
1211 ret
= get_user(uval
, uaddr
);
1219 goto out_unlock_release_sem
;
1221 /* Only actually queue if *uaddr contained val. */
1225 * Now the futex is queued and we have checked the data, we
1226 * don't want to hold mmap_sem while we sleep.
1228 futex_unlock_mm(fshared
);
1231 * There might have been scheduling since the queue_me(), as we
1232 * cannot hold a spinlock across the get_user() in case it
1233 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1234 * queueing ourselves into the futex hash. This code thus has to
1235 * rely on the futex_wake() code removing us from hash when it
1239 /* add_wait_queue is the barrier after __set_current_state. */
1240 __set_current_state(TASK_INTERRUPTIBLE
);
1241 add_wait_queue(&q
.waiters
, &wait
);
1243 * !plist_node_empty() is safe here without any lock.
1244 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1246 if (likely(!plist_node_empty(&q
.list
))) {
1250 hrtimer_init(&t
.timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1251 hrtimer_init_sleeper(&t
, current
);
1252 t
.timer
.expires
= *abs_time
;
1254 hrtimer_start(&t
.timer
, t
.timer
.expires
, HRTIMER_MODE_ABS
);
1257 * the timer could have already expired, in which
1258 * case current would be flagged for rescheduling.
1259 * Don't bother calling schedule.
1264 hrtimer_cancel(&t
.timer
);
1266 /* Flag if a timeout occured */
1267 rem
= (t
.task
== NULL
);
1270 __set_current_state(TASK_RUNNING
);
1273 * NOTE: we don't remove ourselves from the waitqueue because
1274 * we are the only user of it.
1277 /* If we were woken (and unqueued), we succeeded, whatever. */
1278 if (!unqueue_me(&q
))
1284 * We expect signal_pending(current), but another thread may
1285 * have handled it for us already.
1288 return -ERESTARTSYS
;
1290 struct restart_block
*restart
;
1291 restart
= ¤t_thread_info()->restart_block
;
1292 restart
->fn
= futex_wait_restart
;
1293 restart
->futex
.uaddr
= (u32
*)uaddr
;
1294 restart
->futex
.val
= val
;
1295 restart
->futex
.time
= abs_time
->tv64
;
1296 restart
->futex
.flags
= 0;
1299 restart
->futex
.flags
|= FLAGS_SHARED
;
1300 return -ERESTART_RESTARTBLOCK
;
1303 out_unlock_release_sem
:
1304 queue_unlock(&q
, hb
);
1307 futex_unlock_mm(fshared
);
1312 static long futex_wait_restart(struct restart_block
*restart
)
1314 u32 __user
*uaddr
= (u32 __user
*)restart
->futex
.uaddr
;
1315 struct rw_semaphore
*fshared
= NULL
;
1318 t
.tv64
= restart
->futex
.time
;
1319 restart
->fn
= do_no_restart_syscall
;
1320 if (restart
->futex
.flags
& FLAGS_SHARED
)
1321 fshared
= ¤t
->mm
->mmap_sem
;
1322 return (long)futex_wait(uaddr
, fshared
, restart
->futex
.val
, &t
);
1327 * Userspace tried a 0 -> TID atomic transition of the futex value
1328 * and failed. The kernel side here does the whole locking operation:
1329 * if there are waiters then it will block, it does PI, etc. (Due to
1330 * races the kernel might see a 0 value of the futex too.)
1332 static int futex_lock_pi(u32 __user
*uaddr
, struct rw_semaphore
*fshared
,
1333 int detect
, ktime_t
*time
, int trylock
)
1335 struct hrtimer_sleeper timeout
, *to
= NULL
;
1336 struct task_struct
*curr
= current
;
1337 struct futex_hash_bucket
*hb
;
1338 u32 uval
, newval
, curval
;
1340 int ret
, lock_taken
, ownerdied
= 0, attempt
= 0;
1342 if (refill_pi_state_cache())
1347 hrtimer_init(&to
->timer
, CLOCK_REALTIME
, HRTIMER_MODE_ABS
);
1348 hrtimer_init_sleeper(to
, current
);
1349 to
->timer
.expires
= *time
;
1354 futex_lock_mm(fshared
);
1356 ret
= get_futex_key(uaddr
, fshared
, &q
.key
);
1357 if (unlikely(ret
!= 0))
1358 goto out_release_sem
;
1361 hb
= queue_lock(&q
, -1, NULL
);
1364 ret
= lock_taken
= 0;
1367 * To avoid races, we attempt to take the lock here again
1368 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1369 * the locks. It will most likely not succeed.
1371 newval
= task_pid_vnr(current
);
1373 curval
= cmpxchg_futex_value_locked(uaddr
, 0, newval
);
1375 if (unlikely(curval
== -EFAULT
))
1379 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1380 * situation and we return success to user space.
1382 if (unlikely((curval
& FUTEX_TID_MASK
) == task_pid_vnr(current
))) {
1384 goto out_unlock_release_sem
;
1388 * Surprise - we got the lock. Just return to userspace:
1390 if (unlikely(!curval
))
1391 goto out_unlock_release_sem
;
1396 * Set the WAITERS flag, so the owner will know it has someone
1397 * to wake at next unlock
1399 newval
= curval
| FUTEX_WAITERS
;
1402 * There are two cases, where a futex might have no owner (the
1403 * owner TID is 0): OWNER_DIED. We take over the futex in this
1404 * case. We also do an unconditional take over, when the owner
1405 * of the futex died.
1407 * This is safe as we are protected by the hash bucket lock !
1409 if (unlikely(ownerdied
|| !(curval
& FUTEX_TID_MASK
))) {
1410 /* Keep the OWNER_DIED bit */
1411 newval
= (curval
& ~FUTEX_TID_MASK
) | task_pid_vnr(current
);
1416 curval
= cmpxchg_futex_value_locked(uaddr
, uval
, newval
);
1418 if (unlikely(curval
== -EFAULT
))
1420 if (unlikely(curval
!= uval
))
1424 * We took the lock due to owner died take over.
1426 if (unlikely(lock_taken
))
1427 goto out_unlock_release_sem
;
1430 * We dont have the lock. Look up the PI state (or create it if
1431 * we are the first waiter):
1433 ret
= lookup_pi_state(uval
, hb
, &q
.key
, &q
.pi_state
);
1435 if (unlikely(ret
)) {
1440 * Task is exiting and we just wait for the
1443 queue_unlock(&q
, hb
);
1444 futex_unlock_mm(fshared
);
1450 * No owner found for this futex. Check if the
1451 * OWNER_DIED bit is set to figure out whether
1452 * this is a robust futex or not.
1454 if (get_futex_value_locked(&curval
, uaddr
))
1458 * We simply start over in case of a robust
1459 * futex. The code above will take the futex
1462 if (curval
& FUTEX_OWNER_DIED
) {
1467 goto out_unlock_release_sem
;
1472 * Only actually queue now that the atomic ops are done:
1477 * Now the futex is queued and we have checked the data, we
1478 * don't want to hold mmap_sem while we sleep.
1480 futex_unlock_mm(fshared
);
1482 WARN_ON(!q
.pi_state
);
1484 * Block on the PI mutex:
1487 ret
= rt_mutex_timed_lock(&q
.pi_state
->pi_mutex
, to
, 1);
1489 ret
= rt_mutex_trylock(&q
.pi_state
->pi_mutex
);
1490 /* Fixup the trylock return value: */
1491 ret
= ret
? 0 : -EWOULDBLOCK
;
1494 futex_lock_mm(fshared
);
1495 spin_lock(q
.lock_ptr
);
1499 * Got the lock. We might not be the anticipated owner
1500 * if we did a lock-steal - fix up the PI-state in
1503 if (q
.pi_state
->owner
!= curr
)
1504 ret
= fixup_pi_state_owner(uaddr
, &q
, curr
);
1507 * Catch the rare case, where the lock was released
1508 * when we were on the way back before we locked the
1511 if (q
.pi_state
->owner
== curr
) {
1513 * Try to get the rt_mutex now. This might
1514 * fail as some other task acquired the
1515 * rt_mutex after we removed ourself from the
1516 * rt_mutex waiters list.
1518 if (rt_mutex_trylock(&q
.pi_state
->pi_mutex
))
1522 * pi_state is incorrect, some other
1523 * task did a lock steal and we
1524 * returned due to timeout or signal
1525 * without taking the rt_mutex. Too
1526 * late. We can access the
1527 * rt_mutex_owner without locking, as
1528 * the other task is now blocked on
1529 * the hash bucket lock. Fix the state
1532 struct task_struct
*owner
;
1535 owner
= rt_mutex_owner(&q
.pi_state
->pi_mutex
);
1536 res
= fixup_pi_state_owner(uaddr
, &q
, owner
);
1538 WARN_ON(rt_mutex_owner(&q
.pi_state
->pi_mutex
) !=
1541 /* propagate -EFAULT, if the fixup failed */
1547 * Paranoia check. If we did not take the lock
1548 * in the trylock above, then we should not be
1549 * the owner of the rtmutex, neither the real
1550 * nor the pending one:
1552 if (rt_mutex_owner(&q
.pi_state
->pi_mutex
) == curr
)
1553 printk(KERN_ERR
"futex_lock_pi: ret = %d "
1554 "pi-mutex: %p pi-state %p\n", ret
,
1555 q
.pi_state
->pi_mutex
.owner
,
1560 /* Unqueue and drop the lock */
1562 futex_unlock_mm(fshared
);
1564 return ret
!= -EINTR
? ret
: -ERESTARTNOINTR
;
1566 out_unlock_release_sem
:
1567 queue_unlock(&q
, hb
);
1570 futex_unlock_mm(fshared
);
1575 * We have to r/w *(int __user *)uaddr, but we can't modify it
1576 * non-atomically. Therefore, if get_user below is not
1577 * enough, we need to handle the fault ourselves, while
1578 * still holding the mmap_sem.
1580 * ... and hb->lock. :-) --ANK
1582 queue_unlock(&q
, hb
);
1585 ret
= futex_handle_fault((unsigned long)uaddr
, fshared
,
1588 goto out_release_sem
;
1589 goto retry_unlocked
;
1592 futex_unlock_mm(fshared
);
1594 ret
= get_user(uval
, uaddr
);
1595 if (!ret
&& (uval
!= -EFAULT
))
1602 * Userspace attempted a TID -> 0 atomic transition, and failed.
1603 * This is the in-kernel slowpath: we look up the PI state (if any),
1604 * and do the rt-mutex unlock.
1606 static int futex_unlock_pi(u32 __user
*uaddr
, struct rw_semaphore
*fshared
)
1608 struct futex_hash_bucket
*hb
;
1609 struct futex_q
*this, *next
;
1611 struct plist_head
*head
;
1612 union futex_key key
;
1613 int ret
, attempt
= 0;
1616 if (get_user(uval
, uaddr
))
1619 * We release only a lock we actually own:
1621 if ((uval
& FUTEX_TID_MASK
) != task_pid_vnr(current
))
1624 * First take all the futex related locks:
1626 futex_lock_mm(fshared
);
1628 ret
= get_futex_key(uaddr
, fshared
, &key
);
1629 if (unlikely(ret
!= 0))
1632 hb
= hash_futex(&key
);
1634 spin_lock(&hb
->lock
);
1637 * To avoid races, try to do the TID -> 0 atomic transition
1638 * again. If it succeeds then we can return without waking
1641 if (!(uval
& FUTEX_OWNER_DIED
))
1642 uval
= cmpxchg_futex_value_locked(uaddr
, task_pid_vnr(current
), 0);
1645 if (unlikely(uval
== -EFAULT
))
1648 * Rare case: we managed to release the lock atomically,
1649 * no need to wake anyone else up:
1651 if (unlikely(uval
== task_pid_vnr(current
)))
1655 * Ok, other tasks may need to be woken up - check waiters
1656 * and do the wakeup if necessary:
1660 plist_for_each_entry_safe(this, next
, head
, list
) {
1661 if (!match_futex (&this->key
, &key
))
1663 ret
= wake_futex_pi(uaddr
, uval
, this);
1665 * The atomic access to the futex value
1666 * generated a pagefault, so retry the
1667 * user-access and the wakeup:
1674 * No waiters - kernel unlocks the futex:
1676 if (!(uval
& FUTEX_OWNER_DIED
)) {
1677 ret
= unlock_futex_pi(uaddr
, uval
);
1683 spin_unlock(&hb
->lock
);
1685 futex_unlock_mm(fshared
);
1691 * We have to r/w *(int __user *)uaddr, but we can't modify it
1692 * non-atomically. Therefore, if get_user below is not
1693 * enough, we need to handle the fault ourselves, while
1694 * still holding the mmap_sem.
1696 * ... and hb->lock. --ANK
1698 spin_unlock(&hb
->lock
);
1701 ret
= futex_handle_fault((unsigned long)uaddr
, fshared
,
1706 goto retry_unlocked
;
1709 futex_unlock_mm(fshared
);
1711 ret
= get_user(uval
, uaddr
);
1712 if (!ret
&& (uval
!= -EFAULT
))
1718 static int futex_close(struct inode
*inode
, struct file
*filp
)
1720 struct futex_q
*q
= filp
->private_data
;
1728 /* This is one-shot: once it's gone off you need a new fd */
1729 static unsigned int futex_poll(struct file
*filp
,
1730 struct poll_table_struct
*wait
)
1732 struct futex_q
*q
= filp
->private_data
;
1735 poll_wait(filp
, &q
->waiters
, wait
);
1738 * plist_node_empty() is safe here without any lock.
1739 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1741 if (plist_node_empty(&q
->list
))
1742 ret
= POLLIN
| POLLRDNORM
;
1747 static const struct file_operations futex_fops
= {
1748 .release
= futex_close
,
1753 * Signal allows caller to avoid the race which would occur if they
1754 * set the sigio stuff up afterwards.
1756 static int futex_fd(u32 __user
*uaddr
, int signal
)
1761 struct rw_semaphore
*fshared
;
1762 static unsigned long printk_interval
;
1764 if (printk_timed_ratelimit(&printk_interval
, 60 * 60 * 1000)) {
1765 printk(KERN_WARNING
"Process `%s' used FUTEX_FD, which "
1766 "will be removed from the kernel in June 2007\n",
1771 if (!valid_signal(signal
))
1774 ret
= get_unused_fd();
1777 filp
= get_empty_filp();
1783 filp
->f_op
= &futex_fops
;
1784 filp
->f_path
.mnt
= mntget(futex_mnt
);
1785 filp
->f_path
.dentry
= dget(futex_mnt
->mnt_root
);
1786 filp
->f_mapping
= filp
->f_path
.dentry
->d_inode
->i_mapping
;
1789 err
= __f_setown(filp
, task_pid(current
), PIDTYPE_PID
, 1);
1793 filp
->f_owner
.signum
= signal
;
1796 q
= kmalloc(sizeof(*q
), GFP_KERNEL
);
1803 fshared
= ¤t
->mm
->mmap_sem
;
1805 err
= get_futex_key(uaddr
, fshared
, &q
->key
);
1807 if (unlikely(err
!= 0)) {
1814 * queue_me() must be called before releasing mmap_sem, because
1815 * key->shared.inode needs to be referenced while holding it.
1817 filp
->private_data
= q
;
1819 queue_me(q
, ret
, filp
);
1822 /* Now we map fd to filp, so userspace can access it */
1823 fd_install(ret
, filp
);
1834 * Support for robust futexes: the kernel cleans up held futexes at
1837 * Implementation: user-space maintains a per-thread list of locks it
1838 * is holding. Upon do_exit(), the kernel carefully walks this list,
1839 * and marks all locks that are owned by this thread with the
1840 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1841 * always manipulated with the lock held, so the list is private and
1842 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1843 * field, to allow the kernel to clean up if the thread dies after
1844 * acquiring the lock, but just before it could have added itself to
1845 * the list. There can only be one such pending lock.
1849 * sys_set_robust_list - set the robust-futex list head of a task
1850 * @head: pointer to the list-head
1851 * @len: length of the list-head, as userspace expects
1854 sys_set_robust_list(struct robust_list_head __user
*head
,
1858 * The kernel knows only one size for now:
1860 if (unlikely(len
!= sizeof(*head
)))
1863 current
->robust_list
= head
;
1869 * sys_get_robust_list - get the robust-futex list head of a task
1870 * @pid: pid of the process [zero for current task]
1871 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1872 * @len_ptr: pointer to a length field, the kernel fills in the header size
1875 sys_get_robust_list(int pid
, struct robust_list_head __user
* __user
*head_ptr
,
1876 size_t __user
*len_ptr
)
1878 struct robust_list_head __user
*head
;
1882 head
= current
->robust_list
;
1884 struct task_struct
*p
;
1888 p
= find_task_by_vpid(pid
);
1892 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
1893 !capable(CAP_SYS_PTRACE
))
1895 head
= p
->robust_list
;
1899 if (put_user(sizeof(*head
), len_ptr
))
1901 return put_user(head
, head_ptr
);
1910 * Process a futex-list entry, check whether it's owned by the
1911 * dying task, and do notification if so:
1913 int handle_futex_death(u32 __user
*uaddr
, struct task_struct
*curr
, int pi
)
1915 u32 uval
, nval
, mval
;
1918 if (get_user(uval
, uaddr
))
1921 if ((uval
& FUTEX_TID_MASK
) == task_pid_vnr(curr
)) {
1923 * Ok, this dying thread is truly holding a futex
1924 * of interest. Set the OWNER_DIED bit atomically
1925 * via cmpxchg, and if the value had FUTEX_WAITERS
1926 * set, wake up a waiter (if any). (We have to do a
1927 * futex_wake() even if OWNER_DIED is already set -
1928 * to handle the rare but possible case of recursive
1929 * thread-death.) The rest of the cleanup is done in
1932 mval
= (uval
& FUTEX_WAITERS
) | FUTEX_OWNER_DIED
;
1933 nval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, mval
);
1935 if (nval
== -EFAULT
)
1942 * Wake robust non-PI futexes here. The wakeup of
1943 * PI futexes happens in exit_pi_state():
1945 if (!pi
&& (uval
& FUTEX_WAITERS
))
1946 futex_wake(uaddr
, &curr
->mm
->mmap_sem
, 1);
1952 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1954 static inline int fetch_robust_entry(struct robust_list __user
**entry
,
1955 struct robust_list __user
* __user
*head
,
1958 unsigned long uentry
;
1960 if (get_user(uentry
, (unsigned long __user
*)head
))
1963 *entry
= (void __user
*)(uentry
& ~1UL);
1970 * Walk curr->robust_list (very carefully, it's a userspace list!)
1971 * and mark any locks found there dead, and notify any waiters.
1973 * We silently return on any sign of list-walking problem.
1975 void exit_robust_list(struct task_struct
*curr
)
1977 struct robust_list_head __user
*head
= curr
->robust_list
;
1978 struct robust_list __user
*entry
, *next_entry
, *pending
;
1979 unsigned int limit
= ROBUST_LIST_LIMIT
, pi
, next_pi
, pip
;
1980 unsigned long futex_offset
;
1984 * Fetch the list head (which was registered earlier, via
1985 * sys_set_robust_list()):
1987 if (fetch_robust_entry(&entry
, &head
->list
.next
, &pi
))
1990 * Fetch the relative futex offset:
1992 if (get_user(futex_offset
, &head
->futex_offset
))
1995 * Fetch any possibly pending lock-add first, and handle it
1998 if (fetch_robust_entry(&pending
, &head
->list_op_pending
, &pip
))
2001 next_entry
= NULL
; /* avoid warning with gcc */
2002 while (entry
!= &head
->list
) {
2004 * Fetch the next entry in the list before calling
2005 * handle_futex_death:
2007 rc
= fetch_robust_entry(&next_entry
, &entry
->next
, &next_pi
);
2009 * A pending lock might already be on the list, so
2010 * don't process it twice:
2012 if (entry
!= pending
)
2013 if (handle_futex_death((void __user
*)entry
+ futex_offset
,
2021 * Avoid excessively long or circular lists:
2030 handle_futex_death((void __user
*)pending
+ futex_offset
,
2034 long do_futex(u32 __user
*uaddr
, int op
, u32 val
, ktime_t
*timeout
,
2035 u32 __user
*uaddr2
, u32 val2
, u32 val3
)
2038 int cmd
= op
& FUTEX_CMD_MASK
;
2039 struct rw_semaphore
*fshared
= NULL
;
2041 if (!(op
& FUTEX_PRIVATE_FLAG
))
2042 fshared
= ¤t
->mm
->mmap_sem
;
2046 ret
= futex_wait(uaddr
, fshared
, val
, timeout
);
2049 ret
= futex_wake(uaddr
, fshared
, val
);
2052 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2053 ret
= futex_fd(uaddr
, val
);
2056 ret
= futex_requeue(uaddr
, fshared
, uaddr2
, val
, val2
, NULL
);
2058 case FUTEX_CMP_REQUEUE
:
2059 ret
= futex_requeue(uaddr
, fshared
, uaddr2
, val
, val2
, &val3
);
2062 ret
= futex_wake_op(uaddr
, fshared
, uaddr2
, val
, val2
, val3
);
2065 ret
= futex_lock_pi(uaddr
, fshared
, val
, timeout
, 0);
2067 case FUTEX_UNLOCK_PI
:
2068 ret
= futex_unlock_pi(uaddr
, fshared
);
2070 case FUTEX_TRYLOCK_PI
:
2071 ret
= futex_lock_pi(uaddr
, fshared
, 0, timeout
, 1);
2080 asmlinkage
long sys_futex(u32 __user
*uaddr
, int op
, u32 val
,
2081 struct timespec __user
*utime
, u32 __user
*uaddr2
,
2085 ktime_t t
, *tp
= NULL
;
2087 int cmd
= op
& FUTEX_CMD_MASK
;
2089 if (utime
&& (cmd
== FUTEX_WAIT
|| cmd
== FUTEX_LOCK_PI
)) {
2090 if (copy_from_user(&ts
, utime
, sizeof(ts
)) != 0)
2092 if (!timespec_valid(&ts
))
2095 t
= timespec_to_ktime(ts
);
2096 if (cmd
== FUTEX_WAIT
)
2097 t
= ktime_add(ktime_get(), t
);
2101 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2102 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2104 if (cmd
== FUTEX_REQUEUE
|| cmd
== FUTEX_CMP_REQUEUE
||
2105 cmd
== FUTEX_WAKE_OP
)
2106 val2
= (u32
) (unsigned long) utime
;
2108 return do_futex(uaddr
, op
, val
, tp
, uaddr2
, val2
, val3
);
2111 static int futexfs_get_sb(struct file_system_type
*fs_type
,
2112 int flags
, const char *dev_name
, void *data
,
2113 struct vfsmount
*mnt
)
2115 return get_sb_pseudo(fs_type
, "futex", NULL
, FUTEXFS_SUPER_MAGIC
, mnt
);
2118 static struct file_system_type futex_fs_type
= {
2120 .get_sb
= futexfs_get_sb
,
2121 .kill_sb
= kill_anon_super
,
2124 static int __init
init(void)
2126 int i
= register_filesystem(&futex_fs_type
);
2131 futex_mnt
= kern_mount(&futex_fs_type
);
2132 if (IS_ERR(futex_mnt
)) {
2133 unregister_filesystem(&futex_fs_type
);
2134 return PTR_ERR(futex_mnt
);
2137 for (i
= 0; i
< ARRAY_SIZE(futex_queues
); i
++) {
2138 plist_head_init(&futex_queues
[i
].chain
, &futex_queues
[i
].lock
);
2139 spin_lock_init(&futex_queues
[i
].lock
);