sched: optimize schedule() a bit on SMP
[linux-2.6/kmemtrace.git] / kernel / sched.c
blob4f13d379bea501145f23d6935722e29540e779b5
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
66 #include <asm/tlb.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak)) sched_clock(void)
75 return (unsigned long long)jiffies * (1000000000 / HZ);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
109 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
110 * Timeslices get refilled after they expire.
112 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
113 #define DEF_TIMESLICE (100 * HZ / 1000)
115 #ifdef CONFIG_SMP
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134 #endif
136 #define SCALE_PRIO(x, prio) \
137 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
140 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 * to time slice values: [800ms ... 100ms ... 5ms]
143 static unsigned int static_prio_timeslice(int static_prio)
145 if (static_prio == NICE_TO_PRIO(19))
146 return 1;
148 if (static_prio < NICE_TO_PRIO(0))
149 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
150 else
151 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
154 static inline int rt_policy(int policy)
156 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
157 return 1;
158 return 0;
161 static inline int task_has_rt_policy(struct task_struct *p)
163 return rt_policy(p->policy);
167 * This is the priority-queue data structure of the RT scheduling class:
169 struct rt_prio_array {
170 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
171 struct list_head queue[MAX_RT_PRIO];
174 #ifdef CONFIG_FAIR_GROUP_SCHED
176 struct cfs_rq;
178 /* task group related information */
179 struct task_grp {
180 /* schedulable entities of this group on each cpu */
181 struct sched_entity **se;
182 /* runqueue "owned" by this group on each cpu */
183 struct cfs_rq **cfs_rq;
184 unsigned long shares;
187 /* Default task group's sched entity on each cpu */
188 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
189 /* Default task group's cfs_rq on each cpu */
190 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
192 static struct sched_entity *init_sched_entity_p[NR_CPUS];
193 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
195 /* Default task group.
196 * Every task in system belong to this group at bootup.
198 struct task_grp init_task_grp = {
199 .se = init_sched_entity_p,
200 .cfs_rq = init_cfs_rq_p,
203 #ifdef CONFIG_FAIR_USER_SCHED
204 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
205 #else
206 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
207 #endif
209 static int init_task_grp_load = INIT_TASK_GRP_LOAD;
211 /* return group to which a task belongs */
212 static inline struct task_grp *task_grp(struct task_struct *p)
214 struct task_grp *tg;
216 #ifdef CONFIG_FAIR_USER_SCHED
217 tg = p->user->tg;
218 #else
219 tg = &init_task_grp;
220 #endif
222 return tg;
225 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
226 static inline void set_task_cfs_rq(struct task_struct *p)
228 p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
229 p->se.parent = task_grp(p)->se[task_cpu(p)];
232 #else
234 static inline void set_task_cfs_rq(struct task_struct *p) { }
236 #endif /* CONFIG_FAIR_GROUP_SCHED */
238 /* CFS-related fields in a runqueue */
239 struct cfs_rq {
240 struct load_weight load;
241 unsigned long nr_running;
243 u64 exec_clock;
244 u64 min_vruntime;
246 struct rb_root tasks_timeline;
247 struct rb_node *rb_leftmost;
248 struct rb_node *rb_load_balance_curr;
249 /* 'curr' points to currently running entity on this cfs_rq.
250 * It is set to NULL otherwise (i.e when none are currently running).
252 struct sched_entity *curr;
254 unsigned long nr_spread_over;
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
259 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
260 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
261 * (like users, containers etc.)
263 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
264 * list is used during load balance.
266 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
267 struct task_grp *tg; /* group that "owns" this runqueue */
268 struct rcu_head rcu;
269 #endif
272 /* Real-Time classes' related field in a runqueue: */
273 struct rt_rq {
274 struct rt_prio_array active;
275 int rt_load_balance_idx;
276 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
280 * This is the main, per-CPU runqueue data structure.
282 * Locking rule: those places that want to lock multiple runqueues
283 * (such as the load balancing or the thread migration code), lock
284 * acquire operations must be ordered by ascending &runqueue.
286 struct rq {
287 spinlock_t lock; /* runqueue lock */
290 * nr_running and cpu_load should be in the same cacheline because
291 * remote CPUs use both these fields when doing load calculation.
293 unsigned long nr_running;
294 #define CPU_LOAD_IDX_MAX 5
295 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
296 unsigned char idle_at_tick;
297 #ifdef CONFIG_NO_HZ
298 unsigned char in_nohz_recently;
299 #endif
300 struct load_weight load; /* capture load from *all* tasks on this cpu */
301 unsigned long nr_load_updates;
302 u64 nr_switches;
304 struct cfs_rq cfs;
305 #ifdef CONFIG_FAIR_GROUP_SCHED
306 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
307 #endif
308 struct rt_rq rt;
311 * This is part of a global counter where only the total sum
312 * over all CPUs matters. A task can increase this counter on
313 * one CPU and if it got migrated afterwards it may decrease
314 * it on another CPU. Always updated under the runqueue lock:
316 unsigned long nr_uninterruptible;
318 struct task_struct *curr, *idle;
319 unsigned long next_balance;
320 struct mm_struct *prev_mm;
322 u64 clock, prev_clock_raw;
323 s64 clock_max_delta;
325 unsigned int clock_warps, clock_overflows;
326 u64 idle_clock;
327 unsigned int clock_deep_idle_events;
328 u64 tick_timestamp;
330 atomic_t nr_iowait;
332 #ifdef CONFIG_SMP
333 struct sched_domain *sd;
335 /* For active balancing */
336 int active_balance;
337 int push_cpu;
338 int cpu; /* cpu of this runqueue */
340 struct task_struct *migration_thread;
341 struct list_head migration_queue;
342 #endif
344 #ifdef CONFIG_SCHEDSTATS
345 /* latency stats */
346 struct sched_info rq_sched_info;
348 /* sys_sched_yield() stats */
349 unsigned long yld_exp_empty;
350 unsigned long yld_act_empty;
351 unsigned long yld_both_empty;
352 unsigned long yld_count;
354 /* schedule() stats */
355 unsigned long sched_switch;
356 unsigned long sched_count;
357 unsigned long sched_goidle;
359 /* try_to_wake_up() stats */
360 unsigned long ttwu_count;
361 unsigned long ttwu_local;
363 /* BKL stats */
364 unsigned long bkl_count;
365 #endif
366 struct lock_class_key rq_lock_key;
369 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
370 static DEFINE_MUTEX(sched_hotcpu_mutex);
372 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
374 rq->curr->sched_class->check_preempt_curr(rq, p);
377 static inline int cpu_of(struct rq *rq)
379 #ifdef CONFIG_SMP
380 return rq->cpu;
381 #else
382 return 0;
383 #endif
387 * Update the per-runqueue clock, as finegrained as the platform can give
388 * us, but without assuming monotonicity, etc.:
390 static void __update_rq_clock(struct rq *rq)
392 u64 prev_raw = rq->prev_clock_raw;
393 u64 now = sched_clock();
394 s64 delta = now - prev_raw;
395 u64 clock = rq->clock;
397 #ifdef CONFIG_SCHED_DEBUG
398 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
399 #endif
401 * Protect against sched_clock() occasionally going backwards:
403 if (unlikely(delta < 0)) {
404 clock++;
405 rq->clock_warps++;
406 } else {
408 * Catch too large forward jumps too:
410 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
411 if (clock < rq->tick_timestamp + TICK_NSEC)
412 clock = rq->tick_timestamp + TICK_NSEC;
413 else
414 clock++;
415 rq->clock_overflows++;
416 } else {
417 if (unlikely(delta > rq->clock_max_delta))
418 rq->clock_max_delta = delta;
419 clock += delta;
423 rq->prev_clock_raw = now;
424 rq->clock = clock;
427 static void update_rq_clock(struct rq *rq)
429 if (likely(smp_processor_id() == cpu_of(rq)))
430 __update_rq_clock(rq);
434 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
435 * See detach_destroy_domains: synchronize_sched for details.
437 * The domain tree of any CPU may only be accessed from within
438 * preempt-disabled sections.
440 #define for_each_domain(cpu, __sd) \
441 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
443 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
444 #define this_rq() (&__get_cpu_var(runqueues))
445 #define task_rq(p) cpu_rq(task_cpu(p))
446 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
449 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
451 #ifdef CONFIG_SCHED_DEBUG
452 # define const_debug __read_mostly
453 #else
454 # define const_debug static const
455 #endif
458 * Debugging: various feature bits
460 enum {
461 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
462 SCHED_FEAT_START_DEBIT = 2,
463 SCHED_FEAT_USE_TREE_AVG = 4,
464 SCHED_FEAT_APPROX_AVG = 8,
467 const_debug unsigned int sysctl_sched_features =
468 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
469 SCHED_FEAT_START_DEBIT *1 |
470 SCHED_FEAT_USE_TREE_AVG *0 |
471 SCHED_FEAT_APPROX_AVG *0;
473 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
476 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
477 * clock constructed from sched_clock():
479 unsigned long long cpu_clock(int cpu)
481 unsigned long long now;
482 unsigned long flags;
483 struct rq *rq;
485 local_irq_save(flags);
486 rq = cpu_rq(cpu);
487 update_rq_clock(rq);
488 now = rq->clock;
489 local_irq_restore(flags);
491 return now;
494 #ifndef prepare_arch_switch
495 # define prepare_arch_switch(next) do { } while (0)
496 #endif
497 #ifndef finish_arch_switch
498 # define finish_arch_switch(prev) do { } while (0)
499 #endif
501 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
502 static inline int task_running(struct rq *rq, struct task_struct *p)
504 return rq->curr == p;
507 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
511 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
513 #ifdef CONFIG_DEBUG_SPINLOCK
514 /* this is a valid case when another task releases the spinlock */
515 rq->lock.owner = current;
516 #endif
518 * If we are tracking spinlock dependencies then we have to
519 * fix up the runqueue lock - which gets 'carried over' from
520 * prev into current:
522 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
524 spin_unlock_irq(&rq->lock);
527 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
528 static inline int task_running(struct rq *rq, struct task_struct *p)
530 #ifdef CONFIG_SMP
531 return p->oncpu;
532 #else
533 return rq->curr == p;
534 #endif
537 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
539 #ifdef CONFIG_SMP
541 * We can optimise this out completely for !SMP, because the
542 * SMP rebalancing from interrupt is the only thing that cares
543 * here.
545 next->oncpu = 1;
546 #endif
547 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
548 spin_unlock_irq(&rq->lock);
549 #else
550 spin_unlock(&rq->lock);
551 #endif
554 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
556 #ifdef CONFIG_SMP
558 * After ->oncpu is cleared, the task can be moved to a different CPU.
559 * We must ensure this doesn't happen until the switch is completely
560 * finished.
562 smp_wmb();
563 prev->oncpu = 0;
564 #endif
565 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
566 local_irq_enable();
567 #endif
569 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
572 * __task_rq_lock - lock the runqueue a given task resides on.
573 * Must be called interrupts disabled.
575 static inline struct rq *__task_rq_lock(struct task_struct *p)
576 __acquires(rq->lock)
578 struct rq *rq;
580 repeat_lock_task:
581 rq = task_rq(p);
582 spin_lock(&rq->lock);
583 if (unlikely(rq != task_rq(p))) {
584 spin_unlock(&rq->lock);
585 goto repeat_lock_task;
587 return rq;
591 * task_rq_lock - lock the runqueue a given task resides on and disable
592 * interrupts. Note the ordering: we can safely lookup the task_rq without
593 * explicitly disabling preemption.
595 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
596 __acquires(rq->lock)
598 struct rq *rq;
600 repeat_lock_task:
601 local_irq_save(*flags);
602 rq = task_rq(p);
603 spin_lock(&rq->lock);
604 if (unlikely(rq != task_rq(p))) {
605 spin_unlock_irqrestore(&rq->lock, *flags);
606 goto repeat_lock_task;
608 return rq;
611 static inline void __task_rq_unlock(struct rq *rq)
612 __releases(rq->lock)
614 spin_unlock(&rq->lock);
617 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
618 __releases(rq->lock)
620 spin_unlock_irqrestore(&rq->lock, *flags);
624 * this_rq_lock - lock this runqueue and disable interrupts.
626 static inline struct rq *this_rq_lock(void)
627 __acquires(rq->lock)
629 struct rq *rq;
631 local_irq_disable();
632 rq = this_rq();
633 spin_lock(&rq->lock);
635 return rq;
639 * We are going deep-idle (irqs are disabled):
641 void sched_clock_idle_sleep_event(void)
643 struct rq *rq = cpu_rq(smp_processor_id());
645 spin_lock(&rq->lock);
646 __update_rq_clock(rq);
647 spin_unlock(&rq->lock);
648 rq->clock_deep_idle_events++;
650 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
653 * We just idled delta nanoseconds (called with irqs disabled):
655 void sched_clock_idle_wakeup_event(u64 delta_ns)
657 struct rq *rq = cpu_rq(smp_processor_id());
658 u64 now = sched_clock();
660 rq->idle_clock += delta_ns;
662 * Override the previous timestamp and ignore all
663 * sched_clock() deltas that occured while we idled,
664 * and use the PM-provided delta_ns to advance the
665 * rq clock:
667 spin_lock(&rq->lock);
668 rq->prev_clock_raw = now;
669 rq->clock += delta_ns;
670 spin_unlock(&rq->lock);
672 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
675 * resched_task - mark a task 'to be rescheduled now'.
677 * On UP this means the setting of the need_resched flag, on SMP it
678 * might also involve a cross-CPU call to trigger the scheduler on
679 * the target CPU.
681 #ifdef CONFIG_SMP
683 #ifndef tsk_is_polling
684 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
685 #endif
687 static void resched_task(struct task_struct *p)
689 int cpu;
691 assert_spin_locked(&task_rq(p)->lock);
693 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
694 return;
696 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
698 cpu = task_cpu(p);
699 if (cpu == smp_processor_id())
700 return;
702 /* NEED_RESCHED must be visible before we test polling */
703 smp_mb();
704 if (!tsk_is_polling(p))
705 smp_send_reschedule(cpu);
708 static void resched_cpu(int cpu)
710 struct rq *rq = cpu_rq(cpu);
711 unsigned long flags;
713 if (!spin_trylock_irqsave(&rq->lock, flags))
714 return;
715 resched_task(cpu_curr(cpu));
716 spin_unlock_irqrestore(&rq->lock, flags);
718 #else
719 static inline void resched_task(struct task_struct *p)
721 assert_spin_locked(&task_rq(p)->lock);
722 set_tsk_need_resched(p);
724 #endif
726 #if BITS_PER_LONG == 32
727 # define WMULT_CONST (~0UL)
728 #else
729 # define WMULT_CONST (1UL << 32)
730 #endif
732 #define WMULT_SHIFT 32
735 * Shift right and round:
737 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
739 static unsigned long
740 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
741 struct load_weight *lw)
743 u64 tmp;
745 if (unlikely(!lw->inv_weight))
746 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
748 tmp = (u64)delta_exec * weight;
750 * Check whether we'd overflow the 64-bit multiplication:
752 if (unlikely(tmp > WMULT_CONST))
753 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
754 WMULT_SHIFT/2);
755 else
756 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
758 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
761 static inline unsigned long
762 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
764 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
767 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
769 lw->weight += inc;
772 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
774 lw->weight -= dec;
778 * To aid in avoiding the subversion of "niceness" due to uneven distribution
779 * of tasks with abnormal "nice" values across CPUs the contribution that
780 * each task makes to its run queue's load is weighted according to its
781 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
782 * scaled version of the new time slice allocation that they receive on time
783 * slice expiry etc.
786 #define WEIGHT_IDLEPRIO 2
787 #define WMULT_IDLEPRIO (1 << 31)
790 * Nice levels are multiplicative, with a gentle 10% change for every
791 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
792 * nice 1, it will get ~10% less CPU time than another CPU-bound task
793 * that remained on nice 0.
795 * The "10% effect" is relative and cumulative: from _any_ nice level,
796 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
797 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
798 * If a task goes up by ~10% and another task goes down by ~10% then
799 * the relative distance between them is ~25%.)
801 static const int prio_to_weight[40] = {
802 /* -20 */ 88761, 71755, 56483, 46273, 36291,
803 /* -15 */ 29154, 23254, 18705, 14949, 11916,
804 /* -10 */ 9548, 7620, 6100, 4904, 3906,
805 /* -5 */ 3121, 2501, 1991, 1586, 1277,
806 /* 0 */ 1024, 820, 655, 526, 423,
807 /* 5 */ 335, 272, 215, 172, 137,
808 /* 10 */ 110, 87, 70, 56, 45,
809 /* 15 */ 36, 29, 23, 18, 15,
813 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
815 * In cases where the weight does not change often, we can use the
816 * precalculated inverse to speed up arithmetics by turning divisions
817 * into multiplications:
819 static const u32 prio_to_wmult[40] = {
820 /* -20 */ 48388, 59856, 76040, 92818, 118348,
821 /* -15 */ 147320, 184698, 229616, 287308, 360437,
822 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
823 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
824 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
825 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
826 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
827 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
830 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
833 * runqueue iterator, to support SMP load-balancing between different
834 * scheduling classes, without having to expose their internal data
835 * structures to the load-balancing proper:
837 struct rq_iterator {
838 void *arg;
839 struct task_struct *(*start)(void *);
840 struct task_struct *(*next)(void *);
843 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
844 unsigned long max_nr_move, unsigned long max_load_move,
845 struct sched_domain *sd, enum cpu_idle_type idle,
846 int *all_pinned, unsigned long *load_moved,
847 int *this_best_prio, struct rq_iterator *iterator);
849 #include "sched_stats.h"
850 #include "sched_idletask.c"
851 #include "sched_fair.c"
852 #include "sched_rt.c"
853 #ifdef CONFIG_SCHED_DEBUG
854 # include "sched_debug.c"
855 #endif
857 #define sched_class_highest (&rt_sched_class)
860 * Update delta_exec, delta_fair fields for rq.
862 * delta_fair clock advances at a rate inversely proportional to
863 * total load (rq->load.weight) on the runqueue, while
864 * delta_exec advances at the same rate as wall-clock (provided
865 * cpu is not idle).
867 * delta_exec / delta_fair is a measure of the (smoothened) load on this
868 * runqueue over any given interval. This (smoothened) load is used
869 * during load balance.
871 * This function is called /before/ updating rq->load
872 * and when switching tasks.
874 static inline void inc_load(struct rq *rq, const struct task_struct *p)
876 update_load_add(&rq->load, p->se.load.weight);
879 static inline void dec_load(struct rq *rq, const struct task_struct *p)
881 update_load_sub(&rq->load, p->se.load.weight);
884 static void inc_nr_running(struct task_struct *p, struct rq *rq)
886 rq->nr_running++;
887 inc_load(rq, p);
890 static void dec_nr_running(struct task_struct *p, struct rq *rq)
892 rq->nr_running--;
893 dec_load(rq, p);
896 static void set_load_weight(struct task_struct *p)
898 if (task_has_rt_policy(p)) {
899 p->se.load.weight = prio_to_weight[0] * 2;
900 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
901 return;
905 * SCHED_IDLE tasks get minimal weight:
907 if (p->policy == SCHED_IDLE) {
908 p->se.load.weight = WEIGHT_IDLEPRIO;
909 p->se.load.inv_weight = WMULT_IDLEPRIO;
910 return;
913 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
914 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
917 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
919 sched_info_queued(p);
920 p->sched_class->enqueue_task(rq, p, wakeup);
921 p->se.on_rq = 1;
924 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
926 p->sched_class->dequeue_task(rq, p, sleep);
927 p->se.on_rq = 0;
931 * __normal_prio - return the priority that is based on the static prio
933 static inline int __normal_prio(struct task_struct *p)
935 return p->static_prio;
939 * Calculate the expected normal priority: i.e. priority
940 * without taking RT-inheritance into account. Might be
941 * boosted by interactivity modifiers. Changes upon fork,
942 * setprio syscalls, and whenever the interactivity
943 * estimator recalculates.
945 static inline int normal_prio(struct task_struct *p)
947 int prio;
949 if (task_has_rt_policy(p))
950 prio = MAX_RT_PRIO-1 - p->rt_priority;
951 else
952 prio = __normal_prio(p);
953 return prio;
957 * Calculate the current priority, i.e. the priority
958 * taken into account by the scheduler. This value might
959 * be boosted by RT tasks, or might be boosted by
960 * interactivity modifiers. Will be RT if the task got
961 * RT-boosted. If not then it returns p->normal_prio.
963 static int effective_prio(struct task_struct *p)
965 p->normal_prio = normal_prio(p);
967 * If we are RT tasks or we were boosted to RT priority,
968 * keep the priority unchanged. Otherwise, update priority
969 * to the normal priority:
971 if (!rt_prio(p->prio))
972 return p->normal_prio;
973 return p->prio;
977 * activate_task - move a task to the runqueue.
979 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
981 if (p->state == TASK_UNINTERRUPTIBLE)
982 rq->nr_uninterruptible--;
984 enqueue_task(rq, p, wakeup);
985 inc_nr_running(p, rq);
989 * activate_idle_task - move idle task to the _front_ of runqueue.
991 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
993 update_rq_clock(rq);
995 if (p->state == TASK_UNINTERRUPTIBLE)
996 rq->nr_uninterruptible--;
998 enqueue_task(rq, p, 0);
999 inc_nr_running(p, rq);
1003 * deactivate_task - remove a task from the runqueue.
1005 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1007 if (p->state == TASK_UNINTERRUPTIBLE)
1008 rq->nr_uninterruptible++;
1010 dequeue_task(rq, p, sleep);
1011 dec_nr_running(p, rq);
1015 * task_curr - is this task currently executing on a CPU?
1016 * @p: the task in question.
1018 inline int task_curr(const struct task_struct *p)
1020 return cpu_curr(task_cpu(p)) == p;
1023 /* Used instead of source_load when we know the type == 0 */
1024 unsigned long weighted_cpuload(const int cpu)
1026 return cpu_rq(cpu)->load.weight;
1029 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1031 #ifdef CONFIG_SMP
1032 task_thread_info(p)->cpu = cpu;
1033 #endif
1034 set_task_cfs_rq(p);
1037 #ifdef CONFIG_SMP
1039 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1041 int old_cpu = task_cpu(p);
1042 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1043 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1044 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1045 u64 clock_offset;
1047 clock_offset = old_rq->clock - new_rq->clock;
1049 #ifdef CONFIG_SCHEDSTATS
1050 if (p->se.wait_start)
1051 p->se.wait_start -= clock_offset;
1052 if (p->se.sleep_start)
1053 p->se.sleep_start -= clock_offset;
1054 if (p->se.block_start)
1055 p->se.block_start -= clock_offset;
1056 #endif
1057 p->se.vruntime -= old_cfsrq->min_vruntime -
1058 new_cfsrq->min_vruntime;
1060 __set_task_cpu(p, new_cpu);
1063 struct migration_req {
1064 struct list_head list;
1066 struct task_struct *task;
1067 int dest_cpu;
1069 struct completion done;
1073 * The task's runqueue lock must be held.
1074 * Returns true if you have to wait for migration thread.
1076 static int
1077 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1079 struct rq *rq = task_rq(p);
1082 * If the task is not on a runqueue (and not running), then
1083 * it is sufficient to simply update the task's cpu field.
1085 if (!p->se.on_rq && !task_running(rq, p)) {
1086 set_task_cpu(p, dest_cpu);
1087 return 0;
1090 init_completion(&req->done);
1091 req->task = p;
1092 req->dest_cpu = dest_cpu;
1093 list_add(&req->list, &rq->migration_queue);
1095 return 1;
1099 * wait_task_inactive - wait for a thread to unschedule.
1101 * The caller must ensure that the task *will* unschedule sometime soon,
1102 * else this function might spin for a *long* time. This function can't
1103 * be called with interrupts off, or it may introduce deadlock with
1104 * smp_call_function() if an IPI is sent by the same process we are
1105 * waiting to become inactive.
1107 void wait_task_inactive(struct task_struct *p)
1109 unsigned long flags;
1110 int running, on_rq;
1111 struct rq *rq;
1113 repeat:
1115 * We do the initial early heuristics without holding
1116 * any task-queue locks at all. We'll only try to get
1117 * the runqueue lock when things look like they will
1118 * work out!
1120 rq = task_rq(p);
1123 * If the task is actively running on another CPU
1124 * still, just relax and busy-wait without holding
1125 * any locks.
1127 * NOTE! Since we don't hold any locks, it's not
1128 * even sure that "rq" stays as the right runqueue!
1129 * But we don't care, since "task_running()" will
1130 * return false if the runqueue has changed and p
1131 * is actually now running somewhere else!
1133 while (task_running(rq, p))
1134 cpu_relax();
1137 * Ok, time to look more closely! We need the rq
1138 * lock now, to be *sure*. If we're wrong, we'll
1139 * just go back and repeat.
1141 rq = task_rq_lock(p, &flags);
1142 running = task_running(rq, p);
1143 on_rq = p->se.on_rq;
1144 task_rq_unlock(rq, &flags);
1147 * Was it really running after all now that we
1148 * checked with the proper locks actually held?
1150 * Oops. Go back and try again..
1152 if (unlikely(running)) {
1153 cpu_relax();
1154 goto repeat;
1158 * It's not enough that it's not actively running,
1159 * it must be off the runqueue _entirely_, and not
1160 * preempted!
1162 * So if it wa still runnable (but just not actively
1163 * running right now), it's preempted, and we should
1164 * yield - it could be a while.
1166 if (unlikely(on_rq)) {
1167 yield();
1168 goto repeat;
1172 * Ahh, all good. It wasn't running, and it wasn't
1173 * runnable, which means that it will never become
1174 * running in the future either. We're all done!
1178 /***
1179 * kick_process - kick a running thread to enter/exit the kernel
1180 * @p: the to-be-kicked thread
1182 * Cause a process which is running on another CPU to enter
1183 * kernel-mode, without any delay. (to get signals handled.)
1185 * NOTE: this function doesnt have to take the runqueue lock,
1186 * because all it wants to ensure is that the remote task enters
1187 * the kernel. If the IPI races and the task has been migrated
1188 * to another CPU then no harm is done and the purpose has been
1189 * achieved as well.
1191 void kick_process(struct task_struct *p)
1193 int cpu;
1195 preempt_disable();
1196 cpu = task_cpu(p);
1197 if ((cpu != smp_processor_id()) && task_curr(p))
1198 smp_send_reschedule(cpu);
1199 preempt_enable();
1203 * Return a low guess at the load of a migration-source cpu weighted
1204 * according to the scheduling class and "nice" value.
1206 * We want to under-estimate the load of migration sources, to
1207 * balance conservatively.
1209 static inline unsigned long source_load(int cpu, int type)
1211 struct rq *rq = cpu_rq(cpu);
1212 unsigned long total = weighted_cpuload(cpu);
1214 if (type == 0)
1215 return total;
1217 return min(rq->cpu_load[type-1], total);
1221 * Return a high guess at the load of a migration-target cpu weighted
1222 * according to the scheduling class and "nice" value.
1224 static inline unsigned long target_load(int cpu, int type)
1226 struct rq *rq = cpu_rq(cpu);
1227 unsigned long total = weighted_cpuload(cpu);
1229 if (type == 0)
1230 return total;
1232 return max(rq->cpu_load[type-1], total);
1236 * Return the average load per task on the cpu's run queue
1238 static inline unsigned long cpu_avg_load_per_task(int cpu)
1240 struct rq *rq = cpu_rq(cpu);
1241 unsigned long total = weighted_cpuload(cpu);
1242 unsigned long n = rq->nr_running;
1244 return n ? total / n : SCHED_LOAD_SCALE;
1248 * find_idlest_group finds and returns the least busy CPU group within the
1249 * domain.
1251 static struct sched_group *
1252 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1254 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1255 unsigned long min_load = ULONG_MAX, this_load = 0;
1256 int load_idx = sd->forkexec_idx;
1257 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1259 do {
1260 unsigned long load, avg_load;
1261 int local_group;
1262 int i;
1264 /* Skip over this group if it has no CPUs allowed */
1265 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1266 goto nextgroup;
1268 local_group = cpu_isset(this_cpu, group->cpumask);
1270 /* Tally up the load of all CPUs in the group */
1271 avg_load = 0;
1273 for_each_cpu_mask(i, group->cpumask) {
1274 /* Bias balancing toward cpus of our domain */
1275 if (local_group)
1276 load = source_load(i, load_idx);
1277 else
1278 load = target_load(i, load_idx);
1280 avg_load += load;
1283 /* Adjust by relative CPU power of the group */
1284 avg_load = sg_div_cpu_power(group,
1285 avg_load * SCHED_LOAD_SCALE);
1287 if (local_group) {
1288 this_load = avg_load;
1289 this = group;
1290 } else if (avg_load < min_load) {
1291 min_load = avg_load;
1292 idlest = group;
1294 nextgroup:
1295 group = group->next;
1296 } while (group != sd->groups);
1298 if (!idlest || 100*this_load < imbalance*min_load)
1299 return NULL;
1300 return idlest;
1304 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1306 static int
1307 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1309 cpumask_t tmp;
1310 unsigned long load, min_load = ULONG_MAX;
1311 int idlest = -1;
1312 int i;
1314 /* Traverse only the allowed CPUs */
1315 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1317 for_each_cpu_mask(i, tmp) {
1318 load = weighted_cpuload(i);
1320 if (load < min_load || (load == min_load && i == this_cpu)) {
1321 min_load = load;
1322 idlest = i;
1326 return idlest;
1330 * sched_balance_self: balance the current task (running on cpu) in domains
1331 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1332 * SD_BALANCE_EXEC.
1334 * Balance, ie. select the least loaded group.
1336 * Returns the target CPU number, or the same CPU if no balancing is needed.
1338 * preempt must be disabled.
1340 static int sched_balance_self(int cpu, int flag)
1342 struct task_struct *t = current;
1343 struct sched_domain *tmp, *sd = NULL;
1345 for_each_domain(cpu, tmp) {
1347 * If power savings logic is enabled for a domain, stop there.
1349 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1350 break;
1351 if (tmp->flags & flag)
1352 sd = tmp;
1355 while (sd) {
1356 cpumask_t span;
1357 struct sched_group *group;
1358 int new_cpu, weight;
1360 if (!(sd->flags & flag)) {
1361 sd = sd->child;
1362 continue;
1365 span = sd->span;
1366 group = find_idlest_group(sd, t, cpu);
1367 if (!group) {
1368 sd = sd->child;
1369 continue;
1372 new_cpu = find_idlest_cpu(group, t, cpu);
1373 if (new_cpu == -1 || new_cpu == cpu) {
1374 /* Now try balancing at a lower domain level of cpu */
1375 sd = sd->child;
1376 continue;
1379 /* Now try balancing at a lower domain level of new_cpu */
1380 cpu = new_cpu;
1381 sd = NULL;
1382 weight = cpus_weight(span);
1383 for_each_domain(cpu, tmp) {
1384 if (weight <= cpus_weight(tmp->span))
1385 break;
1386 if (tmp->flags & flag)
1387 sd = tmp;
1389 /* while loop will break here if sd == NULL */
1392 return cpu;
1395 #endif /* CONFIG_SMP */
1398 * wake_idle() will wake a task on an idle cpu if task->cpu is
1399 * not idle and an idle cpu is available. The span of cpus to
1400 * search starts with cpus closest then further out as needed,
1401 * so we always favor a closer, idle cpu.
1403 * Returns the CPU we should wake onto.
1405 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1406 static int wake_idle(int cpu, struct task_struct *p)
1408 cpumask_t tmp;
1409 struct sched_domain *sd;
1410 int i;
1413 * If it is idle, then it is the best cpu to run this task.
1415 * This cpu is also the best, if it has more than one task already.
1416 * Siblings must be also busy(in most cases) as they didn't already
1417 * pickup the extra load from this cpu and hence we need not check
1418 * sibling runqueue info. This will avoid the checks and cache miss
1419 * penalities associated with that.
1421 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1422 return cpu;
1424 for_each_domain(cpu, sd) {
1425 if (sd->flags & SD_WAKE_IDLE) {
1426 cpus_and(tmp, sd->span, p->cpus_allowed);
1427 for_each_cpu_mask(i, tmp) {
1428 if (idle_cpu(i))
1429 return i;
1431 } else {
1432 break;
1435 return cpu;
1437 #else
1438 static inline int wake_idle(int cpu, struct task_struct *p)
1440 return cpu;
1442 #endif
1444 /***
1445 * try_to_wake_up - wake up a thread
1446 * @p: the to-be-woken-up thread
1447 * @state: the mask of task states that can be woken
1448 * @sync: do a synchronous wakeup?
1450 * Put it on the run-queue if it's not already there. The "current"
1451 * thread is always on the run-queue (except when the actual
1452 * re-schedule is in progress), and as such you're allowed to do
1453 * the simpler "current->state = TASK_RUNNING" to mark yourself
1454 * runnable without the overhead of this.
1456 * returns failure only if the task is already active.
1458 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1460 int cpu, this_cpu, success = 0;
1461 unsigned long flags;
1462 long old_state;
1463 struct rq *rq;
1464 #ifdef CONFIG_SMP
1465 struct sched_domain *sd, *this_sd = NULL;
1466 unsigned long load, this_load;
1467 int new_cpu;
1468 #endif
1470 rq = task_rq_lock(p, &flags);
1471 old_state = p->state;
1472 if (!(old_state & state))
1473 goto out;
1475 if (p->se.on_rq)
1476 goto out_running;
1478 cpu = task_cpu(p);
1479 this_cpu = smp_processor_id();
1481 #ifdef CONFIG_SMP
1482 if (unlikely(task_running(rq, p)))
1483 goto out_activate;
1485 new_cpu = cpu;
1487 schedstat_inc(rq, ttwu_count);
1488 if (cpu == this_cpu) {
1489 schedstat_inc(rq, ttwu_local);
1490 goto out_set_cpu;
1493 for_each_domain(this_cpu, sd) {
1494 if (cpu_isset(cpu, sd->span)) {
1495 schedstat_inc(sd, ttwu_wake_remote);
1496 this_sd = sd;
1497 break;
1501 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1502 goto out_set_cpu;
1505 * Check for affine wakeup and passive balancing possibilities.
1507 if (this_sd) {
1508 int idx = this_sd->wake_idx;
1509 unsigned int imbalance;
1511 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1513 load = source_load(cpu, idx);
1514 this_load = target_load(this_cpu, idx);
1516 new_cpu = this_cpu; /* Wake to this CPU if we can */
1518 if (this_sd->flags & SD_WAKE_AFFINE) {
1519 unsigned long tl = this_load;
1520 unsigned long tl_per_task;
1522 tl_per_task = cpu_avg_load_per_task(this_cpu);
1525 * If sync wakeup then subtract the (maximum possible)
1526 * effect of the currently running task from the load
1527 * of the current CPU:
1529 if (sync)
1530 tl -= current->se.load.weight;
1532 if ((tl <= load &&
1533 tl + target_load(cpu, idx) <= tl_per_task) ||
1534 100*(tl + p->se.load.weight) <= imbalance*load) {
1536 * This domain has SD_WAKE_AFFINE and
1537 * p is cache cold in this domain, and
1538 * there is no bad imbalance.
1540 schedstat_inc(this_sd, ttwu_move_affine);
1541 goto out_set_cpu;
1546 * Start passive balancing when half the imbalance_pct
1547 * limit is reached.
1549 if (this_sd->flags & SD_WAKE_BALANCE) {
1550 if (imbalance*this_load <= 100*load) {
1551 schedstat_inc(this_sd, ttwu_move_balance);
1552 goto out_set_cpu;
1557 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1558 out_set_cpu:
1559 new_cpu = wake_idle(new_cpu, p);
1560 if (new_cpu != cpu) {
1561 set_task_cpu(p, new_cpu);
1562 task_rq_unlock(rq, &flags);
1563 /* might preempt at this point */
1564 rq = task_rq_lock(p, &flags);
1565 old_state = p->state;
1566 if (!(old_state & state))
1567 goto out;
1568 if (p->se.on_rq)
1569 goto out_running;
1571 this_cpu = smp_processor_id();
1572 cpu = task_cpu(p);
1575 out_activate:
1576 #endif /* CONFIG_SMP */
1577 update_rq_clock(rq);
1578 activate_task(rq, p, 1);
1580 * Sync wakeups (i.e. those types of wakeups where the waker
1581 * has indicated that it will leave the CPU in short order)
1582 * don't trigger a preemption, if the woken up task will run on
1583 * this cpu. (in this case the 'I will reschedule' promise of
1584 * the waker guarantees that the freshly woken up task is going
1585 * to be considered on this CPU.)
1587 if (!sync || cpu != this_cpu)
1588 check_preempt_curr(rq, p);
1589 success = 1;
1591 out_running:
1592 p->state = TASK_RUNNING;
1593 out:
1594 task_rq_unlock(rq, &flags);
1596 return success;
1599 int fastcall wake_up_process(struct task_struct *p)
1601 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1602 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1604 EXPORT_SYMBOL(wake_up_process);
1606 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1608 return try_to_wake_up(p, state, 0);
1612 * Perform scheduler related setup for a newly forked process p.
1613 * p is forked by current.
1615 * __sched_fork() is basic setup used by init_idle() too:
1617 static void __sched_fork(struct task_struct *p)
1619 p->se.exec_start = 0;
1620 p->se.sum_exec_runtime = 0;
1621 p->se.prev_sum_exec_runtime = 0;
1623 #ifdef CONFIG_SCHEDSTATS
1624 p->se.wait_start = 0;
1625 p->se.sum_sleep_runtime = 0;
1626 p->se.sleep_start = 0;
1627 p->se.block_start = 0;
1628 p->se.sleep_max = 0;
1629 p->se.block_max = 0;
1630 p->se.exec_max = 0;
1631 p->se.slice_max = 0;
1632 p->se.wait_max = 0;
1633 #endif
1635 INIT_LIST_HEAD(&p->run_list);
1636 p->se.on_rq = 0;
1638 #ifdef CONFIG_PREEMPT_NOTIFIERS
1639 INIT_HLIST_HEAD(&p->preempt_notifiers);
1640 #endif
1643 * We mark the process as running here, but have not actually
1644 * inserted it onto the runqueue yet. This guarantees that
1645 * nobody will actually run it, and a signal or other external
1646 * event cannot wake it up and insert it on the runqueue either.
1648 p->state = TASK_RUNNING;
1652 * fork()/clone()-time setup:
1654 void sched_fork(struct task_struct *p, int clone_flags)
1656 int cpu = get_cpu();
1658 __sched_fork(p);
1660 #ifdef CONFIG_SMP
1661 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1662 #endif
1663 set_task_cpu(p, cpu);
1666 * Make sure we do not leak PI boosting priority to the child:
1668 p->prio = current->normal_prio;
1669 if (!rt_prio(p->prio))
1670 p->sched_class = &fair_sched_class;
1672 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1673 if (likely(sched_info_on()))
1674 memset(&p->sched_info, 0, sizeof(p->sched_info));
1675 #endif
1676 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1677 p->oncpu = 0;
1678 #endif
1679 #ifdef CONFIG_PREEMPT
1680 /* Want to start with kernel preemption disabled. */
1681 task_thread_info(p)->preempt_count = 1;
1682 #endif
1683 put_cpu();
1687 * wake_up_new_task - wake up a newly created task for the first time.
1689 * This function will do some initial scheduler statistics housekeeping
1690 * that must be done for every newly created context, then puts the task
1691 * on the runqueue and wakes it.
1693 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1695 unsigned long flags;
1696 struct rq *rq;
1697 int this_cpu;
1699 rq = task_rq_lock(p, &flags);
1700 BUG_ON(p->state != TASK_RUNNING);
1701 this_cpu = smp_processor_id(); /* parent's CPU */
1702 update_rq_clock(rq);
1704 p->prio = effective_prio(p);
1706 if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
1707 !current->se.on_rq) {
1708 activate_task(rq, p, 0);
1709 } else {
1711 * Let the scheduling class do new task startup
1712 * management (if any):
1714 p->sched_class->task_new(rq, p);
1715 inc_nr_running(p, rq);
1717 check_preempt_curr(rq, p);
1718 task_rq_unlock(rq, &flags);
1721 #ifdef CONFIG_PREEMPT_NOTIFIERS
1724 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1725 * @notifier: notifier struct to register
1727 void preempt_notifier_register(struct preempt_notifier *notifier)
1729 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1731 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1734 * preempt_notifier_unregister - no longer interested in preemption notifications
1735 * @notifier: notifier struct to unregister
1737 * This is safe to call from within a preemption notifier.
1739 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1741 hlist_del(&notifier->link);
1743 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1745 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1747 struct preempt_notifier *notifier;
1748 struct hlist_node *node;
1750 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1751 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1754 static void
1755 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1756 struct task_struct *next)
1758 struct preempt_notifier *notifier;
1759 struct hlist_node *node;
1761 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1762 notifier->ops->sched_out(notifier, next);
1765 #else
1767 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1771 static void
1772 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1773 struct task_struct *next)
1777 #endif
1780 * prepare_task_switch - prepare to switch tasks
1781 * @rq: the runqueue preparing to switch
1782 * @prev: the current task that is being switched out
1783 * @next: the task we are going to switch to.
1785 * This is called with the rq lock held and interrupts off. It must
1786 * be paired with a subsequent finish_task_switch after the context
1787 * switch.
1789 * prepare_task_switch sets up locking and calls architecture specific
1790 * hooks.
1792 static inline void
1793 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1794 struct task_struct *next)
1796 fire_sched_out_preempt_notifiers(prev, next);
1797 prepare_lock_switch(rq, next);
1798 prepare_arch_switch(next);
1802 * finish_task_switch - clean up after a task-switch
1803 * @rq: runqueue associated with task-switch
1804 * @prev: the thread we just switched away from.
1806 * finish_task_switch must be called after the context switch, paired
1807 * with a prepare_task_switch call before the context switch.
1808 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1809 * and do any other architecture-specific cleanup actions.
1811 * Note that we may have delayed dropping an mm in context_switch(). If
1812 * so, we finish that here outside of the runqueue lock. (Doing it
1813 * with the lock held can cause deadlocks; see schedule() for
1814 * details.)
1816 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1817 __releases(rq->lock)
1819 struct mm_struct *mm = rq->prev_mm;
1820 long prev_state;
1822 rq->prev_mm = NULL;
1825 * A task struct has one reference for the use as "current".
1826 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1827 * schedule one last time. The schedule call will never return, and
1828 * the scheduled task must drop that reference.
1829 * The test for TASK_DEAD must occur while the runqueue locks are
1830 * still held, otherwise prev could be scheduled on another cpu, die
1831 * there before we look at prev->state, and then the reference would
1832 * be dropped twice.
1833 * Manfred Spraul <manfred@colorfullife.com>
1835 prev_state = prev->state;
1836 finish_arch_switch(prev);
1837 finish_lock_switch(rq, prev);
1838 fire_sched_in_preempt_notifiers(current);
1839 if (mm)
1840 mmdrop(mm);
1841 if (unlikely(prev_state == TASK_DEAD)) {
1843 * Remove function-return probe instances associated with this
1844 * task and put them back on the free list.
1846 kprobe_flush_task(prev);
1847 put_task_struct(prev);
1852 * schedule_tail - first thing a freshly forked thread must call.
1853 * @prev: the thread we just switched away from.
1855 asmlinkage void schedule_tail(struct task_struct *prev)
1856 __releases(rq->lock)
1858 struct rq *rq = this_rq();
1860 finish_task_switch(rq, prev);
1861 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1862 /* In this case, finish_task_switch does not reenable preemption */
1863 preempt_enable();
1864 #endif
1865 if (current->set_child_tid)
1866 put_user(current->pid, current->set_child_tid);
1870 * context_switch - switch to the new MM and the new
1871 * thread's register state.
1873 static inline void
1874 context_switch(struct rq *rq, struct task_struct *prev,
1875 struct task_struct *next)
1877 struct mm_struct *mm, *oldmm;
1879 prepare_task_switch(rq, prev, next);
1880 mm = next->mm;
1881 oldmm = prev->active_mm;
1883 * For paravirt, this is coupled with an exit in switch_to to
1884 * combine the page table reload and the switch backend into
1885 * one hypercall.
1887 arch_enter_lazy_cpu_mode();
1889 if (unlikely(!mm)) {
1890 next->active_mm = oldmm;
1891 atomic_inc(&oldmm->mm_count);
1892 enter_lazy_tlb(oldmm, next);
1893 } else
1894 switch_mm(oldmm, mm, next);
1896 if (unlikely(!prev->mm)) {
1897 prev->active_mm = NULL;
1898 rq->prev_mm = oldmm;
1901 * Since the runqueue lock will be released by the next
1902 * task (which is an invalid locking op but in the case
1903 * of the scheduler it's an obvious special-case), so we
1904 * do an early lockdep release here:
1906 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1907 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1908 #endif
1910 /* Here we just switch the register state and the stack. */
1911 switch_to(prev, next, prev);
1913 barrier();
1915 * this_rq must be evaluated again because prev may have moved
1916 * CPUs since it called schedule(), thus the 'rq' on its stack
1917 * frame will be invalid.
1919 finish_task_switch(this_rq(), prev);
1923 * nr_running, nr_uninterruptible and nr_context_switches:
1925 * externally visible scheduler statistics: current number of runnable
1926 * threads, current number of uninterruptible-sleeping threads, total
1927 * number of context switches performed since bootup.
1929 unsigned long nr_running(void)
1931 unsigned long i, sum = 0;
1933 for_each_online_cpu(i)
1934 sum += cpu_rq(i)->nr_running;
1936 return sum;
1939 unsigned long nr_uninterruptible(void)
1941 unsigned long i, sum = 0;
1943 for_each_possible_cpu(i)
1944 sum += cpu_rq(i)->nr_uninterruptible;
1947 * Since we read the counters lockless, it might be slightly
1948 * inaccurate. Do not allow it to go below zero though:
1950 if (unlikely((long)sum < 0))
1951 sum = 0;
1953 return sum;
1956 unsigned long long nr_context_switches(void)
1958 int i;
1959 unsigned long long sum = 0;
1961 for_each_possible_cpu(i)
1962 sum += cpu_rq(i)->nr_switches;
1964 return sum;
1967 unsigned long nr_iowait(void)
1969 unsigned long i, sum = 0;
1971 for_each_possible_cpu(i)
1972 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1974 return sum;
1977 unsigned long nr_active(void)
1979 unsigned long i, running = 0, uninterruptible = 0;
1981 for_each_online_cpu(i) {
1982 running += cpu_rq(i)->nr_running;
1983 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1986 if (unlikely((long)uninterruptible < 0))
1987 uninterruptible = 0;
1989 return running + uninterruptible;
1993 * Update rq->cpu_load[] statistics. This function is usually called every
1994 * scheduler tick (TICK_NSEC).
1996 static void update_cpu_load(struct rq *this_rq)
1998 unsigned long this_load = this_rq->load.weight;
1999 int i, scale;
2001 this_rq->nr_load_updates++;
2003 /* Update our load: */
2004 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2005 unsigned long old_load, new_load;
2007 /* scale is effectively 1 << i now, and >> i divides by scale */
2009 old_load = this_rq->cpu_load[i];
2010 new_load = this_load;
2012 * Round up the averaging division if load is increasing. This
2013 * prevents us from getting stuck on 9 if the load is 10, for
2014 * example.
2016 if (new_load > old_load)
2017 new_load += scale-1;
2018 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2022 #ifdef CONFIG_SMP
2025 * double_rq_lock - safely lock two runqueues
2027 * Note this does not disable interrupts like task_rq_lock,
2028 * you need to do so manually before calling.
2030 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2031 __acquires(rq1->lock)
2032 __acquires(rq2->lock)
2034 BUG_ON(!irqs_disabled());
2035 if (rq1 == rq2) {
2036 spin_lock(&rq1->lock);
2037 __acquire(rq2->lock); /* Fake it out ;) */
2038 } else {
2039 if (rq1 < rq2) {
2040 spin_lock(&rq1->lock);
2041 spin_lock(&rq2->lock);
2042 } else {
2043 spin_lock(&rq2->lock);
2044 spin_lock(&rq1->lock);
2047 update_rq_clock(rq1);
2048 update_rq_clock(rq2);
2052 * double_rq_unlock - safely unlock two runqueues
2054 * Note this does not restore interrupts like task_rq_unlock,
2055 * you need to do so manually after calling.
2057 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2058 __releases(rq1->lock)
2059 __releases(rq2->lock)
2061 spin_unlock(&rq1->lock);
2062 if (rq1 != rq2)
2063 spin_unlock(&rq2->lock);
2064 else
2065 __release(rq2->lock);
2069 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2071 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2072 __releases(this_rq->lock)
2073 __acquires(busiest->lock)
2074 __acquires(this_rq->lock)
2076 if (unlikely(!irqs_disabled())) {
2077 /* printk() doesn't work good under rq->lock */
2078 spin_unlock(&this_rq->lock);
2079 BUG_ON(1);
2081 if (unlikely(!spin_trylock(&busiest->lock))) {
2082 if (busiest < this_rq) {
2083 spin_unlock(&this_rq->lock);
2084 spin_lock(&busiest->lock);
2085 spin_lock(&this_rq->lock);
2086 } else
2087 spin_lock(&busiest->lock);
2092 * If dest_cpu is allowed for this process, migrate the task to it.
2093 * This is accomplished by forcing the cpu_allowed mask to only
2094 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2095 * the cpu_allowed mask is restored.
2097 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2099 struct migration_req req;
2100 unsigned long flags;
2101 struct rq *rq;
2103 rq = task_rq_lock(p, &flags);
2104 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2105 || unlikely(cpu_is_offline(dest_cpu)))
2106 goto out;
2108 /* force the process onto the specified CPU */
2109 if (migrate_task(p, dest_cpu, &req)) {
2110 /* Need to wait for migration thread (might exit: take ref). */
2111 struct task_struct *mt = rq->migration_thread;
2113 get_task_struct(mt);
2114 task_rq_unlock(rq, &flags);
2115 wake_up_process(mt);
2116 put_task_struct(mt);
2117 wait_for_completion(&req.done);
2119 return;
2121 out:
2122 task_rq_unlock(rq, &flags);
2126 * sched_exec - execve() is a valuable balancing opportunity, because at
2127 * this point the task has the smallest effective memory and cache footprint.
2129 void sched_exec(void)
2131 int new_cpu, this_cpu = get_cpu();
2132 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2133 put_cpu();
2134 if (new_cpu != this_cpu)
2135 sched_migrate_task(current, new_cpu);
2139 * pull_task - move a task from a remote runqueue to the local runqueue.
2140 * Both runqueues must be locked.
2142 static void pull_task(struct rq *src_rq, struct task_struct *p,
2143 struct rq *this_rq, int this_cpu)
2145 deactivate_task(src_rq, p, 0);
2146 set_task_cpu(p, this_cpu);
2147 activate_task(this_rq, p, 0);
2149 * Note that idle threads have a prio of MAX_PRIO, for this test
2150 * to be always true for them.
2152 check_preempt_curr(this_rq, p);
2156 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2158 static
2159 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2160 struct sched_domain *sd, enum cpu_idle_type idle,
2161 int *all_pinned)
2164 * We do not migrate tasks that are:
2165 * 1) running (obviously), or
2166 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2167 * 3) are cache-hot on their current CPU.
2169 if (!cpu_isset(this_cpu, p->cpus_allowed))
2170 return 0;
2171 *all_pinned = 0;
2173 if (task_running(rq, p))
2174 return 0;
2176 return 1;
2179 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2180 unsigned long max_nr_move, unsigned long max_load_move,
2181 struct sched_domain *sd, enum cpu_idle_type idle,
2182 int *all_pinned, unsigned long *load_moved,
2183 int *this_best_prio, struct rq_iterator *iterator)
2185 int pulled = 0, pinned = 0, skip_for_load;
2186 struct task_struct *p;
2187 long rem_load_move = max_load_move;
2189 if (max_nr_move == 0 || max_load_move == 0)
2190 goto out;
2192 pinned = 1;
2195 * Start the load-balancing iterator:
2197 p = iterator->start(iterator->arg);
2198 next:
2199 if (!p)
2200 goto out;
2202 * To help distribute high priority tasks accross CPUs we don't
2203 * skip a task if it will be the highest priority task (i.e. smallest
2204 * prio value) on its new queue regardless of its load weight
2206 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2207 SCHED_LOAD_SCALE_FUZZ;
2208 if ((skip_for_load && p->prio >= *this_best_prio) ||
2209 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2210 p = iterator->next(iterator->arg);
2211 goto next;
2214 pull_task(busiest, p, this_rq, this_cpu);
2215 pulled++;
2216 rem_load_move -= p->se.load.weight;
2219 * We only want to steal up to the prescribed number of tasks
2220 * and the prescribed amount of weighted load.
2222 if (pulled < max_nr_move && rem_load_move > 0) {
2223 if (p->prio < *this_best_prio)
2224 *this_best_prio = p->prio;
2225 p = iterator->next(iterator->arg);
2226 goto next;
2228 out:
2230 * Right now, this is the only place pull_task() is called,
2231 * so we can safely collect pull_task() stats here rather than
2232 * inside pull_task().
2234 schedstat_add(sd, lb_gained[idle], pulled);
2236 if (all_pinned)
2237 *all_pinned = pinned;
2238 *load_moved = max_load_move - rem_load_move;
2239 return pulled;
2243 * move_tasks tries to move up to max_load_move weighted load from busiest to
2244 * this_rq, as part of a balancing operation within domain "sd".
2245 * Returns 1 if successful and 0 otherwise.
2247 * Called with both runqueues locked.
2249 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2250 unsigned long max_load_move,
2251 struct sched_domain *sd, enum cpu_idle_type idle,
2252 int *all_pinned)
2254 const struct sched_class *class = sched_class_highest;
2255 unsigned long total_load_moved = 0;
2256 int this_best_prio = this_rq->curr->prio;
2258 do {
2259 total_load_moved +=
2260 class->load_balance(this_rq, this_cpu, busiest,
2261 ULONG_MAX, max_load_move - total_load_moved,
2262 sd, idle, all_pinned, &this_best_prio);
2263 class = class->next;
2264 } while (class && max_load_move > total_load_moved);
2266 return total_load_moved > 0;
2270 * move_one_task tries to move exactly one task from busiest to this_rq, as
2271 * part of active balancing operations within "domain".
2272 * Returns 1 if successful and 0 otherwise.
2274 * Called with both runqueues locked.
2276 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2277 struct sched_domain *sd, enum cpu_idle_type idle)
2279 const struct sched_class *class;
2280 int this_best_prio = MAX_PRIO;
2282 for (class = sched_class_highest; class; class = class->next)
2283 if (class->load_balance(this_rq, this_cpu, busiest,
2284 1, ULONG_MAX, sd, idle, NULL,
2285 &this_best_prio))
2286 return 1;
2288 return 0;
2292 * find_busiest_group finds and returns the busiest CPU group within the
2293 * domain. It calculates and returns the amount of weighted load which
2294 * should be moved to restore balance via the imbalance parameter.
2296 static struct sched_group *
2297 find_busiest_group(struct sched_domain *sd, int this_cpu,
2298 unsigned long *imbalance, enum cpu_idle_type idle,
2299 int *sd_idle, cpumask_t *cpus, int *balance)
2301 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2302 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2303 unsigned long max_pull;
2304 unsigned long busiest_load_per_task, busiest_nr_running;
2305 unsigned long this_load_per_task, this_nr_running;
2306 int load_idx;
2307 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2308 int power_savings_balance = 1;
2309 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2310 unsigned long min_nr_running = ULONG_MAX;
2311 struct sched_group *group_min = NULL, *group_leader = NULL;
2312 #endif
2314 max_load = this_load = total_load = total_pwr = 0;
2315 busiest_load_per_task = busiest_nr_running = 0;
2316 this_load_per_task = this_nr_running = 0;
2317 if (idle == CPU_NOT_IDLE)
2318 load_idx = sd->busy_idx;
2319 else if (idle == CPU_NEWLY_IDLE)
2320 load_idx = sd->newidle_idx;
2321 else
2322 load_idx = sd->idle_idx;
2324 do {
2325 unsigned long load, group_capacity;
2326 int local_group;
2327 int i;
2328 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2329 unsigned long sum_nr_running, sum_weighted_load;
2331 local_group = cpu_isset(this_cpu, group->cpumask);
2333 if (local_group)
2334 balance_cpu = first_cpu(group->cpumask);
2336 /* Tally up the load of all CPUs in the group */
2337 sum_weighted_load = sum_nr_running = avg_load = 0;
2339 for_each_cpu_mask(i, group->cpumask) {
2340 struct rq *rq;
2342 if (!cpu_isset(i, *cpus))
2343 continue;
2345 rq = cpu_rq(i);
2347 if (*sd_idle && rq->nr_running)
2348 *sd_idle = 0;
2350 /* Bias balancing toward cpus of our domain */
2351 if (local_group) {
2352 if (idle_cpu(i) && !first_idle_cpu) {
2353 first_idle_cpu = 1;
2354 balance_cpu = i;
2357 load = target_load(i, load_idx);
2358 } else
2359 load = source_load(i, load_idx);
2361 avg_load += load;
2362 sum_nr_running += rq->nr_running;
2363 sum_weighted_load += weighted_cpuload(i);
2367 * First idle cpu or the first cpu(busiest) in this sched group
2368 * is eligible for doing load balancing at this and above
2369 * domains. In the newly idle case, we will allow all the cpu's
2370 * to do the newly idle load balance.
2372 if (idle != CPU_NEWLY_IDLE && local_group &&
2373 balance_cpu != this_cpu && balance) {
2374 *balance = 0;
2375 goto ret;
2378 total_load += avg_load;
2379 total_pwr += group->__cpu_power;
2381 /* Adjust by relative CPU power of the group */
2382 avg_load = sg_div_cpu_power(group,
2383 avg_load * SCHED_LOAD_SCALE);
2385 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2387 if (local_group) {
2388 this_load = avg_load;
2389 this = group;
2390 this_nr_running = sum_nr_running;
2391 this_load_per_task = sum_weighted_load;
2392 } else if (avg_load > max_load &&
2393 sum_nr_running > group_capacity) {
2394 max_load = avg_load;
2395 busiest = group;
2396 busiest_nr_running = sum_nr_running;
2397 busiest_load_per_task = sum_weighted_load;
2400 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2402 * Busy processors will not participate in power savings
2403 * balance.
2405 if (idle == CPU_NOT_IDLE ||
2406 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2407 goto group_next;
2410 * If the local group is idle or completely loaded
2411 * no need to do power savings balance at this domain
2413 if (local_group && (this_nr_running >= group_capacity ||
2414 !this_nr_running))
2415 power_savings_balance = 0;
2418 * If a group is already running at full capacity or idle,
2419 * don't include that group in power savings calculations
2421 if (!power_savings_balance || sum_nr_running >= group_capacity
2422 || !sum_nr_running)
2423 goto group_next;
2426 * Calculate the group which has the least non-idle load.
2427 * This is the group from where we need to pick up the load
2428 * for saving power
2430 if ((sum_nr_running < min_nr_running) ||
2431 (sum_nr_running == min_nr_running &&
2432 first_cpu(group->cpumask) <
2433 first_cpu(group_min->cpumask))) {
2434 group_min = group;
2435 min_nr_running = sum_nr_running;
2436 min_load_per_task = sum_weighted_load /
2437 sum_nr_running;
2441 * Calculate the group which is almost near its
2442 * capacity but still has some space to pick up some load
2443 * from other group and save more power
2445 if (sum_nr_running <= group_capacity - 1) {
2446 if (sum_nr_running > leader_nr_running ||
2447 (sum_nr_running == leader_nr_running &&
2448 first_cpu(group->cpumask) >
2449 first_cpu(group_leader->cpumask))) {
2450 group_leader = group;
2451 leader_nr_running = sum_nr_running;
2454 group_next:
2455 #endif
2456 group = group->next;
2457 } while (group != sd->groups);
2459 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2460 goto out_balanced;
2462 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2464 if (this_load >= avg_load ||
2465 100*max_load <= sd->imbalance_pct*this_load)
2466 goto out_balanced;
2468 busiest_load_per_task /= busiest_nr_running;
2470 * We're trying to get all the cpus to the average_load, so we don't
2471 * want to push ourselves above the average load, nor do we wish to
2472 * reduce the max loaded cpu below the average load, as either of these
2473 * actions would just result in more rebalancing later, and ping-pong
2474 * tasks around. Thus we look for the minimum possible imbalance.
2475 * Negative imbalances (*we* are more loaded than anyone else) will
2476 * be counted as no imbalance for these purposes -- we can't fix that
2477 * by pulling tasks to us. Be careful of negative numbers as they'll
2478 * appear as very large values with unsigned longs.
2480 if (max_load <= busiest_load_per_task)
2481 goto out_balanced;
2484 * In the presence of smp nice balancing, certain scenarios can have
2485 * max load less than avg load(as we skip the groups at or below
2486 * its cpu_power, while calculating max_load..)
2488 if (max_load < avg_load) {
2489 *imbalance = 0;
2490 goto small_imbalance;
2493 /* Don't want to pull so many tasks that a group would go idle */
2494 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2496 /* How much load to actually move to equalise the imbalance */
2497 *imbalance = min(max_pull * busiest->__cpu_power,
2498 (avg_load - this_load) * this->__cpu_power)
2499 / SCHED_LOAD_SCALE;
2502 * if *imbalance is less than the average load per runnable task
2503 * there is no gaurantee that any tasks will be moved so we'll have
2504 * a think about bumping its value to force at least one task to be
2505 * moved
2507 if (*imbalance < busiest_load_per_task) {
2508 unsigned long tmp, pwr_now, pwr_move;
2509 unsigned int imbn;
2511 small_imbalance:
2512 pwr_move = pwr_now = 0;
2513 imbn = 2;
2514 if (this_nr_running) {
2515 this_load_per_task /= this_nr_running;
2516 if (busiest_load_per_task > this_load_per_task)
2517 imbn = 1;
2518 } else
2519 this_load_per_task = SCHED_LOAD_SCALE;
2521 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2522 busiest_load_per_task * imbn) {
2523 *imbalance = busiest_load_per_task;
2524 return busiest;
2528 * OK, we don't have enough imbalance to justify moving tasks,
2529 * however we may be able to increase total CPU power used by
2530 * moving them.
2533 pwr_now += busiest->__cpu_power *
2534 min(busiest_load_per_task, max_load);
2535 pwr_now += this->__cpu_power *
2536 min(this_load_per_task, this_load);
2537 pwr_now /= SCHED_LOAD_SCALE;
2539 /* Amount of load we'd subtract */
2540 tmp = sg_div_cpu_power(busiest,
2541 busiest_load_per_task * SCHED_LOAD_SCALE);
2542 if (max_load > tmp)
2543 pwr_move += busiest->__cpu_power *
2544 min(busiest_load_per_task, max_load - tmp);
2546 /* Amount of load we'd add */
2547 if (max_load * busiest->__cpu_power <
2548 busiest_load_per_task * SCHED_LOAD_SCALE)
2549 tmp = sg_div_cpu_power(this,
2550 max_load * busiest->__cpu_power);
2551 else
2552 tmp = sg_div_cpu_power(this,
2553 busiest_load_per_task * SCHED_LOAD_SCALE);
2554 pwr_move += this->__cpu_power *
2555 min(this_load_per_task, this_load + tmp);
2556 pwr_move /= SCHED_LOAD_SCALE;
2558 /* Move if we gain throughput */
2559 if (pwr_move > pwr_now)
2560 *imbalance = busiest_load_per_task;
2563 return busiest;
2565 out_balanced:
2566 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2567 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2568 goto ret;
2570 if (this == group_leader && group_leader != group_min) {
2571 *imbalance = min_load_per_task;
2572 return group_min;
2574 #endif
2575 ret:
2576 *imbalance = 0;
2577 return NULL;
2581 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2583 static struct rq *
2584 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2585 unsigned long imbalance, cpumask_t *cpus)
2587 struct rq *busiest = NULL, *rq;
2588 unsigned long max_load = 0;
2589 int i;
2591 for_each_cpu_mask(i, group->cpumask) {
2592 unsigned long wl;
2594 if (!cpu_isset(i, *cpus))
2595 continue;
2597 rq = cpu_rq(i);
2598 wl = weighted_cpuload(i);
2600 if (rq->nr_running == 1 && wl > imbalance)
2601 continue;
2603 if (wl > max_load) {
2604 max_load = wl;
2605 busiest = rq;
2609 return busiest;
2613 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2614 * so long as it is large enough.
2616 #define MAX_PINNED_INTERVAL 512
2619 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2620 * tasks if there is an imbalance.
2622 static int load_balance(int this_cpu, struct rq *this_rq,
2623 struct sched_domain *sd, enum cpu_idle_type idle,
2624 int *balance)
2626 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2627 struct sched_group *group;
2628 unsigned long imbalance;
2629 struct rq *busiest;
2630 cpumask_t cpus = CPU_MASK_ALL;
2631 unsigned long flags;
2634 * When power savings policy is enabled for the parent domain, idle
2635 * sibling can pick up load irrespective of busy siblings. In this case,
2636 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2637 * portraying it as CPU_NOT_IDLE.
2639 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2640 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2641 sd_idle = 1;
2643 schedstat_inc(sd, lb_count[idle]);
2645 redo:
2646 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2647 &cpus, balance);
2649 if (*balance == 0)
2650 goto out_balanced;
2652 if (!group) {
2653 schedstat_inc(sd, lb_nobusyg[idle]);
2654 goto out_balanced;
2657 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2658 if (!busiest) {
2659 schedstat_inc(sd, lb_nobusyq[idle]);
2660 goto out_balanced;
2663 BUG_ON(busiest == this_rq);
2665 schedstat_add(sd, lb_imbalance[idle], imbalance);
2667 ld_moved = 0;
2668 if (busiest->nr_running > 1) {
2670 * Attempt to move tasks. If find_busiest_group has found
2671 * an imbalance but busiest->nr_running <= 1, the group is
2672 * still unbalanced. ld_moved simply stays zero, so it is
2673 * correctly treated as an imbalance.
2675 local_irq_save(flags);
2676 double_rq_lock(this_rq, busiest);
2677 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2678 imbalance, sd, idle, &all_pinned);
2679 double_rq_unlock(this_rq, busiest);
2680 local_irq_restore(flags);
2683 * some other cpu did the load balance for us.
2685 if (ld_moved && this_cpu != smp_processor_id())
2686 resched_cpu(this_cpu);
2688 /* All tasks on this runqueue were pinned by CPU affinity */
2689 if (unlikely(all_pinned)) {
2690 cpu_clear(cpu_of(busiest), cpus);
2691 if (!cpus_empty(cpus))
2692 goto redo;
2693 goto out_balanced;
2697 if (!ld_moved) {
2698 schedstat_inc(sd, lb_failed[idle]);
2699 sd->nr_balance_failed++;
2701 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2703 spin_lock_irqsave(&busiest->lock, flags);
2705 /* don't kick the migration_thread, if the curr
2706 * task on busiest cpu can't be moved to this_cpu
2708 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2709 spin_unlock_irqrestore(&busiest->lock, flags);
2710 all_pinned = 1;
2711 goto out_one_pinned;
2714 if (!busiest->active_balance) {
2715 busiest->active_balance = 1;
2716 busiest->push_cpu = this_cpu;
2717 active_balance = 1;
2719 spin_unlock_irqrestore(&busiest->lock, flags);
2720 if (active_balance)
2721 wake_up_process(busiest->migration_thread);
2724 * We've kicked active balancing, reset the failure
2725 * counter.
2727 sd->nr_balance_failed = sd->cache_nice_tries+1;
2729 } else
2730 sd->nr_balance_failed = 0;
2732 if (likely(!active_balance)) {
2733 /* We were unbalanced, so reset the balancing interval */
2734 sd->balance_interval = sd->min_interval;
2735 } else {
2737 * If we've begun active balancing, start to back off. This
2738 * case may not be covered by the all_pinned logic if there
2739 * is only 1 task on the busy runqueue (because we don't call
2740 * move_tasks).
2742 if (sd->balance_interval < sd->max_interval)
2743 sd->balance_interval *= 2;
2746 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2747 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2748 return -1;
2749 return ld_moved;
2751 out_balanced:
2752 schedstat_inc(sd, lb_balanced[idle]);
2754 sd->nr_balance_failed = 0;
2756 out_one_pinned:
2757 /* tune up the balancing interval */
2758 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2759 (sd->balance_interval < sd->max_interval))
2760 sd->balance_interval *= 2;
2762 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2763 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2764 return -1;
2765 return 0;
2769 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2770 * tasks if there is an imbalance.
2772 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2773 * this_rq is locked.
2775 static int
2776 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2778 struct sched_group *group;
2779 struct rq *busiest = NULL;
2780 unsigned long imbalance;
2781 int ld_moved = 0;
2782 int sd_idle = 0;
2783 int all_pinned = 0;
2784 cpumask_t cpus = CPU_MASK_ALL;
2787 * When power savings policy is enabled for the parent domain, idle
2788 * sibling can pick up load irrespective of busy siblings. In this case,
2789 * let the state of idle sibling percolate up as IDLE, instead of
2790 * portraying it as CPU_NOT_IDLE.
2792 if (sd->flags & SD_SHARE_CPUPOWER &&
2793 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2794 sd_idle = 1;
2796 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2797 redo:
2798 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2799 &sd_idle, &cpus, NULL);
2800 if (!group) {
2801 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2802 goto out_balanced;
2805 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2806 &cpus);
2807 if (!busiest) {
2808 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2809 goto out_balanced;
2812 BUG_ON(busiest == this_rq);
2814 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2816 ld_moved = 0;
2817 if (busiest->nr_running > 1) {
2818 /* Attempt to move tasks */
2819 double_lock_balance(this_rq, busiest);
2820 /* this_rq->clock is already updated */
2821 update_rq_clock(busiest);
2822 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2823 imbalance, sd, CPU_NEWLY_IDLE,
2824 &all_pinned);
2825 spin_unlock(&busiest->lock);
2827 if (unlikely(all_pinned)) {
2828 cpu_clear(cpu_of(busiest), cpus);
2829 if (!cpus_empty(cpus))
2830 goto redo;
2834 if (!ld_moved) {
2835 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2836 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2837 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2838 return -1;
2839 } else
2840 sd->nr_balance_failed = 0;
2842 return ld_moved;
2844 out_balanced:
2845 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2846 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2847 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2848 return -1;
2849 sd->nr_balance_failed = 0;
2851 return 0;
2855 * idle_balance is called by schedule() if this_cpu is about to become
2856 * idle. Attempts to pull tasks from other CPUs.
2858 static void idle_balance(int this_cpu, struct rq *this_rq)
2860 struct sched_domain *sd;
2861 int pulled_task = -1;
2862 unsigned long next_balance = jiffies + HZ;
2864 for_each_domain(this_cpu, sd) {
2865 unsigned long interval;
2867 if (!(sd->flags & SD_LOAD_BALANCE))
2868 continue;
2870 if (sd->flags & SD_BALANCE_NEWIDLE)
2871 /* If we've pulled tasks over stop searching: */
2872 pulled_task = load_balance_newidle(this_cpu,
2873 this_rq, sd);
2875 interval = msecs_to_jiffies(sd->balance_interval);
2876 if (time_after(next_balance, sd->last_balance + interval))
2877 next_balance = sd->last_balance + interval;
2878 if (pulled_task)
2879 break;
2881 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2883 * We are going idle. next_balance may be set based on
2884 * a busy processor. So reset next_balance.
2886 this_rq->next_balance = next_balance;
2891 * active_load_balance is run by migration threads. It pushes running tasks
2892 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2893 * running on each physical CPU where possible, and avoids physical /
2894 * logical imbalances.
2896 * Called with busiest_rq locked.
2898 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2900 int target_cpu = busiest_rq->push_cpu;
2901 struct sched_domain *sd;
2902 struct rq *target_rq;
2904 /* Is there any task to move? */
2905 if (busiest_rq->nr_running <= 1)
2906 return;
2908 target_rq = cpu_rq(target_cpu);
2911 * This condition is "impossible", if it occurs
2912 * we need to fix it. Originally reported by
2913 * Bjorn Helgaas on a 128-cpu setup.
2915 BUG_ON(busiest_rq == target_rq);
2917 /* move a task from busiest_rq to target_rq */
2918 double_lock_balance(busiest_rq, target_rq);
2919 update_rq_clock(busiest_rq);
2920 update_rq_clock(target_rq);
2922 /* Search for an sd spanning us and the target CPU. */
2923 for_each_domain(target_cpu, sd) {
2924 if ((sd->flags & SD_LOAD_BALANCE) &&
2925 cpu_isset(busiest_cpu, sd->span))
2926 break;
2929 if (likely(sd)) {
2930 schedstat_inc(sd, alb_count);
2932 if (move_one_task(target_rq, target_cpu, busiest_rq,
2933 sd, CPU_IDLE))
2934 schedstat_inc(sd, alb_pushed);
2935 else
2936 schedstat_inc(sd, alb_failed);
2938 spin_unlock(&target_rq->lock);
2941 #ifdef CONFIG_NO_HZ
2942 static struct {
2943 atomic_t load_balancer;
2944 cpumask_t cpu_mask;
2945 } nohz ____cacheline_aligned = {
2946 .load_balancer = ATOMIC_INIT(-1),
2947 .cpu_mask = CPU_MASK_NONE,
2951 * This routine will try to nominate the ilb (idle load balancing)
2952 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2953 * load balancing on behalf of all those cpus. If all the cpus in the system
2954 * go into this tickless mode, then there will be no ilb owner (as there is
2955 * no need for one) and all the cpus will sleep till the next wakeup event
2956 * arrives...
2958 * For the ilb owner, tick is not stopped. And this tick will be used
2959 * for idle load balancing. ilb owner will still be part of
2960 * nohz.cpu_mask..
2962 * While stopping the tick, this cpu will become the ilb owner if there
2963 * is no other owner. And will be the owner till that cpu becomes busy
2964 * or if all cpus in the system stop their ticks at which point
2965 * there is no need for ilb owner.
2967 * When the ilb owner becomes busy, it nominates another owner, during the
2968 * next busy scheduler_tick()
2970 int select_nohz_load_balancer(int stop_tick)
2972 int cpu = smp_processor_id();
2974 if (stop_tick) {
2975 cpu_set(cpu, nohz.cpu_mask);
2976 cpu_rq(cpu)->in_nohz_recently = 1;
2979 * If we are going offline and still the leader, give up!
2981 if (cpu_is_offline(cpu) &&
2982 atomic_read(&nohz.load_balancer) == cpu) {
2983 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2984 BUG();
2985 return 0;
2988 /* time for ilb owner also to sleep */
2989 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2990 if (atomic_read(&nohz.load_balancer) == cpu)
2991 atomic_set(&nohz.load_balancer, -1);
2992 return 0;
2995 if (atomic_read(&nohz.load_balancer) == -1) {
2996 /* make me the ilb owner */
2997 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2998 return 1;
2999 } else if (atomic_read(&nohz.load_balancer) == cpu)
3000 return 1;
3001 } else {
3002 if (!cpu_isset(cpu, nohz.cpu_mask))
3003 return 0;
3005 cpu_clear(cpu, nohz.cpu_mask);
3007 if (atomic_read(&nohz.load_balancer) == cpu)
3008 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3009 BUG();
3011 return 0;
3013 #endif
3015 static DEFINE_SPINLOCK(balancing);
3018 * It checks each scheduling domain to see if it is due to be balanced,
3019 * and initiates a balancing operation if so.
3021 * Balancing parameters are set up in arch_init_sched_domains.
3023 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3025 int balance = 1;
3026 struct rq *rq = cpu_rq(cpu);
3027 unsigned long interval;
3028 struct sched_domain *sd;
3029 /* Earliest time when we have to do rebalance again */
3030 unsigned long next_balance = jiffies + 60*HZ;
3031 int update_next_balance = 0;
3033 for_each_domain(cpu, sd) {
3034 if (!(sd->flags & SD_LOAD_BALANCE))
3035 continue;
3037 interval = sd->balance_interval;
3038 if (idle != CPU_IDLE)
3039 interval *= sd->busy_factor;
3041 /* scale ms to jiffies */
3042 interval = msecs_to_jiffies(interval);
3043 if (unlikely(!interval))
3044 interval = 1;
3045 if (interval > HZ*NR_CPUS/10)
3046 interval = HZ*NR_CPUS/10;
3049 if (sd->flags & SD_SERIALIZE) {
3050 if (!spin_trylock(&balancing))
3051 goto out;
3054 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3055 if (load_balance(cpu, rq, sd, idle, &balance)) {
3057 * We've pulled tasks over so either we're no
3058 * longer idle, or one of our SMT siblings is
3059 * not idle.
3061 idle = CPU_NOT_IDLE;
3063 sd->last_balance = jiffies;
3065 if (sd->flags & SD_SERIALIZE)
3066 spin_unlock(&balancing);
3067 out:
3068 if (time_after(next_balance, sd->last_balance + interval)) {
3069 next_balance = sd->last_balance + interval;
3070 update_next_balance = 1;
3074 * Stop the load balance at this level. There is another
3075 * CPU in our sched group which is doing load balancing more
3076 * actively.
3078 if (!balance)
3079 break;
3083 * next_balance will be updated only when there is a need.
3084 * When the cpu is attached to null domain for ex, it will not be
3085 * updated.
3087 if (likely(update_next_balance))
3088 rq->next_balance = next_balance;
3092 * run_rebalance_domains is triggered when needed from the scheduler tick.
3093 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3094 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3096 static void run_rebalance_domains(struct softirq_action *h)
3098 int this_cpu = smp_processor_id();
3099 struct rq *this_rq = cpu_rq(this_cpu);
3100 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3101 CPU_IDLE : CPU_NOT_IDLE;
3103 rebalance_domains(this_cpu, idle);
3105 #ifdef CONFIG_NO_HZ
3107 * If this cpu is the owner for idle load balancing, then do the
3108 * balancing on behalf of the other idle cpus whose ticks are
3109 * stopped.
3111 if (this_rq->idle_at_tick &&
3112 atomic_read(&nohz.load_balancer) == this_cpu) {
3113 cpumask_t cpus = nohz.cpu_mask;
3114 struct rq *rq;
3115 int balance_cpu;
3117 cpu_clear(this_cpu, cpus);
3118 for_each_cpu_mask(balance_cpu, cpus) {
3120 * If this cpu gets work to do, stop the load balancing
3121 * work being done for other cpus. Next load
3122 * balancing owner will pick it up.
3124 if (need_resched())
3125 break;
3127 rebalance_domains(balance_cpu, CPU_IDLE);
3129 rq = cpu_rq(balance_cpu);
3130 if (time_after(this_rq->next_balance, rq->next_balance))
3131 this_rq->next_balance = rq->next_balance;
3134 #endif
3138 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3140 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3141 * idle load balancing owner or decide to stop the periodic load balancing,
3142 * if the whole system is idle.
3144 static inline void trigger_load_balance(struct rq *rq, int cpu)
3146 #ifdef CONFIG_NO_HZ
3148 * If we were in the nohz mode recently and busy at the current
3149 * scheduler tick, then check if we need to nominate new idle
3150 * load balancer.
3152 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3153 rq->in_nohz_recently = 0;
3155 if (atomic_read(&nohz.load_balancer) == cpu) {
3156 cpu_clear(cpu, nohz.cpu_mask);
3157 atomic_set(&nohz.load_balancer, -1);
3160 if (atomic_read(&nohz.load_balancer) == -1) {
3162 * simple selection for now: Nominate the
3163 * first cpu in the nohz list to be the next
3164 * ilb owner.
3166 * TBD: Traverse the sched domains and nominate
3167 * the nearest cpu in the nohz.cpu_mask.
3169 int ilb = first_cpu(nohz.cpu_mask);
3171 if (ilb != NR_CPUS)
3172 resched_cpu(ilb);
3177 * If this cpu is idle and doing idle load balancing for all the
3178 * cpus with ticks stopped, is it time for that to stop?
3180 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3181 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3182 resched_cpu(cpu);
3183 return;
3187 * If this cpu is idle and the idle load balancing is done by
3188 * someone else, then no need raise the SCHED_SOFTIRQ
3190 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3191 cpu_isset(cpu, nohz.cpu_mask))
3192 return;
3193 #endif
3194 if (time_after_eq(jiffies, rq->next_balance))
3195 raise_softirq(SCHED_SOFTIRQ);
3198 #else /* CONFIG_SMP */
3201 * on UP we do not need to balance between CPUs:
3203 static inline void idle_balance(int cpu, struct rq *rq)
3207 /* Avoid "used but not defined" warning on UP */
3208 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3209 unsigned long max_nr_move, unsigned long max_load_move,
3210 struct sched_domain *sd, enum cpu_idle_type idle,
3211 int *all_pinned, unsigned long *load_moved,
3212 int *this_best_prio, struct rq_iterator *iterator)
3214 *load_moved = 0;
3216 return 0;
3219 #endif
3221 DEFINE_PER_CPU(struct kernel_stat, kstat);
3223 EXPORT_PER_CPU_SYMBOL(kstat);
3226 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3227 * that have not yet been banked in case the task is currently running.
3229 unsigned long long task_sched_runtime(struct task_struct *p)
3231 unsigned long flags;
3232 u64 ns, delta_exec;
3233 struct rq *rq;
3235 rq = task_rq_lock(p, &flags);
3236 ns = p->se.sum_exec_runtime;
3237 if (rq->curr == p) {
3238 update_rq_clock(rq);
3239 delta_exec = rq->clock - p->se.exec_start;
3240 if ((s64)delta_exec > 0)
3241 ns += delta_exec;
3243 task_rq_unlock(rq, &flags);
3245 return ns;
3249 * Account user cpu time to a process.
3250 * @p: the process that the cpu time gets accounted to
3251 * @hardirq_offset: the offset to subtract from hardirq_count()
3252 * @cputime: the cpu time spent in user space since the last update
3254 void account_user_time(struct task_struct *p, cputime_t cputime)
3256 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3257 cputime64_t tmp;
3259 p->utime = cputime_add(p->utime, cputime);
3261 /* Add user time to cpustat. */
3262 tmp = cputime_to_cputime64(cputime);
3263 if (TASK_NICE(p) > 0)
3264 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3265 else
3266 cpustat->user = cputime64_add(cpustat->user, tmp);
3270 * Account system cpu time to a process.
3271 * @p: the process that the cpu time gets accounted to
3272 * @hardirq_offset: the offset to subtract from hardirq_count()
3273 * @cputime: the cpu time spent in kernel space since the last update
3275 void account_system_time(struct task_struct *p, int hardirq_offset,
3276 cputime_t cputime)
3278 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3279 struct rq *rq = this_rq();
3280 cputime64_t tmp;
3282 p->stime = cputime_add(p->stime, cputime);
3284 /* Add system time to cpustat. */
3285 tmp = cputime_to_cputime64(cputime);
3286 if (hardirq_count() - hardirq_offset)
3287 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3288 else if (softirq_count())
3289 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3290 else if (p != rq->idle)
3291 cpustat->system = cputime64_add(cpustat->system, tmp);
3292 else if (atomic_read(&rq->nr_iowait) > 0)
3293 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3294 else
3295 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3296 /* Account for system time used */
3297 acct_update_integrals(p);
3301 * Account for involuntary wait time.
3302 * @p: the process from which the cpu time has been stolen
3303 * @steal: the cpu time spent in involuntary wait
3305 void account_steal_time(struct task_struct *p, cputime_t steal)
3307 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3308 cputime64_t tmp = cputime_to_cputime64(steal);
3309 struct rq *rq = this_rq();
3311 if (p == rq->idle) {
3312 p->stime = cputime_add(p->stime, steal);
3313 if (atomic_read(&rq->nr_iowait) > 0)
3314 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3315 else
3316 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3317 } else
3318 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3322 * This function gets called by the timer code, with HZ frequency.
3323 * We call it with interrupts disabled.
3325 * It also gets called by the fork code, when changing the parent's
3326 * timeslices.
3328 void scheduler_tick(void)
3330 int cpu = smp_processor_id();
3331 struct rq *rq = cpu_rq(cpu);
3332 struct task_struct *curr = rq->curr;
3333 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3335 spin_lock(&rq->lock);
3336 __update_rq_clock(rq);
3338 * Let rq->clock advance by at least TICK_NSEC:
3340 if (unlikely(rq->clock < next_tick))
3341 rq->clock = next_tick;
3342 rq->tick_timestamp = rq->clock;
3343 update_cpu_load(rq);
3344 if (curr != rq->idle) /* FIXME: needed? */
3345 curr->sched_class->task_tick(rq, curr);
3346 spin_unlock(&rq->lock);
3348 #ifdef CONFIG_SMP
3349 rq->idle_at_tick = idle_cpu(cpu);
3350 trigger_load_balance(rq, cpu);
3351 #endif
3354 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3356 void fastcall add_preempt_count(int val)
3359 * Underflow?
3361 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3362 return;
3363 preempt_count() += val;
3365 * Spinlock count overflowing soon?
3367 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3368 PREEMPT_MASK - 10);
3370 EXPORT_SYMBOL(add_preempt_count);
3372 void fastcall sub_preempt_count(int val)
3375 * Underflow?
3377 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3378 return;
3380 * Is the spinlock portion underflowing?
3382 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3383 !(preempt_count() & PREEMPT_MASK)))
3384 return;
3386 preempt_count() -= val;
3388 EXPORT_SYMBOL(sub_preempt_count);
3390 #endif
3393 * Print scheduling while atomic bug:
3395 static noinline void __schedule_bug(struct task_struct *prev)
3397 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3398 prev->comm, preempt_count(), prev->pid);
3399 debug_show_held_locks(prev);
3400 if (irqs_disabled())
3401 print_irqtrace_events(prev);
3402 dump_stack();
3406 * Various schedule()-time debugging checks and statistics:
3408 static inline void schedule_debug(struct task_struct *prev)
3411 * Test if we are atomic. Since do_exit() needs to call into
3412 * schedule() atomically, we ignore that path for now.
3413 * Otherwise, whine if we are scheduling when we should not be.
3415 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3416 __schedule_bug(prev);
3418 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3420 schedstat_inc(this_rq(), sched_count);
3421 #ifdef CONFIG_SCHEDSTATS
3422 if (unlikely(prev->lock_depth >= 0)) {
3423 schedstat_inc(this_rq(), bkl_count);
3424 schedstat_inc(prev, sched_info.bkl_count);
3426 #endif
3430 * Pick up the highest-prio task:
3432 static inline struct task_struct *
3433 pick_next_task(struct rq *rq, struct task_struct *prev)
3435 const struct sched_class *class;
3436 struct task_struct *p;
3439 * Optimization: we know that if all tasks are in
3440 * the fair class we can call that function directly:
3442 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3443 p = fair_sched_class.pick_next_task(rq);
3444 if (likely(p))
3445 return p;
3448 class = sched_class_highest;
3449 for ( ; ; ) {
3450 p = class->pick_next_task(rq);
3451 if (p)
3452 return p;
3454 * Will never be NULL as the idle class always
3455 * returns a non-NULL p:
3457 class = class->next;
3462 * schedule() is the main scheduler function.
3464 asmlinkage void __sched schedule(void)
3466 struct task_struct *prev, *next;
3467 long *switch_count;
3468 struct rq *rq;
3469 int cpu;
3471 need_resched:
3472 preempt_disable();
3473 cpu = smp_processor_id();
3474 rq = cpu_rq(cpu);
3475 rcu_qsctr_inc(cpu);
3476 prev = rq->curr;
3477 switch_count = &prev->nivcsw;
3479 release_kernel_lock(prev);
3480 need_resched_nonpreemptible:
3482 schedule_debug(prev);
3485 * Do the rq-clock update outside the rq lock:
3487 local_irq_disable();
3488 __update_rq_clock(rq);
3489 spin_lock(&rq->lock);
3490 clear_tsk_need_resched(prev);
3492 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3493 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3494 unlikely(signal_pending(prev)))) {
3495 prev->state = TASK_RUNNING;
3496 } else {
3497 deactivate_task(rq, prev, 1);
3499 switch_count = &prev->nvcsw;
3502 if (unlikely(!rq->nr_running))
3503 idle_balance(cpu, rq);
3505 prev->sched_class->put_prev_task(rq, prev);
3506 next = pick_next_task(rq, prev);
3508 sched_info_switch(prev, next);
3510 if (likely(prev != next)) {
3511 rq->nr_switches++;
3512 rq->curr = next;
3513 ++*switch_count;
3515 context_switch(rq, prev, next); /* unlocks the rq */
3516 } else
3517 spin_unlock_irq(&rq->lock);
3519 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3520 cpu = smp_processor_id();
3521 rq = cpu_rq(cpu);
3522 goto need_resched_nonpreemptible;
3524 preempt_enable_no_resched();
3525 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3526 goto need_resched;
3528 EXPORT_SYMBOL(schedule);
3530 #ifdef CONFIG_PREEMPT
3532 * this is the entry point to schedule() from in-kernel preemption
3533 * off of preempt_enable. Kernel preemptions off return from interrupt
3534 * occur there and call schedule directly.
3536 asmlinkage void __sched preempt_schedule(void)
3538 struct thread_info *ti = current_thread_info();
3539 #ifdef CONFIG_PREEMPT_BKL
3540 struct task_struct *task = current;
3541 int saved_lock_depth;
3542 #endif
3544 * If there is a non-zero preempt_count or interrupts are disabled,
3545 * we do not want to preempt the current task. Just return..
3547 if (likely(ti->preempt_count || irqs_disabled()))
3548 return;
3550 need_resched:
3551 add_preempt_count(PREEMPT_ACTIVE);
3553 * We keep the big kernel semaphore locked, but we
3554 * clear ->lock_depth so that schedule() doesnt
3555 * auto-release the semaphore:
3557 #ifdef CONFIG_PREEMPT_BKL
3558 saved_lock_depth = task->lock_depth;
3559 task->lock_depth = -1;
3560 #endif
3561 schedule();
3562 #ifdef CONFIG_PREEMPT_BKL
3563 task->lock_depth = saved_lock_depth;
3564 #endif
3565 sub_preempt_count(PREEMPT_ACTIVE);
3567 /* we could miss a preemption opportunity between schedule and now */
3568 barrier();
3569 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3570 goto need_resched;
3572 EXPORT_SYMBOL(preempt_schedule);
3575 * this is the entry point to schedule() from kernel preemption
3576 * off of irq context.
3577 * Note, that this is called and return with irqs disabled. This will
3578 * protect us against recursive calling from irq.
3580 asmlinkage void __sched preempt_schedule_irq(void)
3582 struct thread_info *ti = current_thread_info();
3583 #ifdef CONFIG_PREEMPT_BKL
3584 struct task_struct *task = current;
3585 int saved_lock_depth;
3586 #endif
3587 /* Catch callers which need to be fixed */
3588 BUG_ON(ti->preempt_count || !irqs_disabled());
3590 need_resched:
3591 add_preempt_count(PREEMPT_ACTIVE);
3593 * We keep the big kernel semaphore locked, but we
3594 * clear ->lock_depth so that schedule() doesnt
3595 * auto-release the semaphore:
3597 #ifdef CONFIG_PREEMPT_BKL
3598 saved_lock_depth = task->lock_depth;
3599 task->lock_depth = -1;
3600 #endif
3601 local_irq_enable();
3602 schedule();
3603 local_irq_disable();
3604 #ifdef CONFIG_PREEMPT_BKL
3605 task->lock_depth = saved_lock_depth;
3606 #endif
3607 sub_preempt_count(PREEMPT_ACTIVE);
3609 /* we could miss a preemption opportunity between schedule and now */
3610 barrier();
3611 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3612 goto need_resched;
3615 #endif /* CONFIG_PREEMPT */
3617 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3618 void *key)
3620 return try_to_wake_up(curr->private, mode, sync);
3622 EXPORT_SYMBOL(default_wake_function);
3625 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3626 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3627 * number) then we wake all the non-exclusive tasks and one exclusive task.
3629 * There are circumstances in which we can try to wake a task which has already
3630 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3631 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3633 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3634 int nr_exclusive, int sync, void *key)
3636 wait_queue_t *curr, *next;
3638 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3639 unsigned flags = curr->flags;
3641 if (curr->func(curr, mode, sync, key) &&
3642 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3643 break;
3648 * __wake_up - wake up threads blocked on a waitqueue.
3649 * @q: the waitqueue
3650 * @mode: which threads
3651 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3652 * @key: is directly passed to the wakeup function
3654 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3655 int nr_exclusive, void *key)
3657 unsigned long flags;
3659 spin_lock_irqsave(&q->lock, flags);
3660 __wake_up_common(q, mode, nr_exclusive, 0, key);
3661 spin_unlock_irqrestore(&q->lock, flags);
3663 EXPORT_SYMBOL(__wake_up);
3666 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3668 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3670 __wake_up_common(q, mode, 1, 0, NULL);
3674 * __wake_up_sync - wake up threads blocked on a waitqueue.
3675 * @q: the waitqueue
3676 * @mode: which threads
3677 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3679 * The sync wakeup differs that the waker knows that it will schedule
3680 * away soon, so while the target thread will be woken up, it will not
3681 * be migrated to another CPU - ie. the two threads are 'synchronized'
3682 * with each other. This can prevent needless bouncing between CPUs.
3684 * On UP it can prevent extra preemption.
3686 void fastcall
3687 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3689 unsigned long flags;
3690 int sync = 1;
3692 if (unlikely(!q))
3693 return;
3695 if (unlikely(!nr_exclusive))
3696 sync = 0;
3698 spin_lock_irqsave(&q->lock, flags);
3699 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3700 spin_unlock_irqrestore(&q->lock, flags);
3702 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3704 void fastcall complete(struct completion *x)
3706 unsigned long flags;
3708 spin_lock_irqsave(&x->wait.lock, flags);
3709 x->done++;
3710 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3711 1, 0, NULL);
3712 spin_unlock_irqrestore(&x->wait.lock, flags);
3714 EXPORT_SYMBOL(complete);
3716 void fastcall complete_all(struct completion *x)
3718 unsigned long flags;
3720 spin_lock_irqsave(&x->wait.lock, flags);
3721 x->done += UINT_MAX/2;
3722 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3723 0, 0, NULL);
3724 spin_unlock_irqrestore(&x->wait.lock, flags);
3726 EXPORT_SYMBOL(complete_all);
3728 void fastcall __sched wait_for_completion(struct completion *x)
3730 might_sleep();
3732 spin_lock_irq(&x->wait.lock);
3733 if (!x->done) {
3734 DECLARE_WAITQUEUE(wait, current);
3736 wait.flags |= WQ_FLAG_EXCLUSIVE;
3737 __add_wait_queue_tail(&x->wait, &wait);
3738 do {
3739 __set_current_state(TASK_UNINTERRUPTIBLE);
3740 spin_unlock_irq(&x->wait.lock);
3741 schedule();
3742 spin_lock_irq(&x->wait.lock);
3743 } while (!x->done);
3744 __remove_wait_queue(&x->wait, &wait);
3746 x->done--;
3747 spin_unlock_irq(&x->wait.lock);
3749 EXPORT_SYMBOL(wait_for_completion);
3751 unsigned long fastcall __sched
3752 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3754 might_sleep();
3756 spin_lock_irq(&x->wait.lock);
3757 if (!x->done) {
3758 DECLARE_WAITQUEUE(wait, current);
3760 wait.flags |= WQ_FLAG_EXCLUSIVE;
3761 __add_wait_queue_tail(&x->wait, &wait);
3762 do {
3763 __set_current_state(TASK_UNINTERRUPTIBLE);
3764 spin_unlock_irq(&x->wait.lock);
3765 timeout = schedule_timeout(timeout);
3766 spin_lock_irq(&x->wait.lock);
3767 if (!timeout) {
3768 __remove_wait_queue(&x->wait, &wait);
3769 goto out;
3771 } while (!x->done);
3772 __remove_wait_queue(&x->wait, &wait);
3774 x->done--;
3775 out:
3776 spin_unlock_irq(&x->wait.lock);
3777 return timeout;
3779 EXPORT_SYMBOL(wait_for_completion_timeout);
3781 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3783 int ret = 0;
3785 might_sleep();
3787 spin_lock_irq(&x->wait.lock);
3788 if (!x->done) {
3789 DECLARE_WAITQUEUE(wait, current);
3791 wait.flags |= WQ_FLAG_EXCLUSIVE;
3792 __add_wait_queue_tail(&x->wait, &wait);
3793 do {
3794 if (signal_pending(current)) {
3795 ret = -ERESTARTSYS;
3796 __remove_wait_queue(&x->wait, &wait);
3797 goto out;
3799 __set_current_state(TASK_INTERRUPTIBLE);
3800 spin_unlock_irq(&x->wait.lock);
3801 schedule();
3802 spin_lock_irq(&x->wait.lock);
3803 } while (!x->done);
3804 __remove_wait_queue(&x->wait, &wait);
3806 x->done--;
3807 out:
3808 spin_unlock_irq(&x->wait.lock);
3810 return ret;
3812 EXPORT_SYMBOL(wait_for_completion_interruptible);
3814 unsigned long fastcall __sched
3815 wait_for_completion_interruptible_timeout(struct completion *x,
3816 unsigned long timeout)
3818 might_sleep();
3820 spin_lock_irq(&x->wait.lock);
3821 if (!x->done) {
3822 DECLARE_WAITQUEUE(wait, current);
3824 wait.flags |= WQ_FLAG_EXCLUSIVE;
3825 __add_wait_queue_tail(&x->wait, &wait);
3826 do {
3827 if (signal_pending(current)) {
3828 timeout = -ERESTARTSYS;
3829 __remove_wait_queue(&x->wait, &wait);
3830 goto out;
3832 __set_current_state(TASK_INTERRUPTIBLE);
3833 spin_unlock_irq(&x->wait.lock);
3834 timeout = schedule_timeout(timeout);
3835 spin_lock_irq(&x->wait.lock);
3836 if (!timeout) {
3837 __remove_wait_queue(&x->wait, &wait);
3838 goto out;
3840 } while (!x->done);
3841 __remove_wait_queue(&x->wait, &wait);
3843 x->done--;
3844 out:
3845 spin_unlock_irq(&x->wait.lock);
3846 return timeout;
3848 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3850 static inline void
3851 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3853 spin_lock_irqsave(&q->lock, *flags);
3854 __add_wait_queue(q, wait);
3855 spin_unlock(&q->lock);
3858 static inline void
3859 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3861 spin_lock_irq(&q->lock);
3862 __remove_wait_queue(q, wait);
3863 spin_unlock_irqrestore(&q->lock, *flags);
3866 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3868 unsigned long flags;
3869 wait_queue_t wait;
3871 init_waitqueue_entry(&wait, current);
3873 current->state = TASK_INTERRUPTIBLE;
3875 sleep_on_head(q, &wait, &flags);
3876 schedule();
3877 sleep_on_tail(q, &wait, &flags);
3879 EXPORT_SYMBOL(interruptible_sleep_on);
3881 long __sched
3882 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3884 unsigned long flags;
3885 wait_queue_t wait;
3887 init_waitqueue_entry(&wait, current);
3889 current->state = TASK_INTERRUPTIBLE;
3891 sleep_on_head(q, &wait, &flags);
3892 timeout = schedule_timeout(timeout);
3893 sleep_on_tail(q, &wait, &flags);
3895 return timeout;
3897 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3899 void __sched sleep_on(wait_queue_head_t *q)
3901 unsigned long flags;
3902 wait_queue_t wait;
3904 init_waitqueue_entry(&wait, current);
3906 current->state = TASK_UNINTERRUPTIBLE;
3908 sleep_on_head(q, &wait, &flags);
3909 schedule();
3910 sleep_on_tail(q, &wait, &flags);
3912 EXPORT_SYMBOL(sleep_on);
3914 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3916 unsigned long flags;
3917 wait_queue_t wait;
3919 init_waitqueue_entry(&wait, current);
3921 current->state = TASK_UNINTERRUPTIBLE;
3923 sleep_on_head(q, &wait, &flags);
3924 timeout = schedule_timeout(timeout);
3925 sleep_on_tail(q, &wait, &flags);
3927 return timeout;
3929 EXPORT_SYMBOL(sleep_on_timeout);
3931 #ifdef CONFIG_RT_MUTEXES
3934 * rt_mutex_setprio - set the current priority of a task
3935 * @p: task
3936 * @prio: prio value (kernel-internal form)
3938 * This function changes the 'effective' priority of a task. It does
3939 * not touch ->normal_prio like __setscheduler().
3941 * Used by the rt_mutex code to implement priority inheritance logic.
3943 void rt_mutex_setprio(struct task_struct *p, int prio)
3945 unsigned long flags;
3946 int oldprio, on_rq, running;
3947 struct rq *rq;
3949 BUG_ON(prio < 0 || prio > MAX_PRIO);
3951 rq = task_rq_lock(p, &flags);
3952 update_rq_clock(rq);
3954 oldprio = p->prio;
3955 on_rq = p->se.on_rq;
3956 running = task_running(rq, p);
3957 if (on_rq) {
3958 dequeue_task(rq, p, 0);
3959 if (running)
3960 p->sched_class->put_prev_task(rq, p);
3963 if (rt_prio(prio))
3964 p->sched_class = &rt_sched_class;
3965 else
3966 p->sched_class = &fair_sched_class;
3968 p->prio = prio;
3970 if (on_rq) {
3971 if (running)
3972 p->sched_class->set_curr_task(rq);
3973 enqueue_task(rq, p, 0);
3975 * Reschedule if we are currently running on this runqueue and
3976 * our priority decreased, or if we are not currently running on
3977 * this runqueue and our priority is higher than the current's
3979 if (running) {
3980 if (p->prio > oldprio)
3981 resched_task(rq->curr);
3982 } else {
3983 check_preempt_curr(rq, p);
3986 task_rq_unlock(rq, &flags);
3989 #endif
3991 void set_user_nice(struct task_struct *p, long nice)
3993 int old_prio, delta, on_rq;
3994 unsigned long flags;
3995 struct rq *rq;
3997 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3998 return;
4000 * We have to be careful, if called from sys_setpriority(),
4001 * the task might be in the middle of scheduling on another CPU.
4003 rq = task_rq_lock(p, &flags);
4004 update_rq_clock(rq);
4006 * The RT priorities are set via sched_setscheduler(), but we still
4007 * allow the 'normal' nice value to be set - but as expected
4008 * it wont have any effect on scheduling until the task is
4009 * SCHED_FIFO/SCHED_RR:
4011 if (task_has_rt_policy(p)) {
4012 p->static_prio = NICE_TO_PRIO(nice);
4013 goto out_unlock;
4015 on_rq = p->se.on_rq;
4016 if (on_rq) {
4017 dequeue_task(rq, p, 0);
4018 dec_load(rq, p);
4021 p->static_prio = NICE_TO_PRIO(nice);
4022 set_load_weight(p);
4023 old_prio = p->prio;
4024 p->prio = effective_prio(p);
4025 delta = p->prio - old_prio;
4027 if (on_rq) {
4028 enqueue_task(rq, p, 0);
4029 inc_load(rq, p);
4031 * If the task increased its priority or is running and
4032 * lowered its priority, then reschedule its CPU:
4034 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4035 resched_task(rq->curr);
4037 out_unlock:
4038 task_rq_unlock(rq, &flags);
4040 EXPORT_SYMBOL(set_user_nice);
4043 * can_nice - check if a task can reduce its nice value
4044 * @p: task
4045 * @nice: nice value
4047 int can_nice(const struct task_struct *p, const int nice)
4049 /* convert nice value [19,-20] to rlimit style value [1,40] */
4050 int nice_rlim = 20 - nice;
4052 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4053 capable(CAP_SYS_NICE));
4056 #ifdef __ARCH_WANT_SYS_NICE
4059 * sys_nice - change the priority of the current process.
4060 * @increment: priority increment
4062 * sys_setpriority is a more generic, but much slower function that
4063 * does similar things.
4065 asmlinkage long sys_nice(int increment)
4067 long nice, retval;
4070 * Setpriority might change our priority at the same moment.
4071 * We don't have to worry. Conceptually one call occurs first
4072 * and we have a single winner.
4074 if (increment < -40)
4075 increment = -40;
4076 if (increment > 40)
4077 increment = 40;
4079 nice = PRIO_TO_NICE(current->static_prio) + increment;
4080 if (nice < -20)
4081 nice = -20;
4082 if (nice > 19)
4083 nice = 19;
4085 if (increment < 0 && !can_nice(current, nice))
4086 return -EPERM;
4088 retval = security_task_setnice(current, nice);
4089 if (retval)
4090 return retval;
4092 set_user_nice(current, nice);
4093 return 0;
4096 #endif
4099 * task_prio - return the priority value of a given task.
4100 * @p: the task in question.
4102 * This is the priority value as seen by users in /proc.
4103 * RT tasks are offset by -200. Normal tasks are centered
4104 * around 0, value goes from -16 to +15.
4106 int task_prio(const struct task_struct *p)
4108 return p->prio - MAX_RT_PRIO;
4112 * task_nice - return the nice value of a given task.
4113 * @p: the task in question.
4115 int task_nice(const struct task_struct *p)
4117 return TASK_NICE(p);
4119 EXPORT_SYMBOL_GPL(task_nice);
4122 * idle_cpu - is a given cpu idle currently?
4123 * @cpu: the processor in question.
4125 int idle_cpu(int cpu)
4127 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4131 * idle_task - return the idle task for a given cpu.
4132 * @cpu: the processor in question.
4134 struct task_struct *idle_task(int cpu)
4136 return cpu_rq(cpu)->idle;
4140 * find_process_by_pid - find a process with a matching PID value.
4141 * @pid: the pid in question.
4143 static inline struct task_struct *find_process_by_pid(pid_t pid)
4145 return pid ? find_task_by_pid(pid) : current;
4148 /* Actually do priority change: must hold rq lock. */
4149 static void
4150 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4152 BUG_ON(p->se.on_rq);
4154 p->policy = policy;
4155 switch (p->policy) {
4156 case SCHED_NORMAL:
4157 case SCHED_BATCH:
4158 case SCHED_IDLE:
4159 p->sched_class = &fair_sched_class;
4160 break;
4161 case SCHED_FIFO:
4162 case SCHED_RR:
4163 p->sched_class = &rt_sched_class;
4164 break;
4167 p->rt_priority = prio;
4168 p->normal_prio = normal_prio(p);
4169 /* we are holding p->pi_lock already */
4170 p->prio = rt_mutex_getprio(p);
4171 set_load_weight(p);
4175 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4176 * @p: the task in question.
4177 * @policy: new policy.
4178 * @param: structure containing the new RT priority.
4180 * NOTE that the task may be already dead.
4182 int sched_setscheduler(struct task_struct *p, int policy,
4183 struct sched_param *param)
4185 int retval, oldprio, oldpolicy = -1, on_rq, running;
4186 unsigned long flags;
4187 struct rq *rq;
4189 /* may grab non-irq protected spin_locks */
4190 BUG_ON(in_interrupt());
4191 recheck:
4192 /* double check policy once rq lock held */
4193 if (policy < 0)
4194 policy = oldpolicy = p->policy;
4195 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4196 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4197 policy != SCHED_IDLE)
4198 return -EINVAL;
4200 * Valid priorities for SCHED_FIFO and SCHED_RR are
4201 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4202 * SCHED_BATCH and SCHED_IDLE is 0.
4204 if (param->sched_priority < 0 ||
4205 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4206 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4207 return -EINVAL;
4208 if (rt_policy(policy) != (param->sched_priority != 0))
4209 return -EINVAL;
4212 * Allow unprivileged RT tasks to decrease priority:
4214 if (!capable(CAP_SYS_NICE)) {
4215 if (rt_policy(policy)) {
4216 unsigned long rlim_rtprio;
4218 if (!lock_task_sighand(p, &flags))
4219 return -ESRCH;
4220 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4221 unlock_task_sighand(p, &flags);
4223 /* can't set/change the rt policy */
4224 if (policy != p->policy && !rlim_rtprio)
4225 return -EPERM;
4227 /* can't increase priority */
4228 if (param->sched_priority > p->rt_priority &&
4229 param->sched_priority > rlim_rtprio)
4230 return -EPERM;
4233 * Like positive nice levels, dont allow tasks to
4234 * move out of SCHED_IDLE either:
4236 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4237 return -EPERM;
4239 /* can't change other user's priorities */
4240 if ((current->euid != p->euid) &&
4241 (current->euid != p->uid))
4242 return -EPERM;
4245 retval = security_task_setscheduler(p, policy, param);
4246 if (retval)
4247 return retval;
4249 * make sure no PI-waiters arrive (or leave) while we are
4250 * changing the priority of the task:
4252 spin_lock_irqsave(&p->pi_lock, flags);
4254 * To be able to change p->policy safely, the apropriate
4255 * runqueue lock must be held.
4257 rq = __task_rq_lock(p);
4258 /* recheck policy now with rq lock held */
4259 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4260 policy = oldpolicy = -1;
4261 __task_rq_unlock(rq);
4262 spin_unlock_irqrestore(&p->pi_lock, flags);
4263 goto recheck;
4265 update_rq_clock(rq);
4266 on_rq = p->se.on_rq;
4267 running = task_running(rq, p);
4268 if (on_rq) {
4269 deactivate_task(rq, p, 0);
4270 if (running)
4271 p->sched_class->put_prev_task(rq, p);
4274 oldprio = p->prio;
4275 __setscheduler(rq, p, policy, param->sched_priority);
4277 if (on_rq) {
4278 if (running)
4279 p->sched_class->set_curr_task(rq);
4280 activate_task(rq, p, 0);
4282 * Reschedule if we are currently running on this runqueue and
4283 * our priority decreased, or if we are not currently running on
4284 * this runqueue and our priority is higher than the current's
4286 if (running) {
4287 if (p->prio > oldprio)
4288 resched_task(rq->curr);
4289 } else {
4290 check_preempt_curr(rq, p);
4293 __task_rq_unlock(rq);
4294 spin_unlock_irqrestore(&p->pi_lock, flags);
4296 rt_mutex_adjust_pi(p);
4298 return 0;
4300 EXPORT_SYMBOL_GPL(sched_setscheduler);
4302 static int
4303 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4305 struct sched_param lparam;
4306 struct task_struct *p;
4307 int retval;
4309 if (!param || pid < 0)
4310 return -EINVAL;
4311 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4312 return -EFAULT;
4314 rcu_read_lock();
4315 retval = -ESRCH;
4316 p = find_process_by_pid(pid);
4317 if (p != NULL)
4318 retval = sched_setscheduler(p, policy, &lparam);
4319 rcu_read_unlock();
4321 return retval;
4325 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4326 * @pid: the pid in question.
4327 * @policy: new policy.
4328 * @param: structure containing the new RT priority.
4330 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4331 struct sched_param __user *param)
4333 /* negative values for policy are not valid */
4334 if (policy < 0)
4335 return -EINVAL;
4337 return do_sched_setscheduler(pid, policy, param);
4341 * sys_sched_setparam - set/change the RT priority of a thread
4342 * @pid: the pid in question.
4343 * @param: structure containing the new RT priority.
4345 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4347 return do_sched_setscheduler(pid, -1, param);
4351 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4352 * @pid: the pid in question.
4354 asmlinkage long sys_sched_getscheduler(pid_t pid)
4356 struct task_struct *p;
4357 int retval = -EINVAL;
4359 if (pid < 0)
4360 goto out_nounlock;
4362 retval = -ESRCH;
4363 read_lock(&tasklist_lock);
4364 p = find_process_by_pid(pid);
4365 if (p) {
4366 retval = security_task_getscheduler(p);
4367 if (!retval)
4368 retval = p->policy;
4370 read_unlock(&tasklist_lock);
4372 out_nounlock:
4373 return retval;
4377 * sys_sched_getscheduler - get the RT priority of a thread
4378 * @pid: the pid in question.
4379 * @param: structure containing the RT priority.
4381 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4383 struct sched_param lp;
4384 struct task_struct *p;
4385 int retval = -EINVAL;
4387 if (!param || pid < 0)
4388 goto out_nounlock;
4390 read_lock(&tasklist_lock);
4391 p = find_process_by_pid(pid);
4392 retval = -ESRCH;
4393 if (!p)
4394 goto out_unlock;
4396 retval = security_task_getscheduler(p);
4397 if (retval)
4398 goto out_unlock;
4400 lp.sched_priority = p->rt_priority;
4401 read_unlock(&tasklist_lock);
4404 * This one might sleep, we cannot do it with a spinlock held ...
4406 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4408 out_nounlock:
4409 return retval;
4411 out_unlock:
4412 read_unlock(&tasklist_lock);
4413 return retval;
4416 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4418 cpumask_t cpus_allowed;
4419 struct task_struct *p;
4420 int retval;
4422 mutex_lock(&sched_hotcpu_mutex);
4423 read_lock(&tasklist_lock);
4425 p = find_process_by_pid(pid);
4426 if (!p) {
4427 read_unlock(&tasklist_lock);
4428 mutex_unlock(&sched_hotcpu_mutex);
4429 return -ESRCH;
4433 * It is not safe to call set_cpus_allowed with the
4434 * tasklist_lock held. We will bump the task_struct's
4435 * usage count and then drop tasklist_lock.
4437 get_task_struct(p);
4438 read_unlock(&tasklist_lock);
4440 retval = -EPERM;
4441 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4442 !capable(CAP_SYS_NICE))
4443 goto out_unlock;
4445 retval = security_task_setscheduler(p, 0, NULL);
4446 if (retval)
4447 goto out_unlock;
4449 cpus_allowed = cpuset_cpus_allowed(p);
4450 cpus_and(new_mask, new_mask, cpus_allowed);
4451 retval = set_cpus_allowed(p, new_mask);
4453 out_unlock:
4454 put_task_struct(p);
4455 mutex_unlock(&sched_hotcpu_mutex);
4456 return retval;
4459 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4460 cpumask_t *new_mask)
4462 if (len < sizeof(cpumask_t)) {
4463 memset(new_mask, 0, sizeof(cpumask_t));
4464 } else if (len > sizeof(cpumask_t)) {
4465 len = sizeof(cpumask_t);
4467 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4471 * sys_sched_setaffinity - set the cpu affinity of a process
4472 * @pid: pid of the process
4473 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4474 * @user_mask_ptr: user-space pointer to the new cpu mask
4476 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4477 unsigned long __user *user_mask_ptr)
4479 cpumask_t new_mask;
4480 int retval;
4482 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4483 if (retval)
4484 return retval;
4486 return sched_setaffinity(pid, new_mask);
4490 * Represents all cpu's present in the system
4491 * In systems capable of hotplug, this map could dynamically grow
4492 * as new cpu's are detected in the system via any platform specific
4493 * method, such as ACPI for e.g.
4496 cpumask_t cpu_present_map __read_mostly;
4497 EXPORT_SYMBOL(cpu_present_map);
4499 #ifndef CONFIG_SMP
4500 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4501 EXPORT_SYMBOL(cpu_online_map);
4503 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4504 EXPORT_SYMBOL(cpu_possible_map);
4505 #endif
4507 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4509 struct task_struct *p;
4510 int retval;
4512 mutex_lock(&sched_hotcpu_mutex);
4513 read_lock(&tasklist_lock);
4515 retval = -ESRCH;
4516 p = find_process_by_pid(pid);
4517 if (!p)
4518 goto out_unlock;
4520 retval = security_task_getscheduler(p);
4521 if (retval)
4522 goto out_unlock;
4524 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4526 out_unlock:
4527 read_unlock(&tasklist_lock);
4528 mutex_unlock(&sched_hotcpu_mutex);
4530 return retval;
4534 * sys_sched_getaffinity - get the cpu affinity of a process
4535 * @pid: pid of the process
4536 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4537 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4539 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4540 unsigned long __user *user_mask_ptr)
4542 int ret;
4543 cpumask_t mask;
4545 if (len < sizeof(cpumask_t))
4546 return -EINVAL;
4548 ret = sched_getaffinity(pid, &mask);
4549 if (ret < 0)
4550 return ret;
4552 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4553 return -EFAULT;
4555 return sizeof(cpumask_t);
4559 * sys_sched_yield - yield the current processor to other threads.
4561 * This function yields the current CPU to other tasks. If there are no
4562 * other threads running on this CPU then this function will return.
4564 asmlinkage long sys_sched_yield(void)
4566 struct rq *rq = this_rq_lock();
4568 schedstat_inc(rq, yld_count);
4569 current->sched_class->yield_task(rq);
4572 * Since we are going to call schedule() anyway, there's
4573 * no need to preempt or enable interrupts:
4575 __release(rq->lock);
4576 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4577 _raw_spin_unlock(&rq->lock);
4578 preempt_enable_no_resched();
4580 schedule();
4582 return 0;
4585 static void __cond_resched(void)
4587 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4588 __might_sleep(__FILE__, __LINE__);
4589 #endif
4591 * The BKS might be reacquired before we have dropped
4592 * PREEMPT_ACTIVE, which could trigger a second
4593 * cond_resched() call.
4595 do {
4596 add_preempt_count(PREEMPT_ACTIVE);
4597 schedule();
4598 sub_preempt_count(PREEMPT_ACTIVE);
4599 } while (need_resched());
4602 int __sched cond_resched(void)
4604 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4605 system_state == SYSTEM_RUNNING) {
4606 __cond_resched();
4607 return 1;
4609 return 0;
4611 EXPORT_SYMBOL(cond_resched);
4614 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4615 * call schedule, and on return reacquire the lock.
4617 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4618 * operations here to prevent schedule() from being called twice (once via
4619 * spin_unlock(), once by hand).
4621 int cond_resched_lock(spinlock_t *lock)
4623 int ret = 0;
4625 if (need_lockbreak(lock)) {
4626 spin_unlock(lock);
4627 cpu_relax();
4628 ret = 1;
4629 spin_lock(lock);
4631 if (need_resched() && system_state == SYSTEM_RUNNING) {
4632 spin_release(&lock->dep_map, 1, _THIS_IP_);
4633 _raw_spin_unlock(lock);
4634 preempt_enable_no_resched();
4635 __cond_resched();
4636 ret = 1;
4637 spin_lock(lock);
4639 return ret;
4641 EXPORT_SYMBOL(cond_resched_lock);
4643 int __sched cond_resched_softirq(void)
4645 BUG_ON(!in_softirq());
4647 if (need_resched() && system_state == SYSTEM_RUNNING) {
4648 local_bh_enable();
4649 __cond_resched();
4650 local_bh_disable();
4651 return 1;
4653 return 0;
4655 EXPORT_SYMBOL(cond_resched_softirq);
4658 * yield - yield the current processor to other threads.
4660 * This is a shortcut for kernel-space yielding - it marks the
4661 * thread runnable and calls sys_sched_yield().
4663 void __sched yield(void)
4665 set_current_state(TASK_RUNNING);
4666 sys_sched_yield();
4668 EXPORT_SYMBOL(yield);
4671 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4672 * that process accounting knows that this is a task in IO wait state.
4674 * But don't do that if it is a deliberate, throttling IO wait (this task
4675 * has set its backing_dev_info: the queue against which it should throttle)
4677 void __sched io_schedule(void)
4679 struct rq *rq = &__raw_get_cpu_var(runqueues);
4681 delayacct_blkio_start();
4682 atomic_inc(&rq->nr_iowait);
4683 schedule();
4684 atomic_dec(&rq->nr_iowait);
4685 delayacct_blkio_end();
4687 EXPORT_SYMBOL(io_schedule);
4689 long __sched io_schedule_timeout(long timeout)
4691 struct rq *rq = &__raw_get_cpu_var(runqueues);
4692 long ret;
4694 delayacct_blkio_start();
4695 atomic_inc(&rq->nr_iowait);
4696 ret = schedule_timeout(timeout);
4697 atomic_dec(&rq->nr_iowait);
4698 delayacct_blkio_end();
4699 return ret;
4703 * sys_sched_get_priority_max - return maximum RT priority.
4704 * @policy: scheduling class.
4706 * this syscall returns the maximum rt_priority that can be used
4707 * by a given scheduling class.
4709 asmlinkage long sys_sched_get_priority_max(int policy)
4711 int ret = -EINVAL;
4713 switch (policy) {
4714 case SCHED_FIFO:
4715 case SCHED_RR:
4716 ret = MAX_USER_RT_PRIO-1;
4717 break;
4718 case SCHED_NORMAL:
4719 case SCHED_BATCH:
4720 case SCHED_IDLE:
4721 ret = 0;
4722 break;
4724 return ret;
4728 * sys_sched_get_priority_min - return minimum RT priority.
4729 * @policy: scheduling class.
4731 * this syscall returns the minimum rt_priority that can be used
4732 * by a given scheduling class.
4734 asmlinkage long sys_sched_get_priority_min(int policy)
4736 int ret = -EINVAL;
4738 switch (policy) {
4739 case SCHED_FIFO:
4740 case SCHED_RR:
4741 ret = 1;
4742 break;
4743 case SCHED_NORMAL:
4744 case SCHED_BATCH:
4745 case SCHED_IDLE:
4746 ret = 0;
4748 return ret;
4752 * sys_sched_rr_get_interval - return the default timeslice of a process.
4753 * @pid: pid of the process.
4754 * @interval: userspace pointer to the timeslice value.
4756 * this syscall writes the default timeslice value of a given process
4757 * into the user-space timespec buffer. A value of '0' means infinity.
4759 asmlinkage
4760 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4762 struct task_struct *p;
4763 int retval = -EINVAL;
4764 struct timespec t;
4766 if (pid < 0)
4767 goto out_nounlock;
4769 retval = -ESRCH;
4770 read_lock(&tasklist_lock);
4771 p = find_process_by_pid(pid);
4772 if (!p)
4773 goto out_unlock;
4775 retval = security_task_getscheduler(p);
4776 if (retval)
4777 goto out_unlock;
4779 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4780 0 : static_prio_timeslice(p->static_prio), &t);
4781 read_unlock(&tasklist_lock);
4782 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4783 out_nounlock:
4784 return retval;
4785 out_unlock:
4786 read_unlock(&tasklist_lock);
4787 return retval;
4790 static const char stat_nam[] = "RSDTtZX";
4792 static void show_task(struct task_struct *p)
4794 unsigned long free = 0;
4795 unsigned state;
4797 state = p->state ? __ffs(p->state) + 1 : 0;
4798 printk("%-13.13s %c", p->comm,
4799 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4800 #if BITS_PER_LONG == 32
4801 if (state == TASK_RUNNING)
4802 printk(" running ");
4803 else
4804 printk(" %08lx ", thread_saved_pc(p));
4805 #else
4806 if (state == TASK_RUNNING)
4807 printk(" running task ");
4808 else
4809 printk(" %016lx ", thread_saved_pc(p));
4810 #endif
4811 #ifdef CONFIG_DEBUG_STACK_USAGE
4813 unsigned long *n = end_of_stack(p);
4814 while (!*n)
4815 n++;
4816 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4818 #endif
4819 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4821 if (state != TASK_RUNNING)
4822 show_stack(p, NULL);
4825 void show_state_filter(unsigned long state_filter)
4827 struct task_struct *g, *p;
4829 #if BITS_PER_LONG == 32
4830 printk(KERN_INFO
4831 " task PC stack pid father\n");
4832 #else
4833 printk(KERN_INFO
4834 " task PC stack pid father\n");
4835 #endif
4836 read_lock(&tasklist_lock);
4837 do_each_thread(g, p) {
4839 * reset the NMI-timeout, listing all files on a slow
4840 * console might take alot of time:
4842 touch_nmi_watchdog();
4843 if (!state_filter || (p->state & state_filter))
4844 show_task(p);
4845 } while_each_thread(g, p);
4847 touch_all_softlockup_watchdogs();
4849 #ifdef CONFIG_SCHED_DEBUG
4850 sysrq_sched_debug_show();
4851 #endif
4852 read_unlock(&tasklist_lock);
4854 * Only show locks if all tasks are dumped:
4856 if (state_filter == -1)
4857 debug_show_all_locks();
4860 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4862 idle->sched_class = &idle_sched_class;
4866 * init_idle - set up an idle thread for a given CPU
4867 * @idle: task in question
4868 * @cpu: cpu the idle task belongs to
4870 * NOTE: this function does not set the idle thread's NEED_RESCHED
4871 * flag, to make booting more robust.
4873 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4875 struct rq *rq = cpu_rq(cpu);
4876 unsigned long flags;
4878 __sched_fork(idle);
4879 idle->se.exec_start = sched_clock();
4881 idle->prio = idle->normal_prio = MAX_PRIO;
4882 idle->cpus_allowed = cpumask_of_cpu(cpu);
4883 __set_task_cpu(idle, cpu);
4885 spin_lock_irqsave(&rq->lock, flags);
4886 rq->curr = rq->idle = idle;
4887 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4888 idle->oncpu = 1;
4889 #endif
4890 spin_unlock_irqrestore(&rq->lock, flags);
4892 /* Set the preempt count _outside_ the spinlocks! */
4893 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4894 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4895 #else
4896 task_thread_info(idle)->preempt_count = 0;
4897 #endif
4899 * The idle tasks have their own, simple scheduling class:
4901 idle->sched_class = &idle_sched_class;
4905 * In a system that switches off the HZ timer nohz_cpu_mask
4906 * indicates which cpus entered this state. This is used
4907 * in the rcu update to wait only for active cpus. For system
4908 * which do not switch off the HZ timer nohz_cpu_mask should
4909 * always be CPU_MASK_NONE.
4911 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4913 #ifdef CONFIG_SMP
4915 * This is how migration works:
4917 * 1) we queue a struct migration_req structure in the source CPU's
4918 * runqueue and wake up that CPU's migration thread.
4919 * 2) we down() the locked semaphore => thread blocks.
4920 * 3) migration thread wakes up (implicitly it forces the migrated
4921 * thread off the CPU)
4922 * 4) it gets the migration request and checks whether the migrated
4923 * task is still in the wrong runqueue.
4924 * 5) if it's in the wrong runqueue then the migration thread removes
4925 * it and puts it into the right queue.
4926 * 6) migration thread up()s the semaphore.
4927 * 7) we wake up and the migration is done.
4931 * Change a given task's CPU affinity. Migrate the thread to a
4932 * proper CPU and schedule it away if the CPU it's executing on
4933 * is removed from the allowed bitmask.
4935 * NOTE: the caller must have a valid reference to the task, the
4936 * task must not exit() & deallocate itself prematurely. The
4937 * call is not atomic; no spinlocks may be held.
4939 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4941 struct migration_req req;
4942 unsigned long flags;
4943 struct rq *rq;
4944 int ret = 0;
4946 rq = task_rq_lock(p, &flags);
4947 if (!cpus_intersects(new_mask, cpu_online_map)) {
4948 ret = -EINVAL;
4949 goto out;
4952 p->cpus_allowed = new_mask;
4953 /* Can the task run on the task's current CPU? If so, we're done */
4954 if (cpu_isset(task_cpu(p), new_mask))
4955 goto out;
4957 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4958 /* Need help from migration thread: drop lock and wait. */
4959 task_rq_unlock(rq, &flags);
4960 wake_up_process(rq->migration_thread);
4961 wait_for_completion(&req.done);
4962 tlb_migrate_finish(p->mm);
4963 return 0;
4965 out:
4966 task_rq_unlock(rq, &flags);
4968 return ret;
4970 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4973 * Move (not current) task off this cpu, onto dest cpu. We're doing
4974 * this because either it can't run here any more (set_cpus_allowed()
4975 * away from this CPU, or CPU going down), or because we're
4976 * attempting to rebalance this task on exec (sched_exec).
4978 * So we race with normal scheduler movements, but that's OK, as long
4979 * as the task is no longer on this CPU.
4981 * Returns non-zero if task was successfully migrated.
4983 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4985 struct rq *rq_dest, *rq_src;
4986 int ret = 0, on_rq;
4988 if (unlikely(cpu_is_offline(dest_cpu)))
4989 return ret;
4991 rq_src = cpu_rq(src_cpu);
4992 rq_dest = cpu_rq(dest_cpu);
4994 double_rq_lock(rq_src, rq_dest);
4995 /* Already moved. */
4996 if (task_cpu(p) != src_cpu)
4997 goto out;
4998 /* Affinity changed (again). */
4999 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5000 goto out;
5002 on_rq = p->se.on_rq;
5003 if (on_rq)
5004 deactivate_task(rq_src, p, 0);
5006 set_task_cpu(p, dest_cpu);
5007 if (on_rq) {
5008 activate_task(rq_dest, p, 0);
5009 check_preempt_curr(rq_dest, p);
5011 ret = 1;
5012 out:
5013 double_rq_unlock(rq_src, rq_dest);
5014 return ret;
5018 * migration_thread - this is a highprio system thread that performs
5019 * thread migration by bumping thread off CPU then 'pushing' onto
5020 * another runqueue.
5022 static int migration_thread(void *data)
5024 int cpu = (long)data;
5025 struct rq *rq;
5027 rq = cpu_rq(cpu);
5028 BUG_ON(rq->migration_thread != current);
5030 set_current_state(TASK_INTERRUPTIBLE);
5031 while (!kthread_should_stop()) {
5032 struct migration_req *req;
5033 struct list_head *head;
5035 spin_lock_irq(&rq->lock);
5037 if (cpu_is_offline(cpu)) {
5038 spin_unlock_irq(&rq->lock);
5039 goto wait_to_die;
5042 if (rq->active_balance) {
5043 active_load_balance(rq, cpu);
5044 rq->active_balance = 0;
5047 head = &rq->migration_queue;
5049 if (list_empty(head)) {
5050 spin_unlock_irq(&rq->lock);
5051 schedule();
5052 set_current_state(TASK_INTERRUPTIBLE);
5053 continue;
5055 req = list_entry(head->next, struct migration_req, list);
5056 list_del_init(head->next);
5058 spin_unlock(&rq->lock);
5059 __migrate_task(req->task, cpu, req->dest_cpu);
5060 local_irq_enable();
5062 complete(&req->done);
5064 __set_current_state(TASK_RUNNING);
5065 return 0;
5067 wait_to_die:
5068 /* Wait for kthread_stop */
5069 set_current_state(TASK_INTERRUPTIBLE);
5070 while (!kthread_should_stop()) {
5071 schedule();
5072 set_current_state(TASK_INTERRUPTIBLE);
5074 __set_current_state(TASK_RUNNING);
5075 return 0;
5078 #ifdef CONFIG_HOTPLUG_CPU
5080 * Figure out where task on dead CPU should go, use force if neccessary.
5081 * NOTE: interrupts should be disabled by the caller
5083 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5085 unsigned long flags;
5086 cpumask_t mask;
5087 struct rq *rq;
5088 int dest_cpu;
5090 restart:
5091 /* On same node? */
5092 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5093 cpus_and(mask, mask, p->cpus_allowed);
5094 dest_cpu = any_online_cpu(mask);
5096 /* On any allowed CPU? */
5097 if (dest_cpu == NR_CPUS)
5098 dest_cpu = any_online_cpu(p->cpus_allowed);
5100 /* No more Mr. Nice Guy. */
5101 if (dest_cpu == NR_CPUS) {
5102 rq = task_rq_lock(p, &flags);
5103 cpus_setall(p->cpus_allowed);
5104 dest_cpu = any_online_cpu(p->cpus_allowed);
5105 task_rq_unlock(rq, &flags);
5108 * Don't tell them about moving exiting tasks or
5109 * kernel threads (both mm NULL), since they never
5110 * leave kernel.
5112 if (p->mm && printk_ratelimit())
5113 printk(KERN_INFO "process %d (%s) no "
5114 "longer affine to cpu%d\n",
5115 p->pid, p->comm, dead_cpu);
5117 if (!__migrate_task(p, dead_cpu, dest_cpu))
5118 goto restart;
5122 * While a dead CPU has no uninterruptible tasks queued at this point,
5123 * it might still have a nonzero ->nr_uninterruptible counter, because
5124 * for performance reasons the counter is not stricly tracking tasks to
5125 * their home CPUs. So we just add the counter to another CPU's counter,
5126 * to keep the global sum constant after CPU-down:
5128 static void migrate_nr_uninterruptible(struct rq *rq_src)
5130 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5131 unsigned long flags;
5133 local_irq_save(flags);
5134 double_rq_lock(rq_src, rq_dest);
5135 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5136 rq_src->nr_uninterruptible = 0;
5137 double_rq_unlock(rq_src, rq_dest);
5138 local_irq_restore(flags);
5141 /* Run through task list and migrate tasks from the dead cpu. */
5142 static void migrate_live_tasks(int src_cpu)
5144 struct task_struct *p, *t;
5146 write_lock_irq(&tasklist_lock);
5148 do_each_thread(t, p) {
5149 if (p == current)
5150 continue;
5152 if (task_cpu(p) == src_cpu)
5153 move_task_off_dead_cpu(src_cpu, p);
5154 } while_each_thread(t, p);
5156 write_unlock_irq(&tasklist_lock);
5160 * Schedules idle task to be the next runnable task on current CPU.
5161 * It does so by boosting its priority to highest possible and adding it to
5162 * the _front_ of the runqueue. Used by CPU offline code.
5164 void sched_idle_next(void)
5166 int this_cpu = smp_processor_id();
5167 struct rq *rq = cpu_rq(this_cpu);
5168 struct task_struct *p = rq->idle;
5169 unsigned long flags;
5171 /* cpu has to be offline */
5172 BUG_ON(cpu_online(this_cpu));
5175 * Strictly not necessary since rest of the CPUs are stopped by now
5176 * and interrupts disabled on the current cpu.
5178 spin_lock_irqsave(&rq->lock, flags);
5180 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5182 /* Add idle task to the _front_ of its priority queue: */
5183 activate_idle_task(p, rq);
5185 spin_unlock_irqrestore(&rq->lock, flags);
5189 * Ensures that the idle task is using init_mm right before its cpu goes
5190 * offline.
5192 void idle_task_exit(void)
5194 struct mm_struct *mm = current->active_mm;
5196 BUG_ON(cpu_online(smp_processor_id()));
5198 if (mm != &init_mm)
5199 switch_mm(mm, &init_mm, current);
5200 mmdrop(mm);
5203 /* called under rq->lock with disabled interrupts */
5204 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5206 struct rq *rq = cpu_rq(dead_cpu);
5208 /* Must be exiting, otherwise would be on tasklist. */
5209 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5211 /* Cannot have done final schedule yet: would have vanished. */
5212 BUG_ON(p->state == TASK_DEAD);
5214 get_task_struct(p);
5217 * Drop lock around migration; if someone else moves it,
5218 * that's OK. No task can be added to this CPU, so iteration is
5219 * fine.
5220 * NOTE: interrupts should be left disabled --dev@
5222 spin_unlock(&rq->lock);
5223 move_task_off_dead_cpu(dead_cpu, p);
5224 spin_lock(&rq->lock);
5226 put_task_struct(p);
5229 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5230 static void migrate_dead_tasks(unsigned int dead_cpu)
5232 struct rq *rq = cpu_rq(dead_cpu);
5233 struct task_struct *next;
5235 for ( ; ; ) {
5236 if (!rq->nr_running)
5237 break;
5238 update_rq_clock(rq);
5239 next = pick_next_task(rq, rq->curr);
5240 if (!next)
5241 break;
5242 migrate_dead(dead_cpu, next);
5246 #endif /* CONFIG_HOTPLUG_CPU */
5248 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5250 static struct ctl_table sd_ctl_dir[] = {
5252 .procname = "sched_domain",
5253 .mode = 0555,
5255 {0,},
5258 static struct ctl_table sd_ctl_root[] = {
5260 .ctl_name = CTL_KERN,
5261 .procname = "kernel",
5262 .mode = 0555,
5263 .child = sd_ctl_dir,
5265 {0,},
5268 static struct ctl_table *sd_alloc_ctl_entry(int n)
5270 struct ctl_table *entry =
5271 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5273 BUG_ON(!entry);
5274 memset(entry, 0, n * sizeof(struct ctl_table));
5276 return entry;
5279 static void
5280 set_table_entry(struct ctl_table *entry,
5281 const char *procname, void *data, int maxlen,
5282 mode_t mode, proc_handler *proc_handler)
5284 entry->procname = procname;
5285 entry->data = data;
5286 entry->maxlen = maxlen;
5287 entry->mode = mode;
5288 entry->proc_handler = proc_handler;
5291 static struct ctl_table *
5292 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5294 struct ctl_table *table = sd_alloc_ctl_entry(14);
5296 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5297 sizeof(long), 0644, proc_doulongvec_minmax);
5298 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5299 sizeof(long), 0644, proc_doulongvec_minmax);
5300 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5301 sizeof(int), 0644, proc_dointvec_minmax);
5302 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5303 sizeof(int), 0644, proc_dointvec_minmax);
5304 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5305 sizeof(int), 0644, proc_dointvec_minmax);
5306 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5307 sizeof(int), 0644, proc_dointvec_minmax);
5308 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5309 sizeof(int), 0644, proc_dointvec_minmax);
5310 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5311 sizeof(int), 0644, proc_dointvec_minmax);
5312 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5313 sizeof(int), 0644, proc_dointvec_minmax);
5314 set_table_entry(&table[10], "cache_nice_tries",
5315 &sd->cache_nice_tries,
5316 sizeof(int), 0644, proc_dointvec_minmax);
5317 set_table_entry(&table[12], "flags", &sd->flags,
5318 sizeof(int), 0644, proc_dointvec_minmax);
5320 return table;
5323 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5325 struct ctl_table *entry, *table;
5326 struct sched_domain *sd;
5327 int domain_num = 0, i;
5328 char buf[32];
5330 for_each_domain(cpu, sd)
5331 domain_num++;
5332 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5334 i = 0;
5335 for_each_domain(cpu, sd) {
5336 snprintf(buf, 32, "domain%d", i);
5337 entry->procname = kstrdup(buf, GFP_KERNEL);
5338 entry->mode = 0555;
5339 entry->child = sd_alloc_ctl_domain_table(sd);
5340 entry++;
5341 i++;
5343 return table;
5346 static struct ctl_table_header *sd_sysctl_header;
5347 static void init_sched_domain_sysctl(void)
5349 int i, cpu_num = num_online_cpus();
5350 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5351 char buf[32];
5353 sd_ctl_dir[0].child = entry;
5355 for (i = 0; i < cpu_num; i++, entry++) {
5356 snprintf(buf, 32, "cpu%d", i);
5357 entry->procname = kstrdup(buf, GFP_KERNEL);
5358 entry->mode = 0555;
5359 entry->child = sd_alloc_ctl_cpu_table(i);
5361 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5363 #else
5364 static void init_sched_domain_sysctl(void)
5367 #endif
5370 * migration_call - callback that gets triggered when a CPU is added.
5371 * Here we can start up the necessary migration thread for the new CPU.
5373 static int __cpuinit
5374 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5376 struct task_struct *p;
5377 int cpu = (long)hcpu;
5378 unsigned long flags;
5379 struct rq *rq;
5381 switch (action) {
5382 case CPU_LOCK_ACQUIRE:
5383 mutex_lock(&sched_hotcpu_mutex);
5384 break;
5386 case CPU_UP_PREPARE:
5387 case CPU_UP_PREPARE_FROZEN:
5388 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5389 if (IS_ERR(p))
5390 return NOTIFY_BAD;
5391 kthread_bind(p, cpu);
5392 /* Must be high prio: stop_machine expects to yield to it. */
5393 rq = task_rq_lock(p, &flags);
5394 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5395 task_rq_unlock(rq, &flags);
5396 cpu_rq(cpu)->migration_thread = p;
5397 break;
5399 case CPU_ONLINE:
5400 case CPU_ONLINE_FROZEN:
5401 /* Strictly unneccessary, as first user will wake it. */
5402 wake_up_process(cpu_rq(cpu)->migration_thread);
5403 break;
5405 #ifdef CONFIG_HOTPLUG_CPU
5406 case CPU_UP_CANCELED:
5407 case CPU_UP_CANCELED_FROZEN:
5408 if (!cpu_rq(cpu)->migration_thread)
5409 break;
5410 /* Unbind it from offline cpu so it can run. Fall thru. */
5411 kthread_bind(cpu_rq(cpu)->migration_thread,
5412 any_online_cpu(cpu_online_map));
5413 kthread_stop(cpu_rq(cpu)->migration_thread);
5414 cpu_rq(cpu)->migration_thread = NULL;
5415 break;
5417 case CPU_DEAD:
5418 case CPU_DEAD_FROZEN:
5419 migrate_live_tasks(cpu);
5420 rq = cpu_rq(cpu);
5421 kthread_stop(rq->migration_thread);
5422 rq->migration_thread = NULL;
5423 /* Idle task back to normal (off runqueue, low prio) */
5424 rq = task_rq_lock(rq->idle, &flags);
5425 update_rq_clock(rq);
5426 deactivate_task(rq, rq->idle, 0);
5427 rq->idle->static_prio = MAX_PRIO;
5428 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5429 rq->idle->sched_class = &idle_sched_class;
5430 migrate_dead_tasks(cpu);
5431 task_rq_unlock(rq, &flags);
5432 migrate_nr_uninterruptible(rq);
5433 BUG_ON(rq->nr_running != 0);
5435 /* No need to migrate the tasks: it was best-effort if
5436 * they didn't take sched_hotcpu_mutex. Just wake up
5437 * the requestors. */
5438 spin_lock_irq(&rq->lock);
5439 while (!list_empty(&rq->migration_queue)) {
5440 struct migration_req *req;
5442 req = list_entry(rq->migration_queue.next,
5443 struct migration_req, list);
5444 list_del_init(&req->list);
5445 complete(&req->done);
5447 spin_unlock_irq(&rq->lock);
5448 break;
5449 #endif
5450 case CPU_LOCK_RELEASE:
5451 mutex_unlock(&sched_hotcpu_mutex);
5452 break;
5454 return NOTIFY_OK;
5457 /* Register at highest priority so that task migration (migrate_all_tasks)
5458 * happens before everything else.
5460 static struct notifier_block __cpuinitdata migration_notifier = {
5461 .notifier_call = migration_call,
5462 .priority = 10
5465 int __init migration_init(void)
5467 void *cpu = (void *)(long)smp_processor_id();
5468 int err;
5470 /* Start one for the boot CPU: */
5471 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5472 BUG_ON(err == NOTIFY_BAD);
5473 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5474 register_cpu_notifier(&migration_notifier);
5476 return 0;
5478 #endif
5480 #ifdef CONFIG_SMP
5482 /* Number of possible processor ids */
5483 int nr_cpu_ids __read_mostly = NR_CPUS;
5484 EXPORT_SYMBOL(nr_cpu_ids);
5486 #undef SCHED_DOMAIN_DEBUG
5487 #ifdef SCHED_DOMAIN_DEBUG
5488 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5490 int level = 0;
5492 if (!sd) {
5493 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5494 return;
5497 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5499 do {
5500 int i;
5501 char str[NR_CPUS];
5502 struct sched_group *group = sd->groups;
5503 cpumask_t groupmask;
5505 cpumask_scnprintf(str, NR_CPUS, sd->span);
5506 cpus_clear(groupmask);
5508 printk(KERN_DEBUG);
5509 for (i = 0; i < level + 1; i++)
5510 printk(" ");
5511 printk("domain %d: ", level);
5513 if (!(sd->flags & SD_LOAD_BALANCE)) {
5514 printk("does not load-balance\n");
5515 if (sd->parent)
5516 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5517 " has parent");
5518 break;
5521 printk("span %s\n", str);
5523 if (!cpu_isset(cpu, sd->span))
5524 printk(KERN_ERR "ERROR: domain->span does not contain "
5525 "CPU%d\n", cpu);
5526 if (!cpu_isset(cpu, group->cpumask))
5527 printk(KERN_ERR "ERROR: domain->groups does not contain"
5528 " CPU%d\n", cpu);
5530 printk(KERN_DEBUG);
5531 for (i = 0; i < level + 2; i++)
5532 printk(" ");
5533 printk("groups:");
5534 do {
5535 if (!group) {
5536 printk("\n");
5537 printk(KERN_ERR "ERROR: group is NULL\n");
5538 break;
5541 if (!group->__cpu_power) {
5542 printk("\n");
5543 printk(KERN_ERR "ERROR: domain->cpu_power not "
5544 "set\n");
5547 if (!cpus_weight(group->cpumask)) {
5548 printk("\n");
5549 printk(KERN_ERR "ERROR: empty group\n");
5552 if (cpus_intersects(groupmask, group->cpumask)) {
5553 printk("\n");
5554 printk(KERN_ERR "ERROR: repeated CPUs\n");
5557 cpus_or(groupmask, groupmask, group->cpumask);
5559 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5560 printk(" %s", str);
5562 group = group->next;
5563 } while (group != sd->groups);
5564 printk("\n");
5566 if (!cpus_equal(sd->span, groupmask))
5567 printk(KERN_ERR "ERROR: groups don't span "
5568 "domain->span\n");
5570 level++;
5571 sd = sd->parent;
5572 if (!sd)
5573 continue;
5575 if (!cpus_subset(groupmask, sd->span))
5576 printk(KERN_ERR "ERROR: parent span is not a superset "
5577 "of domain->span\n");
5579 } while (sd);
5581 #else
5582 # define sched_domain_debug(sd, cpu) do { } while (0)
5583 #endif
5585 static int sd_degenerate(struct sched_domain *sd)
5587 if (cpus_weight(sd->span) == 1)
5588 return 1;
5590 /* Following flags need at least 2 groups */
5591 if (sd->flags & (SD_LOAD_BALANCE |
5592 SD_BALANCE_NEWIDLE |
5593 SD_BALANCE_FORK |
5594 SD_BALANCE_EXEC |
5595 SD_SHARE_CPUPOWER |
5596 SD_SHARE_PKG_RESOURCES)) {
5597 if (sd->groups != sd->groups->next)
5598 return 0;
5601 /* Following flags don't use groups */
5602 if (sd->flags & (SD_WAKE_IDLE |
5603 SD_WAKE_AFFINE |
5604 SD_WAKE_BALANCE))
5605 return 0;
5607 return 1;
5610 static int
5611 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5613 unsigned long cflags = sd->flags, pflags = parent->flags;
5615 if (sd_degenerate(parent))
5616 return 1;
5618 if (!cpus_equal(sd->span, parent->span))
5619 return 0;
5621 /* Does parent contain flags not in child? */
5622 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5623 if (cflags & SD_WAKE_AFFINE)
5624 pflags &= ~SD_WAKE_BALANCE;
5625 /* Flags needing groups don't count if only 1 group in parent */
5626 if (parent->groups == parent->groups->next) {
5627 pflags &= ~(SD_LOAD_BALANCE |
5628 SD_BALANCE_NEWIDLE |
5629 SD_BALANCE_FORK |
5630 SD_BALANCE_EXEC |
5631 SD_SHARE_CPUPOWER |
5632 SD_SHARE_PKG_RESOURCES);
5634 if (~cflags & pflags)
5635 return 0;
5637 return 1;
5641 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5642 * hold the hotplug lock.
5644 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5646 struct rq *rq = cpu_rq(cpu);
5647 struct sched_domain *tmp;
5649 /* Remove the sched domains which do not contribute to scheduling. */
5650 for (tmp = sd; tmp; tmp = tmp->parent) {
5651 struct sched_domain *parent = tmp->parent;
5652 if (!parent)
5653 break;
5654 if (sd_parent_degenerate(tmp, parent)) {
5655 tmp->parent = parent->parent;
5656 if (parent->parent)
5657 parent->parent->child = tmp;
5661 if (sd && sd_degenerate(sd)) {
5662 sd = sd->parent;
5663 if (sd)
5664 sd->child = NULL;
5667 sched_domain_debug(sd, cpu);
5669 rcu_assign_pointer(rq->sd, sd);
5672 /* cpus with isolated domains */
5673 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5675 /* Setup the mask of cpus configured for isolated domains */
5676 static int __init isolated_cpu_setup(char *str)
5678 int ints[NR_CPUS], i;
5680 str = get_options(str, ARRAY_SIZE(ints), ints);
5681 cpus_clear(cpu_isolated_map);
5682 for (i = 1; i <= ints[0]; i++)
5683 if (ints[i] < NR_CPUS)
5684 cpu_set(ints[i], cpu_isolated_map);
5685 return 1;
5688 __setup ("isolcpus=", isolated_cpu_setup);
5691 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5692 * to a function which identifies what group(along with sched group) a CPU
5693 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5694 * (due to the fact that we keep track of groups covered with a cpumask_t).
5696 * init_sched_build_groups will build a circular linked list of the groups
5697 * covered by the given span, and will set each group's ->cpumask correctly,
5698 * and ->cpu_power to 0.
5700 static void
5701 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5702 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5703 struct sched_group **sg))
5705 struct sched_group *first = NULL, *last = NULL;
5706 cpumask_t covered = CPU_MASK_NONE;
5707 int i;
5709 for_each_cpu_mask(i, span) {
5710 struct sched_group *sg;
5711 int group = group_fn(i, cpu_map, &sg);
5712 int j;
5714 if (cpu_isset(i, covered))
5715 continue;
5717 sg->cpumask = CPU_MASK_NONE;
5718 sg->__cpu_power = 0;
5720 for_each_cpu_mask(j, span) {
5721 if (group_fn(j, cpu_map, NULL) != group)
5722 continue;
5724 cpu_set(j, covered);
5725 cpu_set(j, sg->cpumask);
5727 if (!first)
5728 first = sg;
5729 if (last)
5730 last->next = sg;
5731 last = sg;
5733 last->next = first;
5736 #define SD_NODES_PER_DOMAIN 16
5738 #ifdef CONFIG_NUMA
5741 * find_next_best_node - find the next node to include in a sched_domain
5742 * @node: node whose sched_domain we're building
5743 * @used_nodes: nodes already in the sched_domain
5745 * Find the next node to include in a given scheduling domain. Simply
5746 * finds the closest node not already in the @used_nodes map.
5748 * Should use nodemask_t.
5750 static int find_next_best_node(int node, unsigned long *used_nodes)
5752 int i, n, val, min_val, best_node = 0;
5754 min_val = INT_MAX;
5756 for (i = 0; i < MAX_NUMNODES; i++) {
5757 /* Start at @node */
5758 n = (node + i) % MAX_NUMNODES;
5760 if (!nr_cpus_node(n))
5761 continue;
5763 /* Skip already used nodes */
5764 if (test_bit(n, used_nodes))
5765 continue;
5767 /* Simple min distance search */
5768 val = node_distance(node, n);
5770 if (val < min_val) {
5771 min_val = val;
5772 best_node = n;
5776 set_bit(best_node, used_nodes);
5777 return best_node;
5781 * sched_domain_node_span - get a cpumask for a node's sched_domain
5782 * @node: node whose cpumask we're constructing
5783 * @size: number of nodes to include in this span
5785 * Given a node, construct a good cpumask for its sched_domain to span. It
5786 * should be one that prevents unnecessary balancing, but also spreads tasks
5787 * out optimally.
5789 static cpumask_t sched_domain_node_span(int node)
5791 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5792 cpumask_t span, nodemask;
5793 int i;
5795 cpus_clear(span);
5796 bitmap_zero(used_nodes, MAX_NUMNODES);
5798 nodemask = node_to_cpumask(node);
5799 cpus_or(span, span, nodemask);
5800 set_bit(node, used_nodes);
5802 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5803 int next_node = find_next_best_node(node, used_nodes);
5805 nodemask = node_to_cpumask(next_node);
5806 cpus_or(span, span, nodemask);
5809 return span;
5811 #endif
5813 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5816 * SMT sched-domains:
5818 #ifdef CONFIG_SCHED_SMT
5819 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5820 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5822 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5823 struct sched_group **sg)
5825 if (sg)
5826 *sg = &per_cpu(sched_group_cpus, cpu);
5827 return cpu;
5829 #endif
5832 * multi-core sched-domains:
5834 #ifdef CONFIG_SCHED_MC
5835 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5836 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5837 #endif
5839 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5840 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5841 struct sched_group **sg)
5843 int group;
5844 cpumask_t mask = cpu_sibling_map[cpu];
5845 cpus_and(mask, mask, *cpu_map);
5846 group = first_cpu(mask);
5847 if (sg)
5848 *sg = &per_cpu(sched_group_core, group);
5849 return group;
5851 #elif defined(CONFIG_SCHED_MC)
5852 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5853 struct sched_group **sg)
5855 if (sg)
5856 *sg = &per_cpu(sched_group_core, cpu);
5857 return cpu;
5859 #endif
5861 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5862 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5864 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5865 struct sched_group **sg)
5867 int group;
5868 #ifdef CONFIG_SCHED_MC
5869 cpumask_t mask = cpu_coregroup_map(cpu);
5870 cpus_and(mask, mask, *cpu_map);
5871 group = first_cpu(mask);
5872 #elif defined(CONFIG_SCHED_SMT)
5873 cpumask_t mask = cpu_sibling_map[cpu];
5874 cpus_and(mask, mask, *cpu_map);
5875 group = first_cpu(mask);
5876 #else
5877 group = cpu;
5878 #endif
5879 if (sg)
5880 *sg = &per_cpu(sched_group_phys, group);
5881 return group;
5884 #ifdef CONFIG_NUMA
5886 * The init_sched_build_groups can't handle what we want to do with node
5887 * groups, so roll our own. Now each node has its own list of groups which
5888 * gets dynamically allocated.
5890 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5891 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5893 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5894 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5896 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5897 struct sched_group **sg)
5899 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5900 int group;
5902 cpus_and(nodemask, nodemask, *cpu_map);
5903 group = first_cpu(nodemask);
5905 if (sg)
5906 *sg = &per_cpu(sched_group_allnodes, group);
5907 return group;
5910 static void init_numa_sched_groups_power(struct sched_group *group_head)
5912 struct sched_group *sg = group_head;
5913 int j;
5915 if (!sg)
5916 return;
5917 next_sg:
5918 for_each_cpu_mask(j, sg->cpumask) {
5919 struct sched_domain *sd;
5921 sd = &per_cpu(phys_domains, j);
5922 if (j != first_cpu(sd->groups->cpumask)) {
5924 * Only add "power" once for each
5925 * physical package.
5927 continue;
5930 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5932 sg = sg->next;
5933 if (sg != group_head)
5934 goto next_sg;
5936 #endif
5938 #ifdef CONFIG_NUMA
5939 /* Free memory allocated for various sched_group structures */
5940 static void free_sched_groups(const cpumask_t *cpu_map)
5942 int cpu, i;
5944 for_each_cpu_mask(cpu, *cpu_map) {
5945 struct sched_group **sched_group_nodes
5946 = sched_group_nodes_bycpu[cpu];
5948 if (!sched_group_nodes)
5949 continue;
5951 for (i = 0; i < MAX_NUMNODES; i++) {
5952 cpumask_t nodemask = node_to_cpumask(i);
5953 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5955 cpus_and(nodemask, nodemask, *cpu_map);
5956 if (cpus_empty(nodemask))
5957 continue;
5959 if (sg == NULL)
5960 continue;
5961 sg = sg->next;
5962 next_sg:
5963 oldsg = sg;
5964 sg = sg->next;
5965 kfree(oldsg);
5966 if (oldsg != sched_group_nodes[i])
5967 goto next_sg;
5969 kfree(sched_group_nodes);
5970 sched_group_nodes_bycpu[cpu] = NULL;
5973 #else
5974 static void free_sched_groups(const cpumask_t *cpu_map)
5977 #endif
5980 * Initialize sched groups cpu_power.
5982 * cpu_power indicates the capacity of sched group, which is used while
5983 * distributing the load between different sched groups in a sched domain.
5984 * Typically cpu_power for all the groups in a sched domain will be same unless
5985 * there are asymmetries in the topology. If there are asymmetries, group
5986 * having more cpu_power will pickup more load compared to the group having
5987 * less cpu_power.
5989 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5990 * the maximum number of tasks a group can handle in the presence of other idle
5991 * or lightly loaded groups in the same sched domain.
5993 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5995 struct sched_domain *child;
5996 struct sched_group *group;
5998 WARN_ON(!sd || !sd->groups);
6000 if (cpu != first_cpu(sd->groups->cpumask))
6001 return;
6003 child = sd->child;
6005 sd->groups->__cpu_power = 0;
6008 * For perf policy, if the groups in child domain share resources
6009 * (for example cores sharing some portions of the cache hierarchy
6010 * or SMT), then set this domain groups cpu_power such that each group
6011 * can handle only one task, when there are other idle groups in the
6012 * same sched domain.
6014 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6015 (child->flags &
6016 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6017 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6018 return;
6022 * add cpu_power of each child group to this groups cpu_power
6024 group = child->groups;
6025 do {
6026 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6027 group = group->next;
6028 } while (group != child->groups);
6032 * Build sched domains for a given set of cpus and attach the sched domains
6033 * to the individual cpus
6035 static int build_sched_domains(const cpumask_t *cpu_map)
6037 int i;
6038 #ifdef CONFIG_NUMA
6039 struct sched_group **sched_group_nodes = NULL;
6040 int sd_allnodes = 0;
6043 * Allocate the per-node list of sched groups
6045 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6046 GFP_KERNEL);
6047 if (!sched_group_nodes) {
6048 printk(KERN_WARNING "Can not alloc sched group node list\n");
6049 return -ENOMEM;
6051 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6052 #endif
6055 * Set up domains for cpus specified by the cpu_map.
6057 for_each_cpu_mask(i, *cpu_map) {
6058 struct sched_domain *sd = NULL, *p;
6059 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6061 cpus_and(nodemask, nodemask, *cpu_map);
6063 #ifdef CONFIG_NUMA
6064 if (cpus_weight(*cpu_map) >
6065 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6066 sd = &per_cpu(allnodes_domains, i);
6067 *sd = SD_ALLNODES_INIT;
6068 sd->span = *cpu_map;
6069 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6070 p = sd;
6071 sd_allnodes = 1;
6072 } else
6073 p = NULL;
6075 sd = &per_cpu(node_domains, i);
6076 *sd = SD_NODE_INIT;
6077 sd->span = sched_domain_node_span(cpu_to_node(i));
6078 sd->parent = p;
6079 if (p)
6080 p->child = sd;
6081 cpus_and(sd->span, sd->span, *cpu_map);
6082 #endif
6084 p = sd;
6085 sd = &per_cpu(phys_domains, i);
6086 *sd = SD_CPU_INIT;
6087 sd->span = nodemask;
6088 sd->parent = p;
6089 if (p)
6090 p->child = sd;
6091 cpu_to_phys_group(i, cpu_map, &sd->groups);
6093 #ifdef CONFIG_SCHED_MC
6094 p = sd;
6095 sd = &per_cpu(core_domains, i);
6096 *sd = SD_MC_INIT;
6097 sd->span = cpu_coregroup_map(i);
6098 cpus_and(sd->span, sd->span, *cpu_map);
6099 sd->parent = p;
6100 p->child = sd;
6101 cpu_to_core_group(i, cpu_map, &sd->groups);
6102 #endif
6104 #ifdef CONFIG_SCHED_SMT
6105 p = sd;
6106 sd = &per_cpu(cpu_domains, i);
6107 *sd = SD_SIBLING_INIT;
6108 sd->span = cpu_sibling_map[i];
6109 cpus_and(sd->span, sd->span, *cpu_map);
6110 sd->parent = p;
6111 p->child = sd;
6112 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6113 #endif
6116 #ifdef CONFIG_SCHED_SMT
6117 /* Set up CPU (sibling) groups */
6118 for_each_cpu_mask(i, *cpu_map) {
6119 cpumask_t this_sibling_map = cpu_sibling_map[i];
6120 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6121 if (i != first_cpu(this_sibling_map))
6122 continue;
6124 init_sched_build_groups(this_sibling_map, cpu_map,
6125 &cpu_to_cpu_group);
6127 #endif
6129 #ifdef CONFIG_SCHED_MC
6130 /* Set up multi-core groups */
6131 for_each_cpu_mask(i, *cpu_map) {
6132 cpumask_t this_core_map = cpu_coregroup_map(i);
6133 cpus_and(this_core_map, this_core_map, *cpu_map);
6134 if (i != first_cpu(this_core_map))
6135 continue;
6136 init_sched_build_groups(this_core_map, cpu_map,
6137 &cpu_to_core_group);
6139 #endif
6141 /* Set up physical groups */
6142 for (i = 0; i < MAX_NUMNODES; i++) {
6143 cpumask_t nodemask = node_to_cpumask(i);
6145 cpus_and(nodemask, nodemask, *cpu_map);
6146 if (cpus_empty(nodemask))
6147 continue;
6149 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6152 #ifdef CONFIG_NUMA
6153 /* Set up node groups */
6154 if (sd_allnodes)
6155 init_sched_build_groups(*cpu_map, cpu_map,
6156 &cpu_to_allnodes_group);
6158 for (i = 0; i < MAX_NUMNODES; i++) {
6159 /* Set up node groups */
6160 struct sched_group *sg, *prev;
6161 cpumask_t nodemask = node_to_cpumask(i);
6162 cpumask_t domainspan;
6163 cpumask_t covered = CPU_MASK_NONE;
6164 int j;
6166 cpus_and(nodemask, nodemask, *cpu_map);
6167 if (cpus_empty(nodemask)) {
6168 sched_group_nodes[i] = NULL;
6169 continue;
6172 domainspan = sched_domain_node_span(i);
6173 cpus_and(domainspan, domainspan, *cpu_map);
6175 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6176 if (!sg) {
6177 printk(KERN_WARNING "Can not alloc domain group for "
6178 "node %d\n", i);
6179 goto error;
6181 sched_group_nodes[i] = sg;
6182 for_each_cpu_mask(j, nodemask) {
6183 struct sched_domain *sd;
6185 sd = &per_cpu(node_domains, j);
6186 sd->groups = sg;
6188 sg->__cpu_power = 0;
6189 sg->cpumask = nodemask;
6190 sg->next = sg;
6191 cpus_or(covered, covered, nodemask);
6192 prev = sg;
6194 for (j = 0; j < MAX_NUMNODES; j++) {
6195 cpumask_t tmp, notcovered;
6196 int n = (i + j) % MAX_NUMNODES;
6198 cpus_complement(notcovered, covered);
6199 cpus_and(tmp, notcovered, *cpu_map);
6200 cpus_and(tmp, tmp, domainspan);
6201 if (cpus_empty(tmp))
6202 break;
6204 nodemask = node_to_cpumask(n);
6205 cpus_and(tmp, tmp, nodemask);
6206 if (cpus_empty(tmp))
6207 continue;
6209 sg = kmalloc_node(sizeof(struct sched_group),
6210 GFP_KERNEL, i);
6211 if (!sg) {
6212 printk(KERN_WARNING
6213 "Can not alloc domain group for node %d\n", j);
6214 goto error;
6216 sg->__cpu_power = 0;
6217 sg->cpumask = tmp;
6218 sg->next = prev->next;
6219 cpus_or(covered, covered, tmp);
6220 prev->next = sg;
6221 prev = sg;
6224 #endif
6226 /* Calculate CPU power for physical packages and nodes */
6227 #ifdef CONFIG_SCHED_SMT
6228 for_each_cpu_mask(i, *cpu_map) {
6229 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6231 init_sched_groups_power(i, sd);
6233 #endif
6234 #ifdef CONFIG_SCHED_MC
6235 for_each_cpu_mask(i, *cpu_map) {
6236 struct sched_domain *sd = &per_cpu(core_domains, i);
6238 init_sched_groups_power(i, sd);
6240 #endif
6242 for_each_cpu_mask(i, *cpu_map) {
6243 struct sched_domain *sd = &per_cpu(phys_domains, i);
6245 init_sched_groups_power(i, sd);
6248 #ifdef CONFIG_NUMA
6249 for (i = 0; i < MAX_NUMNODES; i++)
6250 init_numa_sched_groups_power(sched_group_nodes[i]);
6252 if (sd_allnodes) {
6253 struct sched_group *sg;
6255 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6256 init_numa_sched_groups_power(sg);
6258 #endif
6260 /* Attach the domains */
6261 for_each_cpu_mask(i, *cpu_map) {
6262 struct sched_domain *sd;
6263 #ifdef CONFIG_SCHED_SMT
6264 sd = &per_cpu(cpu_domains, i);
6265 #elif defined(CONFIG_SCHED_MC)
6266 sd = &per_cpu(core_domains, i);
6267 #else
6268 sd = &per_cpu(phys_domains, i);
6269 #endif
6270 cpu_attach_domain(sd, i);
6273 return 0;
6275 #ifdef CONFIG_NUMA
6276 error:
6277 free_sched_groups(cpu_map);
6278 return -ENOMEM;
6279 #endif
6282 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6284 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6286 cpumask_t cpu_default_map;
6287 int err;
6290 * Setup mask for cpus without special case scheduling requirements.
6291 * For now this just excludes isolated cpus, but could be used to
6292 * exclude other special cases in the future.
6294 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6296 err = build_sched_domains(&cpu_default_map);
6298 return err;
6301 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6303 free_sched_groups(cpu_map);
6307 * Detach sched domains from a group of cpus specified in cpu_map
6308 * These cpus will now be attached to the NULL domain
6310 static void detach_destroy_domains(const cpumask_t *cpu_map)
6312 int i;
6314 for_each_cpu_mask(i, *cpu_map)
6315 cpu_attach_domain(NULL, i);
6316 synchronize_sched();
6317 arch_destroy_sched_domains(cpu_map);
6321 * Partition sched domains as specified by the cpumasks below.
6322 * This attaches all cpus from the cpumasks to the NULL domain,
6323 * waits for a RCU quiescent period, recalculates sched
6324 * domain information and then attaches them back to the
6325 * correct sched domains
6326 * Call with hotplug lock held
6328 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6330 cpumask_t change_map;
6331 int err = 0;
6333 cpus_and(*partition1, *partition1, cpu_online_map);
6334 cpus_and(*partition2, *partition2, cpu_online_map);
6335 cpus_or(change_map, *partition1, *partition2);
6337 /* Detach sched domains from all of the affected cpus */
6338 detach_destroy_domains(&change_map);
6339 if (!cpus_empty(*partition1))
6340 err = build_sched_domains(partition1);
6341 if (!err && !cpus_empty(*partition2))
6342 err = build_sched_domains(partition2);
6344 return err;
6347 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6348 static int arch_reinit_sched_domains(void)
6350 int err;
6352 mutex_lock(&sched_hotcpu_mutex);
6353 detach_destroy_domains(&cpu_online_map);
6354 err = arch_init_sched_domains(&cpu_online_map);
6355 mutex_unlock(&sched_hotcpu_mutex);
6357 return err;
6360 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6362 int ret;
6364 if (buf[0] != '0' && buf[0] != '1')
6365 return -EINVAL;
6367 if (smt)
6368 sched_smt_power_savings = (buf[0] == '1');
6369 else
6370 sched_mc_power_savings = (buf[0] == '1');
6372 ret = arch_reinit_sched_domains();
6374 return ret ? ret : count;
6377 #ifdef CONFIG_SCHED_MC
6378 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6380 return sprintf(page, "%u\n", sched_mc_power_savings);
6382 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6383 const char *buf, size_t count)
6385 return sched_power_savings_store(buf, count, 0);
6387 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6388 sched_mc_power_savings_store);
6389 #endif
6391 #ifdef CONFIG_SCHED_SMT
6392 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6394 return sprintf(page, "%u\n", sched_smt_power_savings);
6396 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6397 const char *buf, size_t count)
6399 return sched_power_savings_store(buf, count, 1);
6401 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6402 sched_smt_power_savings_store);
6403 #endif
6405 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6407 int err = 0;
6409 #ifdef CONFIG_SCHED_SMT
6410 if (smt_capable())
6411 err = sysfs_create_file(&cls->kset.kobj,
6412 &attr_sched_smt_power_savings.attr);
6413 #endif
6414 #ifdef CONFIG_SCHED_MC
6415 if (!err && mc_capable())
6416 err = sysfs_create_file(&cls->kset.kobj,
6417 &attr_sched_mc_power_savings.attr);
6418 #endif
6419 return err;
6421 #endif
6424 * Force a reinitialization of the sched domains hierarchy. The domains
6425 * and groups cannot be updated in place without racing with the balancing
6426 * code, so we temporarily attach all running cpus to the NULL domain
6427 * which will prevent rebalancing while the sched domains are recalculated.
6429 static int update_sched_domains(struct notifier_block *nfb,
6430 unsigned long action, void *hcpu)
6432 switch (action) {
6433 case CPU_UP_PREPARE:
6434 case CPU_UP_PREPARE_FROZEN:
6435 case CPU_DOWN_PREPARE:
6436 case CPU_DOWN_PREPARE_FROZEN:
6437 detach_destroy_domains(&cpu_online_map);
6438 return NOTIFY_OK;
6440 case CPU_UP_CANCELED:
6441 case CPU_UP_CANCELED_FROZEN:
6442 case CPU_DOWN_FAILED:
6443 case CPU_DOWN_FAILED_FROZEN:
6444 case CPU_ONLINE:
6445 case CPU_ONLINE_FROZEN:
6446 case CPU_DEAD:
6447 case CPU_DEAD_FROZEN:
6449 * Fall through and re-initialise the domains.
6451 break;
6452 default:
6453 return NOTIFY_DONE;
6456 /* The hotplug lock is already held by cpu_up/cpu_down */
6457 arch_init_sched_domains(&cpu_online_map);
6459 return NOTIFY_OK;
6462 void __init sched_init_smp(void)
6464 cpumask_t non_isolated_cpus;
6466 mutex_lock(&sched_hotcpu_mutex);
6467 arch_init_sched_domains(&cpu_online_map);
6468 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6469 if (cpus_empty(non_isolated_cpus))
6470 cpu_set(smp_processor_id(), non_isolated_cpus);
6471 mutex_unlock(&sched_hotcpu_mutex);
6472 /* XXX: Theoretical race here - CPU may be hotplugged now */
6473 hotcpu_notifier(update_sched_domains, 0);
6475 init_sched_domain_sysctl();
6477 /* Move init over to a non-isolated CPU */
6478 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6479 BUG();
6481 #else
6482 void __init sched_init_smp(void)
6485 #endif /* CONFIG_SMP */
6487 int in_sched_functions(unsigned long addr)
6489 /* Linker adds these: start and end of __sched functions */
6490 extern char __sched_text_start[], __sched_text_end[];
6492 return in_lock_functions(addr) ||
6493 (addr >= (unsigned long)__sched_text_start
6494 && addr < (unsigned long)__sched_text_end);
6497 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6499 cfs_rq->tasks_timeline = RB_ROOT;
6500 #ifdef CONFIG_FAIR_GROUP_SCHED
6501 cfs_rq->rq = rq;
6502 #endif
6503 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6506 void __init sched_init(void)
6508 int highest_cpu = 0;
6509 int i, j;
6511 for_each_possible_cpu(i) {
6512 struct rt_prio_array *array;
6513 struct rq *rq;
6515 rq = cpu_rq(i);
6516 spin_lock_init(&rq->lock);
6517 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6518 rq->nr_running = 0;
6519 rq->clock = 1;
6520 init_cfs_rq(&rq->cfs, rq);
6521 #ifdef CONFIG_FAIR_GROUP_SCHED
6522 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6524 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6525 struct sched_entity *se =
6526 &per_cpu(init_sched_entity, i);
6528 init_cfs_rq_p[i] = cfs_rq;
6529 init_cfs_rq(cfs_rq, rq);
6530 cfs_rq->tg = &init_task_grp;
6531 list_add(&cfs_rq->leaf_cfs_rq_list,
6532 &rq->leaf_cfs_rq_list);
6534 init_sched_entity_p[i] = se;
6535 se->cfs_rq = &rq->cfs;
6536 se->my_q = cfs_rq;
6537 se->load.weight = init_task_grp_load;
6538 se->load.inv_weight =
6539 div64_64(1ULL<<32, init_task_grp_load);
6540 se->parent = NULL;
6542 init_task_grp.shares = init_task_grp_load;
6543 #endif
6545 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6546 rq->cpu_load[j] = 0;
6547 #ifdef CONFIG_SMP
6548 rq->sd = NULL;
6549 rq->active_balance = 0;
6550 rq->next_balance = jiffies;
6551 rq->push_cpu = 0;
6552 rq->cpu = i;
6553 rq->migration_thread = NULL;
6554 INIT_LIST_HEAD(&rq->migration_queue);
6555 #endif
6556 atomic_set(&rq->nr_iowait, 0);
6558 array = &rq->rt.active;
6559 for (j = 0; j < MAX_RT_PRIO; j++) {
6560 INIT_LIST_HEAD(array->queue + j);
6561 __clear_bit(j, array->bitmap);
6563 highest_cpu = i;
6564 /* delimiter for bitsearch: */
6565 __set_bit(MAX_RT_PRIO, array->bitmap);
6568 set_load_weight(&init_task);
6570 #ifdef CONFIG_PREEMPT_NOTIFIERS
6571 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6572 #endif
6574 #ifdef CONFIG_SMP
6575 nr_cpu_ids = highest_cpu + 1;
6576 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6577 #endif
6579 #ifdef CONFIG_RT_MUTEXES
6580 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6581 #endif
6584 * The boot idle thread does lazy MMU switching as well:
6586 atomic_inc(&init_mm.mm_count);
6587 enter_lazy_tlb(&init_mm, current);
6590 * Make us the idle thread. Technically, schedule() should not be
6591 * called from this thread, however somewhere below it might be,
6592 * but because we are the idle thread, we just pick up running again
6593 * when this runqueue becomes "idle".
6595 init_idle(current, smp_processor_id());
6597 * During early bootup we pretend to be a normal task:
6599 current->sched_class = &fair_sched_class;
6602 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6603 void __might_sleep(char *file, int line)
6605 #ifdef in_atomic
6606 static unsigned long prev_jiffy; /* ratelimiting */
6608 if ((in_atomic() || irqs_disabled()) &&
6609 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6610 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6611 return;
6612 prev_jiffy = jiffies;
6613 printk(KERN_ERR "BUG: sleeping function called from invalid"
6614 " context at %s:%d\n", file, line);
6615 printk("in_atomic():%d, irqs_disabled():%d\n",
6616 in_atomic(), irqs_disabled());
6617 debug_show_held_locks(current);
6618 if (irqs_disabled())
6619 print_irqtrace_events(current);
6620 dump_stack();
6622 #endif
6624 EXPORT_SYMBOL(__might_sleep);
6625 #endif
6627 #ifdef CONFIG_MAGIC_SYSRQ
6628 void normalize_rt_tasks(void)
6630 struct task_struct *g, *p;
6631 unsigned long flags;
6632 struct rq *rq;
6633 int on_rq;
6635 read_lock_irq(&tasklist_lock);
6636 do_each_thread(g, p) {
6637 p->se.exec_start = 0;
6638 #ifdef CONFIG_SCHEDSTATS
6639 p->se.wait_start = 0;
6640 p->se.sleep_start = 0;
6641 p->se.block_start = 0;
6642 #endif
6643 task_rq(p)->clock = 0;
6645 if (!rt_task(p)) {
6647 * Renice negative nice level userspace
6648 * tasks back to 0:
6650 if (TASK_NICE(p) < 0 && p->mm)
6651 set_user_nice(p, 0);
6652 continue;
6655 spin_lock_irqsave(&p->pi_lock, flags);
6656 rq = __task_rq_lock(p);
6657 #ifdef CONFIG_SMP
6659 * Do not touch the migration thread:
6661 if (p == rq->migration_thread)
6662 goto out_unlock;
6663 #endif
6665 update_rq_clock(rq);
6666 on_rq = p->se.on_rq;
6667 if (on_rq)
6668 deactivate_task(rq, p, 0);
6669 __setscheduler(rq, p, SCHED_NORMAL, 0);
6670 if (on_rq) {
6671 activate_task(rq, p, 0);
6672 resched_task(rq->curr);
6674 #ifdef CONFIG_SMP
6675 out_unlock:
6676 #endif
6677 __task_rq_unlock(rq);
6678 spin_unlock_irqrestore(&p->pi_lock, flags);
6679 } while_each_thread(g, p);
6681 read_unlock_irq(&tasklist_lock);
6684 #endif /* CONFIG_MAGIC_SYSRQ */
6686 #ifdef CONFIG_IA64
6688 * These functions are only useful for the IA64 MCA handling.
6690 * They can only be called when the whole system has been
6691 * stopped - every CPU needs to be quiescent, and no scheduling
6692 * activity can take place. Using them for anything else would
6693 * be a serious bug, and as a result, they aren't even visible
6694 * under any other configuration.
6698 * curr_task - return the current task for a given cpu.
6699 * @cpu: the processor in question.
6701 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6703 struct task_struct *curr_task(int cpu)
6705 return cpu_curr(cpu);
6709 * set_curr_task - set the current task for a given cpu.
6710 * @cpu: the processor in question.
6711 * @p: the task pointer to set.
6713 * Description: This function must only be used when non-maskable interrupts
6714 * are serviced on a separate stack. It allows the architecture to switch the
6715 * notion of the current task on a cpu in a non-blocking manner. This function
6716 * must be called with all CPU's synchronized, and interrupts disabled, the
6717 * and caller must save the original value of the current task (see
6718 * curr_task() above) and restore that value before reenabling interrupts and
6719 * re-starting the system.
6721 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6723 void set_curr_task(int cpu, struct task_struct *p)
6725 cpu_curr(cpu) = p;
6728 #endif
6730 #ifdef CONFIG_FAIR_GROUP_SCHED
6732 /* allocate runqueue etc for a new task group */
6733 struct task_grp *sched_create_group(void)
6735 struct task_grp *tg;
6736 struct cfs_rq *cfs_rq;
6737 struct sched_entity *se;
6738 struct rq *rq;
6739 int i;
6741 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6742 if (!tg)
6743 return ERR_PTR(-ENOMEM);
6745 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6746 if (!tg->cfs_rq)
6747 goto err;
6748 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6749 if (!tg->se)
6750 goto err;
6752 for_each_possible_cpu(i) {
6753 rq = cpu_rq(i);
6755 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6756 cpu_to_node(i));
6757 if (!cfs_rq)
6758 goto err;
6760 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6761 cpu_to_node(i));
6762 if (!se)
6763 goto err;
6765 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6766 memset(se, 0, sizeof(struct sched_entity));
6768 tg->cfs_rq[i] = cfs_rq;
6769 init_cfs_rq(cfs_rq, rq);
6770 cfs_rq->tg = tg;
6772 tg->se[i] = se;
6773 se->cfs_rq = &rq->cfs;
6774 se->my_q = cfs_rq;
6775 se->load.weight = NICE_0_LOAD;
6776 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6777 se->parent = NULL;
6780 for_each_possible_cpu(i) {
6781 rq = cpu_rq(i);
6782 cfs_rq = tg->cfs_rq[i];
6783 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6786 tg->shares = NICE_0_LOAD;
6788 return tg;
6790 err:
6791 for_each_possible_cpu(i) {
6792 if (tg->cfs_rq && tg->cfs_rq[i])
6793 kfree(tg->cfs_rq[i]);
6794 if (tg->se && tg->se[i])
6795 kfree(tg->se[i]);
6797 if (tg->cfs_rq)
6798 kfree(tg->cfs_rq);
6799 if (tg->se)
6800 kfree(tg->se);
6801 if (tg)
6802 kfree(tg);
6804 return ERR_PTR(-ENOMEM);
6807 /* rcu callback to free various structures associated with a task group */
6808 static void free_sched_group(struct rcu_head *rhp)
6810 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6811 struct task_grp *tg = cfs_rq->tg;
6812 struct sched_entity *se;
6813 int i;
6815 /* now it should be safe to free those cfs_rqs */
6816 for_each_possible_cpu(i) {
6817 cfs_rq = tg->cfs_rq[i];
6818 kfree(cfs_rq);
6820 se = tg->se[i];
6821 kfree(se);
6824 kfree(tg->cfs_rq);
6825 kfree(tg->se);
6826 kfree(tg);
6829 /* Destroy runqueue etc associated with a task group */
6830 void sched_destroy_group(struct task_grp *tg)
6832 struct cfs_rq *cfs_rq;
6833 int i;
6835 for_each_possible_cpu(i) {
6836 cfs_rq = tg->cfs_rq[i];
6837 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6840 cfs_rq = tg->cfs_rq[0];
6842 /* wait for possible concurrent references to cfs_rqs complete */
6843 call_rcu(&cfs_rq->rcu, free_sched_group);
6846 /* change task's runqueue when it moves between groups.
6847 * The caller of this function should have put the task in its new group
6848 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6849 * reflect its new group.
6851 void sched_move_task(struct task_struct *tsk)
6853 int on_rq, running;
6854 unsigned long flags;
6855 struct rq *rq;
6857 rq = task_rq_lock(tsk, &flags);
6859 if (tsk->sched_class != &fair_sched_class)
6860 goto done;
6862 update_rq_clock(rq);
6864 running = task_running(rq, tsk);
6865 on_rq = tsk->se.on_rq;
6867 if (on_rq) {
6868 dequeue_task(rq, tsk, 0);
6869 if (unlikely(running))
6870 tsk->sched_class->put_prev_task(rq, tsk);
6873 set_task_cfs_rq(tsk);
6875 if (on_rq) {
6876 if (unlikely(running))
6877 tsk->sched_class->set_curr_task(rq);
6878 enqueue_task(rq, tsk, 0);
6881 done:
6882 task_rq_unlock(rq, &flags);
6885 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6887 struct cfs_rq *cfs_rq = se->cfs_rq;
6888 struct rq *rq = cfs_rq->rq;
6889 int on_rq;
6891 spin_lock_irq(&rq->lock);
6893 on_rq = se->on_rq;
6894 if (on_rq)
6895 dequeue_entity(cfs_rq, se, 0);
6897 se->load.weight = shares;
6898 se->load.inv_weight = div64_64((1ULL<<32), shares);
6900 if (on_rq)
6901 enqueue_entity(cfs_rq, se, 0);
6903 spin_unlock_irq(&rq->lock);
6906 int sched_group_set_shares(struct task_grp *tg, unsigned long shares)
6908 int i;
6910 if (tg->shares == shares)
6911 return 0;
6913 /* return -EINVAL if the new value is not sane */
6915 tg->shares = shares;
6916 for_each_possible_cpu(i)
6917 set_se_shares(tg->se[i], shares);
6919 return 0;
6922 #endif /* CONFIG_FAIR_GROUP_SCHED */