2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2006 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/pagevec.h>
25 #include <linux/sched.h>
26 #include <linux/swap.h>
27 #include <linux/uio.h>
28 #include <linux/writeback.h>
31 #include <asm/uaccess.h>
43 * ntfs_file_open - called when an inode is about to be opened
44 * @vi: inode to be opened
45 * @filp: file structure describing the inode
47 * Limit file size to the page cache limit on architectures where unsigned long
48 * is 32-bits. This is the most we can do for now without overflowing the page
49 * cache page index. Doing it this way means we don't run into problems because
50 * of existing too large files. It would be better to allow the user to read
51 * the beginning of the file but I doubt very much anyone is going to hit this
52 * check on a 32-bit architecture, so there is no point in adding the extra
53 * complexity required to support this.
55 * On 64-bit architectures, the check is hopefully optimized away by the
58 * After the check passes, just call generic_file_open() to do its work.
60 static int ntfs_file_open(struct inode
*vi
, struct file
*filp
)
62 if (sizeof(unsigned long) < 8) {
63 if (i_size_read(vi
) > MAX_LFS_FILESIZE
)
66 return generic_file_open(vi
, filp
);
72 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
73 * @ni: ntfs inode of the attribute to extend
74 * @new_init_size: requested new initialized size in bytes
75 * @cached_page: store any allocated but unused page here
76 * @lru_pvec: lru-buffering pagevec of the caller
78 * Extend the initialized size of an attribute described by the ntfs inode @ni
79 * to @new_init_size bytes. This involves zeroing any non-sparse space between
80 * the old initialized size and @new_init_size both in the page cache and on
81 * disk (if relevant complete pages are already uptodate in the page cache then
82 * these are simply marked dirty).
84 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
85 * in the resident attribute case, it is tied to the initialized size and, in
86 * the non-resident attribute case, it may not fall below the initialized size.
88 * Note that if the attribute is resident, we do not need to touch the page
89 * cache at all. This is because if the page cache page is not uptodate we
90 * bring it uptodate later, when doing the write to the mft record since we
91 * then already have the page mapped. And if the page is uptodate, the
92 * non-initialized region will already have been zeroed when the page was
93 * brought uptodate and the region may in fact already have been overwritten
94 * with new data via mmap() based writes, so we cannot just zero it. And since
95 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
96 * is unspecified, we choose not to do zeroing and thus we do not need to touch
97 * the page at all. For a more detailed explanation see ntfs_truncate() in
100 * @cached_page and @lru_pvec are just optimizations for dealing with multiple
103 * Return 0 on success and -errno on error. In the case that an error is
104 * encountered it is possible that the initialized size will already have been
105 * incremented some way towards @new_init_size but it is guaranteed that if
106 * this is the case, the necessary zeroing will also have happened and that all
107 * metadata is self-consistent.
109 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
110 * held by the caller.
112 static int ntfs_attr_extend_initialized(ntfs_inode
*ni
, const s64 new_init_size
,
113 struct page
**cached_page
, struct pagevec
*lru_pvec
)
117 pgoff_t index
, end_index
;
119 struct inode
*vi
= VFS_I(ni
);
121 MFT_RECORD
*m
= NULL
;
123 ntfs_attr_search_ctx
*ctx
= NULL
;
124 struct address_space
*mapping
;
125 struct page
*page
= NULL
;
130 read_lock_irqsave(&ni
->size_lock
, flags
);
131 old_init_size
= ni
->initialized_size
;
132 old_i_size
= i_size_read(vi
);
133 BUG_ON(new_init_size
> ni
->allocated_size
);
134 read_unlock_irqrestore(&ni
->size_lock
, flags
);
135 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
136 "old_initialized_size 0x%llx, "
137 "new_initialized_size 0x%llx, i_size 0x%llx.",
138 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
139 (unsigned long long)old_init_size
,
140 (unsigned long long)new_init_size
, old_i_size
);
144 base_ni
= ni
->ext
.base_ntfs_ino
;
145 /* Use goto to reduce indentation and we need the label below anyway. */
146 if (NInoNonResident(ni
))
147 goto do_non_resident_extend
;
148 BUG_ON(old_init_size
!= old_i_size
);
149 m
= map_mft_record(base_ni
);
155 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
156 if (unlikely(!ctx
)) {
160 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
161 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
169 BUG_ON(a
->non_resident
);
170 /* The total length of the attribute value. */
171 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
172 BUG_ON(old_i_size
!= (loff_t
)attr_len
);
174 * Do the zeroing in the mft record and update the attribute size in
177 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
178 memset(kattr
+ attr_len
, 0, new_init_size
- attr_len
);
179 a
->data
.resident
.value_length
= cpu_to_le32((u32
)new_init_size
);
180 /* Finally, update the sizes in the vfs and ntfs inodes. */
181 write_lock_irqsave(&ni
->size_lock
, flags
);
182 i_size_write(vi
, new_init_size
);
183 ni
->initialized_size
= new_init_size
;
184 write_unlock_irqrestore(&ni
->size_lock
, flags
);
186 do_non_resident_extend
:
188 * If the new initialized size @new_init_size exceeds the current file
189 * size (vfs inode->i_size), we need to extend the file size to the
190 * new initialized size.
192 if (new_init_size
> old_i_size
) {
193 m
= map_mft_record(base_ni
);
199 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
200 if (unlikely(!ctx
)) {
204 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
205 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
213 BUG_ON(!a
->non_resident
);
214 BUG_ON(old_i_size
!= (loff_t
)
215 sle64_to_cpu(a
->data
.non_resident
.data_size
));
216 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_init_size
);
217 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
218 mark_mft_record_dirty(ctx
->ntfs_ino
);
219 /* Update the file size in the vfs inode. */
220 i_size_write(vi
, new_init_size
);
221 ntfs_attr_put_search_ctx(ctx
);
223 unmap_mft_record(base_ni
);
226 mapping
= vi
->i_mapping
;
227 index
= old_init_size
>> PAGE_CACHE_SHIFT
;
228 end_index
= (new_init_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
231 * Read the page. If the page is not present, this will zero
232 * the uninitialized regions for us.
234 page
= read_mapping_page(mapping
, index
, NULL
);
239 wait_on_page_locked(page
);
240 if (unlikely(!PageUptodate(page
) || PageError(page
))) {
241 page_cache_release(page
);
246 * Update the initialized size in the ntfs inode. This is
247 * enough to make ntfs_writepage() work.
249 write_lock_irqsave(&ni
->size_lock
, flags
);
250 ni
->initialized_size
= (s64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
251 if (ni
->initialized_size
> new_init_size
)
252 ni
->initialized_size
= new_init_size
;
253 write_unlock_irqrestore(&ni
->size_lock
, flags
);
254 /* Set the page dirty so it gets written out. */
255 set_page_dirty(page
);
256 page_cache_release(page
);
258 * Play nice with the vm and the rest of the system. This is
259 * very much needed as we can potentially be modifying the
260 * initialised size from a very small value to a really huge
262 * f = open(somefile, O_TRUNC);
263 * truncate(f, 10GiB);
266 * And this would mean we would be marking dirty hundreds of
267 * thousands of pages or as in the above example more than
268 * two and a half million pages!
270 * TODO: For sparse pages could optimize this workload by using
271 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
272 * would be set in readpage for sparse pages and here we would
273 * not need to mark dirty any pages which have this bit set.
274 * The only caveat is that we have to clear the bit everywhere
275 * where we allocate any clusters that lie in the page or that
278 * TODO: An even greater optimization would be for us to only
279 * call readpage() on pages which are not in sparse regions as
280 * determined from the runlist. This would greatly reduce the
281 * number of pages we read and make dirty in the case of sparse
284 balance_dirty_pages_ratelimited(mapping
);
286 } while (++index
< end_index
);
287 read_lock_irqsave(&ni
->size_lock
, flags
);
288 BUG_ON(ni
->initialized_size
!= new_init_size
);
289 read_unlock_irqrestore(&ni
->size_lock
, flags
);
290 /* Now bring in sync the initialized_size in the mft record. */
291 m
= map_mft_record(base_ni
);
297 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
298 if (unlikely(!ctx
)) {
302 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
303 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
311 BUG_ON(!a
->non_resident
);
312 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(new_init_size
);
314 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
315 mark_mft_record_dirty(ctx
->ntfs_ino
);
317 ntfs_attr_put_search_ctx(ctx
);
319 unmap_mft_record(base_ni
);
320 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
321 (unsigned long long)new_init_size
, i_size_read(vi
));
324 write_lock_irqsave(&ni
->size_lock
, flags
);
325 ni
->initialized_size
= old_init_size
;
326 write_unlock_irqrestore(&ni
->size_lock
, flags
);
329 ntfs_attr_put_search_ctx(ctx
);
331 unmap_mft_record(base_ni
);
332 ntfs_debug("Failed. Returning error code %i.", err
);
337 * ntfs_fault_in_pages_readable -
339 * Fault a number of userspace pages into pagetables.
341 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
342 * with more than two userspace pages as well as handling the single page case
345 * If you find this difficult to understand, then think of the while loop being
346 * the following code, except that we do without the integer variable ret:
349 * ret = __get_user(c, uaddr);
350 * uaddr += PAGE_SIZE;
351 * } while (!ret && uaddr < end);
353 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
354 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
355 * this is only a read and not a write, and since it is still in the same page,
356 * it should not matter and this makes the code much simpler.
358 static inline void ntfs_fault_in_pages_readable(const char __user
*uaddr
,
361 const char __user
*end
;
364 /* Set @end to the first byte outside the last page we care about. */
365 end
= (const char __user
*)PAGE_ALIGN((ptrdiff_t __user
)uaddr
+ bytes
);
367 while (!__get_user(c
, uaddr
) && (uaddr
+= PAGE_SIZE
, uaddr
< end
))
372 * ntfs_fault_in_pages_readable_iovec -
374 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
376 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec
*iov
,
377 size_t iov_ofs
, int bytes
)
380 const char __user
*buf
;
383 buf
= iov
->iov_base
+ iov_ofs
;
384 len
= iov
->iov_len
- iov_ofs
;
387 ntfs_fault_in_pages_readable(buf
, len
);
395 * __ntfs_grab_cache_pages - obtain a number of locked pages
396 * @mapping: address space mapping from which to obtain page cache pages
397 * @index: starting index in @mapping at which to begin obtaining pages
398 * @nr_pages: number of page cache pages to obtain
399 * @pages: array of pages in which to return the obtained page cache pages
400 * @cached_page: allocated but as yet unused page
401 * @lru_pvec: lru-buffering pagevec of caller
403 * Obtain @nr_pages locked page cache pages from the mapping @maping and
404 * starting at index @index.
406 * If a page is newly created, increment its refcount and add it to the
407 * caller's lru-buffering pagevec @lru_pvec.
409 * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
410 * are obtained at once instead of just one page and that 0 is returned on
411 * success and -errno on error.
413 * Note, the page locks are obtained in ascending page index order.
415 static inline int __ntfs_grab_cache_pages(struct address_space
*mapping
,
416 pgoff_t index
, const unsigned nr_pages
, struct page
**pages
,
417 struct page
**cached_page
, struct pagevec
*lru_pvec
)
424 pages
[nr
] = find_lock_page(mapping
, index
);
427 *cached_page
= page_cache_alloc(mapping
);
428 if (unlikely(!*cached_page
)) {
433 err
= add_to_page_cache(*cached_page
, mapping
, index
,
440 pages
[nr
] = *cached_page
;
441 page_cache_get(*cached_page
);
442 if (unlikely(!pagevec_add(lru_pvec
, *cached_page
)))
443 __pagevec_lru_add(lru_pvec
);
448 } while (nr
< nr_pages
);
453 unlock_page(pages
[--nr
]);
454 page_cache_release(pages
[nr
]);
459 static inline int ntfs_submit_bh_for_read(struct buffer_head
*bh
)
463 bh
->b_end_io
= end_buffer_read_sync
;
464 return submit_bh(READ
, bh
);
468 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
469 * @pages: array of destination pages
470 * @nr_pages: number of pages in @pages
471 * @pos: byte position in file at which the write begins
472 * @bytes: number of bytes to be written
474 * This is called for non-resident attributes from ntfs_file_buffered_write()
475 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
476 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
477 * data has not yet been copied into the @pages.
479 * Need to fill any holes with actual clusters, allocate buffers if necessary,
480 * ensure all the buffers are mapped, and bring uptodate any buffers that are
481 * only partially being written to.
483 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
484 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
485 * the same cluster and that they are the entirety of that cluster, and that
486 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
488 * i_size is not to be modified yet.
490 * Return 0 on success or -errno on error.
492 static int ntfs_prepare_pages_for_non_resident_write(struct page
**pages
,
493 unsigned nr_pages
, s64 pos
, size_t bytes
)
495 VCN vcn
, highest_vcn
= 0, cpos
, cend
, bh_cpos
, bh_cend
;
497 s64 bh_pos
, vcn_len
, end
, initialized_size
;
501 ntfs_inode
*ni
, *base_ni
= NULL
;
503 runlist_element
*rl
, *rl2
;
504 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
505 ntfs_attr_search_ctx
*ctx
= NULL
;
506 MFT_RECORD
*m
= NULL
;
507 ATTR_RECORD
*a
= NULL
;
509 u32 attr_rec_len
= 0;
510 unsigned blocksize
, u
;
512 BOOL rl_write_locked
, was_hole
, is_retry
;
513 unsigned char blocksize_bits
;
516 u8 mft_attr_mapped
:1;
519 } status
= { 0, 0, 0, 0 };
524 vi
= pages
[0]->mapping
->host
;
527 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
528 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
529 vi
->i_ino
, ni
->type
, pages
[0]->index
, nr_pages
,
530 (long long)pos
, bytes
);
531 blocksize
= vol
->sb
->s_blocksize
;
532 blocksize_bits
= vol
->sb
->s_blocksize_bits
;
535 struct page
*page
= pages
[u
];
537 * create_empty_buffers() will create uptodate/dirty buffers if
538 * the page is uptodate/dirty.
540 if (!page_has_buffers(page
)) {
541 create_empty_buffers(page
, blocksize
, 0);
542 if (unlikely(!page_has_buffers(page
)))
545 } while (++u
< nr_pages
);
546 rl_write_locked
= FALSE
;
553 cpos
= pos
>> vol
->cluster_size_bits
;
555 cend
= (end
+ vol
->cluster_size
- 1) >> vol
->cluster_size_bits
;
557 * Loop over each page and for each page over each buffer. Use goto to
558 * reduce indentation.
563 bh_pos
= (s64
)page
->index
<< PAGE_CACHE_SHIFT
;
564 bh
= head
= page_buffers(page
);
570 /* Clear buffer_new on all buffers to reinitialise state. */
572 clear_buffer_new(bh
);
573 bh_end
= bh_pos
+ blocksize
;
574 bh_cpos
= bh_pos
>> vol
->cluster_size_bits
;
575 bh_cofs
= bh_pos
& vol
->cluster_size_mask
;
576 if (buffer_mapped(bh
)) {
578 * The buffer is already mapped. If it is uptodate,
581 if (buffer_uptodate(bh
))
584 * The buffer is not uptodate. If the page is uptodate
585 * set the buffer uptodate and otherwise ignore it.
587 if (PageUptodate(page
)) {
588 set_buffer_uptodate(bh
);
592 * Neither the page nor the buffer are uptodate. If
593 * the buffer is only partially being written to, we
594 * need to read it in before the write, i.e. now.
596 if ((bh_pos
< pos
&& bh_end
> pos
) ||
597 (bh_pos
< end
&& bh_end
> end
)) {
599 * If the buffer is fully or partially within
600 * the initialized size, do an actual read.
601 * Otherwise, simply zero the buffer.
603 read_lock_irqsave(&ni
->size_lock
, flags
);
604 initialized_size
= ni
->initialized_size
;
605 read_unlock_irqrestore(&ni
->size_lock
, flags
);
606 if (bh_pos
< initialized_size
) {
607 ntfs_submit_bh_for_read(bh
);
610 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
611 memset(kaddr
+ bh_offset(bh
), 0,
613 kunmap_atomic(kaddr
, KM_USER0
);
614 flush_dcache_page(page
);
615 set_buffer_uptodate(bh
);
620 /* Unmapped buffer. Need to map it. */
621 bh
->b_bdev
= vol
->sb
->s_bdev
;
623 * If the current buffer is in the same clusters as the map
624 * cache, there is no need to check the runlist again. The
625 * map cache is made up of @vcn, which is the first cached file
626 * cluster, @vcn_len which is the number of cached file
627 * clusters, @lcn is the device cluster corresponding to @vcn,
628 * and @lcn_block is the block number corresponding to @lcn.
630 cdelta
= bh_cpos
- vcn
;
631 if (likely(!cdelta
|| (cdelta
> 0 && cdelta
< vcn_len
))) {
634 bh
->b_blocknr
= lcn_block
+
635 (cdelta
<< (vol
->cluster_size_bits
-
637 (bh_cofs
>> blocksize_bits
);
638 set_buffer_mapped(bh
);
640 * If the page is uptodate so is the buffer. If the
641 * buffer is fully outside the write, we ignore it if
642 * it was already allocated and we mark it dirty so it
643 * gets written out if we allocated it. On the other
644 * hand, if we allocated the buffer but we are not
645 * marking it dirty we set buffer_new so we can do
648 if (PageUptodate(page
)) {
649 if (!buffer_uptodate(bh
))
650 set_buffer_uptodate(bh
);
651 if (unlikely(was_hole
)) {
652 /* We allocated the buffer. */
653 unmap_underlying_metadata(bh
->b_bdev
,
655 if (bh_end
<= pos
|| bh_pos
>= end
)
656 mark_buffer_dirty(bh
);
662 /* Page is _not_ uptodate. */
663 if (likely(!was_hole
)) {
665 * Buffer was already allocated. If it is not
666 * uptodate and is only partially being written
667 * to, we need to read it in before the write,
670 if (!buffer_uptodate(bh
) && bh_pos
< end
&&
675 * If the buffer is fully or partially
676 * within the initialized size, do an
677 * actual read. Otherwise, simply zero
680 read_lock_irqsave(&ni
->size_lock
,
682 initialized_size
= ni
->initialized_size
;
683 read_unlock_irqrestore(&ni
->size_lock
,
685 if (bh_pos
< initialized_size
) {
686 ntfs_submit_bh_for_read(bh
);
689 u8
*kaddr
= kmap_atomic(page
,
691 memset(kaddr
+ bh_offset(bh
),
693 kunmap_atomic(kaddr
, KM_USER0
);
694 flush_dcache_page(page
);
695 set_buffer_uptodate(bh
);
700 /* We allocated the buffer. */
701 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
703 * If the buffer is fully outside the write, zero it,
704 * set it uptodate, and mark it dirty so it gets
705 * written out. If it is partially being written to,
706 * zero region surrounding the write but leave it to
707 * commit write to do anything else. Finally, if the
708 * buffer is fully being overwritten, do nothing.
710 if (bh_end
<= pos
|| bh_pos
>= end
) {
711 if (!buffer_uptodate(bh
)) {
712 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
713 memset(kaddr
+ bh_offset(bh
), 0,
715 kunmap_atomic(kaddr
, KM_USER0
);
716 flush_dcache_page(page
);
717 set_buffer_uptodate(bh
);
719 mark_buffer_dirty(bh
);
723 if (!buffer_uptodate(bh
) &&
724 (bh_pos
< pos
|| bh_end
> end
)) {
728 kaddr
= kmap_atomic(page
, KM_USER0
);
730 pofs
= bh_pos
& ~PAGE_CACHE_MASK
;
731 memset(kaddr
+ pofs
, 0, pos
- bh_pos
);
734 pofs
= end
& ~PAGE_CACHE_MASK
;
735 memset(kaddr
+ pofs
, 0, bh_end
- end
);
737 kunmap_atomic(kaddr
, KM_USER0
);
738 flush_dcache_page(page
);
743 * Slow path: this is the first buffer in the cluster. If it
744 * is outside allocated size and is not uptodate, zero it and
747 read_lock_irqsave(&ni
->size_lock
, flags
);
748 initialized_size
= ni
->allocated_size
;
749 read_unlock_irqrestore(&ni
->size_lock
, flags
);
750 if (bh_pos
> initialized_size
) {
751 if (PageUptodate(page
)) {
752 if (!buffer_uptodate(bh
))
753 set_buffer_uptodate(bh
);
754 } else if (!buffer_uptodate(bh
)) {
755 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
756 memset(kaddr
+ bh_offset(bh
), 0, blocksize
);
757 kunmap_atomic(kaddr
, KM_USER0
);
758 flush_dcache_page(page
);
759 set_buffer_uptodate(bh
);
765 down_read(&ni
->runlist
.lock
);
769 if (likely(rl
!= NULL
)) {
770 /* Seek to element containing target cluster. */
771 while (rl
->length
&& rl
[1].vcn
<= bh_cpos
)
773 lcn
= ntfs_rl_vcn_to_lcn(rl
, bh_cpos
);
774 if (likely(lcn
>= 0)) {
776 * Successful remap, setup the map cache and
777 * use that to deal with the buffer.
781 vcn_len
= rl
[1].vcn
- vcn
;
782 lcn_block
= lcn
<< (vol
->cluster_size_bits
-
786 * If the number of remaining clusters touched
787 * by the write is smaller or equal to the
788 * number of cached clusters, unlock the
789 * runlist as the map cache will be used from
792 if (likely(vcn
+ vcn_len
>= cend
)) {
793 if (rl_write_locked
) {
794 up_write(&ni
->runlist
.lock
);
795 rl_write_locked
= FALSE
;
797 up_read(&ni
->runlist
.lock
);
800 goto map_buffer_cached
;
803 lcn
= LCN_RL_NOT_MAPPED
;
805 * If it is not a hole and not out of bounds, the runlist is
806 * probably unmapped so try to map it now.
808 if (unlikely(lcn
!= LCN_HOLE
&& lcn
!= LCN_ENOENT
)) {
809 if (likely(!is_retry
&& lcn
== LCN_RL_NOT_MAPPED
)) {
810 /* Attempt to map runlist. */
811 if (!rl_write_locked
) {
813 * We need the runlist locked for
814 * writing, so if it is locked for
815 * reading relock it now and retry in
816 * case it changed whilst we dropped
819 up_read(&ni
->runlist
.lock
);
820 down_write(&ni
->runlist
.lock
);
821 rl_write_locked
= TRUE
;
824 err
= ntfs_map_runlist_nolock(ni
, bh_cpos
,
831 * If @vcn is out of bounds, pretend @lcn is
832 * LCN_ENOENT. As long as the buffer is out
833 * of bounds this will work fine.
835 if (err
== -ENOENT
) {
838 goto rl_not_mapped_enoent
;
842 /* Failed to map the buffer, even after retrying. */
844 ntfs_error(vol
->sb
, "Failed to write to inode 0x%lx, "
845 "attribute type 0x%x, vcn 0x%llx, "
846 "vcn offset 0x%x, because its "
847 "location on disk could not be "
848 "determined%s (error code %i).",
849 ni
->mft_no
, ni
->type
,
850 (unsigned long long)bh_cpos
,
852 vol
->cluster_size_mask
,
853 is_retry
? " even after retrying" : "",
857 rl_not_mapped_enoent
:
859 * The buffer is in a hole or out of bounds. We need to fill
860 * the hole, unless the buffer is in a cluster which is not
861 * touched by the write, in which case we just leave the buffer
862 * unmapped. This can only happen when the cluster size is
863 * less than the page cache size.
865 if (unlikely(vol
->cluster_size
< PAGE_CACHE_SIZE
)) {
866 bh_cend
= (bh_end
+ vol
->cluster_size
- 1) >>
867 vol
->cluster_size_bits
;
868 if ((bh_cend
<= cpos
|| bh_cpos
>= cend
)) {
871 * If the buffer is uptodate we skip it. If it
872 * is not but the page is uptodate, we can set
873 * the buffer uptodate. If the page is not
874 * uptodate, we can clear the buffer and set it
875 * uptodate. Whether this is worthwhile is
876 * debatable and this could be removed.
878 if (PageUptodate(page
)) {
879 if (!buffer_uptodate(bh
))
880 set_buffer_uptodate(bh
);
881 } else if (!buffer_uptodate(bh
)) {
882 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
883 memset(kaddr
+ bh_offset(bh
), 0,
885 kunmap_atomic(kaddr
, KM_USER0
);
886 flush_dcache_page(page
);
887 set_buffer_uptodate(bh
);
893 * Out of bounds buffer is invalid if it was not really out of
896 BUG_ON(lcn
!= LCN_HOLE
);
898 * We need the runlist locked for writing, so if it is locked
899 * for reading relock it now and retry in case it changed
900 * whilst we dropped the lock.
903 if (!rl_write_locked
) {
904 up_read(&ni
->runlist
.lock
);
905 down_write(&ni
->runlist
.lock
);
906 rl_write_locked
= TRUE
;
909 /* Find the previous last allocated cluster. */
910 BUG_ON(rl
->lcn
!= LCN_HOLE
);
913 while (--rl2
>= ni
->runlist
.rl
) {
915 lcn
= rl2
->lcn
+ rl2
->length
;
919 rl2
= ntfs_cluster_alloc(vol
, bh_cpos
, 1, lcn
, DATA_ZONE
,
923 ntfs_debug("Failed to allocate cluster, error code %i.",
928 rl
= ntfs_runlists_merge(ni
->runlist
.rl
, rl2
);
933 if (ntfs_cluster_free_from_rl(vol
, rl2
)) {
934 ntfs_error(vol
->sb
, "Failed to release "
935 "allocated cluster in error "
936 "code path. Run chkdsk to "
937 "recover the lost cluster.");
944 status
.runlist_merged
= 1;
945 ntfs_debug("Allocated cluster, lcn 0x%llx.",
946 (unsigned long long)lcn
);
947 /* Map and lock the mft record and get the attribute record. */
951 base_ni
= ni
->ext
.base_ntfs_ino
;
952 m
= map_mft_record(base_ni
);
957 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
958 if (unlikely(!ctx
)) {
960 unmap_mft_record(base_ni
);
963 status
.mft_attr_mapped
= 1;
964 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
965 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
);
974 * Find the runlist element with which the attribute extent
975 * starts. Note, we cannot use the _attr_ version because we
976 * have mapped the mft record. That is ok because we know the
977 * runlist fragment must be mapped already to have ever gotten
978 * here, so we can just use the _rl_ version.
980 vcn
= sle64_to_cpu(a
->data
.non_resident
.lowest_vcn
);
981 rl2
= ntfs_rl_find_vcn_nolock(rl
, vcn
);
983 BUG_ON(!rl2
->length
);
984 BUG_ON(rl2
->lcn
< LCN_HOLE
);
985 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
987 * If @highest_vcn is zero, calculate the real highest_vcn
988 * (which can really be zero).
991 highest_vcn
= (sle64_to_cpu(
992 a
->data
.non_resident
.allocated_size
) >>
993 vol
->cluster_size_bits
) - 1;
995 * Determine the size of the mapping pairs array for the new
996 * extent, i.e. the old extent with the hole filled.
998 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, rl2
, vcn
,
1000 if (unlikely(mp_size
<= 0)) {
1001 if (!(err
= mp_size
))
1003 ntfs_debug("Failed to get size for mapping pairs "
1004 "array, error code %i.", err
);
1008 * Resize the attribute record to fit the new mapping pairs
1011 attr_rec_len
= le32_to_cpu(a
->length
);
1012 err
= ntfs_attr_record_resize(m
, a
, mp_size
+ le16_to_cpu(
1013 a
->data
.non_resident
.mapping_pairs_offset
));
1014 if (unlikely(err
)) {
1015 BUG_ON(err
!= -ENOSPC
);
1016 // TODO: Deal with this by using the current attribute
1017 // and fill it with as much of the mapping pairs
1018 // array as possible. Then loop over each attribute
1019 // extent rewriting the mapping pairs arrays as we go
1020 // along and if when we reach the end we have not
1021 // enough space, try to resize the last attribute
1022 // extent and if even that fails, add a new attribute
1024 // We could also try to resize at each step in the hope
1025 // that we will not need to rewrite every single extent.
1026 // Note, we may need to decompress some extents to fill
1027 // the runlist as we are walking the extents...
1028 ntfs_error(vol
->sb
, "Not enough space in the mft "
1029 "record for the extended attribute "
1030 "record. This case is not "
1031 "implemented yet.");
1035 status
.mp_rebuilt
= 1;
1037 * Generate the mapping pairs array directly into the attribute
1040 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+ le16_to_cpu(
1041 a
->data
.non_resident
.mapping_pairs_offset
),
1042 mp_size
, rl2
, vcn
, highest_vcn
, NULL
);
1043 if (unlikely(err
)) {
1044 ntfs_error(vol
->sb
, "Cannot fill hole in inode 0x%lx, "
1045 "attribute type 0x%x, because building "
1046 "the mapping pairs failed with error "
1047 "code %i.", vi
->i_ino
,
1048 (unsigned)le32_to_cpu(ni
->type
), err
);
1052 /* Update the highest_vcn but only if it was not set. */
1053 if (unlikely(!a
->data
.non_resident
.highest_vcn
))
1054 a
->data
.non_resident
.highest_vcn
=
1055 cpu_to_sle64(highest_vcn
);
1057 * If the attribute is sparse/compressed, update the compressed
1058 * size in the ntfs_inode structure and the attribute record.
1060 if (likely(NInoSparse(ni
) || NInoCompressed(ni
))) {
1062 * If we are not in the first attribute extent, switch
1063 * to it, but first ensure the changes will make it to
1066 if (a
->data
.non_resident
.lowest_vcn
) {
1067 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1068 mark_mft_record_dirty(ctx
->ntfs_ino
);
1069 ntfs_attr_reinit_search_ctx(ctx
);
1070 err
= ntfs_attr_lookup(ni
->type
, ni
->name
,
1071 ni
->name_len
, CASE_SENSITIVE
,
1073 if (unlikely(err
)) {
1074 status
.attr_switched
= 1;
1077 /* @m is not used any more so do not set it. */
1080 write_lock_irqsave(&ni
->size_lock
, flags
);
1081 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1082 a
->data
.non_resident
.compressed_size
=
1083 cpu_to_sle64(ni
->itype
.compressed
.size
);
1084 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1086 /* Ensure the changes make it to disk. */
1087 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1088 mark_mft_record_dirty(ctx
->ntfs_ino
);
1089 ntfs_attr_put_search_ctx(ctx
);
1090 unmap_mft_record(base_ni
);
1091 /* Successfully filled the hole. */
1092 status
.runlist_merged
= 0;
1093 status
.mft_attr_mapped
= 0;
1094 status
.mp_rebuilt
= 0;
1095 /* Setup the map cache and use that to deal with the buffer. */
1099 lcn_block
= lcn
<< (vol
->cluster_size_bits
- blocksize_bits
);
1102 * If the number of remaining clusters in the @pages is smaller
1103 * or equal to the number of cached clusters, unlock the
1104 * runlist as the map cache will be used from now on.
1106 if (likely(vcn
+ vcn_len
>= cend
)) {
1107 up_write(&ni
->runlist
.lock
);
1108 rl_write_locked
= FALSE
;
1111 goto map_buffer_cached
;
1112 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1113 /* If there are no errors, do the next page. */
1114 if (likely(!err
&& ++u
< nr_pages
))
1116 /* If there are no errors, release the runlist lock if we took it. */
1118 if (unlikely(rl_write_locked
)) {
1119 up_write(&ni
->runlist
.lock
);
1120 rl_write_locked
= FALSE
;
1121 } else if (unlikely(rl
))
1122 up_read(&ni
->runlist
.lock
);
1125 /* If we issued read requests, let them complete. */
1126 read_lock_irqsave(&ni
->size_lock
, flags
);
1127 initialized_size
= ni
->initialized_size
;
1128 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1129 while (wait_bh
> wait
) {
1132 if (likely(buffer_uptodate(bh
))) {
1134 bh_pos
= ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1137 * If the buffer overflows the initialized size, need
1138 * to zero the overflowing region.
1140 if (unlikely(bh_pos
+ blocksize
> initialized_size
)) {
1144 if (likely(bh_pos
< initialized_size
))
1145 ofs
= initialized_size
- bh_pos
;
1146 kaddr
= kmap_atomic(page
, KM_USER0
);
1147 memset(kaddr
+ bh_offset(bh
) + ofs
, 0,
1149 kunmap_atomic(kaddr
, KM_USER0
);
1150 flush_dcache_page(page
);
1152 } else /* if (unlikely(!buffer_uptodate(bh))) */
1156 /* Clear buffer_new on all buffers. */
1159 bh
= head
= page_buffers(pages
[u
]);
1162 clear_buffer_new(bh
);
1163 } while ((bh
= bh
->b_this_page
) != head
);
1164 } while (++u
< nr_pages
);
1165 ntfs_debug("Done.");
1168 if (status
.attr_switched
) {
1169 /* Get back to the attribute extent we modified. */
1170 ntfs_attr_reinit_search_ctx(ctx
);
1171 if (ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1172 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
)) {
1173 ntfs_error(vol
->sb
, "Failed to find required "
1174 "attribute extent of attribute in "
1175 "error code path. Run chkdsk to "
1177 write_lock_irqsave(&ni
->size_lock
, flags
);
1178 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1179 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1180 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1181 mark_mft_record_dirty(ctx
->ntfs_ino
);
1183 * The only thing that is now wrong is the compressed
1184 * size of the base attribute extent which chkdsk
1185 * should be able to fix.
1191 status
.attr_switched
= 0;
1195 * If the runlist has been modified, need to restore it by punching a
1196 * hole into it and we then need to deallocate the on-disk cluster as
1197 * well. Note, we only modify the runlist if we are able to generate a
1198 * new mapping pairs array, i.e. only when the mapped attribute extent
1201 if (status
.runlist_merged
&& !status
.attr_switched
) {
1202 BUG_ON(!rl_write_locked
);
1203 /* Make the file cluster we allocated sparse in the runlist. */
1204 if (ntfs_rl_punch_nolock(vol
, &ni
->runlist
, bh_cpos
, 1)) {
1205 ntfs_error(vol
->sb
, "Failed to punch hole into "
1206 "attribute runlist in error code "
1207 "path. Run chkdsk to recover the "
1210 } else /* if (success) */ {
1211 status
.runlist_merged
= 0;
1213 * Deallocate the on-disk cluster we allocated but only
1214 * if we succeeded in punching its vcn out of the
1217 down_write(&vol
->lcnbmp_lock
);
1218 if (ntfs_bitmap_clear_bit(vol
->lcnbmp_ino
, lcn
)) {
1219 ntfs_error(vol
->sb
, "Failed to release "
1220 "allocated cluster in error "
1221 "code path. Run chkdsk to "
1222 "recover the lost cluster.");
1225 up_write(&vol
->lcnbmp_lock
);
1229 * Resize the attribute record to its old size and rebuild the mapping
1230 * pairs array. Note, we only can do this if the runlist has been
1231 * restored to its old state which also implies that the mapped
1232 * attribute extent is not switched.
1234 if (status
.mp_rebuilt
&& !status
.runlist_merged
) {
1235 if (ntfs_attr_record_resize(m
, a
, attr_rec_len
)) {
1236 ntfs_error(vol
->sb
, "Failed to restore attribute "
1237 "record in error code path. Run "
1238 "chkdsk to recover.");
1240 } else /* if (success) */ {
1241 if (ntfs_mapping_pairs_build(vol
, (u8
*)a
+
1242 le16_to_cpu(a
->data
.non_resident
.
1243 mapping_pairs_offset
), attr_rec_len
-
1244 le16_to_cpu(a
->data
.non_resident
.
1245 mapping_pairs_offset
), ni
->runlist
.rl
,
1246 vcn
, highest_vcn
, NULL
)) {
1247 ntfs_error(vol
->sb
, "Failed to restore "
1248 "mapping pairs array in error "
1249 "code path. Run chkdsk to "
1253 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1254 mark_mft_record_dirty(ctx
->ntfs_ino
);
1257 /* Release the mft record and the attribute. */
1258 if (status
.mft_attr_mapped
) {
1259 ntfs_attr_put_search_ctx(ctx
);
1260 unmap_mft_record(base_ni
);
1262 /* Release the runlist lock. */
1263 if (rl_write_locked
)
1264 up_write(&ni
->runlist
.lock
);
1266 up_read(&ni
->runlist
.lock
);
1268 * Zero out any newly allocated blocks to avoid exposing stale data.
1269 * If BH_New is set, we know that the block was newly allocated above
1270 * and that it has not been fully zeroed and marked dirty yet.
1274 end
= bh_cpos
<< vol
->cluster_size_bits
;
1277 bh
= head
= page_buffers(page
);
1279 if (u
== nr_pages
&&
1280 ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1281 bh_offset(bh
) >= end
)
1283 if (!buffer_new(bh
))
1285 clear_buffer_new(bh
);
1286 if (!buffer_uptodate(bh
)) {
1287 if (PageUptodate(page
))
1288 set_buffer_uptodate(bh
);
1290 u8
*kaddr
= kmap_atomic(page
, KM_USER0
);
1291 memset(kaddr
+ bh_offset(bh
), 0,
1293 kunmap_atomic(kaddr
, KM_USER0
);
1294 flush_dcache_page(page
);
1295 set_buffer_uptodate(bh
);
1298 mark_buffer_dirty(bh
);
1299 } while ((bh
= bh
->b_this_page
) != head
);
1300 } while (++u
<= nr_pages
);
1301 ntfs_error(vol
->sb
, "Failed. Returning error code %i.", err
);
1306 * Copy as much as we can into the pages and return the number of bytes which
1307 * were sucessfully copied. If a fault is encountered then clear the pages
1308 * out to (ofs + bytes) and return the number of bytes which were copied.
1310 static inline size_t ntfs_copy_from_user(struct page
**pages
,
1311 unsigned nr_pages
, unsigned ofs
, const char __user
*buf
,
1314 struct page
**last_page
= pages
+ nr_pages
;
1321 len
= PAGE_CACHE_SIZE
- ofs
;
1324 kaddr
= kmap_atomic(*pages
, KM_USER0
);
1325 left
= __copy_from_user_inatomic(kaddr
+ ofs
, buf
, len
);
1326 kunmap_atomic(kaddr
, KM_USER0
);
1327 if (unlikely(left
)) {
1328 /* Do it the slow way. */
1329 kaddr
= kmap(*pages
);
1330 left
= __copy_from_user(kaddr
+ ofs
, buf
, len
);
1341 } while (++pages
< last_page
);
1345 total
+= len
- left
;
1346 /* Zero the rest of the target like __copy_from_user(). */
1347 while (++pages
< last_page
) {
1351 len
= PAGE_CACHE_SIZE
;
1354 kaddr
= kmap_atomic(*pages
, KM_USER0
);
1355 memset(kaddr
, 0, len
);
1356 kunmap_atomic(kaddr
, KM_USER0
);
1361 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr
,
1362 const struct iovec
*iov
, size_t iov_ofs
, size_t bytes
)
1367 const char __user
*buf
= iov
->iov_base
+ iov_ofs
;
1371 len
= iov
->iov_len
- iov_ofs
;
1374 left
= __copy_from_user_inatomic(vaddr
, buf
, len
);
1378 if (unlikely(left
)) {
1390 static inline void ntfs_set_next_iovec(const struct iovec
**iovp
,
1391 size_t *iov_ofsp
, size_t bytes
)
1393 const struct iovec
*iov
= *iovp
;
1394 size_t iov_ofs
= *iov_ofsp
;
1399 len
= iov
->iov_len
- iov_ofs
;
1404 if (iov
->iov_len
== iov_ofs
) {
1410 *iov_ofsp
= iov_ofs
;
1414 * This has the same side-effects and return value as ntfs_copy_from_user().
1415 * The difference is that on a fault we need to memset the remainder of the
1416 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1417 * single-segment behaviour.
1419 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both
1420 * when atomic and when not atomic. This is ok because
1421 * __ntfs_copy_from_user_iovec_inatomic() calls __copy_from_user_inatomic()
1422 * and it is ok to call this when non-atomic.
1423 * Infact, the only difference between __copy_from_user_inatomic() and
1424 * __copy_from_user() is that the latter calls might_sleep() and the former
1425 * should not zero the tail of the buffer on error. And on many
1426 * architectures __copy_from_user_inatomic() is just defined to
1427 * __copy_from_user() so it makes no difference at all on those architectures.
1429 static inline size_t ntfs_copy_from_user_iovec(struct page
**pages
,
1430 unsigned nr_pages
, unsigned ofs
, const struct iovec
**iov
,
1431 size_t *iov_ofs
, size_t bytes
)
1433 struct page
**last_page
= pages
+ nr_pages
;
1435 size_t copied
, len
, total
= 0;
1438 len
= PAGE_CACHE_SIZE
- ofs
;
1441 kaddr
= kmap_atomic(*pages
, KM_USER0
);
1442 copied
= __ntfs_copy_from_user_iovec_inatomic(kaddr
+ ofs
,
1443 *iov
, *iov_ofs
, len
);
1444 kunmap_atomic(kaddr
, KM_USER0
);
1445 if (unlikely(copied
!= len
)) {
1446 /* Do it the slow way. */
1447 kaddr
= kmap(*pages
);
1448 copied
= __ntfs_copy_from_user_iovec_inatomic(kaddr
+ ofs
,
1449 *iov
, *iov_ofs
, len
);
1451 * Zero the rest of the target like __copy_from_user().
1453 memset(kaddr
+ ofs
+ copied
, 0, len
- copied
);
1455 if (unlikely(copied
!= len
))
1462 ntfs_set_next_iovec(iov
, iov_ofs
, len
);
1464 } while (++pages
< last_page
);
1469 /* Zero the rest of the target like __copy_from_user(). */
1470 while (++pages
< last_page
) {
1474 len
= PAGE_CACHE_SIZE
;
1477 kaddr
= kmap_atomic(*pages
, KM_USER0
);
1478 memset(kaddr
, 0, len
);
1479 kunmap_atomic(kaddr
, KM_USER0
);
1484 static inline void ntfs_flush_dcache_pages(struct page
**pages
,
1489 * Warning: Do not do the decrement at the same time as the call to
1490 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1491 * decrement never happens so the loop never terminates.
1495 flush_dcache_page(pages
[nr_pages
]);
1496 } while (nr_pages
> 0);
1500 * ntfs_commit_pages_after_non_resident_write - commit the received data
1501 * @pages: array of destination pages
1502 * @nr_pages: number of pages in @pages
1503 * @pos: byte position in file at which the write begins
1504 * @bytes: number of bytes to be written
1506 * See description of ntfs_commit_pages_after_write(), below.
1508 static inline int ntfs_commit_pages_after_non_resident_write(
1509 struct page
**pages
, const unsigned nr_pages
,
1510 s64 pos
, size_t bytes
)
1512 s64 end
, initialized_size
;
1514 ntfs_inode
*ni
, *base_ni
;
1515 struct buffer_head
*bh
, *head
;
1516 ntfs_attr_search_ctx
*ctx
;
1519 unsigned long flags
;
1520 unsigned blocksize
, u
;
1523 vi
= pages
[0]->mapping
->host
;
1525 blocksize
= vi
->i_sb
->s_blocksize
;
1534 bh_pos
= (s64
)page
->index
<< PAGE_CACHE_SHIFT
;
1535 bh
= head
= page_buffers(page
);
1540 bh_end
= bh_pos
+ blocksize
;
1541 if (bh_end
<= pos
|| bh_pos
>= end
) {
1542 if (!buffer_uptodate(bh
))
1545 set_buffer_uptodate(bh
);
1546 mark_buffer_dirty(bh
);
1548 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1550 * If all buffers are now uptodate but the page is not, set the
1553 if (!partial
&& !PageUptodate(page
))
1554 SetPageUptodate(page
);
1555 } while (++u
< nr_pages
);
1557 * Finally, if we do not need to update initialized_size or i_size we
1560 read_lock_irqsave(&ni
->size_lock
, flags
);
1561 initialized_size
= ni
->initialized_size
;
1562 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1563 if (end
<= initialized_size
) {
1564 ntfs_debug("Done.");
1568 * Update initialized_size/i_size as appropriate, both in the inode and
1574 base_ni
= ni
->ext
.base_ntfs_ino
;
1575 /* Map, pin, and lock the mft record. */
1576 m
= map_mft_record(base_ni
);
1583 BUG_ON(!NInoNonResident(ni
));
1584 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1585 if (unlikely(!ctx
)) {
1589 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1590 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1591 if (unlikely(err
)) {
1597 BUG_ON(!a
->non_resident
);
1598 write_lock_irqsave(&ni
->size_lock
, flags
);
1599 BUG_ON(end
> ni
->allocated_size
);
1600 ni
->initialized_size
= end
;
1601 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(end
);
1602 if (end
> i_size_read(vi
)) {
1603 i_size_write(vi
, end
);
1604 a
->data
.non_resident
.data_size
=
1605 a
->data
.non_resident
.initialized_size
;
1607 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1608 /* Mark the mft record dirty, so it gets written back. */
1609 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1610 mark_mft_record_dirty(ctx
->ntfs_ino
);
1611 ntfs_attr_put_search_ctx(ctx
);
1612 unmap_mft_record(base_ni
);
1613 ntfs_debug("Done.");
1617 ntfs_attr_put_search_ctx(ctx
);
1619 unmap_mft_record(base_ni
);
1620 ntfs_error(vi
->i_sb
, "Failed to update initialized_size/i_size (error "
1623 NVolSetErrors(ni
->vol
);
1628 * ntfs_commit_pages_after_write - commit the received data
1629 * @pages: array of destination pages
1630 * @nr_pages: number of pages in @pages
1631 * @pos: byte position in file at which the write begins
1632 * @bytes: number of bytes to be written
1634 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1635 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1636 * locked but not kmap()ped. The source data has already been copied into the
1637 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1638 * the data was copied (for non-resident attributes only) and it returned
1641 * Need to set uptodate and mark dirty all buffers within the boundary of the
1642 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1644 * Setting the buffers dirty ensures that they get written out later when
1645 * ntfs_writepage() is invoked by the VM.
1647 * Finally, we need to update i_size and initialized_size as appropriate both
1648 * in the inode and the mft record.
1650 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1651 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1652 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1653 * that case, it also marks the inode dirty.
1655 * If things have gone as outlined in
1656 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1657 * content modifications here for non-resident attributes. For resident
1658 * attributes we need to do the uptodate bringing here which we combine with
1659 * the copying into the mft record which means we save one atomic kmap.
1661 * Return 0 on success or -errno on error.
1663 static int ntfs_commit_pages_after_write(struct page
**pages
,
1664 const unsigned nr_pages
, s64 pos
, size_t bytes
)
1666 s64 end
, initialized_size
;
1669 ntfs_inode
*ni
, *base_ni
;
1671 ntfs_attr_search_ctx
*ctx
;
1674 char *kattr
, *kaddr
;
1675 unsigned long flags
;
1683 vi
= page
->mapping
->host
;
1685 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1686 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1687 vi
->i_ino
, ni
->type
, page
->index
, nr_pages
,
1688 (long long)pos
, bytes
);
1689 if (NInoNonResident(ni
))
1690 return ntfs_commit_pages_after_non_resident_write(pages
,
1691 nr_pages
, pos
, bytes
);
1692 BUG_ON(nr_pages
> 1);
1694 * Attribute is resident, implying it is not compressed, encrypted, or
1700 base_ni
= ni
->ext
.base_ntfs_ino
;
1701 BUG_ON(NInoNonResident(ni
));
1702 /* Map, pin, and lock the mft record. */
1703 m
= map_mft_record(base_ni
);
1710 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1711 if (unlikely(!ctx
)) {
1715 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1716 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1717 if (unlikely(err
)) {
1723 BUG_ON(a
->non_resident
);
1724 /* The total length of the attribute value. */
1725 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
1726 i_size
= i_size_read(vi
);
1727 BUG_ON(attr_len
!= i_size
);
1728 BUG_ON(pos
> attr_len
);
1730 BUG_ON(end
> le32_to_cpu(a
->length
) -
1731 le16_to_cpu(a
->data
.resident
.value_offset
));
1732 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
1733 kaddr
= kmap_atomic(page
, KM_USER0
);
1734 /* Copy the received data from the page to the mft record. */
1735 memcpy(kattr
+ pos
, kaddr
+ pos
, bytes
);
1736 /* Update the attribute length if necessary. */
1737 if (end
> attr_len
) {
1739 a
->data
.resident
.value_length
= cpu_to_le32(attr_len
);
1742 * If the page is not uptodate, bring the out of bounds area(s)
1743 * uptodate by copying data from the mft record to the page.
1745 if (!PageUptodate(page
)) {
1747 memcpy(kaddr
, kattr
, pos
);
1749 memcpy(kaddr
+ end
, kattr
+ end
, attr_len
- end
);
1750 /* Zero the region outside the end of the attribute value. */
1751 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
1752 flush_dcache_page(page
);
1753 SetPageUptodate(page
);
1755 kunmap_atomic(kaddr
, KM_USER0
);
1756 /* Update initialized_size/i_size if necessary. */
1757 read_lock_irqsave(&ni
->size_lock
, flags
);
1758 initialized_size
= ni
->initialized_size
;
1759 BUG_ON(end
> ni
->allocated_size
);
1760 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1761 BUG_ON(initialized_size
!= i_size
);
1762 if (end
> initialized_size
) {
1763 unsigned long flags
;
1765 write_lock_irqsave(&ni
->size_lock
, flags
);
1766 ni
->initialized_size
= end
;
1767 i_size_write(vi
, end
);
1768 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1770 /* Mark the mft record dirty, so it gets written back. */
1771 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1772 mark_mft_record_dirty(ctx
->ntfs_ino
);
1773 ntfs_attr_put_search_ctx(ctx
);
1774 unmap_mft_record(base_ni
);
1775 ntfs_debug("Done.");
1778 if (err
== -ENOMEM
) {
1779 ntfs_warning(vi
->i_sb
, "Error allocating memory required to "
1780 "commit the write.");
1781 if (PageUptodate(page
)) {
1782 ntfs_warning(vi
->i_sb
, "Page is uptodate, setting "
1783 "dirty so the write will be retried "
1784 "later on by the VM.");
1786 * Put the page on mapping->dirty_pages, but leave its
1787 * buffers' dirty state as-is.
1789 __set_page_dirty_nobuffers(page
);
1792 ntfs_error(vi
->i_sb
, "Page is not uptodate. Written "
1793 "data has been lost.");
1795 ntfs_error(vi
->i_sb
, "Resident attribute commit write failed "
1796 "with error %i.", err
);
1797 NVolSetErrors(ni
->vol
);
1800 ntfs_attr_put_search_ctx(ctx
);
1802 unmap_mft_record(base_ni
);
1807 * ntfs_file_buffered_write -
1809 * Locking: The vfs is holding ->i_mutex on the inode.
1811 static ssize_t
ntfs_file_buffered_write(struct kiocb
*iocb
,
1812 const struct iovec
*iov
, unsigned long nr_segs
,
1813 loff_t pos
, loff_t
*ppos
, size_t count
)
1815 struct file
*file
= iocb
->ki_filp
;
1816 struct address_space
*mapping
= file
->f_mapping
;
1817 struct inode
*vi
= mapping
->host
;
1818 ntfs_inode
*ni
= NTFS_I(vi
);
1819 ntfs_volume
*vol
= ni
->vol
;
1820 struct page
*pages
[NTFS_MAX_PAGES_PER_CLUSTER
];
1821 struct page
*cached_page
= NULL
;
1822 char __user
*buf
= NULL
;
1826 unsigned long flags
;
1827 size_t bytes
, iov_ofs
= 0; /* Offset in the current iovec. */
1828 ssize_t status
, written
;
1831 struct pagevec lru_pvec
;
1833 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1834 "pos 0x%llx, count 0x%lx.",
1835 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
1836 (unsigned long long)pos
, (unsigned long)count
);
1837 if (unlikely(!count
))
1839 BUG_ON(NInoMstProtected(ni
));
1841 * If the attribute is not an index root and it is encrypted or
1842 * compressed, we cannot write to it yet. Note we need to check for
1843 * AT_INDEX_ALLOCATION since this is the type of both directory and
1846 if (ni
->type
!= AT_INDEX_ALLOCATION
) {
1847 /* If file is encrypted, deny access, just like NT4. */
1848 if (NInoEncrypted(ni
)) {
1850 * Reminder for later: Encrypted files are _always_
1851 * non-resident so that the content can always be
1854 ntfs_debug("Denying write access to encrypted file.");
1857 if (NInoCompressed(ni
)) {
1858 /* Only unnamed $DATA attribute can be compressed. */
1859 BUG_ON(ni
->type
!= AT_DATA
);
1860 BUG_ON(ni
->name_len
);
1862 * Reminder for later: If resident, the data is not
1863 * actually compressed. Only on the switch to non-
1864 * resident does compression kick in. This is in
1865 * contrast to encrypted files (see above).
1867 ntfs_error(vi
->i_sb
, "Writing to compressed files is "
1868 "not implemented yet. Sorry.");
1873 * If a previous ntfs_truncate() failed, repeat it and abort if it
1876 if (unlikely(NInoTruncateFailed(ni
))) {
1877 down_write(&vi
->i_alloc_sem
);
1878 err
= ntfs_truncate(vi
);
1879 up_write(&vi
->i_alloc_sem
);
1880 if (err
|| NInoTruncateFailed(ni
)) {
1883 ntfs_error(vol
->sb
, "Cannot perform write to inode "
1884 "0x%lx, attribute type 0x%x, because "
1885 "ntfs_truncate() failed (error code "
1887 (unsigned)le32_to_cpu(ni
->type
), err
);
1891 /* The first byte after the write. */
1894 * If the write goes beyond the allocated size, extend the allocation
1895 * to cover the whole of the write, rounded up to the nearest cluster.
1897 read_lock_irqsave(&ni
->size_lock
, flags
);
1898 ll
= ni
->allocated_size
;
1899 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1901 /* Extend the allocation without changing the data size. */
1902 ll
= ntfs_attr_extend_allocation(ni
, end
, -1, pos
);
1903 if (likely(ll
>= 0)) {
1905 /* If the extension was partial truncate the write. */
1907 ntfs_debug("Truncating write to inode 0x%lx, "
1908 "attribute type 0x%x, because "
1909 "the allocation was only "
1910 "partially extended.",
1911 vi
->i_ino
, (unsigned)
1912 le32_to_cpu(ni
->type
));
1918 read_lock_irqsave(&ni
->size_lock
, flags
);
1919 ll
= ni
->allocated_size
;
1920 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1921 /* Perform a partial write if possible or fail. */
1923 ntfs_debug("Truncating write to inode 0x%lx, "
1924 "attribute type 0x%x, because "
1925 "extending the allocation "
1926 "failed (error code %i).",
1927 vi
->i_ino
, (unsigned)
1928 le32_to_cpu(ni
->type
), err
);
1932 ntfs_error(vol
->sb
, "Cannot perform write to "
1933 "inode 0x%lx, attribute type "
1934 "0x%x, because extending the "
1935 "allocation failed (error "
1936 "code %i).", vi
->i_ino
,
1938 le32_to_cpu(ni
->type
), err
);
1943 pagevec_init(&lru_pvec
, 0);
1946 * If the write starts beyond the initialized size, extend it up to the
1947 * beginning of the write and initialize all non-sparse space between
1948 * the old initialized size and the new one. This automatically also
1949 * increments the vfs inode->i_size to keep it above or equal to the
1952 read_lock_irqsave(&ni
->size_lock
, flags
);
1953 ll
= ni
->initialized_size
;
1954 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1956 err
= ntfs_attr_extend_initialized(ni
, pos
, &cached_page
,
1959 ntfs_error(vol
->sb
, "Cannot perform write to inode "
1960 "0x%lx, attribute type 0x%x, because "
1961 "extending the initialized size "
1962 "failed (error code %i).", vi
->i_ino
,
1963 (unsigned)le32_to_cpu(ni
->type
), err
);
1969 * Determine the number of pages per cluster for non-resident
1973 if (vol
->cluster_size
> PAGE_CACHE_SIZE
&& NInoNonResident(ni
))
1974 nr_pages
= vol
->cluster_size
>> PAGE_CACHE_SHIFT
;
1975 /* Finally, perform the actual write. */
1977 if (likely(nr_segs
== 1))
1978 buf
= iov
->iov_base
;
1981 pgoff_t idx
, start_idx
;
1982 unsigned ofs
, do_pages
, u
;
1985 start_idx
= idx
= pos
>> PAGE_CACHE_SHIFT
;
1986 ofs
= pos
& ~PAGE_CACHE_MASK
;
1987 bytes
= PAGE_CACHE_SIZE
- ofs
;
1990 vcn
= pos
>> vol
->cluster_size_bits
;
1991 if (vcn
!= last_vcn
) {
1994 * Get the lcn of the vcn the write is in. If
1995 * it is a hole, need to lock down all pages in
1998 down_read(&ni
->runlist
.lock
);
1999 lcn
= ntfs_attr_vcn_to_lcn_nolock(ni
, pos
>>
2000 vol
->cluster_size_bits
, FALSE
);
2001 up_read(&ni
->runlist
.lock
);
2002 if (unlikely(lcn
< LCN_HOLE
)) {
2004 if (lcn
== LCN_ENOMEM
)
2007 ntfs_error(vol
->sb
, "Cannot "
2010 "attribute type 0x%x, "
2011 "because the attribute "
2013 vi
->i_ino
, (unsigned)
2014 le32_to_cpu(ni
->type
));
2017 if (lcn
== LCN_HOLE
) {
2018 start_idx
= (pos
& ~(s64
)
2019 vol
->cluster_size_mask
)
2020 >> PAGE_CACHE_SHIFT
;
2021 bytes
= vol
->cluster_size
- (pos
&
2022 vol
->cluster_size_mask
);
2023 do_pages
= nr_pages
;
2030 * Bring in the user page(s) that we will copy from _first_.
2031 * Otherwise there is a nasty deadlock on copying from the same
2032 * page(s) as we are writing to, without it/them being marked
2033 * up-to-date. Note, at present there is nothing to stop the
2034 * pages being swapped out between us bringing them into memory
2035 * and doing the actual copying.
2037 if (likely(nr_segs
== 1))
2038 ntfs_fault_in_pages_readable(buf
, bytes
);
2040 ntfs_fault_in_pages_readable_iovec(iov
, iov_ofs
, bytes
);
2041 /* Get and lock @do_pages starting at index @start_idx. */
2042 status
= __ntfs_grab_cache_pages(mapping
, start_idx
, do_pages
,
2043 pages
, &cached_page
, &lru_pvec
);
2044 if (unlikely(status
))
2047 * For non-resident attributes, we need to fill any holes with
2048 * actual clusters and ensure all bufferes are mapped. We also
2049 * need to bring uptodate any buffers that are only partially
2052 if (NInoNonResident(ni
)) {
2053 status
= ntfs_prepare_pages_for_non_resident_write(
2054 pages
, do_pages
, pos
, bytes
);
2055 if (unlikely(status
)) {
2059 unlock_page(pages
[--do_pages
]);
2060 page_cache_release(pages
[do_pages
]);
2063 * The write preparation may have instantiated
2064 * allocated space outside i_size. Trim this
2065 * off again. We can ignore any errors in this
2066 * case as we will just be waisting a bit of
2067 * allocated space, which is not a disaster.
2069 i_size
= i_size_read(vi
);
2070 if (pos
+ bytes
> i_size
)
2071 vmtruncate(vi
, i_size
);
2075 u
= (pos
>> PAGE_CACHE_SHIFT
) - pages
[0]->index
;
2076 if (likely(nr_segs
== 1)) {
2077 copied
= ntfs_copy_from_user(pages
+ u
, do_pages
- u
,
2081 copied
= ntfs_copy_from_user_iovec(pages
+ u
,
2082 do_pages
- u
, ofs
, &iov
, &iov_ofs
,
2084 ntfs_flush_dcache_pages(pages
+ u
, do_pages
- u
);
2085 status
= ntfs_commit_pages_after_write(pages
, do_pages
, pos
,
2087 if (likely(!status
)) {
2091 if (unlikely(copied
!= bytes
))
2095 unlock_page(pages
[--do_pages
]);
2096 mark_page_accessed(pages
[do_pages
]);
2097 page_cache_release(pages
[do_pages
]);
2099 if (unlikely(status
))
2101 balance_dirty_pages_ratelimited(mapping
);
2107 page_cache_release(cached_page
);
2108 /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
2109 if (likely(!status
)) {
2110 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(vi
))) {
2111 if (!mapping
->a_ops
->writepage
|| !is_sync_kiocb(iocb
))
2112 status
= generic_osync_inode(vi
, mapping
,
2113 OSYNC_METADATA
|OSYNC_DATA
);
2116 pagevec_lru_add(&lru_pvec
);
2117 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
2118 written
? "written" : "status", (unsigned long)written
,
2120 return written
? written
: status
;
2124 * ntfs_file_aio_write_nolock -
2126 static ssize_t
ntfs_file_aio_write_nolock(struct kiocb
*iocb
,
2127 const struct iovec
*iov
, unsigned long nr_segs
, loff_t
*ppos
)
2129 struct file
*file
= iocb
->ki_filp
;
2130 struct address_space
*mapping
= file
->f_mapping
;
2131 struct inode
*inode
= mapping
->host
;
2134 size_t count
; /* after file limit checks */
2135 ssize_t written
, err
;
2138 for (seg
= 0; seg
< nr_segs
; seg
++) {
2139 const struct iovec
*iv
= &iov
[seg
];
2141 * If any segment has a negative length, or the cumulative
2142 * length ever wraps negative then return -EINVAL.
2144 count
+= iv
->iov_len
;
2145 if (unlikely((ssize_t
)(count
|iv
->iov_len
) < 0))
2147 if (access_ok(VERIFY_READ
, iv
->iov_base
, iv
->iov_len
))
2152 count
-= iv
->iov_len
; /* This segment is no good */
2156 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2157 /* We can write back this queue in page reclaim. */
2158 current
->backing_dev_info
= mapping
->backing_dev_info
;
2160 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2165 err
= remove_suid(file
->f_dentry
);
2168 file_update_time(file
);
2169 written
= ntfs_file_buffered_write(iocb
, iov
, nr_segs
, pos
, ppos
,
2172 current
->backing_dev_info
= NULL
;
2173 return written
? written
: err
;
2177 * ntfs_file_aio_write -
2179 static ssize_t
ntfs_file_aio_write(struct kiocb
*iocb
, const char __user
*buf
,
2180 size_t count
, loff_t pos
)
2182 struct file
*file
= iocb
->ki_filp
;
2183 struct address_space
*mapping
= file
->f_mapping
;
2184 struct inode
*inode
= mapping
->host
;
2186 struct iovec local_iov
= { .iov_base
= (void __user
*)buf
,
2189 BUG_ON(iocb
->ki_pos
!= pos
);
2191 mutex_lock(&inode
->i_mutex
);
2192 ret
= ntfs_file_aio_write_nolock(iocb
, &local_iov
, 1, &iocb
->ki_pos
);
2193 mutex_unlock(&inode
->i_mutex
);
2194 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2195 int err
= sync_page_range(inode
, mapping
, pos
, ret
);
2203 * ntfs_file_writev -
2205 * Basically the same as generic_file_writev() except that it ends up calling
2206 * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
2208 static ssize_t
ntfs_file_writev(struct file
*file
, const struct iovec
*iov
,
2209 unsigned long nr_segs
, loff_t
*ppos
)
2211 struct address_space
*mapping
= file
->f_mapping
;
2212 struct inode
*inode
= mapping
->host
;
2216 mutex_lock(&inode
->i_mutex
);
2217 init_sync_kiocb(&kiocb
, file
);
2218 ret
= ntfs_file_aio_write_nolock(&kiocb
, iov
, nr_segs
, ppos
);
2219 if (ret
== -EIOCBQUEUED
)
2220 ret
= wait_on_sync_kiocb(&kiocb
);
2221 mutex_unlock(&inode
->i_mutex
);
2222 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2223 int err
= sync_page_range(inode
, mapping
, *ppos
- ret
, ret
);
2231 * ntfs_file_write - simple wrapper for ntfs_file_writev()
2233 static ssize_t
ntfs_file_write(struct file
*file
, const char __user
*buf
,
2234 size_t count
, loff_t
*ppos
)
2236 struct iovec local_iov
= { .iov_base
= (void __user
*)buf
,
2239 return ntfs_file_writev(file
, &local_iov
, 1, ppos
);
2243 * ntfs_file_fsync - sync a file to disk
2244 * @filp: file to be synced
2245 * @dentry: dentry describing the file to sync
2246 * @datasync: if non-zero only flush user data and not metadata
2248 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
2249 * system calls. This function is inspired by fs/buffer.c::file_fsync().
2251 * If @datasync is false, write the mft record and all associated extent mft
2252 * records as well as the $DATA attribute and then sync the block device.
2254 * If @datasync is true and the attribute is non-resident, we skip the writing
2255 * of the mft record and all associated extent mft records (this might still
2256 * happen due to the write_inode_now() call).
2258 * Also, if @datasync is true, we do not wait on the inode to be written out
2259 * but we always wait on the page cache pages to be written out.
2261 * Note: In the past @filp could be NULL so we ignore it as we don't need it
2264 * Locking: Caller must hold i_mutex on the inode.
2266 * TODO: We should probably also write all attribute/index inodes associated
2267 * with this inode but since we have no simple way of getting to them we ignore
2268 * this problem for now.
2270 static int ntfs_file_fsync(struct file
*filp
, struct dentry
*dentry
,
2273 struct inode
*vi
= dentry
->d_inode
;
2276 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
2277 BUG_ON(S_ISDIR(vi
->i_mode
));
2278 if (!datasync
|| !NInoNonResident(NTFS_I(vi
)))
2279 ret
= ntfs_write_inode(vi
, 1);
2280 write_inode_now(vi
, !datasync
);
2282 * NOTE: If we were to use mapping->private_list (see ext2 and
2283 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2284 * sync_mapping_buffers(vi->i_mapping).
2286 err
= sync_blockdev(vi
->i_sb
->s_bdev
);
2287 if (unlikely(err
&& !ret
))
2290 ntfs_debug("Done.");
2292 ntfs_warning(vi
->i_sb
, "Failed to f%ssync inode 0x%lx. Error "
2293 "%u.", datasync
? "data" : "", vi
->i_ino
, -ret
);
2297 #endif /* NTFS_RW */
2299 const struct file_operations ntfs_file_ops
= {
2300 .llseek
= generic_file_llseek
, /* Seek inside file. */
2301 .read
= generic_file_read
, /* Read from file. */
2302 .aio_read
= generic_file_aio_read
, /* Async read from file. */
2303 .readv
= generic_file_readv
, /* Read from file. */
2305 .write
= ntfs_file_write
, /* Write to file. */
2306 .aio_write
= ntfs_file_aio_write
, /* Async write to file. */
2307 .writev
= ntfs_file_writev
, /* Write to file. */
2308 /*.release = ,*/ /* Last file is closed. See
2310 ext2_release_file() for
2311 how to use this to discard
2312 preallocated space for
2313 write opened files. */
2314 .fsync
= ntfs_file_fsync
, /* Sync a file to disk. */
2315 /*.aio_fsync = ,*/ /* Sync all outstanding async
2318 #endif /* NTFS_RW */
2319 /*.ioctl = ,*/ /* Perform function on the
2320 mounted filesystem. */
2321 .mmap
= generic_file_mmap
, /* Mmap file. */
2322 .open
= ntfs_file_open
, /* Open file. */
2323 .sendfile
= generic_file_sendfile
, /* Zero-copy data send with
2324 the data source being on
2325 the ntfs partition. We do
2326 not need to care about the
2327 data destination. */
2328 /*.sendpage = ,*/ /* Zero-copy data send with
2329 the data destination being
2330 on the ntfs partition. We
2331 do not need to care about
2335 struct inode_operations ntfs_file_inode_ops
= {
2337 .truncate
= ntfs_truncate_vfs
,
2338 .setattr
= ntfs_setattr
,
2339 #endif /* NTFS_RW */
2342 const struct file_operations ntfs_empty_file_ops
= {};
2344 struct inode_operations ntfs_empty_inode_ops
= {};