ecryptfs: replace remaining __FUNCTION__ occurrences
[linux-2.6/kmemtrace.git] / kernel / pid.c
blob477691576b338b38caa173c386b3a70ce7351a72
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/bootmem.h>
34 #include <linux/hash.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/init_task.h>
37 #include <linux/syscalls.h>
39 #define pid_hashfn(nr, ns) \
40 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
41 static struct hlist_head *pid_hash;
42 static int pidhash_shift;
43 struct pid init_struct_pid = INIT_STRUCT_PID;
45 int pid_max = PID_MAX_DEFAULT;
47 #define RESERVED_PIDS 300
49 int pid_max_min = RESERVED_PIDS + 1;
50 int pid_max_max = PID_MAX_LIMIT;
52 #define BITS_PER_PAGE (PAGE_SIZE*8)
53 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
55 static inline int mk_pid(struct pid_namespace *pid_ns,
56 struct pidmap *map, int off)
58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
61 #define find_next_offset(map, off) \
62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
65 * PID-map pages start out as NULL, they get allocated upon
66 * first use and are never deallocated. This way a low pid_max
67 * value does not cause lots of bitmaps to be allocated, but
68 * the scheme scales to up to 4 million PIDs, runtime.
70 struct pid_namespace init_pid_ns = {
71 .kref = {
72 .refcount = ATOMIC_INIT(2),
74 .pidmap = {
75 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
77 .last_pid = 0,
78 .level = 0,
79 .child_reaper = &init_task,
81 EXPORT_SYMBOL_GPL(init_pid_ns);
83 int is_container_init(struct task_struct *tsk)
85 int ret = 0;
86 struct pid *pid;
88 rcu_read_lock();
89 pid = task_pid(tsk);
90 if (pid != NULL && pid->numbers[pid->level].nr == 1)
91 ret = 1;
92 rcu_read_unlock();
94 return ret;
96 EXPORT_SYMBOL(is_container_init);
99 * Note: disable interrupts while the pidmap_lock is held as an
100 * interrupt might come in and do read_lock(&tasklist_lock).
102 * If we don't disable interrupts there is a nasty deadlock between
103 * detach_pid()->free_pid() and another cpu that does
104 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
105 * read_lock(&tasklist_lock);
107 * After we clean up the tasklist_lock and know there are no
108 * irq handlers that take it we can leave the interrupts enabled.
109 * For now it is easier to be safe than to prove it can't happen.
112 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114 static void free_pidmap(struct pid_namespace *pid_ns, int pid)
116 struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
117 int offset = pid & BITS_PER_PAGE_MASK;
119 clear_bit(offset, map->page);
120 atomic_inc(&map->nr_free);
123 static int alloc_pidmap(struct pid_namespace *pid_ns)
125 int i, offset, max_scan, pid, last = pid_ns->last_pid;
126 struct pidmap *map;
128 pid = last + 1;
129 if (pid >= pid_max)
130 pid = RESERVED_PIDS;
131 offset = pid & BITS_PER_PAGE_MASK;
132 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
133 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
134 for (i = 0; i <= max_scan; ++i) {
135 if (unlikely(!map->page)) {
136 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
138 * Free the page if someone raced with us
139 * installing it:
141 spin_lock_irq(&pidmap_lock);
142 if (map->page)
143 kfree(page);
144 else
145 map->page = page;
146 spin_unlock_irq(&pidmap_lock);
147 if (unlikely(!map->page))
148 break;
150 if (likely(atomic_read(&map->nr_free))) {
151 do {
152 if (!test_and_set_bit(offset, map->page)) {
153 atomic_dec(&map->nr_free);
154 pid_ns->last_pid = pid;
155 return pid;
157 offset = find_next_offset(map, offset);
158 pid = mk_pid(pid_ns, map, offset);
160 * find_next_offset() found a bit, the pid from it
161 * is in-bounds, and if we fell back to the last
162 * bitmap block and the final block was the same
163 * as the starting point, pid is before last_pid.
165 } while (offset < BITS_PER_PAGE && pid < pid_max &&
166 (i != max_scan || pid < last ||
167 !((last+1) & BITS_PER_PAGE_MASK)));
169 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
170 ++map;
171 offset = 0;
172 } else {
173 map = &pid_ns->pidmap[0];
174 offset = RESERVED_PIDS;
175 if (unlikely(last == offset))
176 break;
178 pid = mk_pid(pid_ns, map, offset);
180 return -1;
183 int next_pidmap(struct pid_namespace *pid_ns, int last)
185 int offset;
186 struct pidmap *map, *end;
188 offset = (last + 1) & BITS_PER_PAGE_MASK;
189 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
190 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
191 for (; map < end; map++, offset = 0) {
192 if (unlikely(!map->page))
193 continue;
194 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
195 if (offset < BITS_PER_PAGE)
196 return mk_pid(pid_ns, map, offset);
198 return -1;
201 void put_pid(struct pid *pid)
203 struct pid_namespace *ns;
205 if (!pid)
206 return;
208 ns = pid->numbers[pid->level].ns;
209 if ((atomic_read(&pid->count) == 1) ||
210 atomic_dec_and_test(&pid->count)) {
211 kmem_cache_free(ns->pid_cachep, pid);
212 put_pid_ns(ns);
215 EXPORT_SYMBOL_GPL(put_pid);
217 static void delayed_put_pid(struct rcu_head *rhp)
219 struct pid *pid = container_of(rhp, struct pid, rcu);
220 put_pid(pid);
223 void free_pid(struct pid *pid)
225 /* We can be called with write_lock_irq(&tasklist_lock) held */
226 int i;
227 unsigned long flags;
229 spin_lock_irqsave(&pidmap_lock, flags);
230 for (i = 0; i <= pid->level; i++)
231 hlist_del_rcu(&pid->numbers[i].pid_chain);
232 spin_unlock_irqrestore(&pidmap_lock, flags);
234 for (i = 0; i <= pid->level; i++)
235 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
237 call_rcu(&pid->rcu, delayed_put_pid);
240 struct pid *alloc_pid(struct pid_namespace *ns)
242 struct pid *pid;
243 enum pid_type type;
244 int i, nr;
245 struct pid_namespace *tmp;
246 struct upid *upid;
248 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
249 if (!pid)
250 goto out;
252 tmp = ns;
253 for (i = ns->level; i >= 0; i--) {
254 nr = alloc_pidmap(tmp);
255 if (nr < 0)
256 goto out_free;
258 pid->numbers[i].nr = nr;
259 pid->numbers[i].ns = tmp;
260 tmp = tmp->parent;
263 get_pid_ns(ns);
264 pid->level = ns->level;
265 atomic_set(&pid->count, 1);
266 for (type = 0; type < PIDTYPE_MAX; ++type)
267 INIT_HLIST_HEAD(&pid->tasks[type]);
269 spin_lock_irq(&pidmap_lock);
270 for (i = ns->level; i >= 0; i--) {
271 upid = &pid->numbers[i];
272 hlist_add_head_rcu(&upid->pid_chain,
273 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
275 spin_unlock_irq(&pidmap_lock);
277 out:
278 return pid;
280 out_free:
281 for (i++; i <= ns->level; i++)
282 free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
284 kmem_cache_free(ns->pid_cachep, pid);
285 pid = NULL;
286 goto out;
289 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
291 struct hlist_node *elem;
292 struct upid *pnr;
294 hlist_for_each_entry_rcu(pnr, elem,
295 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
296 if (pnr->nr == nr && pnr->ns == ns)
297 return container_of(pnr, struct pid,
298 numbers[ns->level]);
300 return NULL;
302 EXPORT_SYMBOL_GPL(find_pid_ns);
304 struct pid *find_vpid(int nr)
306 return find_pid_ns(nr, current->nsproxy->pid_ns);
308 EXPORT_SYMBOL_GPL(find_vpid);
310 struct pid *find_pid(int nr)
312 return find_pid_ns(nr, &init_pid_ns);
314 EXPORT_SYMBOL_GPL(find_pid);
317 * attach_pid() must be called with the tasklist_lock write-held.
319 int attach_pid(struct task_struct *task, enum pid_type type,
320 struct pid *pid)
322 struct pid_link *link;
324 link = &task->pids[type];
325 link->pid = pid;
326 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
328 return 0;
331 void detach_pid(struct task_struct *task, enum pid_type type)
333 struct pid_link *link;
334 struct pid *pid;
335 int tmp;
337 link = &task->pids[type];
338 pid = link->pid;
340 hlist_del_rcu(&link->node);
341 link->pid = NULL;
343 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
344 if (!hlist_empty(&pid->tasks[tmp]))
345 return;
347 free_pid(pid);
350 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
351 void transfer_pid(struct task_struct *old, struct task_struct *new,
352 enum pid_type type)
354 new->pids[type].pid = old->pids[type].pid;
355 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
356 old->pids[type].pid = NULL;
359 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
361 struct task_struct *result = NULL;
362 if (pid) {
363 struct hlist_node *first;
364 first = rcu_dereference(pid->tasks[type].first);
365 if (first)
366 result = hlist_entry(first, struct task_struct, pids[(type)].node);
368 return result;
370 EXPORT_SYMBOL(pid_task);
373 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
375 struct task_struct *find_task_by_pid_type_ns(int type, int nr,
376 struct pid_namespace *ns)
378 return pid_task(find_pid_ns(nr, ns), type);
381 EXPORT_SYMBOL(find_task_by_pid_type_ns);
383 struct task_struct *find_task_by_pid(pid_t nr)
385 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
387 EXPORT_SYMBOL(find_task_by_pid);
389 struct task_struct *find_task_by_vpid(pid_t vnr)
391 return find_task_by_pid_type_ns(PIDTYPE_PID, vnr,
392 current->nsproxy->pid_ns);
394 EXPORT_SYMBOL(find_task_by_vpid);
396 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
398 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns);
400 EXPORT_SYMBOL(find_task_by_pid_ns);
402 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
404 struct pid *pid;
405 rcu_read_lock();
406 pid = get_pid(task->pids[type].pid);
407 rcu_read_unlock();
408 return pid;
411 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
413 struct task_struct *result;
414 rcu_read_lock();
415 result = pid_task(pid, type);
416 if (result)
417 get_task_struct(result);
418 rcu_read_unlock();
419 return result;
422 struct pid *find_get_pid(pid_t nr)
424 struct pid *pid;
426 rcu_read_lock();
427 pid = get_pid(find_vpid(nr));
428 rcu_read_unlock();
430 return pid;
433 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
435 struct upid *upid;
436 pid_t nr = 0;
438 if (pid && ns->level <= pid->level) {
439 upid = &pid->numbers[ns->level];
440 if (upid->ns == ns)
441 nr = upid->nr;
443 return nr;
446 pid_t pid_vnr(struct pid *pid)
448 return pid_nr_ns(pid, current->nsproxy->pid_ns);
450 EXPORT_SYMBOL_GPL(pid_vnr);
452 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
454 return pid_nr_ns(task_pid(tsk), ns);
456 EXPORT_SYMBOL(task_pid_nr_ns);
458 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
460 return pid_nr_ns(task_tgid(tsk), ns);
462 EXPORT_SYMBOL(task_tgid_nr_ns);
464 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
466 return pid_nr_ns(task_pgrp(tsk), ns);
468 EXPORT_SYMBOL(task_pgrp_nr_ns);
470 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
472 return pid_nr_ns(task_session(tsk), ns);
474 EXPORT_SYMBOL(task_session_nr_ns);
477 * Used by proc to find the first pid that is greater then or equal to nr.
479 * If there is a pid at nr this function is exactly the same as find_pid.
481 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
483 struct pid *pid;
485 do {
486 pid = find_pid_ns(nr, ns);
487 if (pid)
488 break;
489 nr = next_pidmap(ns, nr);
490 } while (nr > 0);
492 return pid;
494 EXPORT_SYMBOL_GPL(find_get_pid);
497 * The pid hash table is scaled according to the amount of memory in the
498 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
499 * more.
501 void __init pidhash_init(void)
503 int i, pidhash_size;
504 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
506 pidhash_shift = max(4, fls(megabytes * 4));
507 pidhash_shift = min(12, pidhash_shift);
508 pidhash_size = 1 << pidhash_shift;
510 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
511 pidhash_size, pidhash_shift,
512 pidhash_size * sizeof(struct hlist_head));
514 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
515 if (!pid_hash)
516 panic("Could not alloc pidhash!\n");
517 for (i = 0; i < pidhash_size; i++)
518 INIT_HLIST_HEAD(&pid_hash[i]);
521 void __init pidmap_init(void)
523 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
524 /* Reserve PID 0. We never call free_pidmap(0) */
525 set_bit(0, init_pid_ns.pidmap[0].page);
526 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
528 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
529 SLAB_HWCACHE_ALIGN | SLAB_PANIC);