mxser: convert large macros to functions
[linux-2.6/kmemtrace.git] / block / blk-core.c
blob5d09f8c56024011588ec1b89e90bff2033a150ca
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
34 #include "blk.h"
36 static int __make_request(struct request_queue *q, struct bio *bio);
39 * For the allocated request tables
41 static struct kmem_cache *request_cachep;
44 * For queue allocation
46 struct kmem_cache *blk_requestq_cachep;
49 * Controlling structure to kblockd
51 static struct workqueue_struct *kblockd_workqueue;
53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
55 static void drive_stat_acct(struct request *rq, int new_io)
57 int rw = rq_data_dir(rq);
59 if (!blk_fs_request(rq) || !rq->rq_disk)
60 return;
62 if (!new_io) {
63 __all_stat_inc(rq->rq_disk, merges[rw], rq->sector);
64 } else {
65 struct hd_struct *part = get_part(rq->rq_disk, rq->sector);
66 disk_round_stats(rq->rq_disk);
67 rq->rq_disk->in_flight++;
68 if (part) {
69 part_round_stats(part);
70 part->in_flight++;
75 void blk_queue_congestion_threshold(struct request_queue *q)
77 int nr;
79 nr = q->nr_requests - (q->nr_requests / 8) + 1;
80 if (nr > q->nr_requests)
81 nr = q->nr_requests;
82 q->nr_congestion_on = nr;
84 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
85 if (nr < 1)
86 nr = 1;
87 q->nr_congestion_off = nr;
90 /**
91 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
92 * @bdev: device
94 * Locates the passed device's request queue and returns the address of its
95 * backing_dev_info
97 * Will return NULL if the request queue cannot be located.
99 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
101 struct backing_dev_info *ret = NULL;
102 struct request_queue *q = bdev_get_queue(bdev);
104 if (q)
105 ret = &q->backing_dev_info;
106 return ret;
108 EXPORT_SYMBOL(blk_get_backing_dev_info);
110 void blk_rq_init(struct request_queue *q, struct request *rq)
112 memset(rq, 0, sizeof(*rq));
114 INIT_LIST_HEAD(&rq->queuelist);
115 INIT_LIST_HEAD(&rq->donelist);
116 rq->q = q;
117 rq->sector = rq->hard_sector = (sector_t) -1;
118 INIT_HLIST_NODE(&rq->hash);
119 RB_CLEAR_NODE(&rq->rb_node);
120 rq->cmd = rq->__cmd;
121 rq->tag = -1;
122 rq->ref_count = 1;
124 EXPORT_SYMBOL(blk_rq_init);
126 static void req_bio_endio(struct request *rq, struct bio *bio,
127 unsigned int nbytes, int error)
129 struct request_queue *q = rq->q;
131 if (&q->bar_rq != rq) {
132 if (error)
133 clear_bit(BIO_UPTODATE, &bio->bi_flags);
134 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
135 error = -EIO;
137 if (unlikely(nbytes > bio->bi_size)) {
138 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
139 __FUNCTION__, nbytes, bio->bi_size);
140 nbytes = bio->bi_size;
143 bio->bi_size -= nbytes;
144 bio->bi_sector += (nbytes >> 9);
145 if (bio->bi_size == 0)
146 bio_endio(bio, error);
147 } else {
150 * Okay, this is the barrier request in progress, just
151 * record the error;
153 if (error && !q->orderr)
154 q->orderr = error;
158 void blk_dump_rq_flags(struct request *rq, char *msg)
160 int bit;
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 rq->cmd_flags);
166 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
167 (unsigned long long)rq->sector,
168 rq->nr_sectors,
169 rq->current_nr_sectors);
170 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
171 rq->bio, rq->biotail,
172 rq->buffer, rq->data,
173 rq->data_len);
175 if (blk_pc_request(rq)) {
176 printk(KERN_INFO " cdb: ");
177 for (bit = 0; bit < BLK_MAX_CDB; bit++)
178 printk("%02x ", rq->cmd[bit]);
179 printk("\n");
182 EXPORT_SYMBOL(blk_dump_rq_flags);
185 * "plug" the device if there are no outstanding requests: this will
186 * force the transfer to start only after we have put all the requests
187 * on the list.
189 * This is called with interrupts off and no requests on the queue and
190 * with the queue lock held.
192 void blk_plug_device(struct request_queue *q)
194 WARN_ON(!irqs_disabled());
197 * don't plug a stopped queue, it must be paired with blk_start_queue()
198 * which will restart the queueing
200 if (blk_queue_stopped(q))
201 return;
203 if (!test_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
204 __set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
205 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
206 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
209 EXPORT_SYMBOL(blk_plug_device);
212 * remove the queue from the plugged list, if present. called with
213 * queue lock held and interrupts disabled.
215 int blk_remove_plug(struct request_queue *q)
217 WARN_ON(!irqs_disabled());
219 if (!test_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
220 return 0;
222 queue_flag_clear(QUEUE_FLAG_PLUGGED, q);
223 del_timer(&q->unplug_timer);
224 return 1;
226 EXPORT_SYMBOL(blk_remove_plug);
229 * remove the plug and let it rip..
231 void __generic_unplug_device(struct request_queue *q)
233 if (unlikely(blk_queue_stopped(q)))
234 return;
236 if (!blk_remove_plug(q))
237 return;
239 q->request_fn(q);
241 EXPORT_SYMBOL(__generic_unplug_device);
244 * generic_unplug_device - fire a request queue
245 * @q: The &struct request_queue in question
247 * Description:
248 * Linux uses plugging to build bigger requests queues before letting
249 * the device have at them. If a queue is plugged, the I/O scheduler
250 * is still adding and merging requests on the queue. Once the queue
251 * gets unplugged, the request_fn defined for the queue is invoked and
252 * transfers started.
254 void generic_unplug_device(struct request_queue *q)
256 spin_lock_irq(q->queue_lock);
257 __generic_unplug_device(q);
258 spin_unlock_irq(q->queue_lock);
260 EXPORT_SYMBOL(generic_unplug_device);
262 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
263 struct page *page)
265 struct request_queue *q = bdi->unplug_io_data;
267 blk_unplug(q);
270 void blk_unplug_work(struct work_struct *work)
272 struct request_queue *q =
273 container_of(work, struct request_queue, unplug_work);
275 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
276 q->rq.count[READ] + q->rq.count[WRITE]);
278 q->unplug_fn(q);
281 void blk_unplug_timeout(unsigned long data)
283 struct request_queue *q = (struct request_queue *)data;
285 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
286 q->rq.count[READ] + q->rq.count[WRITE]);
288 kblockd_schedule_work(&q->unplug_work);
291 void blk_unplug(struct request_queue *q)
294 * devices don't necessarily have an ->unplug_fn defined
296 if (q->unplug_fn) {
297 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
298 q->rq.count[READ] + q->rq.count[WRITE]);
300 q->unplug_fn(q);
303 EXPORT_SYMBOL(blk_unplug);
306 * blk_start_queue - restart a previously stopped queue
307 * @q: The &struct request_queue in question
309 * Description:
310 * blk_start_queue() will clear the stop flag on the queue, and call
311 * the request_fn for the queue if it was in a stopped state when
312 * entered. Also see blk_stop_queue(). Queue lock must be held.
314 void blk_start_queue(struct request_queue *q)
316 WARN_ON(!irqs_disabled());
318 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
321 * one level of recursion is ok and is much faster than kicking
322 * the unplug handling
324 if (!test_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
325 queue_flag_set(QUEUE_FLAG_REENTER, q);
326 q->request_fn(q);
327 queue_flag_clear(QUEUE_FLAG_REENTER, q);
328 } else {
329 blk_plug_device(q);
330 kblockd_schedule_work(&q->unplug_work);
333 EXPORT_SYMBOL(blk_start_queue);
336 * blk_stop_queue - stop a queue
337 * @q: The &struct request_queue in question
339 * Description:
340 * The Linux block layer assumes that a block driver will consume all
341 * entries on the request queue when the request_fn strategy is called.
342 * Often this will not happen, because of hardware limitations (queue
343 * depth settings). If a device driver gets a 'queue full' response,
344 * or if it simply chooses not to queue more I/O at one point, it can
345 * call this function to prevent the request_fn from being called until
346 * the driver has signalled it's ready to go again. This happens by calling
347 * blk_start_queue() to restart queue operations. Queue lock must be held.
349 void blk_stop_queue(struct request_queue *q)
351 blk_remove_plug(q);
352 queue_flag_set(QUEUE_FLAG_STOPPED, q);
354 EXPORT_SYMBOL(blk_stop_queue);
357 * blk_sync_queue - cancel any pending callbacks on a queue
358 * @q: the queue
360 * Description:
361 * The block layer may perform asynchronous callback activity
362 * on a queue, such as calling the unplug function after a timeout.
363 * A block device may call blk_sync_queue to ensure that any
364 * such activity is cancelled, thus allowing it to release resources
365 * that the callbacks might use. The caller must already have made sure
366 * that its ->make_request_fn will not re-add plugging prior to calling
367 * this function.
370 void blk_sync_queue(struct request_queue *q)
372 del_timer_sync(&q->unplug_timer);
373 kblockd_flush_work(&q->unplug_work);
375 EXPORT_SYMBOL(blk_sync_queue);
378 * blk_run_queue - run a single device queue
379 * @q: The queue to run
381 void __blk_run_queue(struct request_queue *q)
383 blk_remove_plug(q);
386 * Only recurse once to avoid overrunning the stack, let the unplug
387 * handling reinvoke the handler shortly if we already got there.
389 if (!elv_queue_empty(q)) {
390 if (!test_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
391 queue_flag_set(QUEUE_FLAG_REENTER, q);
392 q->request_fn(q);
393 queue_flag_clear(QUEUE_FLAG_REENTER, q);
394 } else {
395 blk_plug_device(q);
396 kblockd_schedule_work(&q->unplug_work);
400 EXPORT_SYMBOL(__blk_run_queue);
403 * blk_run_queue - run a single device queue
404 * @q: The queue to run
406 void blk_run_queue(struct request_queue *q)
408 unsigned long flags;
410 spin_lock_irqsave(q->queue_lock, flags);
411 __blk_run_queue(q);
412 spin_unlock_irqrestore(q->queue_lock, flags);
414 EXPORT_SYMBOL(blk_run_queue);
416 void blk_put_queue(struct request_queue *q)
418 kobject_put(&q->kobj);
421 void blk_cleanup_queue(struct request_queue *q)
423 mutex_lock(&q->sysfs_lock);
424 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
425 mutex_unlock(&q->sysfs_lock);
427 if (q->elevator)
428 elevator_exit(q->elevator);
430 blk_put_queue(q);
432 EXPORT_SYMBOL(blk_cleanup_queue);
434 static int blk_init_free_list(struct request_queue *q)
436 struct request_list *rl = &q->rq;
438 rl->count[READ] = rl->count[WRITE] = 0;
439 rl->starved[READ] = rl->starved[WRITE] = 0;
440 rl->elvpriv = 0;
441 init_waitqueue_head(&rl->wait[READ]);
442 init_waitqueue_head(&rl->wait[WRITE]);
444 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
445 mempool_free_slab, request_cachep, q->node);
447 if (!rl->rq_pool)
448 return -ENOMEM;
450 return 0;
453 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
455 return blk_alloc_queue_node(gfp_mask, -1);
457 EXPORT_SYMBOL(blk_alloc_queue);
459 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
461 struct request_queue *q;
462 int err;
464 q = kmem_cache_alloc_node(blk_requestq_cachep,
465 gfp_mask | __GFP_ZERO, node_id);
466 if (!q)
467 return NULL;
469 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
470 q->backing_dev_info.unplug_io_data = q;
471 err = bdi_init(&q->backing_dev_info);
472 if (err) {
473 kmem_cache_free(blk_requestq_cachep, q);
474 return NULL;
477 init_timer(&q->unplug_timer);
479 kobject_init(&q->kobj, &blk_queue_ktype);
481 mutex_init(&q->sysfs_lock);
483 return q;
485 EXPORT_SYMBOL(blk_alloc_queue_node);
488 * blk_init_queue - prepare a request queue for use with a block device
489 * @rfn: The function to be called to process requests that have been
490 * placed on the queue.
491 * @lock: Request queue spin lock
493 * Description:
494 * If a block device wishes to use the standard request handling procedures,
495 * which sorts requests and coalesces adjacent requests, then it must
496 * call blk_init_queue(). The function @rfn will be called when there
497 * are requests on the queue that need to be processed. If the device
498 * supports plugging, then @rfn may not be called immediately when requests
499 * are available on the queue, but may be called at some time later instead.
500 * Plugged queues are generally unplugged when a buffer belonging to one
501 * of the requests on the queue is needed, or due to memory pressure.
503 * @rfn is not required, or even expected, to remove all requests off the
504 * queue, but only as many as it can handle at a time. If it does leave
505 * requests on the queue, it is responsible for arranging that the requests
506 * get dealt with eventually.
508 * The queue spin lock must be held while manipulating the requests on the
509 * request queue; this lock will be taken also from interrupt context, so irq
510 * disabling is needed for it.
512 * Function returns a pointer to the initialized request queue, or NULL if
513 * it didn't succeed.
515 * Note:
516 * blk_init_queue() must be paired with a blk_cleanup_queue() call
517 * when the block device is deactivated (such as at module unload).
520 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
522 return blk_init_queue_node(rfn, lock, -1);
524 EXPORT_SYMBOL(blk_init_queue);
526 struct request_queue *
527 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
529 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
531 if (!q)
532 return NULL;
534 q->node = node_id;
535 if (blk_init_free_list(q)) {
536 kmem_cache_free(blk_requestq_cachep, q);
537 return NULL;
541 * if caller didn't supply a lock, they get per-queue locking with
542 * our embedded lock
544 if (!lock) {
545 spin_lock_init(&q->__queue_lock);
546 lock = &q->__queue_lock;
549 q->request_fn = rfn;
550 q->prep_rq_fn = NULL;
551 q->unplug_fn = generic_unplug_device;
552 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
553 q->queue_lock = lock;
555 blk_queue_segment_boundary(q, 0xffffffff);
557 blk_queue_make_request(q, __make_request);
558 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
560 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
561 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
563 q->sg_reserved_size = INT_MAX;
566 * all done
568 if (!elevator_init(q, NULL)) {
569 blk_queue_congestion_threshold(q);
570 return q;
573 blk_put_queue(q);
574 return NULL;
576 EXPORT_SYMBOL(blk_init_queue_node);
578 int blk_get_queue(struct request_queue *q)
580 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
581 kobject_get(&q->kobj);
582 return 0;
585 return 1;
588 static inline void blk_free_request(struct request_queue *q, struct request *rq)
590 if (rq->cmd_flags & REQ_ELVPRIV)
591 elv_put_request(q, rq);
592 mempool_free(rq, q->rq.rq_pool);
595 static struct request *
596 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
598 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
600 if (!rq)
601 return NULL;
603 blk_rq_init(q, rq);
606 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
607 * see bio.h and blkdev.h
609 rq->cmd_flags = rw | REQ_ALLOCED;
611 if (priv) {
612 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
613 mempool_free(rq, q->rq.rq_pool);
614 return NULL;
616 rq->cmd_flags |= REQ_ELVPRIV;
619 return rq;
623 * ioc_batching returns true if the ioc is a valid batching request and
624 * should be given priority access to a request.
626 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
628 if (!ioc)
629 return 0;
632 * Make sure the process is able to allocate at least 1 request
633 * even if the batch times out, otherwise we could theoretically
634 * lose wakeups.
636 return ioc->nr_batch_requests == q->nr_batching ||
637 (ioc->nr_batch_requests > 0
638 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
642 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
643 * will cause the process to be a "batcher" on all queues in the system. This
644 * is the behaviour we want though - once it gets a wakeup it should be given
645 * a nice run.
647 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
649 if (!ioc || ioc_batching(q, ioc))
650 return;
652 ioc->nr_batch_requests = q->nr_batching;
653 ioc->last_waited = jiffies;
656 static void __freed_request(struct request_queue *q, int rw)
658 struct request_list *rl = &q->rq;
660 if (rl->count[rw] < queue_congestion_off_threshold(q))
661 blk_clear_queue_congested(q, rw);
663 if (rl->count[rw] + 1 <= q->nr_requests) {
664 if (waitqueue_active(&rl->wait[rw]))
665 wake_up(&rl->wait[rw]);
667 blk_clear_queue_full(q, rw);
672 * A request has just been released. Account for it, update the full and
673 * congestion status, wake up any waiters. Called under q->queue_lock.
675 static void freed_request(struct request_queue *q, int rw, int priv)
677 struct request_list *rl = &q->rq;
679 rl->count[rw]--;
680 if (priv)
681 rl->elvpriv--;
683 __freed_request(q, rw);
685 if (unlikely(rl->starved[rw ^ 1]))
686 __freed_request(q, rw ^ 1);
689 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
691 * Get a free request, queue_lock must be held.
692 * Returns NULL on failure, with queue_lock held.
693 * Returns !NULL on success, with queue_lock *not held*.
695 static struct request *get_request(struct request_queue *q, int rw_flags,
696 struct bio *bio, gfp_t gfp_mask)
698 struct request *rq = NULL;
699 struct request_list *rl = &q->rq;
700 struct io_context *ioc = NULL;
701 const int rw = rw_flags & 0x01;
702 int may_queue, priv;
704 may_queue = elv_may_queue(q, rw_flags);
705 if (may_queue == ELV_MQUEUE_NO)
706 goto rq_starved;
708 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
709 if (rl->count[rw]+1 >= q->nr_requests) {
710 ioc = current_io_context(GFP_ATOMIC, q->node);
712 * The queue will fill after this allocation, so set
713 * it as full, and mark this process as "batching".
714 * This process will be allowed to complete a batch of
715 * requests, others will be blocked.
717 if (!blk_queue_full(q, rw)) {
718 ioc_set_batching(q, ioc);
719 blk_set_queue_full(q, rw);
720 } else {
721 if (may_queue != ELV_MQUEUE_MUST
722 && !ioc_batching(q, ioc)) {
724 * The queue is full and the allocating
725 * process is not a "batcher", and not
726 * exempted by the IO scheduler
728 goto out;
732 blk_set_queue_congested(q, rw);
736 * Only allow batching queuers to allocate up to 50% over the defined
737 * limit of requests, otherwise we could have thousands of requests
738 * allocated with any setting of ->nr_requests
740 if (rl->count[rw] >= (3 * q->nr_requests / 2))
741 goto out;
743 rl->count[rw]++;
744 rl->starved[rw] = 0;
746 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
747 if (priv)
748 rl->elvpriv++;
750 spin_unlock_irq(q->queue_lock);
752 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
753 if (unlikely(!rq)) {
755 * Allocation failed presumably due to memory. Undo anything
756 * we might have messed up.
758 * Allocating task should really be put onto the front of the
759 * wait queue, but this is pretty rare.
761 spin_lock_irq(q->queue_lock);
762 freed_request(q, rw, priv);
765 * in the very unlikely event that allocation failed and no
766 * requests for this direction was pending, mark us starved
767 * so that freeing of a request in the other direction will
768 * notice us. another possible fix would be to split the
769 * rq mempool into READ and WRITE
771 rq_starved:
772 if (unlikely(rl->count[rw] == 0))
773 rl->starved[rw] = 1;
775 goto out;
779 * ioc may be NULL here, and ioc_batching will be false. That's
780 * OK, if the queue is under the request limit then requests need
781 * not count toward the nr_batch_requests limit. There will always
782 * be some limit enforced by BLK_BATCH_TIME.
784 if (ioc_batching(q, ioc))
785 ioc->nr_batch_requests--;
787 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
788 out:
789 return rq;
793 * No available requests for this queue, unplug the device and wait for some
794 * requests to become available.
796 * Called with q->queue_lock held, and returns with it unlocked.
798 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
799 struct bio *bio)
801 const int rw = rw_flags & 0x01;
802 struct request *rq;
804 rq = get_request(q, rw_flags, bio, GFP_NOIO);
805 while (!rq) {
806 DEFINE_WAIT(wait);
807 struct request_list *rl = &q->rq;
809 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
810 TASK_UNINTERRUPTIBLE);
812 rq = get_request(q, rw_flags, bio, GFP_NOIO);
814 if (!rq) {
815 struct io_context *ioc;
817 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
819 __generic_unplug_device(q);
820 spin_unlock_irq(q->queue_lock);
821 io_schedule();
824 * After sleeping, we become a "batching" process and
825 * will be able to allocate at least one request, and
826 * up to a big batch of them for a small period time.
827 * See ioc_batching, ioc_set_batching
829 ioc = current_io_context(GFP_NOIO, q->node);
830 ioc_set_batching(q, ioc);
832 spin_lock_irq(q->queue_lock);
834 finish_wait(&rl->wait[rw], &wait);
837 return rq;
840 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
842 struct request *rq;
844 BUG_ON(rw != READ && rw != WRITE);
846 spin_lock_irq(q->queue_lock);
847 if (gfp_mask & __GFP_WAIT) {
848 rq = get_request_wait(q, rw, NULL);
849 } else {
850 rq = get_request(q, rw, NULL, gfp_mask);
851 if (!rq)
852 spin_unlock_irq(q->queue_lock);
854 /* q->queue_lock is unlocked at this point */
856 return rq;
858 EXPORT_SYMBOL(blk_get_request);
861 * blk_start_queueing - initiate dispatch of requests to device
862 * @q: request queue to kick into gear
864 * This is basically a helper to remove the need to know whether a queue
865 * is plugged or not if someone just wants to initiate dispatch of requests
866 * for this queue.
868 * The queue lock must be held with interrupts disabled.
870 void blk_start_queueing(struct request_queue *q)
872 if (!blk_queue_plugged(q))
873 q->request_fn(q);
874 else
875 __generic_unplug_device(q);
877 EXPORT_SYMBOL(blk_start_queueing);
880 * blk_requeue_request - put a request back on queue
881 * @q: request queue where request should be inserted
882 * @rq: request to be inserted
884 * Description:
885 * Drivers often keep queueing requests until the hardware cannot accept
886 * more, when that condition happens we need to put the request back
887 * on the queue. Must be called with queue lock held.
889 void blk_requeue_request(struct request_queue *q, struct request *rq)
891 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
893 if (blk_rq_tagged(rq))
894 blk_queue_end_tag(q, rq);
896 elv_requeue_request(q, rq);
898 EXPORT_SYMBOL(blk_requeue_request);
901 * blk_insert_request - insert a special request in to a request queue
902 * @q: request queue where request should be inserted
903 * @rq: request to be inserted
904 * @at_head: insert request at head or tail of queue
905 * @data: private data
907 * Description:
908 * Many block devices need to execute commands asynchronously, so they don't
909 * block the whole kernel from preemption during request execution. This is
910 * accomplished normally by inserting aritficial requests tagged as
911 * REQ_SPECIAL in to the corresponding request queue, and letting them be
912 * scheduled for actual execution by the request queue.
914 * We have the option of inserting the head or the tail of the queue.
915 * Typically we use the tail for new ioctls and so forth. We use the head
916 * of the queue for things like a QUEUE_FULL message from a device, or a
917 * host that is unable to accept a particular command.
919 void blk_insert_request(struct request_queue *q, struct request *rq,
920 int at_head, void *data)
922 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
923 unsigned long flags;
926 * tell I/O scheduler that this isn't a regular read/write (ie it
927 * must not attempt merges on this) and that it acts as a soft
928 * barrier
930 rq->cmd_type = REQ_TYPE_SPECIAL;
931 rq->cmd_flags |= REQ_SOFTBARRIER;
933 rq->special = data;
935 spin_lock_irqsave(q->queue_lock, flags);
938 * If command is tagged, release the tag
940 if (blk_rq_tagged(rq))
941 blk_queue_end_tag(q, rq);
943 drive_stat_acct(rq, 1);
944 __elv_add_request(q, rq, where, 0);
945 blk_start_queueing(q);
946 spin_unlock_irqrestore(q->queue_lock, flags);
948 EXPORT_SYMBOL(blk_insert_request);
951 * add-request adds a request to the linked list.
952 * queue lock is held and interrupts disabled, as we muck with the
953 * request queue list.
955 static inline void add_request(struct request_queue *q, struct request *req)
957 drive_stat_acct(req, 1);
960 * elevator indicated where it wants this request to be
961 * inserted at elevator_merge time
963 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
967 * disk_round_stats() - Round off the performance stats on a struct
968 * disk_stats.
970 * The average IO queue length and utilisation statistics are maintained
971 * by observing the current state of the queue length and the amount of
972 * time it has been in this state for.
974 * Normally, that accounting is done on IO completion, but that can result
975 * in more than a second's worth of IO being accounted for within any one
976 * second, leading to >100% utilisation. To deal with that, we call this
977 * function to do a round-off before returning the results when reading
978 * /proc/diskstats. This accounts immediately for all queue usage up to
979 * the current jiffies and restarts the counters again.
981 void disk_round_stats(struct gendisk *disk)
983 unsigned long now = jiffies;
985 if (now == disk->stamp)
986 return;
988 if (disk->in_flight) {
989 __disk_stat_add(disk, time_in_queue,
990 disk->in_flight * (now - disk->stamp));
991 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
993 disk->stamp = now;
995 EXPORT_SYMBOL_GPL(disk_round_stats);
997 void part_round_stats(struct hd_struct *part)
999 unsigned long now = jiffies;
1001 if (now == part->stamp)
1002 return;
1004 if (part->in_flight) {
1005 __part_stat_add(part, time_in_queue,
1006 part->in_flight * (now - part->stamp));
1007 __part_stat_add(part, io_ticks, (now - part->stamp));
1009 part->stamp = now;
1013 * queue lock must be held
1015 void __blk_put_request(struct request_queue *q, struct request *req)
1017 if (unlikely(!q))
1018 return;
1019 if (unlikely(--req->ref_count))
1020 return;
1022 elv_completed_request(q, req);
1025 * Request may not have originated from ll_rw_blk. if not,
1026 * it didn't come out of our reserved rq pools
1028 if (req->cmd_flags & REQ_ALLOCED) {
1029 int rw = rq_data_dir(req);
1030 int priv = req->cmd_flags & REQ_ELVPRIV;
1032 BUG_ON(!list_empty(&req->queuelist));
1033 BUG_ON(!hlist_unhashed(&req->hash));
1035 blk_free_request(q, req);
1036 freed_request(q, rw, priv);
1039 EXPORT_SYMBOL_GPL(__blk_put_request);
1041 void blk_put_request(struct request *req)
1043 unsigned long flags;
1044 struct request_queue *q = req->q;
1047 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
1048 * following if (q) test.
1050 if (q) {
1051 spin_lock_irqsave(q->queue_lock, flags);
1052 __blk_put_request(q, req);
1053 spin_unlock_irqrestore(q->queue_lock, flags);
1056 EXPORT_SYMBOL(blk_put_request);
1058 void init_request_from_bio(struct request *req, struct bio *bio)
1060 req->cmd_type = REQ_TYPE_FS;
1063 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1065 if (bio_rw_ahead(bio) || bio_failfast(bio))
1066 req->cmd_flags |= REQ_FAILFAST;
1069 * REQ_BARRIER implies no merging, but lets make it explicit
1071 if (unlikely(bio_barrier(bio)))
1072 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1074 if (bio_sync(bio))
1075 req->cmd_flags |= REQ_RW_SYNC;
1076 if (bio_rw_meta(bio))
1077 req->cmd_flags |= REQ_RW_META;
1079 req->errors = 0;
1080 req->hard_sector = req->sector = bio->bi_sector;
1081 req->ioprio = bio_prio(bio);
1082 req->start_time = jiffies;
1083 blk_rq_bio_prep(req->q, req, bio);
1086 static int __make_request(struct request_queue *q, struct bio *bio)
1088 struct request *req;
1089 int el_ret, nr_sectors, barrier, err;
1090 const unsigned short prio = bio_prio(bio);
1091 const int sync = bio_sync(bio);
1092 int rw_flags;
1094 nr_sectors = bio_sectors(bio);
1097 * low level driver can indicate that it wants pages above a
1098 * certain limit bounced to low memory (ie for highmem, or even
1099 * ISA dma in theory)
1101 blk_queue_bounce(q, &bio);
1103 barrier = bio_barrier(bio);
1104 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1105 err = -EOPNOTSUPP;
1106 goto end_io;
1109 spin_lock_irq(q->queue_lock);
1111 if (unlikely(barrier) || elv_queue_empty(q))
1112 goto get_rq;
1114 el_ret = elv_merge(q, &req, bio);
1115 switch (el_ret) {
1116 case ELEVATOR_BACK_MERGE:
1117 BUG_ON(!rq_mergeable(req));
1119 if (!ll_back_merge_fn(q, req, bio))
1120 break;
1122 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1124 req->biotail->bi_next = bio;
1125 req->biotail = bio;
1126 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1127 req->ioprio = ioprio_best(req->ioprio, prio);
1128 drive_stat_acct(req, 0);
1129 if (!attempt_back_merge(q, req))
1130 elv_merged_request(q, req, el_ret);
1131 goto out;
1133 case ELEVATOR_FRONT_MERGE:
1134 BUG_ON(!rq_mergeable(req));
1136 if (!ll_front_merge_fn(q, req, bio))
1137 break;
1139 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1141 bio->bi_next = req->bio;
1142 req->bio = bio;
1145 * may not be valid. if the low level driver said
1146 * it didn't need a bounce buffer then it better
1147 * not touch req->buffer either...
1149 req->buffer = bio_data(bio);
1150 req->current_nr_sectors = bio_cur_sectors(bio);
1151 req->hard_cur_sectors = req->current_nr_sectors;
1152 req->sector = req->hard_sector = bio->bi_sector;
1153 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1154 req->ioprio = ioprio_best(req->ioprio, prio);
1155 drive_stat_acct(req, 0);
1156 if (!attempt_front_merge(q, req))
1157 elv_merged_request(q, req, el_ret);
1158 goto out;
1160 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1161 default:
1165 get_rq:
1167 * This sync check and mask will be re-done in init_request_from_bio(),
1168 * but we need to set it earlier to expose the sync flag to the
1169 * rq allocator and io schedulers.
1171 rw_flags = bio_data_dir(bio);
1172 if (sync)
1173 rw_flags |= REQ_RW_SYNC;
1176 * Grab a free request. This is might sleep but can not fail.
1177 * Returns with the queue unlocked.
1179 req = get_request_wait(q, rw_flags, bio);
1182 * After dropping the lock and possibly sleeping here, our request
1183 * may now be mergeable after it had proven unmergeable (above).
1184 * We don't worry about that case for efficiency. It won't happen
1185 * often, and the elevators are able to handle it.
1187 init_request_from_bio(req, bio);
1189 spin_lock_irq(q->queue_lock);
1190 if (elv_queue_empty(q))
1191 blk_plug_device(q);
1192 add_request(q, req);
1193 out:
1194 if (sync)
1195 __generic_unplug_device(q);
1197 spin_unlock_irq(q->queue_lock);
1198 return 0;
1200 end_io:
1201 bio_endio(bio, err);
1202 return 0;
1206 * If bio->bi_dev is a partition, remap the location
1208 static inline void blk_partition_remap(struct bio *bio)
1210 struct block_device *bdev = bio->bi_bdev;
1212 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1213 struct hd_struct *p = bdev->bd_part;
1215 bio->bi_sector += p->start_sect;
1216 bio->bi_bdev = bdev->bd_contains;
1218 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1219 bdev->bd_dev, bio->bi_sector,
1220 bio->bi_sector - p->start_sect);
1224 static void handle_bad_sector(struct bio *bio)
1226 char b[BDEVNAME_SIZE];
1228 printk(KERN_INFO "attempt to access beyond end of device\n");
1229 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1230 bdevname(bio->bi_bdev, b),
1231 bio->bi_rw,
1232 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1233 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1235 set_bit(BIO_EOF, &bio->bi_flags);
1238 #ifdef CONFIG_FAIL_MAKE_REQUEST
1240 static DECLARE_FAULT_ATTR(fail_make_request);
1242 static int __init setup_fail_make_request(char *str)
1244 return setup_fault_attr(&fail_make_request, str);
1246 __setup("fail_make_request=", setup_fail_make_request);
1248 static int should_fail_request(struct bio *bio)
1250 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1251 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1252 return should_fail(&fail_make_request, bio->bi_size);
1254 return 0;
1257 static int __init fail_make_request_debugfs(void)
1259 return init_fault_attr_dentries(&fail_make_request,
1260 "fail_make_request");
1263 late_initcall(fail_make_request_debugfs);
1265 #else /* CONFIG_FAIL_MAKE_REQUEST */
1267 static inline int should_fail_request(struct bio *bio)
1269 return 0;
1272 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1275 * Check whether this bio extends beyond the end of the device.
1277 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1279 sector_t maxsector;
1281 if (!nr_sectors)
1282 return 0;
1284 /* Test device or partition size, when known. */
1285 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1286 if (maxsector) {
1287 sector_t sector = bio->bi_sector;
1289 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1291 * This may well happen - the kernel calls bread()
1292 * without checking the size of the device, e.g., when
1293 * mounting a device.
1295 handle_bad_sector(bio);
1296 return 1;
1300 return 0;
1304 * generic_make_request: hand a buffer to its device driver for I/O
1305 * @bio: The bio describing the location in memory and on the device.
1307 * generic_make_request() is used to make I/O requests of block
1308 * devices. It is passed a &struct bio, which describes the I/O that needs
1309 * to be done.
1311 * generic_make_request() does not return any status. The
1312 * success/failure status of the request, along with notification of
1313 * completion, is delivered asynchronously through the bio->bi_end_io
1314 * function described (one day) else where.
1316 * The caller of generic_make_request must make sure that bi_io_vec
1317 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1318 * set to describe the device address, and the
1319 * bi_end_io and optionally bi_private are set to describe how
1320 * completion notification should be signaled.
1322 * generic_make_request and the drivers it calls may use bi_next if this
1323 * bio happens to be merged with someone else, and may change bi_dev and
1324 * bi_sector for remaps as it sees fit. So the values of these fields
1325 * should NOT be depended on after the call to generic_make_request.
1327 static inline void __generic_make_request(struct bio *bio)
1329 struct request_queue *q;
1330 sector_t old_sector;
1331 int ret, nr_sectors = bio_sectors(bio);
1332 dev_t old_dev;
1333 int err = -EIO;
1335 might_sleep();
1337 if (bio_check_eod(bio, nr_sectors))
1338 goto end_io;
1341 * Resolve the mapping until finished. (drivers are
1342 * still free to implement/resolve their own stacking
1343 * by explicitly returning 0)
1345 * NOTE: we don't repeat the blk_size check for each new device.
1346 * Stacking drivers are expected to know what they are doing.
1348 old_sector = -1;
1349 old_dev = 0;
1350 do {
1351 char b[BDEVNAME_SIZE];
1353 q = bdev_get_queue(bio->bi_bdev);
1354 if (!q) {
1355 printk(KERN_ERR
1356 "generic_make_request: Trying to access "
1357 "nonexistent block-device %s (%Lu)\n",
1358 bdevname(bio->bi_bdev, b),
1359 (long long) bio->bi_sector);
1360 end_io:
1361 bio_endio(bio, err);
1362 break;
1365 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1366 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1367 bdevname(bio->bi_bdev, b),
1368 bio_sectors(bio),
1369 q->max_hw_sectors);
1370 goto end_io;
1373 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1374 goto end_io;
1376 if (should_fail_request(bio))
1377 goto end_io;
1380 * If this device has partitions, remap block n
1381 * of partition p to block n+start(p) of the disk.
1383 blk_partition_remap(bio);
1385 if (old_sector != -1)
1386 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1387 old_sector);
1389 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1391 old_sector = bio->bi_sector;
1392 old_dev = bio->bi_bdev->bd_dev;
1394 if (bio_check_eod(bio, nr_sectors))
1395 goto end_io;
1396 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
1397 err = -EOPNOTSUPP;
1398 goto end_io;
1401 ret = q->make_request_fn(q, bio);
1402 } while (ret);
1406 * We only want one ->make_request_fn to be active at a time,
1407 * else stack usage with stacked devices could be a problem.
1408 * So use current->bio_{list,tail} to keep a list of requests
1409 * submited by a make_request_fn function.
1410 * current->bio_tail is also used as a flag to say if
1411 * generic_make_request is currently active in this task or not.
1412 * If it is NULL, then no make_request is active. If it is non-NULL,
1413 * then a make_request is active, and new requests should be added
1414 * at the tail
1416 void generic_make_request(struct bio *bio)
1418 if (current->bio_tail) {
1419 /* make_request is active */
1420 *(current->bio_tail) = bio;
1421 bio->bi_next = NULL;
1422 current->bio_tail = &bio->bi_next;
1423 return;
1425 /* following loop may be a bit non-obvious, and so deserves some
1426 * explanation.
1427 * Before entering the loop, bio->bi_next is NULL (as all callers
1428 * ensure that) so we have a list with a single bio.
1429 * We pretend that we have just taken it off a longer list, so
1430 * we assign bio_list to the next (which is NULL) and bio_tail
1431 * to &bio_list, thus initialising the bio_list of new bios to be
1432 * added. __generic_make_request may indeed add some more bios
1433 * through a recursive call to generic_make_request. If it
1434 * did, we find a non-NULL value in bio_list and re-enter the loop
1435 * from the top. In this case we really did just take the bio
1436 * of the top of the list (no pretending) and so fixup bio_list and
1437 * bio_tail or bi_next, and call into __generic_make_request again.
1439 * The loop was structured like this to make only one call to
1440 * __generic_make_request (which is important as it is large and
1441 * inlined) and to keep the structure simple.
1443 BUG_ON(bio->bi_next);
1444 do {
1445 current->bio_list = bio->bi_next;
1446 if (bio->bi_next == NULL)
1447 current->bio_tail = &current->bio_list;
1448 else
1449 bio->bi_next = NULL;
1450 __generic_make_request(bio);
1451 bio = current->bio_list;
1452 } while (bio);
1453 current->bio_tail = NULL; /* deactivate */
1455 EXPORT_SYMBOL(generic_make_request);
1458 * submit_bio: submit a bio to the block device layer for I/O
1459 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1460 * @bio: The &struct bio which describes the I/O
1462 * submit_bio() is very similar in purpose to generic_make_request(), and
1463 * uses that function to do most of the work. Both are fairly rough
1464 * interfaces, @bio must be presetup and ready for I/O.
1467 void submit_bio(int rw, struct bio *bio)
1469 int count = bio_sectors(bio);
1471 bio->bi_rw |= rw;
1474 * If it's a regular read/write or a barrier with data attached,
1475 * go through the normal accounting stuff before submission.
1477 if (!bio_empty_barrier(bio)) {
1479 BIO_BUG_ON(!bio->bi_size);
1480 BIO_BUG_ON(!bio->bi_io_vec);
1482 if (rw & WRITE) {
1483 count_vm_events(PGPGOUT, count);
1484 } else {
1485 task_io_account_read(bio->bi_size);
1486 count_vm_events(PGPGIN, count);
1489 if (unlikely(block_dump)) {
1490 char b[BDEVNAME_SIZE];
1491 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1492 current->comm, task_pid_nr(current),
1493 (rw & WRITE) ? "WRITE" : "READ",
1494 (unsigned long long)bio->bi_sector,
1495 bdevname(bio->bi_bdev, b));
1499 generic_make_request(bio);
1501 EXPORT_SYMBOL(submit_bio);
1504 * __end_that_request_first - end I/O on a request
1505 * @req: the request being processed
1506 * @error: 0 for success, < 0 for error
1507 * @nr_bytes: number of bytes to complete
1509 * Description:
1510 * Ends I/O on a number of bytes attached to @req, and sets it up
1511 * for the next range of segments (if any) in the cluster.
1513 * Return:
1514 * 0 - we are done with this request, call end_that_request_last()
1515 * 1 - still buffers pending for this request
1517 static int __end_that_request_first(struct request *req, int error,
1518 int nr_bytes)
1520 int total_bytes, bio_nbytes, next_idx = 0;
1521 struct bio *bio;
1523 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1526 * for a REQ_BLOCK_PC request, we want to carry any eventual
1527 * sense key with us all the way through
1529 if (!blk_pc_request(req))
1530 req->errors = 0;
1532 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1533 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1534 req->rq_disk ? req->rq_disk->disk_name : "?",
1535 (unsigned long long)req->sector);
1538 if (blk_fs_request(req) && req->rq_disk) {
1539 const int rw = rq_data_dir(req);
1541 all_stat_add(req->rq_disk, sectors[rw],
1542 nr_bytes >> 9, req->sector);
1545 total_bytes = bio_nbytes = 0;
1546 while ((bio = req->bio) != NULL) {
1547 int nbytes;
1550 * For an empty barrier request, the low level driver must
1551 * store a potential error location in ->sector. We pass
1552 * that back up in ->bi_sector.
1554 if (blk_empty_barrier(req))
1555 bio->bi_sector = req->sector;
1557 if (nr_bytes >= bio->bi_size) {
1558 req->bio = bio->bi_next;
1559 nbytes = bio->bi_size;
1560 req_bio_endio(req, bio, nbytes, error);
1561 next_idx = 0;
1562 bio_nbytes = 0;
1563 } else {
1564 int idx = bio->bi_idx + next_idx;
1566 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1567 blk_dump_rq_flags(req, "__end_that");
1568 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1569 __FUNCTION__, bio->bi_idx,
1570 bio->bi_vcnt);
1571 break;
1574 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1575 BIO_BUG_ON(nbytes > bio->bi_size);
1578 * not a complete bvec done
1580 if (unlikely(nbytes > nr_bytes)) {
1581 bio_nbytes += nr_bytes;
1582 total_bytes += nr_bytes;
1583 break;
1587 * advance to the next vector
1589 next_idx++;
1590 bio_nbytes += nbytes;
1593 total_bytes += nbytes;
1594 nr_bytes -= nbytes;
1596 bio = req->bio;
1597 if (bio) {
1599 * end more in this run, or just return 'not-done'
1601 if (unlikely(nr_bytes <= 0))
1602 break;
1607 * completely done
1609 if (!req->bio)
1610 return 0;
1613 * if the request wasn't completed, update state
1615 if (bio_nbytes) {
1616 req_bio_endio(req, bio, bio_nbytes, error);
1617 bio->bi_idx += next_idx;
1618 bio_iovec(bio)->bv_offset += nr_bytes;
1619 bio_iovec(bio)->bv_len -= nr_bytes;
1622 blk_recalc_rq_sectors(req, total_bytes >> 9);
1623 blk_recalc_rq_segments(req);
1624 return 1;
1628 * splice the completion data to a local structure and hand off to
1629 * process_completion_queue() to complete the requests
1631 static void blk_done_softirq(struct softirq_action *h)
1633 struct list_head *cpu_list, local_list;
1635 local_irq_disable();
1636 cpu_list = &__get_cpu_var(blk_cpu_done);
1637 list_replace_init(cpu_list, &local_list);
1638 local_irq_enable();
1640 while (!list_empty(&local_list)) {
1641 struct request *rq;
1643 rq = list_entry(local_list.next, struct request, donelist);
1644 list_del_init(&rq->donelist);
1645 rq->q->softirq_done_fn(rq);
1649 static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1650 unsigned long action, void *hcpu)
1653 * If a CPU goes away, splice its entries to the current CPU
1654 * and trigger a run of the softirq
1656 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1657 int cpu = (unsigned long) hcpu;
1659 local_irq_disable();
1660 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1661 &__get_cpu_var(blk_cpu_done));
1662 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1663 local_irq_enable();
1666 return NOTIFY_OK;
1670 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1671 .notifier_call = blk_cpu_notify,
1675 * blk_complete_request - end I/O on a request
1676 * @req: the request being processed
1678 * Description:
1679 * Ends all I/O on a request. It does not handle partial completions,
1680 * unless the driver actually implements this in its completion callback
1681 * through requeueing. The actual completion happens out-of-order,
1682 * through a softirq handler. The user must have registered a completion
1683 * callback through blk_queue_softirq_done().
1686 void blk_complete_request(struct request *req)
1688 struct list_head *cpu_list;
1689 unsigned long flags;
1691 BUG_ON(!req->q->softirq_done_fn);
1693 local_irq_save(flags);
1695 cpu_list = &__get_cpu_var(blk_cpu_done);
1696 list_add_tail(&req->donelist, cpu_list);
1697 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1699 local_irq_restore(flags);
1701 EXPORT_SYMBOL(blk_complete_request);
1704 * queue lock must be held
1706 static void end_that_request_last(struct request *req, int error)
1708 struct gendisk *disk = req->rq_disk;
1710 if (blk_rq_tagged(req))
1711 blk_queue_end_tag(req->q, req);
1713 if (blk_queued_rq(req))
1714 blkdev_dequeue_request(req);
1716 if (unlikely(laptop_mode) && blk_fs_request(req))
1717 laptop_io_completion();
1720 * Account IO completion. bar_rq isn't accounted as a normal
1721 * IO on queueing nor completion. Accounting the containing
1722 * request is enough.
1724 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1725 unsigned long duration = jiffies - req->start_time;
1726 const int rw = rq_data_dir(req);
1727 struct hd_struct *part = get_part(disk, req->sector);
1729 __all_stat_inc(disk, ios[rw], req->sector);
1730 __all_stat_add(disk, ticks[rw], duration, req->sector);
1731 disk_round_stats(disk);
1732 disk->in_flight--;
1733 if (part) {
1734 part_round_stats(part);
1735 part->in_flight--;
1739 if (req->end_io)
1740 req->end_io(req, error);
1741 else {
1742 if (blk_bidi_rq(req))
1743 __blk_put_request(req->next_rq->q, req->next_rq);
1745 __blk_put_request(req->q, req);
1749 static inline void __end_request(struct request *rq, int uptodate,
1750 unsigned int nr_bytes)
1752 int error = 0;
1754 if (uptodate <= 0)
1755 error = uptodate ? uptodate : -EIO;
1757 __blk_end_request(rq, error, nr_bytes);
1761 * blk_rq_bytes - Returns bytes left to complete in the entire request
1762 * @rq: the request being processed
1764 unsigned int blk_rq_bytes(struct request *rq)
1766 if (blk_fs_request(rq))
1767 return rq->hard_nr_sectors << 9;
1769 return rq->data_len;
1771 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1774 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1775 * @rq: the request being processed
1777 unsigned int blk_rq_cur_bytes(struct request *rq)
1779 if (blk_fs_request(rq))
1780 return rq->current_nr_sectors << 9;
1782 if (rq->bio)
1783 return rq->bio->bi_size;
1785 return rq->data_len;
1787 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1790 * end_queued_request - end all I/O on a queued request
1791 * @rq: the request being processed
1792 * @uptodate: error value or 0/1 uptodate flag
1794 * Description:
1795 * Ends all I/O on a request, and removes it from the block layer queues.
1796 * Not suitable for normal IO completion, unless the driver still has
1797 * the request attached to the block layer.
1800 void end_queued_request(struct request *rq, int uptodate)
1802 __end_request(rq, uptodate, blk_rq_bytes(rq));
1804 EXPORT_SYMBOL(end_queued_request);
1807 * end_dequeued_request - end all I/O on a dequeued request
1808 * @rq: the request being processed
1809 * @uptodate: error value or 0/1 uptodate flag
1811 * Description:
1812 * Ends all I/O on a request. The request must already have been
1813 * dequeued using blkdev_dequeue_request(), as is normally the case
1814 * for most drivers.
1817 void end_dequeued_request(struct request *rq, int uptodate)
1819 __end_request(rq, uptodate, blk_rq_bytes(rq));
1821 EXPORT_SYMBOL(end_dequeued_request);
1825 * end_request - end I/O on the current segment of the request
1826 * @req: the request being processed
1827 * @uptodate: error value or 0/1 uptodate flag
1829 * Description:
1830 * Ends I/O on the current segment of a request. If that is the only
1831 * remaining segment, the request is also completed and freed.
1833 * This is a remnant of how older block drivers handled IO completions.
1834 * Modern drivers typically end IO on the full request in one go, unless
1835 * they have a residual value to account for. For that case this function
1836 * isn't really useful, unless the residual just happens to be the
1837 * full current segment. In other words, don't use this function in new
1838 * code. Either use end_request_completely(), or the
1839 * end_that_request_chunk() (along with end_that_request_last()) for
1840 * partial completions.
1843 void end_request(struct request *req, int uptodate)
1845 __end_request(req, uptodate, req->hard_cur_sectors << 9);
1847 EXPORT_SYMBOL(end_request);
1850 * blk_end_io - Generic end_io function to complete a request.
1851 * @rq: the request being processed
1852 * @error: 0 for success, < 0 for error
1853 * @nr_bytes: number of bytes to complete @rq
1854 * @bidi_bytes: number of bytes to complete @rq->next_rq
1855 * @drv_callback: function called between completion of bios in the request
1856 * and completion of the request.
1857 * If the callback returns non 0, this helper returns without
1858 * completion of the request.
1860 * Description:
1861 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1862 * If @rq has leftover, sets it up for the next range of segments.
1864 * Return:
1865 * 0 - we are done with this request
1866 * 1 - this request is not freed yet, it still has pending buffers.
1868 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1869 unsigned int bidi_bytes,
1870 int (drv_callback)(struct request *))
1872 struct request_queue *q = rq->q;
1873 unsigned long flags = 0UL;
1875 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1876 if (__end_that_request_first(rq, error, nr_bytes))
1877 return 1;
1879 /* Bidi request must be completed as a whole */
1880 if (blk_bidi_rq(rq) &&
1881 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1882 return 1;
1885 /* Special feature for tricky drivers */
1886 if (drv_callback && drv_callback(rq))
1887 return 1;
1889 add_disk_randomness(rq->rq_disk);
1891 spin_lock_irqsave(q->queue_lock, flags);
1892 end_that_request_last(rq, error);
1893 spin_unlock_irqrestore(q->queue_lock, flags);
1895 return 0;
1899 * blk_end_request - Helper function for drivers to complete the request.
1900 * @rq: the request being processed
1901 * @error: 0 for success, < 0 for error
1902 * @nr_bytes: number of bytes to complete
1904 * Description:
1905 * Ends I/O on a number of bytes attached to @rq.
1906 * If @rq has leftover, sets it up for the next range of segments.
1908 * Return:
1909 * 0 - we are done with this request
1910 * 1 - still buffers pending for this request
1912 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1914 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1916 EXPORT_SYMBOL_GPL(blk_end_request);
1919 * __blk_end_request - Helper function for drivers to complete the request.
1920 * @rq: the request being processed
1921 * @error: 0 for success, < 0 for error
1922 * @nr_bytes: number of bytes to complete
1924 * Description:
1925 * Must be called with queue lock held unlike blk_end_request().
1927 * Return:
1928 * 0 - we are done with this request
1929 * 1 - still buffers pending for this request
1931 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1933 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1934 if (__end_that_request_first(rq, error, nr_bytes))
1935 return 1;
1938 add_disk_randomness(rq->rq_disk);
1940 end_that_request_last(rq, error);
1942 return 0;
1944 EXPORT_SYMBOL_GPL(__blk_end_request);
1947 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1948 * @rq: the bidi request being processed
1949 * @error: 0 for success, < 0 for error
1950 * @nr_bytes: number of bytes to complete @rq
1951 * @bidi_bytes: number of bytes to complete @rq->next_rq
1953 * Description:
1954 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1956 * Return:
1957 * 0 - we are done with this request
1958 * 1 - still buffers pending for this request
1960 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1961 unsigned int bidi_bytes)
1963 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1965 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1968 * blk_end_request_callback - Special helper function for tricky drivers
1969 * @rq: the request being processed
1970 * @error: 0 for success, < 0 for error
1971 * @nr_bytes: number of bytes to complete
1972 * @drv_callback: function called between completion of bios in the request
1973 * and completion of the request.
1974 * If the callback returns non 0, this helper returns without
1975 * completion of the request.
1977 * Description:
1978 * Ends I/O on a number of bytes attached to @rq.
1979 * If @rq has leftover, sets it up for the next range of segments.
1981 * This special helper function is used only for existing tricky drivers.
1982 * (e.g. cdrom_newpc_intr() of ide-cd)
1983 * This interface will be removed when such drivers are rewritten.
1984 * Don't use this interface in other places anymore.
1986 * Return:
1987 * 0 - we are done with this request
1988 * 1 - this request is not freed yet.
1989 * this request still has pending buffers or
1990 * the driver doesn't want to finish this request yet.
1992 int blk_end_request_callback(struct request *rq, int error,
1993 unsigned int nr_bytes,
1994 int (drv_callback)(struct request *))
1996 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
1998 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2000 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2001 struct bio *bio)
2003 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2004 rq->cmd_flags |= (bio->bi_rw & 3);
2006 rq->nr_phys_segments = bio_phys_segments(q, bio);
2007 rq->nr_hw_segments = bio_hw_segments(q, bio);
2008 rq->current_nr_sectors = bio_cur_sectors(bio);
2009 rq->hard_cur_sectors = rq->current_nr_sectors;
2010 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2011 rq->buffer = bio_data(bio);
2012 rq->data_len = bio->bi_size;
2014 rq->bio = rq->biotail = bio;
2016 if (bio->bi_bdev)
2017 rq->rq_disk = bio->bi_bdev->bd_disk;
2020 int kblockd_schedule_work(struct work_struct *work)
2022 return queue_work(kblockd_workqueue, work);
2024 EXPORT_SYMBOL(kblockd_schedule_work);
2026 void kblockd_flush_work(struct work_struct *work)
2028 cancel_work_sync(work);
2030 EXPORT_SYMBOL(kblockd_flush_work);
2032 int __init blk_dev_init(void)
2034 int i;
2036 kblockd_workqueue = create_workqueue("kblockd");
2037 if (!kblockd_workqueue)
2038 panic("Failed to create kblockd\n");
2040 request_cachep = kmem_cache_create("blkdev_requests",
2041 sizeof(struct request), 0, SLAB_PANIC, NULL);
2043 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2044 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2046 for_each_possible_cpu(i)
2047 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2049 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
2050 register_hotcpu_notifier(&blk_cpu_notifier);
2052 return 0;