2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
36 static int __make_request(struct request_queue
*q
, struct bio
*bio
);
39 * For the allocated request tables
41 static struct kmem_cache
*request_cachep
;
44 * For queue allocation
46 struct kmem_cache
*blk_requestq_cachep
;
49 * Controlling structure to kblockd
51 static struct workqueue_struct
*kblockd_workqueue
;
53 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
55 static void drive_stat_acct(struct request
*rq
, int new_io
)
57 int rw
= rq_data_dir(rq
);
59 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
63 __all_stat_inc(rq
->rq_disk
, merges
[rw
], rq
->sector
);
65 struct hd_struct
*part
= get_part(rq
->rq_disk
, rq
->sector
);
66 disk_round_stats(rq
->rq_disk
);
67 rq
->rq_disk
->in_flight
++;
69 part_round_stats(part
);
75 void blk_queue_congestion_threshold(struct request_queue
*q
)
79 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
80 if (nr
> q
->nr_requests
)
82 q
->nr_congestion_on
= nr
;
84 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
87 q
->nr_congestion_off
= nr
;
91 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
94 * Locates the passed device's request queue and returns the address of its
97 * Will return NULL if the request queue cannot be located.
99 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
101 struct backing_dev_info
*ret
= NULL
;
102 struct request_queue
*q
= bdev_get_queue(bdev
);
105 ret
= &q
->backing_dev_info
;
108 EXPORT_SYMBOL(blk_get_backing_dev_info
);
110 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
112 memset(rq
, 0, sizeof(*rq
));
114 INIT_LIST_HEAD(&rq
->queuelist
);
115 INIT_LIST_HEAD(&rq
->donelist
);
117 rq
->sector
= rq
->hard_sector
= (sector_t
) -1;
118 INIT_HLIST_NODE(&rq
->hash
);
119 RB_CLEAR_NODE(&rq
->rb_node
);
124 EXPORT_SYMBOL(blk_rq_init
);
126 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
127 unsigned int nbytes
, int error
)
129 struct request_queue
*q
= rq
->q
;
131 if (&q
->bar_rq
!= rq
) {
133 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
134 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
137 if (unlikely(nbytes
> bio
->bi_size
)) {
138 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
139 __FUNCTION__
, nbytes
, bio
->bi_size
);
140 nbytes
= bio
->bi_size
;
143 bio
->bi_size
-= nbytes
;
144 bio
->bi_sector
+= (nbytes
>> 9);
145 if (bio
->bi_size
== 0)
146 bio_endio(bio
, error
);
150 * Okay, this is the barrier request in progress, just
153 if (error
&& !q
->orderr
)
158 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
162 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
163 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
166 printk(KERN_INFO
" sector %llu, nr/cnr %lu/%u\n",
167 (unsigned long long)rq
->sector
,
169 rq
->current_nr_sectors
);
170 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, data %p, len %u\n",
171 rq
->bio
, rq
->biotail
,
172 rq
->buffer
, rq
->data
,
175 if (blk_pc_request(rq
)) {
176 printk(KERN_INFO
" cdb: ");
177 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
178 printk("%02x ", rq
->cmd
[bit
]);
182 EXPORT_SYMBOL(blk_dump_rq_flags
);
185 * "plug" the device if there are no outstanding requests: this will
186 * force the transfer to start only after we have put all the requests
189 * This is called with interrupts off and no requests on the queue and
190 * with the queue lock held.
192 void blk_plug_device(struct request_queue
*q
)
194 WARN_ON(!irqs_disabled());
197 * don't plug a stopped queue, it must be paired with blk_start_queue()
198 * which will restart the queueing
200 if (blk_queue_stopped(q
))
203 if (!test_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
)) {
204 __set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
);
205 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
206 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
209 EXPORT_SYMBOL(blk_plug_device
);
212 * remove the queue from the plugged list, if present. called with
213 * queue lock held and interrupts disabled.
215 int blk_remove_plug(struct request_queue
*q
)
217 WARN_ON(!irqs_disabled());
219 if (!test_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
222 queue_flag_clear(QUEUE_FLAG_PLUGGED
, q
);
223 del_timer(&q
->unplug_timer
);
226 EXPORT_SYMBOL(blk_remove_plug
);
229 * remove the plug and let it rip..
231 void __generic_unplug_device(struct request_queue
*q
)
233 if (unlikely(blk_queue_stopped(q
)))
236 if (!blk_remove_plug(q
))
241 EXPORT_SYMBOL(__generic_unplug_device
);
244 * generic_unplug_device - fire a request queue
245 * @q: The &struct request_queue in question
248 * Linux uses plugging to build bigger requests queues before letting
249 * the device have at them. If a queue is plugged, the I/O scheduler
250 * is still adding and merging requests on the queue. Once the queue
251 * gets unplugged, the request_fn defined for the queue is invoked and
254 void generic_unplug_device(struct request_queue
*q
)
256 spin_lock_irq(q
->queue_lock
);
257 __generic_unplug_device(q
);
258 spin_unlock_irq(q
->queue_lock
);
260 EXPORT_SYMBOL(generic_unplug_device
);
262 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
265 struct request_queue
*q
= bdi
->unplug_io_data
;
270 void blk_unplug_work(struct work_struct
*work
)
272 struct request_queue
*q
=
273 container_of(work
, struct request_queue
, unplug_work
);
275 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
276 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
281 void blk_unplug_timeout(unsigned long data
)
283 struct request_queue
*q
= (struct request_queue
*)data
;
285 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
286 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
288 kblockd_schedule_work(&q
->unplug_work
);
291 void blk_unplug(struct request_queue
*q
)
294 * devices don't necessarily have an ->unplug_fn defined
297 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
298 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
303 EXPORT_SYMBOL(blk_unplug
);
306 * blk_start_queue - restart a previously stopped queue
307 * @q: The &struct request_queue in question
310 * blk_start_queue() will clear the stop flag on the queue, and call
311 * the request_fn for the queue if it was in a stopped state when
312 * entered. Also see blk_stop_queue(). Queue lock must be held.
314 void blk_start_queue(struct request_queue
*q
)
316 WARN_ON(!irqs_disabled());
318 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
321 * one level of recursion is ok and is much faster than kicking
322 * the unplug handling
324 if (!test_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
325 queue_flag_set(QUEUE_FLAG_REENTER
, q
);
327 queue_flag_clear(QUEUE_FLAG_REENTER
, q
);
330 kblockd_schedule_work(&q
->unplug_work
);
333 EXPORT_SYMBOL(blk_start_queue
);
336 * blk_stop_queue - stop a queue
337 * @q: The &struct request_queue in question
340 * The Linux block layer assumes that a block driver will consume all
341 * entries on the request queue when the request_fn strategy is called.
342 * Often this will not happen, because of hardware limitations (queue
343 * depth settings). If a device driver gets a 'queue full' response,
344 * or if it simply chooses not to queue more I/O at one point, it can
345 * call this function to prevent the request_fn from being called until
346 * the driver has signalled it's ready to go again. This happens by calling
347 * blk_start_queue() to restart queue operations. Queue lock must be held.
349 void blk_stop_queue(struct request_queue
*q
)
352 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
354 EXPORT_SYMBOL(blk_stop_queue
);
357 * blk_sync_queue - cancel any pending callbacks on a queue
361 * The block layer may perform asynchronous callback activity
362 * on a queue, such as calling the unplug function after a timeout.
363 * A block device may call blk_sync_queue to ensure that any
364 * such activity is cancelled, thus allowing it to release resources
365 * that the callbacks might use. The caller must already have made sure
366 * that its ->make_request_fn will not re-add plugging prior to calling
370 void blk_sync_queue(struct request_queue
*q
)
372 del_timer_sync(&q
->unplug_timer
);
373 kblockd_flush_work(&q
->unplug_work
);
375 EXPORT_SYMBOL(blk_sync_queue
);
378 * blk_run_queue - run a single device queue
379 * @q: The queue to run
381 void __blk_run_queue(struct request_queue
*q
)
386 * Only recurse once to avoid overrunning the stack, let the unplug
387 * handling reinvoke the handler shortly if we already got there.
389 if (!elv_queue_empty(q
)) {
390 if (!test_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
391 queue_flag_set(QUEUE_FLAG_REENTER
, q
);
393 queue_flag_clear(QUEUE_FLAG_REENTER
, q
);
396 kblockd_schedule_work(&q
->unplug_work
);
400 EXPORT_SYMBOL(__blk_run_queue
);
403 * blk_run_queue - run a single device queue
404 * @q: The queue to run
406 void blk_run_queue(struct request_queue
*q
)
410 spin_lock_irqsave(q
->queue_lock
, flags
);
412 spin_unlock_irqrestore(q
->queue_lock
, flags
);
414 EXPORT_SYMBOL(blk_run_queue
);
416 void blk_put_queue(struct request_queue
*q
)
418 kobject_put(&q
->kobj
);
421 void blk_cleanup_queue(struct request_queue
*q
)
423 mutex_lock(&q
->sysfs_lock
);
424 queue_flag_set_unlocked(QUEUE_FLAG_DEAD
, q
);
425 mutex_unlock(&q
->sysfs_lock
);
428 elevator_exit(q
->elevator
);
432 EXPORT_SYMBOL(blk_cleanup_queue
);
434 static int blk_init_free_list(struct request_queue
*q
)
436 struct request_list
*rl
= &q
->rq
;
438 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
439 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
441 init_waitqueue_head(&rl
->wait
[READ
]);
442 init_waitqueue_head(&rl
->wait
[WRITE
]);
444 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
445 mempool_free_slab
, request_cachep
, q
->node
);
453 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
455 return blk_alloc_queue_node(gfp_mask
, -1);
457 EXPORT_SYMBOL(blk_alloc_queue
);
459 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
461 struct request_queue
*q
;
464 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
465 gfp_mask
| __GFP_ZERO
, node_id
);
469 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
470 q
->backing_dev_info
.unplug_io_data
= q
;
471 err
= bdi_init(&q
->backing_dev_info
);
473 kmem_cache_free(blk_requestq_cachep
, q
);
477 init_timer(&q
->unplug_timer
);
479 kobject_init(&q
->kobj
, &blk_queue_ktype
);
481 mutex_init(&q
->sysfs_lock
);
485 EXPORT_SYMBOL(blk_alloc_queue_node
);
488 * blk_init_queue - prepare a request queue for use with a block device
489 * @rfn: The function to be called to process requests that have been
490 * placed on the queue.
491 * @lock: Request queue spin lock
494 * If a block device wishes to use the standard request handling procedures,
495 * which sorts requests and coalesces adjacent requests, then it must
496 * call blk_init_queue(). The function @rfn will be called when there
497 * are requests on the queue that need to be processed. If the device
498 * supports plugging, then @rfn may not be called immediately when requests
499 * are available on the queue, but may be called at some time later instead.
500 * Plugged queues are generally unplugged when a buffer belonging to one
501 * of the requests on the queue is needed, or due to memory pressure.
503 * @rfn is not required, or even expected, to remove all requests off the
504 * queue, but only as many as it can handle at a time. If it does leave
505 * requests on the queue, it is responsible for arranging that the requests
506 * get dealt with eventually.
508 * The queue spin lock must be held while manipulating the requests on the
509 * request queue; this lock will be taken also from interrupt context, so irq
510 * disabling is needed for it.
512 * Function returns a pointer to the initialized request queue, or NULL if
516 * blk_init_queue() must be paired with a blk_cleanup_queue() call
517 * when the block device is deactivated (such as at module unload).
520 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
522 return blk_init_queue_node(rfn
, lock
, -1);
524 EXPORT_SYMBOL(blk_init_queue
);
526 struct request_queue
*
527 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
529 struct request_queue
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
535 if (blk_init_free_list(q
)) {
536 kmem_cache_free(blk_requestq_cachep
, q
);
541 * if caller didn't supply a lock, they get per-queue locking with
545 spin_lock_init(&q
->__queue_lock
);
546 lock
= &q
->__queue_lock
;
550 q
->prep_rq_fn
= NULL
;
551 q
->unplug_fn
= generic_unplug_device
;
552 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
553 q
->queue_lock
= lock
;
555 blk_queue_segment_boundary(q
, 0xffffffff);
557 blk_queue_make_request(q
, __make_request
);
558 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
560 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
561 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
563 q
->sg_reserved_size
= INT_MAX
;
568 if (!elevator_init(q
, NULL
)) {
569 blk_queue_congestion_threshold(q
);
576 EXPORT_SYMBOL(blk_init_queue_node
);
578 int blk_get_queue(struct request_queue
*q
)
580 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
581 kobject_get(&q
->kobj
);
588 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
590 if (rq
->cmd_flags
& REQ_ELVPRIV
)
591 elv_put_request(q
, rq
);
592 mempool_free(rq
, q
->rq
.rq_pool
);
595 static struct request
*
596 blk_alloc_request(struct request_queue
*q
, int rw
, int priv
, gfp_t gfp_mask
)
598 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
606 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
607 * see bio.h and blkdev.h
609 rq
->cmd_flags
= rw
| REQ_ALLOCED
;
612 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
613 mempool_free(rq
, q
->rq
.rq_pool
);
616 rq
->cmd_flags
|= REQ_ELVPRIV
;
623 * ioc_batching returns true if the ioc is a valid batching request and
624 * should be given priority access to a request.
626 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
632 * Make sure the process is able to allocate at least 1 request
633 * even if the batch times out, otherwise we could theoretically
636 return ioc
->nr_batch_requests
== q
->nr_batching
||
637 (ioc
->nr_batch_requests
> 0
638 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
642 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
643 * will cause the process to be a "batcher" on all queues in the system. This
644 * is the behaviour we want though - once it gets a wakeup it should be given
647 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
649 if (!ioc
|| ioc_batching(q
, ioc
))
652 ioc
->nr_batch_requests
= q
->nr_batching
;
653 ioc
->last_waited
= jiffies
;
656 static void __freed_request(struct request_queue
*q
, int rw
)
658 struct request_list
*rl
= &q
->rq
;
660 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
661 blk_clear_queue_congested(q
, rw
);
663 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
664 if (waitqueue_active(&rl
->wait
[rw
]))
665 wake_up(&rl
->wait
[rw
]);
667 blk_clear_queue_full(q
, rw
);
672 * A request has just been released. Account for it, update the full and
673 * congestion status, wake up any waiters. Called under q->queue_lock.
675 static void freed_request(struct request_queue
*q
, int rw
, int priv
)
677 struct request_list
*rl
= &q
->rq
;
683 __freed_request(q
, rw
);
685 if (unlikely(rl
->starved
[rw
^ 1]))
686 __freed_request(q
, rw
^ 1);
689 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
691 * Get a free request, queue_lock must be held.
692 * Returns NULL on failure, with queue_lock held.
693 * Returns !NULL on success, with queue_lock *not held*.
695 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
696 struct bio
*bio
, gfp_t gfp_mask
)
698 struct request
*rq
= NULL
;
699 struct request_list
*rl
= &q
->rq
;
700 struct io_context
*ioc
= NULL
;
701 const int rw
= rw_flags
& 0x01;
704 may_queue
= elv_may_queue(q
, rw_flags
);
705 if (may_queue
== ELV_MQUEUE_NO
)
708 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
709 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
710 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
712 * The queue will fill after this allocation, so set
713 * it as full, and mark this process as "batching".
714 * This process will be allowed to complete a batch of
715 * requests, others will be blocked.
717 if (!blk_queue_full(q
, rw
)) {
718 ioc_set_batching(q
, ioc
);
719 blk_set_queue_full(q
, rw
);
721 if (may_queue
!= ELV_MQUEUE_MUST
722 && !ioc_batching(q
, ioc
)) {
724 * The queue is full and the allocating
725 * process is not a "batcher", and not
726 * exempted by the IO scheduler
732 blk_set_queue_congested(q
, rw
);
736 * Only allow batching queuers to allocate up to 50% over the defined
737 * limit of requests, otherwise we could have thousands of requests
738 * allocated with any setting of ->nr_requests
740 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
746 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
750 spin_unlock_irq(q
->queue_lock
);
752 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
755 * Allocation failed presumably due to memory. Undo anything
756 * we might have messed up.
758 * Allocating task should really be put onto the front of the
759 * wait queue, but this is pretty rare.
761 spin_lock_irq(q
->queue_lock
);
762 freed_request(q
, rw
, priv
);
765 * in the very unlikely event that allocation failed and no
766 * requests for this direction was pending, mark us starved
767 * so that freeing of a request in the other direction will
768 * notice us. another possible fix would be to split the
769 * rq mempool into READ and WRITE
772 if (unlikely(rl
->count
[rw
] == 0))
779 * ioc may be NULL here, and ioc_batching will be false. That's
780 * OK, if the queue is under the request limit then requests need
781 * not count toward the nr_batch_requests limit. There will always
782 * be some limit enforced by BLK_BATCH_TIME.
784 if (ioc_batching(q
, ioc
))
785 ioc
->nr_batch_requests
--;
787 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
793 * No available requests for this queue, unplug the device and wait for some
794 * requests to become available.
796 * Called with q->queue_lock held, and returns with it unlocked.
798 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
801 const int rw
= rw_flags
& 0x01;
804 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
807 struct request_list
*rl
= &q
->rq
;
809 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
810 TASK_UNINTERRUPTIBLE
);
812 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
815 struct io_context
*ioc
;
817 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
819 __generic_unplug_device(q
);
820 spin_unlock_irq(q
->queue_lock
);
824 * After sleeping, we become a "batching" process and
825 * will be able to allocate at least one request, and
826 * up to a big batch of them for a small period time.
827 * See ioc_batching, ioc_set_batching
829 ioc
= current_io_context(GFP_NOIO
, q
->node
);
830 ioc_set_batching(q
, ioc
);
832 spin_lock_irq(q
->queue_lock
);
834 finish_wait(&rl
->wait
[rw
], &wait
);
840 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
844 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
846 spin_lock_irq(q
->queue_lock
);
847 if (gfp_mask
& __GFP_WAIT
) {
848 rq
= get_request_wait(q
, rw
, NULL
);
850 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
852 spin_unlock_irq(q
->queue_lock
);
854 /* q->queue_lock is unlocked at this point */
858 EXPORT_SYMBOL(blk_get_request
);
861 * blk_start_queueing - initiate dispatch of requests to device
862 * @q: request queue to kick into gear
864 * This is basically a helper to remove the need to know whether a queue
865 * is plugged or not if someone just wants to initiate dispatch of requests
868 * The queue lock must be held with interrupts disabled.
870 void blk_start_queueing(struct request_queue
*q
)
872 if (!blk_queue_plugged(q
))
875 __generic_unplug_device(q
);
877 EXPORT_SYMBOL(blk_start_queueing
);
880 * blk_requeue_request - put a request back on queue
881 * @q: request queue where request should be inserted
882 * @rq: request to be inserted
885 * Drivers often keep queueing requests until the hardware cannot accept
886 * more, when that condition happens we need to put the request back
887 * on the queue. Must be called with queue lock held.
889 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
891 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
893 if (blk_rq_tagged(rq
))
894 blk_queue_end_tag(q
, rq
);
896 elv_requeue_request(q
, rq
);
898 EXPORT_SYMBOL(blk_requeue_request
);
901 * blk_insert_request - insert a special request in to a request queue
902 * @q: request queue where request should be inserted
903 * @rq: request to be inserted
904 * @at_head: insert request at head or tail of queue
905 * @data: private data
908 * Many block devices need to execute commands asynchronously, so they don't
909 * block the whole kernel from preemption during request execution. This is
910 * accomplished normally by inserting aritficial requests tagged as
911 * REQ_SPECIAL in to the corresponding request queue, and letting them be
912 * scheduled for actual execution by the request queue.
914 * We have the option of inserting the head or the tail of the queue.
915 * Typically we use the tail for new ioctls and so forth. We use the head
916 * of the queue for things like a QUEUE_FULL message from a device, or a
917 * host that is unable to accept a particular command.
919 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
920 int at_head
, void *data
)
922 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
926 * tell I/O scheduler that this isn't a regular read/write (ie it
927 * must not attempt merges on this) and that it acts as a soft
930 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
931 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
935 spin_lock_irqsave(q
->queue_lock
, flags
);
938 * If command is tagged, release the tag
940 if (blk_rq_tagged(rq
))
941 blk_queue_end_tag(q
, rq
);
943 drive_stat_acct(rq
, 1);
944 __elv_add_request(q
, rq
, where
, 0);
945 blk_start_queueing(q
);
946 spin_unlock_irqrestore(q
->queue_lock
, flags
);
948 EXPORT_SYMBOL(blk_insert_request
);
951 * add-request adds a request to the linked list.
952 * queue lock is held and interrupts disabled, as we muck with the
953 * request queue list.
955 static inline void add_request(struct request_queue
*q
, struct request
*req
)
957 drive_stat_acct(req
, 1);
960 * elevator indicated where it wants this request to be
961 * inserted at elevator_merge time
963 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
967 * disk_round_stats() - Round off the performance stats on a struct
970 * The average IO queue length and utilisation statistics are maintained
971 * by observing the current state of the queue length and the amount of
972 * time it has been in this state for.
974 * Normally, that accounting is done on IO completion, but that can result
975 * in more than a second's worth of IO being accounted for within any one
976 * second, leading to >100% utilisation. To deal with that, we call this
977 * function to do a round-off before returning the results when reading
978 * /proc/diskstats. This accounts immediately for all queue usage up to
979 * the current jiffies and restarts the counters again.
981 void disk_round_stats(struct gendisk
*disk
)
983 unsigned long now
= jiffies
;
985 if (now
== disk
->stamp
)
988 if (disk
->in_flight
) {
989 __disk_stat_add(disk
, time_in_queue
,
990 disk
->in_flight
* (now
- disk
->stamp
));
991 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
995 EXPORT_SYMBOL_GPL(disk_round_stats
);
997 void part_round_stats(struct hd_struct
*part
)
999 unsigned long now
= jiffies
;
1001 if (now
== part
->stamp
)
1004 if (part
->in_flight
) {
1005 __part_stat_add(part
, time_in_queue
,
1006 part
->in_flight
* (now
- part
->stamp
));
1007 __part_stat_add(part
, io_ticks
, (now
- part
->stamp
));
1013 * queue lock must be held
1015 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1019 if (unlikely(--req
->ref_count
))
1022 elv_completed_request(q
, req
);
1025 * Request may not have originated from ll_rw_blk. if not,
1026 * it didn't come out of our reserved rq pools
1028 if (req
->cmd_flags
& REQ_ALLOCED
) {
1029 int rw
= rq_data_dir(req
);
1030 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
1032 BUG_ON(!list_empty(&req
->queuelist
));
1033 BUG_ON(!hlist_unhashed(&req
->hash
));
1035 blk_free_request(q
, req
);
1036 freed_request(q
, rw
, priv
);
1039 EXPORT_SYMBOL_GPL(__blk_put_request
);
1041 void blk_put_request(struct request
*req
)
1043 unsigned long flags
;
1044 struct request_queue
*q
= req
->q
;
1047 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
1048 * following if (q) test.
1051 spin_lock_irqsave(q
->queue_lock
, flags
);
1052 __blk_put_request(q
, req
);
1053 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1056 EXPORT_SYMBOL(blk_put_request
);
1058 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1060 req
->cmd_type
= REQ_TYPE_FS
;
1063 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1065 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
1066 req
->cmd_flags
|= REQ_FAILFAST
;
1069 * REQ_BARRIER implies no merging, but lets make it explicit
1071 if (unlikely(bio_barrier(bio
)))
1072 req
->cmd_flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
1075 req
->cmd_flags
|= REQ_RW_SYNC
;
1076 if (bio_rw_meta(bio
))
1077 req
->cmd_flags
|= REQ_RW_META
;
1080 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
1081 req
->ioprio
= bio_prio(bio
);
1082 req
->start_time
= jiffies
;
1083 blk_rq_bio_prep(req
->q
, req
, bio
);
1086 static int __make_request(struct request_queue
*q
, struct bio
*bio
)
1088 struct request
*req
;
1089 int el_ret
, nr_sectors
, barrier
, err
;
1090 const unsigned short prio
= bio_prio(bio
);
1091 const int sync
= bio_sync(bio
);
1094 nr_sectors
= bio_sectors(bio
);
1097 * low level driver can indicate that it wants pages above a
1098 * certain limit bounced to low memory (ie for highmem, or even
1099 * ISA dma in theory)
1101 blk_queue_bounce(q
, &bio
);
1103 barrier
= bio_barrier(bio
);
1104 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
1109 spin_lock_irq(q
->queue_lock
);
1111 if (unlikely(barrier
) || elv_queue_empty(q
))
1114 el_ret
= elv_merge(q
, &req
, bio
);
1116 case ELEVATOR_BACK_MERGE
:
1117 BUG_ON(!rq_mergeable(req
));
1119 if (!ll_back_merge_fn(q
, req
, bio
))
1122 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
1124 req
->biotail
->bi_next
= bio
;
1126 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
1127 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1128 drive_stat_acct(req
, 0);
1129 if (!attempt_back_merge(q
, req
))
1130 elv_merged_request(q
, req
, el_ret
);
1133 case ELEVATOR_FRONT_MERGE
:
1134 BUG_ON(!rq_mergeable(req
));
1136 if (!ll_front_merge_fn(q
, req
, bio
))
1139 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
1141 bio
->bi_next
= req
->bio
;
1145 * may not be valid. if the low level driver said
1146 * it didn't need a bounce buffer then it better
1147 * not touch req->buffer either...
1149 req
->buffer
= bio_data(bio
);
1150 req
->current_nr_sectors
= bio_cur_sectors(bio
);
1151 req
->hard_cur_sectors
= req
->current_nr_sectors
;
1152 req
->sector
= req
->hard_sector
= bio
->bi_sector
;
1153 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
1154 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1155 drive_stat_acct(req
, 0);
1156 if (!attempt_front_merge(q
, req
))
1157 elv_merged_request(q
, req
, el_ret
);
1160 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1167 * This sync check and mask will be re-done in init_request_from_bio(),
1168 * but we need to set it earlier to expose the sync flag to the
1169 * rq allocator and io schedulers.
1171 rw_flags
= bio_data_dir(bio
);
1173 rw_flags
|= REQ_RW_SYNC
;
1176 * Grab a free request. This is might sleep but can not fail.
1177 * Returns with the queue unlocked.
1179 req
= get_request_wait(q
, rw_flags
, bio
);
1182 * After dropping the lock and possibly sleeping here, our request
1183 * may now be mergeable after it had proven unmergeable (above).
1184 * We don't worry about that case for efficiency. It won't happen
1185 * often, and the elevators are able to handle it.
1187 init_request_from_bio(req
, bio
);
1189 spin_lock_irq(q
->queue_lock
);
1190 if (elv_queue_empty(q
))
1192 add_request(q
, req
);
1195 __generic_unplug_device(q
);
1197 spin_unlock_irq(q
->queue_lock
);
1201 bio_endio(bio
, err
);
1206 * If bio->bi_dev is a partition, remap the location
1208 static inline void blk_partition_remap(struct bio
*bio
)
1210 struct block_device
*bdev
= bio
->bi_bdev
;
1212 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1213 struct hd_struct
*p
= bdev
->bd_part
;
1215 bio
->bi_sector
+= p
->start_sect
;
1216 bio
->bi_bdev
= bdev
->bd_contains
;
1218 blk_add_trace_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1219 bdev
->bd_dev
, bio
->bi_sector
,
1220 bio
->bi_sector
- p
->start_sect
);
1224 static void handle_bad_sector(struct bio
*bio
)
1226 char b
[BDEVNAME_SIZE
];
1228 printk(KERN_INFO
"attempt to access beyond end of device\n");
1229 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1230 bdevname(bio
->bi_bdev
, b
),
1232 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1233 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
1235 set_bit(BIO_EOF
, &bio
->bi_flags
);
1238 #ifdef CONFIG_FAIL_MAKE_REQUEST
1240 static DECLARE_FAULT_ATTR(fail_make_request
);
1242 static int __init
setup_fail_make_request(char *str
)
1244 return setup_fault_attr(&fail_make_request
, str
);
1246 __setup("fail_make_request=", setup_fail_make_request
);
1248 static int should_fail_request(struct bio
*bio
)
1250 if ((bio
->bi_bdev
->bd_disk
->flags
& GENHD_FL_FAIL
) ||
1251 (bio
->bi_bdev
->bd_part
&& bio
->bi_bdev
->bd_part
->make_it_fail
))
1252 return should_fail(&fail_make_request
, bio
->bi_size
);
1257 static int __init
fail_make_request_debugfs(void)
1259 return init_fault_attr_dentries(&fail_make_request
,
1260 "fail_make_request");
1263 late_initcall(fail_make_request_debugfs
);
1265 #else /* CONFIG_FAIL_MAKE_REQUEST */
1267 static inline int should_fail_request(struct bio
*bio
)
1272 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1275 * Check whether this bio extends beyond the end of the device.
1277 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1284 /* Test device or partition size, when known. */
1285 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
1287 sector_t sector
= bio
->bi_sector
;
1289 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1291 * This may well happen - the kernel calls bread()
1292 * without checking the size of the device, e.g., when
1293 * mounting a device.
1295 handle_bad_sector(bio
);
1304 * generic_make_request: hand a buffer to its device driver for I/O
1305 * @bio: The bio describing the location in memory and on the device.
1307 * generic_make_request() is used to make I/O requests of block
1308 * devices. It is passed a &struct bio, which describes the I/O that needs
1311 * generic_make_request() does not return any status. The
1312 * success/failure status of the request, along with notification of
1313 * completion, is delivered asynchronously through the bio->bi_end_io
1314 * function described (one day) else where.
1316 * The caller of generic_make_request must make sure that bi_io_vec
1317 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1318 * set to describe the device address, and the
1319 * bi_end_io and optionally bi_private are set to describe how
1320 * completion notification should be signaled.
1322 * generic_make_request and the drivers it calls may use bi_next if this
1323 * bio happens to be merged with someone else, and may change bi_dev and
1324 * bi_sector for remaps as it sees fit. So the values of these fields
1325 * should NOT be depended on after the call to generic_make_request.
1327 static inline void __generic_make_request(struct bio
*bio
)
1329 struct request_queue
*q
;
1330 sector_t old_sector
;
1331 int ret
, nr_sectors
= bio_sectors(bio
);
1337 if (bio_check_eod(bio
, nr_sectors
))
1341 * Resolve the mapping until finished. (drivers are
1342 * still free to implement/resolve their own stacking
1343 * by explicitly returning 0)
1345 * NOTE: we don't repeat the blk_size check for each new device.
1346 * Stacking drivers are expected to know what they are doing.
1351 char b
[BDEVNAME_SIZE
];
1353 q
= bdev_get_queue(bio
->bi_bdev
);
1356 "generic_make_request: Trying to access "
1357 "nonexistent block-device %s (%Lu)\n",
1358 bdevname(bio
->bi_bdev
, b
),
1359 (long long) bio
->bi_sector
);
1361 bio_endio(bio
, err
);
1365 if (unlikely(nr_sectors
> q
->max_hw_sectors
)) {
1366 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1367 bdevname(bio
->bi_bdev
, b
),
1373 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
1376 if (should_fail_request(bio
))
1380 * If this device has partitions, remap block n
1381 * of partition p to block n+start(p) of the disk.
1383 blk_partition_remap(bio
);
1385 if (old_sector
!= -1)
1386 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
1389 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
1391 old_sector
= bio
->bi_sector
;
1392 old_dev
= bio
->bi_bdev
->bd_dev
;
1394 if (bio_check_eod(bio
, nr_sectors
))
1396 if (bio_empty_barrier(bio
) && !q
->prepare_flush_fn
) {
1401 ret
= q
->make_request_fn(q
, bio
);
1406 * We only want one ->make_request_fn to be active at a time,
1407 * else stack usage with stacked devices could be a problem.
1408 * So use current->bio_{list,tail} to keep a list of requests
1409 * submited by a make_request_fn function.
1410 * current->bio_tail is also used as a flag to say if
1411 * generic_make_request is currently active in this task or not.
1412 * If it is NULL, then no make_request is active. If it is non-NULL,
1413 * then a make_request is active, and new requests should be added
1416 void generic_make_request(struct bio
*bio
)
1418 if (current
->bio_tail
) {
1419 /* make_request is active */
1420 *(current
->bio_tail
) = bio
;
1421 bio
->bi_next
= NULL
;
1422 current
->bio_tail
= &bio
->bi_next
;
1425 /* following loop may be a bit non-obvious, and so deserves some
1427 * Before entering the loop, bio->bi_next is NULL (as all callers
1428 * ensure that) so we have a list with a single bio.
1429 * We pretend that we have just taken it off a longer list, so
1430 * we assign bio_list to the next (which is NULL) and bio_tail
1431 * to &bio_list, thus initialising the bio_list of new bios to be
1432 * added. __generic_make_request may indeed add some more bios
1433 * through a recursive call to generic_make_request. If it
1434 * did, we find a non-NULL value in bio_list and re-enter the loop
1435 * from the top. In this case we really did just take the bio
1436 * of the top of the list (no pretending) and so fixup bio_list and
1437 * bio_tail or bi_next, and call into __generic_make_request again.
1439 * The loop was structured like this to make only one call to
1440 * __generic_make_request (which is important as it is large and
1441 * inlined) and to keep the structure simple.
1443 BUG_ON(bio
->bi_next
);
1445 current
->bio_list
= bio
->bi_next
;
1446 if (bio
->bi_next
== NULL
)
1447 current
->bio_tail
= ¤t
->bio_list
;
1449 bio
->bi_next
= NULL
;
1450 __generic_make_request(bio
);
1451 bio
= current
->bio_list
;
1453 current
->bio_tail
= NULL
; /* deactivate */
1455 EXPORT_SYMBOL(generic_make_request
);
1458 * submit_bio: submit a bio to the block device layer for I/O
1459 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1460 * @bio: The &struct bio which describes the I/O
1462 * submit_bio() is very similar in purpose to generic_make_request(), and
1463 * uses that function to do most of the work. Both are fairly rough
1464 * interfaces, @bio must be presetup and ready for I/O.
1467 void submit_bio(int rw
, struct bio
*bio
)
1469 int count
= bio_sectors(bio
);
1474 * If it's a regular read/write or a barrier with data attached,
1475 * go through the normal accounting stuff before submission.
1477 if (!bio_empty_barrier(bio
)) {
1479 BIO_BUG_ON(!bio
->bi_size
);
1480 BIO_BUG_ON(!bio
->bi_io_vec
);
1483 count_vm_events(PGPGOUT
, count
);
1485 task_io_account_read(bio
->bi_size
);
1486 count_vm_events(PGPGIN
, count
);
1489 if (unlikely(block_dump
)) {
1490 char b
[BDEVNAME_SIZE
];
1491 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
1492 current
->comm
, task_pid_nr(current
),
1493 (rw
& WRITE
) ? "WRITE" : "READ",
1494 (unsigned long long)bio
->bi_sector
,
1495 bdevname(bio
->bi_bdev
, b
));
1499 generic_make_request(bio
);
1501 EXPORT_SYMBOL(submit_bio
);
1504 * __end_that_request_first - end I/O on a request
1505 * @req: the request being processed
1506 * @error: 0 for success, < 0 for error
1507 * @nr_bytes: number of bytes to complete
1510 * Ends I/O on a number of bytes attached to @req, and sets it up
1511 * for the next range of segments (if any) in the cluster.
1514 * 0 - we are done with this request, call end_that_request_last()
1515 * 1 - still buffers pending for this request
1517 static int __end_that_request_first(struct request
*req
, int error
,
1520 int total_bytes
, bio_nbytes
, next_idx
= 0;
1523 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
1526 * for a REQ_BLOCK_PC request, we want to carry any eventual
1527 * sense key with us all the way through
1529 if (!blk_pc_request(req
))
1532 if (error
&& (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))) {
1533 printk(KERN_ERR
"end_request: I/O error, dev %s, sector %llu\n",
1534 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
1535 (unsigned long long)req
->sector
);
1538 if (blk_fs_request(req
) && req
->rq_disk
) {
1539 const int rw
= rq_data_dir(req
);
1541 all_stat_add(req
->rq_disk
, sectors
[rw
],
1542 nr_bytes
>> 9, req
->sector
);
1545 total_bytes
= bio_nbytes
= 0;
1546 while ((bio
= req
->bio
) != NULL
) {
1550 * For an empty barrier request, the low level driver must
1551 * store a potential error location in ->sector. We pass
1552 * that back up in ->bi_sector.
1554 if (blk_empty_barrier(req
))
1555 bio
->bi_sector
= req
->sector
;
1557 if (nr_bytes
>= bio
->bi_size
) {
1558 req
->bio
= bio
->bi_next
;
1559 nbytes
= bio
->bi_size
;
1560 req_bio_endio(req
, bio
, nbytes
, error
);
1564 int idx
= bio
->bi_idx
+ next_idx
;
1566 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
1567 blk_dump_rq_flags(req
, "__end_that");
1568 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
1569 __FUNCTION__
, bio
->bi_idx
,
1574 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
1575 BIO_BUG_ON(nbytes
> bio
->bi_size
);
1578 * not a complete bvec done
1580 if (unlikely(nbytes
> nr_bytes
)) {
1581 bio_nbytes
+= nr_bytes
;
1582 total_bytes
+= nr_bytes
;
1587 * advance to the next vector
1590 bio_nbytes
+= nbytes
;
1593 total_bytes
+= nbytes
;
1599 * end more in this run, or just return 'not-done'
1601 if (unlikely(nr_bytes
<= 0))
1613 * if the request wasn't completed, update state
1616 req_bio_endio(req
, bio
, bio_nbytes
, error
);
1617 bio
->bi_idx
+= next_idx
;
1618 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
1619 bio_iovec(bio
)->bv_len
-= nr_bytes
;
1622 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
1623 blk_recalc_rq_segments(req
);
1628 * splice the completion data to a local structure and hand off to
1629 * process_completion_queue() to complete the requests
1631 static void blk_done_softirq(struct softirq_action
*h
)
1633 struct list_head
*cpu_list
, local_list
;
1635 local_irq_disable();
1636 cpu_list
= &__get_cpu_var(blk_cpu_done
);
1637 list_replace_init(cpu_list
, &local_list
);
1640 while (!list_empty(&local_list
)) {
1643 rq
= list_entry(local_list
.next
, struct request
, donelist
);
1644 list_del_init(&rq
->donelist
);
1645 rq
->q
->softirq_done_fn(rq
);
1649 static int __cpuinit
blk_cpu_notify(struct notifier_block
*self
,
1650 unsigned long action
, void *hcpu
)
1653 * If a CPU goes away, splice its entries to the current CPU
1654 * and trigger a run of the softirq
1656 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
1657 int cpu
= (unsigned long) hcpu
;
1659 local_irq_disable();
1660 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
1661 &__get_cpu_var(blk_cpu_done
));
1662 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
1670 static struct notifier_block blk_cpu_notifier __cpuinitdata
= {
1671 .notifier_call
= blk_cpu_notify
,
1675 * blk_complete_request - end I/O on a request
1676 * @req: the request being processed
1679 * Ends all I/O on a request. It does not handle partial completions,
1680 * unless the driver actually implements this in its completion callback
1681 * through requeueing. The actual completion happens out-of-order,
1682 * through a softirq handler. The user must have registered a completion
1683 * callback through blk_queue_softirq_done().
1686 void blk_complete_request(struct request
*req
)
1688 struct list_head
*cpu_list
;
1689 unsigned long flags
;
1691 BUG_ON(!req
->q
->softirq_done_fn
);
1693 local_irq_save(flags
);
1695 cpu_list
= &__get_cpu_var(blk_cpu_done
);
1696 list_add_tail(&req
->donelist
, cpu_list
);
1697 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
1699 local_irq_restore(flags
);
1701 EXPORT_SYMBOL(blk_complete_request
);
1704 * queue lock must be held
1706 static void end_that_request_last(struct request
*req
, int error
)
1708 struct gendisk
*disk
= req
->rq_disk
;
1710 if (blk_rq_tagged(req
))
1711 blk_queue_end_tag(req
->q
, req
);
1713 if (blk_queued_rq(req
))
1714 blkdev_dequeue_request(req
);
1716 if (unlikely(laptop_mode
) && blk_fs_request(req
))
1717 laptop_io_completion();
1720 * Account IO completion. bar_rq isn't accounted as a normal
1721 * IO on queueing nor completion. Accounting the containing
1722 * request is enough.
1724 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
1725 unsigned long duration
= jiffies
- req
->start_time
;
1726 const int rw
= rq_data_dir(req
);
1727 struct hd_struct
*part
= get_part(disk
, req
->sector
);
1729 __all_stat_inc(disk
, ios
[rw
], req
->sector
);
1730 __all_stat_add(disk
, ticks
[rw
], duration
, req
->sector
);
1731 disk_round_stats(disk
);
1734 part_round_stats(part
);
1740 req
->end_io(req
, error
);
1742 if (blk_bidi_rq(req
))
1743 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
1745 __blk_put_request(req
->q
, req
);
1749 static inline void __end_request(struct request
*rq
, int uptodate
,
1750 unsigned int nr_bytes
)
1755 error
= uptodate
? uptodate
: -EIO
;
1757 __blk_end_request(rq
, error
, nr_bytes
);
1761 * blk_rq_bytes - Returns bytes left to complete in the entire request
1762 * @rq: the request being processed
1764 unsigned int blk_rq_bytes(struct request
*rq
)
1766 if (blk_fs_request(rq
))
1767 return rq
->hard_nr_sectors
<< 9;
1769 return rq
->data_len
;
1771 EXPORT_SYMBOL_GPL(blk_rq_bytes
);
1774 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1775 * @rq: the request being processed
1777 unsigned int blk_rq_cur_bytes(struct request
*rq
)
1779 if (blk_fs_request(rq
))
1780 return rq
->current_nr_sectors
<< 9;
1783 return rq
->bio
->bi_size
;
1785 return rq
->data_len
;
1787 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes
);
1790 * end_queued_request - end all I/O on a queued request
1791 * @rq: the request being processed
1792 * @uptodate: error value or 0/1 uptodate flag
1795 * Ends all I/O on a request, and removes it from the block layer queues.
1796 * Not suitable for normal IO completion, unless the driver still has
1797 * the request attached to the block layer.
1800 void end_queued_request(struct request
*rq
, int uptodate
)
1802 __end_request(rq
, uptodate
, blk_rq_bytes(rq
));
1804 EXPORT_SYMBOL(end_queued_request
);
1807 * end_dequeued_request - end all I/O on a dequeued request
1808 * @rq: the request being processed
1809 * @uptodate: error value or 0/1 uptodate flag
1812 * Ends all I/O on a request. The request must already have been
1813 * dequeued using blkdev_dequeue_request(), as is normally the case
1817 void end_dequeued_request(struct request
*rq
, int uptodate
)
1819 __end_request(rq
, uptodate
, blk_rq_bytes(rq
));
1821 EXPORT_SYMBOL(end_dequeued_request
);
1825 * end_request - end I/O on the current segment of the request
1826 * @req: the request being processed
1827 * @uptodate: error value or 0/1 uptodate flag
1830 * Ends I/O on the current segment of a request. If that is the only
1831 * remaining segment, the request is also completed and freed.
1833 * This is a remnant of how older block drivers handled IO completions.
1834 * Modern drivers typically end IO on the full request in one go, unless
1835 * they have a residual value to account for. For that case this function
1836 * isn't really useful, unless the residual just happens to be the
1837 * full current segment. In other words, don't use this function in new
1838 * code. Either use end_request_completely(), or the
1839 * end_that_request_chunk() (along with end_that_request_last()) for
1840 * partial completions.
1843 void end_request(struct request
*req
, int uptodate
)
1845 __end_request(req
, uptodate
, req
->hard_cur_sectors
<< 9);
1847 EXPORT_SYMBOL(end_request
);
1850 * blk_end_io - Generic end_io function to complete a request.
1851 * @rq: the request being processed
1852 * @error: 0 for success, < 0 for error
1853 * @nr_bytes: number of bytes to complete @rq
1854 * @bidi_bytes: number of bytes to complete @rq->next_rq
1855 * @drv_callback: function called between completion of bios in the request
1856 * and completion of the request.
1857 * If the callback returns non 0, this helper returns without
1858 * completion of the request.
1861 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1862 * If @rq has leftover, sets it up for the next range of segments.
1865 * 0 - we are done with this request
1866 * 1 - this request is not freed yet, it still has pending buffers.
1868 static int blk_end_io(struct request
*rq
, int error
, unsigned int nr_bytes
,
1869 unsigned int bidi_bytes
,
1870 int (drv_callback
)(struct request
*))
1872 struct request_queue
*q
= rq
->q
;
1873 unsigned long flags
= 0UL;
1875 if (blk_fs_request(rq
) || blk_pc_request(rq
)) {
1876 if (__end_that_request_first(rq
, error
, nr_bytes
))
1879 /* Bidi request must be completed as a whole */
1880 if (blk_bidi_rq(rq
) &&
1881 __end_that_request_first(rq
->next_rq
, error
, bidi_bytes
))
1885 /* Special feature for tricky drivers */
1886 if (drv_callback
&& drv_callback(rq
))
1889 add_disk_randomness(rq
->rq_disk
);
1891 spin_lock_irqsave(q
->queue_lock
, flags
);
1892 end_that_request_last(rq
, error
);
1893 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1899 * blk_end_request - Helper function for drivers to complete the request.
1900 * @rq: the request being processed
1901 * @error: 0 for success, < 0 for error
1902 * @nr_bytes: number of bytes to complete
1905 * Ends I/O on a number of bytes attached to @rq.
1906 * If @rq has leftover, sets it up for the next range of segments.
1909 * 0 - we are done with this request
1910 * 1 - still buffers pending for this request
1912 int blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
1914 return blk_end_io(rq
, error
, nr_bytes
, 0, NULL
);
1916 EXPORT_SYMBOL_GPL(blk_end_request
);
1919 * __blk_end_request - Helper function for drivers to complete the request.
1920 * @rq: the request being processed
1921 * @error: 0 for success, < 0 for error
1922 * @nr_bytes: number of bytes to complete
1925 * Must be called with queue lock held unlike blk_end_request().
1928 * 0 - we are done with this request
1929 * 1 - still buffers pending for this request
1931 int __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
1933 if (blk_fs_request(rq
) || blk_pc_request(rq
)) {
1934 if (__end_that_request_first(rq
, error
, nr_bytes
))
1938 add_disk_randomness(rq
->rq_disk
);
1940 end_that_request_last(rq
, error
);
1944 EXPORT_SYMBOL_GPL(__blk_end_request
);
1947 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1948 * @rq: the bidi request being processed
1949 * @error: 0 for success, < 0 for error
1950 * @nr_bytes: number of bytes to complete @rq
1951 * @bidi_bytes: number of bytes to complete @rq->next_rq
1954 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1957 * 0 - we are done with this request
1958 * 1 - still buffers pending for this request
1960 int blk_end_bidi_request(struct request
*rq
, int error
, unsigned int nr_bytes
,
1961 unsigned int bidi_bytes
)
1963 return blk_end_io(rq
, error
, nr_bytes
, bidi_bytes
, NULL
);
1965 EXPORT_SYMBOL_GPL(blk_end_bidi_request
);
1968 * blk_end_request_callback - Special helper function for tricky drivers
1969 * @rq: the request being processed
1970 * @error: 0 for success, < 0 for error
1971 * @nr_bytes: number of bytes to complete
1972 * @drv_callback: function called between completion of bios in the request
1973 * and completion of the request.
1974 * If the callback returns non 0, this helper returns without
1975 * completion of the request.
1978 * Ends I/O on a number of bytes attached to @rq.
1979 * If @rq has leftover, sets it up for the next range of segments.
1981 * This special helper function is used only for existing tricky drivers.
1982 * (e.g. cdrom_newpc_intr() of ide-cd)
1983 * This interface will be removed when such drivers are rewritten.
1984 * Don't use this interface in other places anymore.
1987 * 0 - we are done with this request
1988 * 1 - this request is not freed yet.
1989 * this request still has pending buffers or
1990 * the driver doesn't want to finish this request yet.
1992 int blk_end_request_callback(struct request
*rq
, int error
,
1993 unsigned int nr_bytes
,
1994 int (drv_callback
)(struct request
*))
1996 return blk_end_io(rq
, error
, nr_bytes
, 0, drv_callback
);
1998 EXPORT_SYMBOL_GPL(blk_end_request_callback
);
2000 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2003 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2004 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
2006 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2007 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
2008 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
2009 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
2010 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
2011 rq
->buffer
= bio_data(bio
);
2012 rq
->data_len
= bio
->bi_size
;
2014 rq
->bio
= rq
->biotail
= bio
;
2017 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2020 int kblockd_schedule_work(struct work_struct
*work
)
2022 return queue_work(kblockd_workqueue
, work
);
2024 EXPORT_SYMBOL(kblockd_schedule_work
);
2026 void kblockd_flush_work(struct work_struct
*work
)
2028 cancel_work_sync(work
);
2030 EXPORT_SYMBOL(kblockd_flush_work
);
2032 int __init
blk_dev_init(void)
2036 kblockd_workqueue
= create_workqueue("kblockd");
2037 if (!kblockd_workqueue
)
2038 panic("Failed to create kblockd\n");
2040 request_cachep
= kmem_cache_create("blkdev_requests",
2041 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
2043 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
2044 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
2046 for_each_possible_cpu(i
)
2047 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
2049 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
2050 register_hotcpu_notifier(&blk_cpu_notifier
);