4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
44 #include <linux/swapops.h>
49 /* Incremented by the number of inactive pages that were scanned */
50 unsigned long nr_scanned
;
52 /* This context's GFP mask */
57 /* Can pages be swapped as part of reclaim? */
60 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
61 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62 * In this context, it doesn't matter that we scan the
63 * whole list at once. */
68 int all_unreclaimable
;
72 * The list of shrinker callbacks used by to apply pressure to
77 struct list_head list
;
78 int seeks
; /* seeks to recreate an obj */
79 long nr
; /* objs pending delete */
82 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
84 #ifdef ARCH_HAS_PREFETCH
85 #define prefetch_prev_lru_page(_page, _base, _field) \
87 if ((_page)->lru.prev != _base) { \
90 prev = lru_to_page(&(_page->lru)); \
91 prefetch(&prev->_field); \
95 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98 #ifdef ARCH_HAS_PREFETCHW
99 #define prefetchw_prev_lru_page(_page, _base, _field) \
101 if ((_page)->lru.prev != _base) { \
104 prev = lru_to_page(&(_page->lru)); \
105 prefetchw(&prev->_field); \
109 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
113 * From 0 .. 100. Higher means more swappy.
115 int vm_swappiness
= 60;
116 long vm_total_pages
; /* The total number of pages which the VM controls */
118 static LIST_HEAD(shrinker_list
);
119 static DECLARE_RWSEM(shrinker_rwsem
);
122 * Add a shrinker callback to be called from the vm
124 struct shrinker
*set_shrinker(int seeks
, shrinker_t theshrinker
)
126 struct shrinker
*shrinker
;
128 shrinker
= kmalloc(sizeof(*shrinker
), GFP_KERNEL
);
130 shrinker
->shrinker
= theshrinker
;
131 shrinker
->seeks
= seeks
;
133 down_write(&shrinker_rwsem
);
134 list_add_tail(&shrinker
->list
, &shrinker_list
);
135 up_write(&shrinker_rwsem
);
139 EXPORT_SYMBOL(set_shrinker
);
144 void remove_shrinker(struct shrinker
*shrinker
)
146 down_write(&shrinker_rwsem
);
147 list_del(&shrinker
->list
);
148 up_write(&shrinker_rwsem
);
151 EXPORT_SYMBOL(remove_shrinker
);
153 #define SHRINK_BATCH 128
155 * Call the shrink functions to age shrinkable caches
157 * Here we assume it costs one seek to replace a lru page and that it also
158 * takes a seek to recreate a cache object. With this in mind we age equal
159 * percentages of the lru and ageable caches. This should balance the seeks
160 * generated by these structures.
162 * If the vm encounted mapped pages on the LRU it increase the pressure on
163 * slab to avoid swapping.
165 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
167 * `lru_pages' represents the number of on-LRU pages in all the zones which
168 * are eligible for the caller's allocation attempt. It is used for balancing
169 * slab reclaim versus page reclaim.
171 * Returns the number of slab objects which we shrunk.
173 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
174 unsigned long lru_pages
)
176 struct shrinker
*shrinker
;
177 unsigned long ret
= 0;
180 scanned
= SWAP_CLUSTER_MAX
;
182 if (!down_read_trylock(&shrinker_rwsem
))
183 return 1; /* Assume we'll be able to shrink next time */
185 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
186 unsigned long long delta
;
187 unsigned long total_scan
;
188 unsigned long max_pass
= (*shrinker
->shrinker
)(0, gfp_mask
);
190 delta
= (4 * scanned
) / shrinker
->seeks
;
192 do_div(delta
, lru_pages
+ 1);
193 shrinker
->nr
+= delta
;
194 if (shrinker
->nr
< 0) {
195 printk(KERN_ERR
"%s: nr=%ld\n",
196 __FUNCTION__
, shrinker
->nr
);
197 shrinker
->nr
= max_pass
;
201 * Avoid risking looping forever due to too large nr value:
202 * never try to free more than twice the estimate number of
205 if (shrinker
->nr
> max_pass
* 2)
206 shrinker
->nr
= max_pass
* 2;
208 total_scan
= shrinker
->nr
;
211 while (total_scan
>= SHRINK_BATCH
) {
212 long this_scan
= SHRINK_BATCH
;
216 nr_before
= (*shrinker
->shrinker
)(0, gfp_mask
);
217 shrink_ret
= (*shrinker
->shrinker
)(this_scan
, gfp_mask
);
218 if (shrink_ret
== -1)
220 if (shrink_ret
< nr_before
)
221 ret
+= nr_before
- shrink_ret
;
222 count_vm_events(SLABS_SCANNED
, this_scan
);
223 total_scan
-= this_scan
;
228 shrinker
->nr
+= total_scan
;
230 up_read(&shrinker_rwsem
);
234 /* Called without lock on whether page is mapped, so answer is unstable */
235 static inline int page_mapping_inuse(struct page
*page
)
237 struct address_space
*mapping
;
239 /* Page is in somebody's page tables. */
240 if (page_mapped(page
))
243 /* Be more reluctant to reclaim swapcache than pagecache */
244 if (PageSwapCache(page
))
247 mapping
= page_mapping(page
);
251 /* File is mmap'd by somebody? */
252 return mapping_mapped(mapping
);
255 static inline int is_page_cache_freeable(struct page
*page
)
257 return page_count(page
) - !!PagePrivate(page
) == 2;
260 static int may_write_to_queue(struct backing_dev_info
*bdi
)
262 if (current
->flags
& PF_SWAPWRITE
)
264 if (!bdi_write_congested(bdi
))
266 if (bdi
== current
->backing_dev_info
)
272 * We detected a synchronous write error writing a page out. Probably
273 * -ENOSPC. We need to propagate that into the address_space for a subsequent
274 * fsync(), msync() or close().
276 * The tricky part is that after writepage we cannot touch the mapping: nothing
277 * prevents it from being freed up. But we have a ref on the page and once
278 * that page is locked, the mapping is pinned.
280 * We're allowed to run sleeping lock_page() here because we know the caller has
283 static void handle_write_error(struct address_space
*mapping
,
284 struct page
*page
, int error
)
287 if (page_mapping(page
) == mapping
) {
288 if (error
== -ENOSPC
)
289 set_bit(AS_ENOSPC
, &mapping
->flags
);
291 set_bit(AS_EIO
, &mapping
->flags
);
296 /* possible outcome of pageout() */
298 /* failed to write page out, page is locked */
300 /* move page to the active list, page is locked */
302 /* page has been sent to the disk successfully, page is unlocked */
304 /* page is clean and locked */
309 * pageout is called by shrink_page_list() for each dirty page.
310 * Calls ->writepage().
312 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
)
315 * If the page is dirty, only perform writeback if that write
316 * will be non-blocking. To prevent this allocation from being
317 * stalled by pagecache activity. But note that there may be
318 * stalls if we need to run get_block(). We could test
319 * PagePrivate for that.
321 * If this process is currently in generic_file_write() against
322 * this page's queue, we can perform writeback even if that
325 * If the page is swapcache, write it back even if that would
326 * block, for some throttling. This happens by accident, because
327 * swap_backing_dev_info is bust: it doesn't reflect the
328 * congestion state of the swapdevs. Easy to fix, if needed.
329 * See swapfile.c:page_queue_congested().
331 if (!is_page_cache_freeable(page
))
335 * Some data journaling orphaned pages can have
336 * page->mapping == NULL while being dirty with clean buffers.
338 if (PagePrivate(page
)) {
339 if (try_to_free_buffers(page
)) {
340 ClearPageDirty(page
);
341 printk("%s: orphaned page\n", __FUNCTION__
);
347 if (mapping
->a_ops
->writepage
== NULL
)
348 return PAGE_ACTIVATE
;
349 if (!may_write_to_queue(mapping
->backing_dev_info
))
352 if (clear_page_dirty_for_io(page
)) {
354 struct writeback_control wbc
= {
355 .sync_mode
= WB_SYNC_NONE
,
356 .nr_to_write
= SWAP_CLUSTER_MAX
,
358 .range_end
= LLONG_MAX
,
363 SetPageReclaim(page
);
364 res
= mapping
->a_ops
->writepage(page
, &wbc
);
366 handle_write_error(mapping
, page
, res
);
367 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
368 ClearPageReclaim(page
);
369 return PAGE_ACTIVATE
;
371 if (!PageWriteback(page
)) {
372 /* synchronous write or broken a_ops? */
373 ClearPageReclaim(page
);
375 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
383 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
384 * someone else has a ref on the page, abort and return 0. If it was
385 * successfully detached, return 1. Assumes the caller has a single ref on
388 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
390 BUG_ON(!PageLocked(page
));
391 BUG_ON(mapping
!= page_mapping(page
));
393 write_lock_irq(&mapping
->tree_lock
);
395 * The non racy check for a busy page.
397 * Must be careful with the order of the tests. When someone has
398 * a ref to the page, it may be possible that they dirty it then
399 * drop the reference. So if PageDirty is tested before page_count
400 * here, then the following race may occur:
402 * get_user_pages(&page);
403 * [user mapping goes away]
405 * !PageDirty(page) [good]
406 * SetPageDirty(page);
408 * !page_count(page) [good, discard it]
410 * [oops, our write_to data is lost]
412 * Reversing the order of the tests ensures such a situation cannot
413 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
414 * load is not satisfied before that of page->_count.
416 * Note that if SetPageDirty is always performed via set_page_dirty,
417 * and thus under tree_lock, then this ordering is not required.
419 if (unlikely(page_count(page
) != 2))
422 if (unlikely(PageDirty(page
)))
425 if (PageSwapCache(page
)) {
426 swp_entry_t swap
= { .val
= page_private(page
) };
427 __delete_from_swap_cache(page
);
428 write_unlock_irq(&mapping
->tree_lock
);
430 __put_page(page
); /* The pagecache ref */
434 __remove_from_page_cache(page
);
435 write_unlock_irq(&mapping
->tree_lock
);
440 write_unlock_irq(&mapping
->tree_lock
);
445 * shrink_page_list() returns the number of reclaimed pages
447 static unsigned long shrink_page_list(struct list_head
*page_list
,
448 struct scan_control
*sc
)
450 LIST_HEAD(ret_pages
);
451 struct pagevec freed_pvec
;
453 unsigned long nr_reclaimed
= 0;
457 pagevec_init(&freed_pvec
, 1);
458 while (!list_empty(page_list
)) {
459 struct address_space
*mapping
;
466 page
= lru_to_page(page_list
);
467 list_del(&page
->lru
);
469 if (TestSetPageLocked(page
))
472 VM_BUG_ON(PageActive(page
));
476 if (!sc
->may_swap
&& page_mapped(page
))
479 /* Double the slab pressure for mapped and swapcache pages */
480 if (page_mapped(page
) || PageSwapCache(page
))
483 if (PageWriteback(page
))
486 referenced
= page_referenced(page
, 1);
487 /* In active use or really unfreeable? Activate it. */
488 if (referenced
&& page_mapping_inuse(page
))
489 goto activate_locked
;
493 * Anonymous process memory has backing store?
494 * Try to allocate it some swap space here.
496 if (PageAnon(page
) && !PageSwapCache(page
))
497 if (!add_to_swap(page
, GFP_ATOMIC
))
498 goto activate_locked
;
499 #endif /* CONFIG_SWAP */
501 mapping
= page_mapping(page
);
502 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
503 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
506 * The page is mapped into the page tables of one or more
507 * processes. Try to unmap it here.
509 if (page_mapped(page
) && mapping
) {
510 switch (try_to_unmap(page
, 0)) {
512 goto activate_locked
;
516 ; /* try to free the page below */
520 if (PageDirty(page
)) {
525 if (!sc
->may_writepage
)
528 /* Page is dirty, try to write it out here */
529 switch(pageout(page
, mapping
)) {
533 goto activate_locked
;
535 if (PageWriteback(page
) || PageDirty(page
))
538 * A synchronous write - probably a ramdisk. Go
539 * ahead and try to reclaim the page.
541 if (TestSetPageLocked(page
))
543 if (PageDirty(page
) || PageWriteback(page
))
545 mapping
= page_mapping(page
);
547 ; /* try to free the page below */
552 * If the page has buffers, try to free the buffer mappings
553 * associated with this page. If we succeed we try to free
556 * We do this even if the page is PageDirty().
557 * try_to_release_page() does not perform I/O, but it is
558 * possible for a page to have PageDirty set, but it is actually
559 * clean (all its buffers are clean). This happens if the
560 * buffers were written out directly, with submit_bh(). ext3
561 * will do this, as well as the blockdev mapping.
562 * try_to_release_page() will discover that cleanness and will
563 * drop the buffers and mark the page clean - it can be freed.
565 * Rarely, pages can have buffers and no ->mapping. These are
566 * the pages which were not successfully invalidated in
567 * truncate_complete_page(). We try to drop those buffers here
568 * and if that worked, and the page is no longer mapped into
569 * process address space (page_count == 1) it can be freed.
570 * Otherwise, leave the page on the LRU so it is swappable.
572 if (PagePrivate(page
)) {
573 if (!try_to_release_page(page
, sc
->gfp_mask
))
574 goto activate_locked
;
575 if (!mapping
&& page_count(page
) == 1)
579 if (!mapping
|| !remove_mapping(mapping
, page
))
585 if (!pagevec_add(&freed_pvec
, page
))
586 __pagevec_release_nonlru(&freed_pvec
);
595 list_add(&page
->lru
, &ret_pages
);
596 VM_BUG_ON(PageLRU(page
));
598 list_splice(&ret_pages
, page_list
);
599 if (pagevec_count(&freed_pvec
))
600 __pagevec_release_nonlru(&freed_pvec
);
601 count_vm_events(PGACTIVATE
, pgactivate
);
606 * zone->lru_lock is heavily contended. Some of the functions that
607 * shrink the lists perform better by taking out a batch of pages
608 * and working on them outside the LRU lock.
610 * For pagecache intensive workloads, this function is the hottest
611 * spot in the kernel (apart from copy_*_user functions).
613 * Appropriate locks must be held before calling this function.
615 * @nr_to_scan: The number of pages to look through on the list.
616 * @src: The LRU list to pull pages off.
617 * @dst: The temp list to put pages on to.
618 * @scanned: The number of pages that were scanned.
620 * returns how many pages were moved onto *@dst.
622 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
623 struct list_head
*src
, struct list_head
*dst
,
624 unsigned long *scanned
)
626 unsigned long nr_taken
= 0;
630 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
631 struct list_head
*target
;
632 page
= lru_to_page(src
);
633 prefetchw_prev_lru_page(page
, src
, flags
);
635 VM_BUG_ON(!PageLRU(page
));
637 list_del(&page
->lru
);
639 if (likely(get_page_unless_zero(page
))) {
641 * Be careful not to clear PageLRU until after we're
642 * sure the page is not being freed elsewhere -- the
643 * page release code relies on it.
648 } /* else it is being freed elsewhere */
650 list_add(&page
->lru
, target
);
658 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
661 static unsigned long shrink_inactive_list(unsigned long max_scan
,
662 struct zone
*zone
, struct scan_control
*sc
)
664 LIST_HEAD(page_list
);
666 unsigned long nr_scanned
= 0;
667 unsigned long nr_reclaimed
= 0;
669 pagevec_init(&pvec
, 1);
672 spin_lock_irq(&zone
->lru_lock
);
675 unsigned long nr_taken
;
676 unsigned long nr_scan
;
677 unsigned long nr_freed
;
679 nr_taken
= isolate_lru_pages(sc
->swap_cluster_max
,
680 &zone
->inactive_list
,
681 &page_list
, &nr_scan
);
682 zone
->nr_inactive
-= nr_taken
;
683 zone
->pages_scanned
+= nr_scan
;
684 spin_unlock_irq(&zone
->lru_lock
);
686 nr_scanned
+= nr_scan
;
687 nr_freed
= shrink_page_list(&page_list
, sc
);
688 nr_reclaimed
+= nr_freed
;
690 if (current_is_kswapd()) {
691 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
692 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
694 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
695 __count_vm_events(PGACTIVATE
, nr_freed
);
700 spin_lock(&zone
->lru_lock
);
702 * Put back any unfreeable pages.
704 while (!list_empty(&page_list
)) {
705 page
= lru_to_page(&page_list
);
706 VM_BUG_ON(PageLRU(page
));
708 list_del(&page
->lru
);
709 if (PageActive(page
))
710 add_page_to_active_list(zone
, page
);
712 add_page_to_inactive_list(zone
, page
);
713 if (!pagevec_add(&pvec
, page
)) {
714 spin_unlock_irq(&zone
->lru_lock
);
715 __pagevec_release(&pvec
);
716 spin_lock_irq(&zone
->lru_lock
);
719 } while (nr_scanned
< max_scan
);
720 spin_unlock(&zone
->lru_lock
);
723 pagevec_release(&pvec
);
728 * We are about to scan this zone at a certain priority level. If that priority
729 * level is smaller (ie: more urgent) than the previous priority, then note
730 * that priority level within the zone. This is done so that when the next
731 * process comes in to scan this zone, it will immediately start out at this
732 * priority level rather than having to build up its own scanning priority.
733 * Here, this priority affects only the reclaim-mapped threshold.
735 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
737 if (priority
< zone
->prev_priority
)
738 zone
->prev_priority
= priority
;
741 static inline int zone_is_near_oom(struct zone
*zone
)
743 return zone
->pages_scanned
>= (zone
->nr_active
+ zone
->nr_inactive
)*3;
747 * This moves pages from the active list to the inactive list.
749 * We move them the other way if the page is referenced by one or more
750 * processes, from rmap.
752 * If the pages are mostly unmapped, the processing is fast and it is
753 * appropriate to hold zone->lru_lock across the whole operation. But if
754 * the pages are mapped, the processing is slow (page_referenced()) so we
755 * should drop zone->lru_lock around each page. It's impossible to balance
756 * this, so instead we remove the pages from the LRU while processing them.
757 * It is safe to rely on PG_active against the non-LRU pages in here because
758 * nobody will play with that bit on a non-LRU page.
760 * The downside is that we have to touch page->_count against each page.
761 * But we had to alter page->flags anyway.
763 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
764 struct scan_control
*sc
, int priority
)
766 unsigned long pgmoved
;
767 int pgdeactivate
= 0;
768 unsigned long pgscanned
;
769 LIST_HEAD(l_hold
); /* The pages which were snipped off */
770 LIST_HEAD(l_inactive
); /* Pages to go onto the inactive_list */
771 LIST_HEAD(l_active
); /* Pages to go onto the active_list */
774 int reclaim_mapped
= 0;
781 if (zone_is_near_oom(zone
))
782 goto force_reclaim_mapped
;
785 * `distress' is a measure of how much trouble we're having
786 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
788 distress
= 100 >> min(zone
->prev_priority
, priority
);
791 * The point of this algorithm is to decide when to start
792 * reclaiming mapped memory instead of just pagecache. Work out
796 mapped_ratio
= ((global_page_state(NR_FILE_MAPPED
) +
797 global_page_state(NR_ANON_PAGES
)) * 100) /
801 * Now decide how much we really want to unmap some pages. The
802 * mapped ratio is downgraded - just because there's a lot of
803 * mapped memory doesn't necessarily mean that page reclaim
806 * The distress ratio is important - we don't want to start
809 * A 100% value of vm_swappiness overrides this algorithm
812 swap_tendency
= mapped_ratio
/ 2 + distress
+ sc
->swappiness
;
815 * Now use this metric to decide whether to start moving mapped
816 * memory onto the inactive list.
818 if (swap_tendency
>= 100)
819 force_reclaim_mapped
:
824 spin_lock_irq(&zone
->lru_lock
);
825 pgmoved
= isolate_lru_pages(nr_pages
, &zone
->active_list
,
826 &l_hold
, &pgscanned
);
827 zone
->pages_scanned
+= pgscanned
;
828 zone
->nr_active
-= pgmoved
;
829 spin_unlock_irq(&zone
->lru_lock
);
831 while (!list_empty(&l_hold
)) {
833 page
= lru_to_page(&l_hold
);
834 list_del(&page
->lru
);
835 if (page_mapped(page
)) {
836 if (!reclaim_mapped
||
837 (total_swap_pages
== 0 && PageAnon(page
)) ||
838 page_referenced(page
, 0)) {
839 list_add(&page
->lru
, &l_active
);
843 list_add(&page
->lru
, &l_inactive
);
846 pagevec_init(&pvec
, 1);
848 spin_lock_irq(&zone
->lru_lock
);
849 while (!list_empty(&l_inactive
)) {
850 page
= lru_to_page(&l_inactive
);
851 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
852 VM_BUG_ON(PageLRU(page
));
854 VM_BUG_ON(!PageActive(page
));
855 ClearPageActive(page
);
857 list_move(&page
->lru
, &zone
->inactive_list
);
859 if (!pagevec_add(&pvec
, page
)) {
860 zone
->nr_inactive
+= pgmoved
;
861 spin_unlock_irq(&zone
->lru_lock
);
862 pgdeactivate
+= pgmoved
;
864 if (buffer_heads_over_limit
)
865 pagevec_strip(&pvec
);
866 __pagevec_release(&pvec
);
867 spin_lock_irq(&zone
->lru_lock
);
870 zone
->nr_inactive
+= pgmoved
;
871 pgdeactivate
+= pgmoved
;
872 if (buffer_heads_over_limit
) {
873 spin_unlock_irq(&zone
->lru_lock
);
874 pagevec_strip(&pvec
);
875 spin_lock_irq(&zone
->lru_lock
);
879 while (!list_empty(&l_active
)) {
880 page
= lru_to_page(&l_active
);
881 prefetchw_prev_lru_page(page
, &l_active
, flags
);
882 VM_BUG_ON(PageLRU(page
));
884 VM_BUG_ON(!PageActive(page
));
885 list_move(&page
->lru
, &zone
->active_list
);
887 if (!pagevec_add(&pvec
, page
)) {
888 zone
->nr_active
+= pgmoved
;
890 spin_unlock_irq(&zone
->lru_lock
);
891 __pagevec_release(&pvec
);
892 spin_lock_irq(&zone
->lru_lock
);
895 zone
->nr_active
+= pgmoved
;
897 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
898 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
899 spin_unlock_irq(&zone
->lru_lock
);
901 pagevec_release(&pvec
);
905 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
907 static unsigned long shrink_zone(int priority
, struct zone
*zone
,
908 struct scan_control
*sc
)
910 unsigned long nr_active
;
911 unsigned long nr_inactive
;
912 unsigned long nr_to_scan
;
913 unsigned long nr_reclaimed
= 0;
915 atomic_inc(&zone
->reclaim_in_progress
);
918 * Add one to `nr_to_scan' just to make sure that the kernel will
919 * slowly sift through the active list.
921 zone
->nr_scan_active
+= (zone
->nr_active
>> priority
) + 1;
922 nr_active
= zone
->nr_scan_active
;
923 if (nr_active
>= sc
->swap_cluster_max
)
924 zone
->nr_scan_active
= 0;
928 zone
->nr_scan_inactive
+= (zone
->nr_inactive
>> priority
) + 1;
929 nr_inactive
= zone
->nr_scan_inactive
;
930 if (nr_inactive
>= sc
->swap_cluster_max
)
931 zone
->nr_scan_inactive
= 0;
935 while (nr_active
|| nr_inactive
) {
937 nr_to_scan
= min(nr_active
,
938 (unsigned long)sc
->swap_cluster_max
);
939 nr_active
-= nr_to_scan
;
940 shrink_active_list(nr_to_scan
, zone
, sc
, priority
);
944 nr_to_scan
= min(nr_inactive
,
945 (unsigned long)sc
->swap_cluster_max
);
946 nr_inactive
-= nr_to_scan
;
947 nr_reclaimed
+= shrink_inactive_list(nr_to_scan
, zone
,
952 throttle_vm_writeout();
954 atomic_dec(&zone
->reclaim_in_progress
);
959 * This is the direct reclaim path, for page-allocating processes. We only
960 * try to reclaim pages from zones which will satisfy the caller's allocation
963 * We reclaim from a zone even if that zone is over pages_high. Because:
964 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
966 * b) The zones may be over pages_high but they must go *over* pages_high to
967 * satisfy the `incremental min' zone defense algorithm.
969 * Returns the number of reclaimed pages.
971 * If a zone is deemed to be full of pinned pages then just give it a light
972 * scan then give up on it.
974 static unsigned long shrink_zones(int priority
, struct zone
**zones
,
975 struct scan_control
*sc
)
977 unsigned long nr_reclaimed
= 0;
980 sc
->all_unreclaimable
= 1;
981 for (i
= 0; zones
[i
] != NULL
; i
++) {
982 struct zone
*zone
= zones
[i
];
984 if (!populated_zone(zone
))
987 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
990 note_zone_scanning_priority(zone
, priority
);
992 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
993 continue; /* Let kswapd poll it */
995 sc
->all_unreclaimable
= 0;
997 nr_reclaimed
+= shrink_zone(priority
, zone
, sc
);
1003 * This is the main entry point to direct page reclaim.
1005 * If a full scan of the inactive list fails to free enough memory then we
1006 * are "out of memory" and something needs to be killed.
1008 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1009 * high - the zone may be full of dirty or under-writeback pages, which this
1010 * caller can't do much about. We kick pdflush and take explicit naps in the
1011 * hope that some of these pages can be written. But if the allocating task
1012 * holds filesystem locks which prevent writeout this might not work, and the
1013 * allocation attempt will fail.
1015 unsigned long try_to_free_pages(struct zone
**zones
, gfp_t gfp_mask
)
1019 unsigned long total_scanned
= 0;
1020 unsigned long nr_reclaimed
= 0;
1021 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1022 unsigned long lru_pages
= 0;
1024 struct scan_control sc
= {
1025 .gfp_mask
= gfp_mask
,
1026 .may_writepage
= !laptop_mode
,
1027 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1029 .swappiness
= vm_swappiness
,
1032 count_vm_event(ALLOCSTALL
);
1034 for (i
= 0; zones
[i
] != NULL
; i
++) {
1035 struct zone
*zone
= zones
[i
];
1037 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1040 lru_pages
+= zone
->nr_active
+ zone
->nr_inactive
;
1043 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1046 disable_swap_token();
1047 nr_reclaimed
+= shrink_zones(priority
, zones
, &sc
);
1048 shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
);
1049 if (reclaim_state
) {
1050 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1051 reclaim_state
->reclaimed_slab
= 0;
1053 total_scanned
+= sc
.nr_scanned
;
1054 if (nr_reclaimed
>= sc
.swap_cluster_max
) {
1060 * Try to write back as many pages as we just scanned. This
1061 * tends to cause slow streaming writers to write data to the
1062 * disk smoothly, at the dirtying rate, which is nice. But
1063 * that's undesirable in laptop mode, where we *want* lumpy
1064 * writeout. So in laptop mode, write out the whole world.
1066 if (total_scanned
> sc
.swap_cluster_max
+
1067 sc
.swap_cluster_max
/ 2) {
1068 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1069 sc
.may_writepage
= 1;
1072 /* Take a nap, wait for some writeback to complete */
1073 if (sc
.nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1074 congestion_wait(WRITE
, HZ
/10);
1076 /* top priority shrink_caches still had more to do? don't OOM, then */
1077 if (!sc
.all_unreclaimable
)
1081 * Now that we've scanned all the zones at this priority level, note
1082 * that level within the zone so that the next thread which performs
1083 * scanning of this zone will immediately start out at this priority
1084 * level. This affects only the decision whether or not to bring
1085 * mapped pages onto the inactive list.
1089 for (i
= 0; zones
[i
] != 0; i
++) {
1090 struct zone
*zone
= zones
[i
];
1092 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1095 zone
->prev_priority
= priority
;
1101 * For kswapd, balance_pgdat() will work across all this node's zones until
1102 * they are all at pages_high.
1104 * Returns the number of pages which were actually freed.
1106 * There is special handling here for zones which are full of pinned pages.
1107 * This can happen if the pages are all mlocked, or if they are all used by
1108 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1109 * What we do is to detect the case where all pages in the zone have been
1110 * scanned twice and there has been zero successful reclaim. Mark the zone as
1111 * dead and from now on, only perform a short scan. Basically we're polling
1112 * the zone for when the problem goes away.
1114 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1115 * zones which have free_pages > pages_high, but once a zone is found to have
1116 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1117 * of the number of free pages in the lower zones. This interoperates with
1118 * the page allocator fallback scheme to ensure that aging of pages is balanced
1121 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1126 unsigned long total_scanned
;
1127 unsigned long nr_reclaimed
;
1128 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1129 struct scan_control sc
= {
1130 .gfp_mask
= GFP_KERNEL
,
1132 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1133 .swappiness
= vm_swappiness
,
1136 * temp_priority is used to remember the scanning priority at which
1137 * this zone was successfully refilled to free_pages == pages_high.
1139 int temp_priority
[MAX_NR_ZONES
];
1144 sc
.may_writepage
= !laptop_mode
;
1145 count_vm_event(PAGEOUTRUN
);
1147 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1148 temp_priority
[i
] = DEF_PRIORITY
;
1150 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1151 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1152 unsigned long lru_pages
= 0;
1154 /* The swap token gets in the way of swapout... */
1156 disable_swap_token();
1161 * Scan in the highmem->dma direction for the highest
1162 * zone which needs scanning
1164 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1165 struct zone
*zone
= pgdat
->node_zones
+ i
;
1167 if (!populated_zone(zone
))
1170 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1173 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1182 for (i
= 0; i
<= end_zone
; i
++) {
1183 struct zone
*zone
= pgdat
->node_zones
+ i
;
1185 lru_pages
+= zone
->nr_active
+ zone
->nr_inactive
;
1189 * Now scan the zone in the dma->highmem direction, stopping
1190 * at the last zone which needs scanning.
1192 * We do this because the page allocator works in the opposite
1193 * direction. This prevents the page allocator from allocating
1194 * pages behind kswapd's direction of progress, which would
1195 * cause too much scanning of the lower zones.
1197 for (i
= 0; i
<= end_zone
; i
++) {
1198 struct zone
*zone
= pgdat
->node_zones
+ i
;
1201 if (!populated_zone(zone
))
1204 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1207 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1210 temp_priority
[i
] = priority
;
1212 note_zone_scanning_priority(zone
, priority
);
1213 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1214 reclaim_state
->reclaimed_slab
= 0;
1215 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1217 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1218 total_scanned
+= sc
.nr_scanned
;
1219 if (zone
->all_unreclaimable
)
1221 if (nr_slab
== 0 && zone
->pages_scanned
>=
1222 (zone
->nr_active
+ zone
->nr_inactive
) * 6)
1223 zone
->all_unreclaimable
= 1;
1225 * If we've done a decent amount of scanning and
1226 * the reclaim ratio is low, start doing writepage
1227 * even in laptop mode
1229 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1230 total_scanned
> nr_reclaimed
+ nr_reclaimed
/ 2)
1231 sc
.may_writepage
= 1;
1234 break; /* kswapd: all done */
1236 * OK, kswapd is getting into trouble. Take a nap, then take
1237 * another pass across the zones.
1239 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1240 congestion_wait(WRITE
, HZ
/10);
1243 * We do this so kswapd doesn't build up large priorities for
1244 * example when it is freeing in parallel with allocators. It
1245 * matches the direct reclaim path behaviour in terms of impact
1246 * on zone->*_priority.
1248 if (nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1253 * Note within each zone the priority level at which this zone was
1254 * brought into a happy state. So that the next thread which scans this
1255 * zone will start out at that priority level.
1257 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1258 struct zone
*zone
= pgdat
->node_zones
+ i
;
1260 zone
->prev_priority
= temp_priority
[i
];
1262 if (!all_zones_ok
) {
1270 return nr_reclaimed
;
1274 * The background pageout daemon, started as a kernel thread
1275 * from the init process.
1277 * This basically trickles out pages so that we have _some_
1278 * free memory available even if there is no other activity
1279 * that frees anything up. This is needed for things like routing
1280 * etc, where we otherwise might have all activity going on in
1281 * asynchronous contexts that cannot page things out.
1283 * If there are applications that are active memory-allocators
1284 * (most normal use), this basically shouldn't matter.
1286 static int kswapd(void *p
)
1288 unsigned long order
;
1289 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1290 struct task_struct
*tsk
= current
;
1292 struct reclaim_state reclaim_state
= {
1293 .reclaimed_slab
= 0,
1297 cpumask
= node_to_cpumask(pgdat
->node_id
);
1298 if (!cpus_empty(cpumask
))
1299 set_cpus_allowed(tsk
, cpumask
);
1300 current
->reclaim_state
= &reclaim_state
;
1303 * Tell the memory management that we're a "memory allocator",
1304 * and that if we need more memory we should get access to it
1305 * regardless (see "__alloc_pages()"). "kswapd" should
1306 * never get caught in the normal page freeing logic.
1308 * (Kswapd normally doesn't need memory anyway, but sometimes
1309 * you need a small amount of memory in order to be able to
1310 * page out something else, and this flag essentially protects
1311 * us from recursively trying to free more memory as we're
1312 * trying to free the first piece of memory in the first place).
1314 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1318 unsigned long new_order
;
1322 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1323 new_order
= pgdat
->kswapd_max_order
;
1324 pgdat
->kswapd_max_order
= 0;
1325 if (order
< new_order
) {
1327 * Don't sleep if someone wants a larger 'order'
1333 order
= pgdat
->kswapd_max_order
;
1335 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1337 balance_pgdat(pgdat
, order
);
1343 * A zone is low on free memory, so wake its kswapd task to service it.
1345 void wakeup_kswapd(struct zone
*zone
, int order
)
1349 if (!populated_zone(zone
))
1352 pgdat
= zone
->zone_pgdat
;
1353 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1355 if (pgdat
->kswapd_max_order
< order
)
1356 pgdat
->kswapd_max_order
= order
;
1357 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1359 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1361 wake_up_interruptible(&pgdat
->kswapd_wait
);
1366 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1367 * from LRU lists system-wide, for given pass and priority, and returns the
1368 * number of reclaimed pages
1370 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1372 static unsigned long shrink_all_zones(unsigned long nr_pages
, int pass
,
1373 int prio
, struct scan_control
*sc
)
1376 unsigned long nr_to_scan
, ret
= 0;
1378 for_each_zone(zone
) {
1380 if (!populated_zone(zone
))
1383 if (zone
->all_unreclaimable
&& prio
!= DEF_PRIORITY
)
1386 /* For pass = 0 we don't shrink the active list */
1388 zone
->nr_scan_active
+= (zone
->nr_active
>> prio
) + 1;
1389 if (zone
->nr_scan_active
>= nr_pages
|| pass
> 3) {
1390 zone
->nr_scan_active
= 0;
1391 nr_to_scan
= min(nr_pages
, zone
->nr_active
);
1392 shrink_active_list(nr_to_scan
, zone
, sc
, prio
);
1396 zone
->nr_scan_inactive
+= (zone
->nr_inactive
>> prio
) + 1;
1397 if (zone
->nr_scan_inactive
>= nr_pages
|| pass
> 3) {
1398 zone
->nr_scan_inactive
= 0;
1399 nr_to_scan
= min(nr_pages
, zone
->nr_inactive
);
1400 ret
+= shrink_inactive_list(nr_to_scan
, zone
, sc
);
1401 if (ret
>= nr_pages
)
1410 * Try to free `nr_pages' of memory, system-wide, and return the number of
1413 * Rather than trying to age LRUs the aim is to preserve the overall
1414 * LRU order by reclaiming preferentially
1415 * inactive > active > active referenced > active mapped
1417 unsigned long shrink_all_memory(unsigned long nr_pages
)
1419 unsigned long lru_pages
, nr_slab
;
1420 unsigned long ret
= 0;
1422 struct reclaim_state reclaim_state
;
1424 struct scan_control sc
= {
1425 .gfp_mask
= GFP_KERNEL
,
1427 .swap_cluster_max
= nr_pages
,
1429 .swappiness
= vm_swappiness
,
1432 current
->reclaim_state
= &reclaim_state
;
1436 lru_pages
+= zone
->nr_active
+ zone
->nr_inactive
;
1438 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
1439 /* If slab caches are huge, it's better to hit them first */
1440 while (nr_slab
>= lru_pages
) {
1441 reclaim_state
.reclaimed_slab
= 0;
1442 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
1443 if (!reclaim_state
.reclaimed_slab
)
1446 ret
+= reclaim_state
.reclaimed_slab
;
1447 if (ret
>= nr_pages
)
1450 nr_slab
-= reclaim_state
.reclaimed_slab
;
1454 * We try to shrink LRUs in 5 passes:
1455 * 0 = Reclaim from inactive_list only
1456 * 1 = Reclaim from active list but don't reclaim mapped
1457 * 2 = 2nd pass of type 1
1458 * 3 = Reclaim mapped (normal reclaim)
1459 * 4 = 2nd pass of type 3
1461 for (pass
= 0; pass
< 5; pass
++) {
1464 /* Needed for shrinking slab caches later on */
1466 for_each_zone(zone
) {
1467 lru_pages
+= zone
->nr_active
;
1468 lru_pages
+= zone
->nr_inactive
;
1471 /* Force reclaiming mapped pages in the passes #3 and #4 */
1474 sc
.swappiness
= 100;
1477 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
1478 unsigned long nr_to_scan
= nr_pages
- ret
;
1481 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
1482 if (ret
>= nr_pages
)
1485 reclaim_state
.reclaimed_slab
= 0;
1486 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
, lru_pages
);
1487 ret
+= reclaim_state
.reclaimed_slab
;
1488 if (ret
>= nr_pages
)
1491 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
1492 congestion_wait(WRITE
, HZ
/ 10);
1499 * If ret = 0, we could not shrink LRUs, but there may be something
1504 reclaim_state
.reclaimed_slab
= 0;
1505 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
1506 ret
+= reclaim_state
.reclaimed_slab
;
1507 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
1510 current
->reclaim_state
= NULL
;
1516 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1517 not required for correctness. So if the last cpu in a node goes
1518 away, we get changed to run anywhere: as the first one comes back,
1519 restore their cpu bindings. */
1520 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
1521 unsigned long action
, void *hcpu
)
1526 if (action
== CPU_ONLINE
) {
1527 for_each_online_pgdat(pgdat
) {
1528 mask
= node_to_cpumask(pgdat
->node_id
);
1529 if (any_online_cpu(mask
) != NR_CPUS
)
1530 /* One of our CPUs online: restore mask */
1531 set_cpus_allowed(pgdat
->kswapd
, mask
);
1538 * This kswapd start function will be called by init and node-hot-add.
1539 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1541 int kswapd_run(int nid
)
1543 pg_data_t
*pgdat
= NODE_DATA(nid
);
1549 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
1550 if (IS_ERR(pgdat
->kswapd
)) {
1551 /* failure at boot is fatal */
1552 BUG_ON(system_state
== SYSTEM_BOOTING
);
1553 printk("Failed to start kswapd on node %d\n",nid
);
1559 static int __init
kswapd_init(void)
1564 for_each_online_node(nid
)
1566 hotcpu_notifier(cpu_callback
, 0);
1570 module_init(kswapd_init
)
1576 * If non-zero call zone_reclaim when the number of free pages falls below
1579 int zone_reclaim_mode __read_mostly
;
1581 #define RECLAIM_OFF 0
1582 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1583 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1584 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1587 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1588 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1591 #define ZONE_RECLAIM_PRIORITY 4
1594 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1597 int sysctl_min_unmapped_ratio
= 1;
1600 * If the number of slab pages in a zone grows beyond this percentage then
1601 * slab reclaim needs to occur.
1603 int sysctl_min_slab_ratio
= 5;
1606 * Try to free up some pages from this zone through reclaim.
1608 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1610 /* Minimum pages needed in order to stay on node */
1611 const unsigned long nr_pages
= 1 << order
;
1612 struct task_struct
*p
= current
;
1613 struct reclaim_state reclaim_state
;
1615 unsigned long nr_reclaimed
= 0;
1616 struct scan_control sc
= {
1617 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
1618 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
1619 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
1621 .gfp_mask
= gfp_mask
,
1622 .swappiness
= vm_swappiness
,
1624 unsigned long slab_reclaimable
;
1626 disable_swap_token();
1629 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1630 * and we also need to be able to write out pages for RECLAIM_WRITE
1633 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
1634 reclaim_state
.reclaimed_slab
= 0;
1635 p
->reclaim_state
= &reclaim_state
;
1637 if (zone_page_state(zone
, NR_FILE_PAGES
) -
1638 zone_page_state(zone
, NR_FILE_MAPPED
) >
1639 zone
->min_unmapped_pages
) {
1641 * Free memory by calling shrink zone with increasing
1642 * priorities until we have enough memory freed.
1644 priority
= ZONE_RECLAIM_PRIORITY
;
1646 note_zone_scanning_priority(zone
, priority
);
1647 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1649 } while (priority
>= 0 && nr_reclaimed
< nr_pages
);
1652 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
1653 if (slab_reclaimable
> zone
->min_slab_pages
) {
1655 * shrink_slab() does not currently allow us to determine how
1656 * many pages were freed in this zone. So we take the current
1657 * number of slab pages and shake the slab until it is reduced
1658 * by the same nr_pages that we used for reclaiming unmapped
1661 * Note that shrink_slab will free memory on all zones and may
1664 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
1665 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
1666 slab_reclaimable
- nr_pages
)
1670 * Update nr_reclaimed by the number of slab pages we
1671 * reclaimed from this zone.
1673 nr_reclaimed
+= slab_reclaimable
-
1674 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
1677 p
->reclaim_state
= NULL
;
1678 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
1679 return nr_reclaimed
>= nr_pages
;
1682 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1688 * Zone reclaim reclaims unmapped file backed pages and
1689 * slab pages if we are over the defined limits.
1691 * A small portion of unmapped file backed pages is needed for
1692 * file I/O otherwise pages read by file I/O will be immediately
1693 * thrown out if the zone is overallocated. So we do not reclaim
1694 * if less than a specified percentage of the zone is used by
1695 * unmapped file backed pages.
1697 if (zone_page_state(zone
, NR_FILE_PAGES
) -
1698 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
1699 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
1700 <= zone
->min_slab_pages
)
1704 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1705 * not have reclaimable pages and if we should not delay the allocation
1708 if (!(gfp_mask
& __GFP_WAIT
) ||
1709 zone
->all_unreclaimable
||
1710 atomic_read(&zone
->reclaim_in_progress
) > 0 ||
1711 (current
->flags
& PF_MEMALLOC
))
1715 * Only run zone reclaim on the local zone or on zones that do not
1716 * have associated processors. This will favor the local processor
1717 * over remote processors and spread off node memory allocations
1718 * as wide as possible.
1720 node_id
= zone_to_nid(zone
);
1721 mask
= node_to_cpumask(node_id
);
1722 if (!cpus_empty(mask
) && node_id
!= numa_node_id())
1724 return __zone_reclaim(zone
, gfp_mask
, order
);