[ALSA] seq_midi_event: fix parsing of F9/FD bytes
[linux-2.6/kmemtrace.git] / kernel / sched_debug.c
bloba5e517ec07c3dfa5e7b688b40355a9e4a67f13bc
1 /*
2 * kernel/time/sched_debug.c
4 * Print the CFS rbtree
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
20 * This allows printing both to /proc/sched_debug and
21 * to the console
23 #define SEQ_printf(m, x...) \
24 do { \
25 if (m) \
26 seq_printf(m, x); \
27 else \
28 printk(x); \
29 } while (0)
32 * Ease the printing of nsec fields:
34 static long long nsec_high(long long nsec)
36 if (nsec < 0) {
37 nsec = -nsec;
38 do_div(nsec, 1000000);
39 return -nsec;
41 do_div(nsec, 1000000);
43 return nsec;
46 static unsigned long nsec_low(long long nsec)
48 if (nsec < 0)
49 nsec = -nsec;
51 return do_div(nsec, 1000000);
54 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
56 static void
57 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
59 if (rq->curr == p)
60 SEQ_printf(m, "R");
61 else
62 SEQ_printf(m, " ");
64 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
65 p->comm, p->pid,
66 SPLIT_NS(p->se.vruntime),
67 (long long)(p->nvcsw + p->nivcsw),
68 p->prio);
69 #ifdef CONFIG_SCHEDSTATS
70 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld\n",
71 SPLIT_NS(p->se.vruntime),
72 SPLIT_NS(p->se.sum_exec_runtime),
73 SPLIT_NS(p->se.sum_sleep_runtime));
74 #else
75 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld\n",
76 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
77 #endif
80 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
82 struct task_struct *g, *p;
84 SEQ_printf(m,
85 "\nrunnable tasks:\n"
86 " task PID tree-key switches prio"
87 " exec-runtime sum-exec sum-sleep\n"
88 "------------------------------------------------------"
89 "----------------------------------------------------\n");
91 read_lock_irq(&tasklist_lock);
93 do_each_thread(g, p) {
94 if (!p->se.on_rq || task_cpu(p) != rq_cpu)
95 continue;
97 print_task(m, rq, p);
98 } while_each_thread(g, p);
100 read_unlock_irq(&tasklist_lock);
103 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
105 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
106 spread, rq0_min_vruntime, spread0;
107 struct rq *rq = &per_cpu(runqueues, cpu);
108 struct sched_entity *last;
109 unsigned long flags;
111 SEQ_printf(m, "\ncfs_rq\n");
113 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
114 SPLIT_NS(cfs_rq->exec_clock));
116 spin_lock_irqsave(&rq->lock, flags);
117 if (cfs_rq->rb_leftmost)
118 MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime;
119 last = __pick_last_entity(cfs_rq);
120 if (last)
121 max_vruntime = last->vruntime;
122 min_vruntime = rq->cfs.min_vruntime;
123 rq0_min_vruntime = per_cpu(runqueues, 0).cfs.min_vruntime;
124 spin_unlock_irqrestore(&rq->lock, flags);
125 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
126 SPLIT_NS(MIN_vruntime));
127 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
128 SPLIT_NS(min_vruntime));
129 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
130 SPLIT_NS(max_vruntime));
131 spread = max_vruntime - MIN_vruntime;
132 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
133 SPLIT_NS(spread));
134 spread0 = min_vruntime - rq0_min_vruntime;
135 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
136 SPLIT_NS(spread0));
137 SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
138 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
139 #ifdef CONFIG_SCHEDSTATS
140 SEQ_printf(m, " .%-30s: %ld\n", "bkl_count",
141 rq->bkl_count);
142 #endif
143 SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over",
144 cfs_rq->nr_spread_over);
147 static void print_cpu(struct seq_file *m, int cpu)
149 struct rq *rq = &per_cpu(runqueues, cpu);
151 #ifdef CONFIG_X86
153 unsigned int freq = cpu_khz ? : 1;
155 SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
156 cpu, freq / 1000, (freq % 1000));
158 #else
159 SEQ_printf(m, "\ncpu#%d\n", cpu);
160 #endif
162 #define P(x) \
163 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x))
164 #define PN(x) \
165 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
167 P(nr_running);
168 SEQ_printf(m, " .%-30s: %lu\n", "load",
169 rq->load.weight);
170 P(nr_switches);
171 P(nr_load_updates);
172 P(nr_uninterruptible);
173 SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies);
174 PN(next_balance);
175 P(curr->pid);
176 PN(clock);
177 PN(idle_clock);
178 PN(prev_clock_raw);
179 P(clock_warps);
180 P(clock_overflows);
181 P(clock_deep_idle_events);
182 PN(clock_max_delta);
183 P(cpu_load[0]);
184 P(cpu_load[1]);
185 P(cpu_load[2]);
186 P(cpu_load[3]);
187 P(cpu_load[4]);
188 #undef P
189 #undef PN
191 print_cfs_stats(m, cpu);
193 print_rq(m, rq, cpu);
196 static int sched_debug_show(struct seq_file *m, void *v)
198 u64 now = ktime_to_ns(ktime_get());
199 int cpu;
201 SEQ_printf(m, "Sched Debug Version: v0.06-v22, %s %.*s\n",
202 init_utsname()->release,
203 (int)strcspn(init_utsname()->version, " "),
204 init_utsname()->version);
206 SEQ_printf(m, "now at %Lu.%06ld msecs\n", SPLIT_NS(now));
208 #define P(x) \
209 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
210 #define PN(x) \
211 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
212 PN(sysctl_sched_latency);
213 PN(sysctl_sched_nr_latency);
214 PN(sysctl_sched_wakeup_granularity);
215 PN(sysctl_sched_batch_wakeup_granularity);
216 PN(sysctl_sched_child_runs_first);
217 P(sysctl_sched_features);
218 #undef PN
219 #undef P
221 for_each_online_cpu(cpu)
222 print_cpu(m, cpu);
224 SEQ_printf(m, "\n");
226 return 0;
229 static void sysrq_sched_debug_show(void)
231 sched_debug_show(NULL, NULL);
234 static int sched_debug_open(struct inode *inode, struct file *filp)
236 return single_open(filp, sched_debug_show, NULL);
239 static const struct file_operations sched_debug_fops = {
240 .open = sched_debug_open,
241 .read = seq_read,
242 .llseek = seq_lseek,
243 .release = single_release,
246 static int __init init_sched_debug_procfs(void)
248 struct proc_dir_entry *pe;
250 pe = create_proc_entry("sched_debug", 0644, NULL);
251 if (!pe)
252 return -ENOMEM;
254 pe->proc_fops = &sched_debug_fops;
256 return 0;
259 __initcall(init_sched_debug_procfs);
261 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
263 unsigned long nr_switches;
264 unsigned long flags;
265 int num_threads = 1;
267 rcu_read_lock();
268 if (lock_task_sighand(p, &flags)) {
269 num_threads = atomic_read(&p->signal->count);
270 unlock_task_sighand(p, &flags);
272 rcu_read_unlock();
274 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
275 SEQ_printf(m,
276 "---------------------------------------------------------\n");
277 #define __P(F) \
278 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
279 #define P(F) \
280 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
281 #define __PN(F) \
282 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
283 #define PN(F) \
284 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
286 PN(se.exec_start);
287 PN(se.vruntime);
288 PN(se.sum_exec_runtime);
290 nr_switches = p->nvcsw + p->nivcsw;
292 #ifdef CONFIG_SCHEDSTATS
293 PN(se.wait_start);
294 PN(se.sleep_start);
295 PN(se.block_start);
296 PN(se.sleep_max);
297 PN(se.block_max);
298 PN(se.exec_max);
299 PN(se.slice_max);
300 PN(se.wait_max);
301 P(sched_info.bkl_count);
302 P(se.nr_migrations);
303 P(se.nr_migrations_cold);
304 P(se.nr_failed_migrations_affine);
305 P(se.nr_failed_migrations_running);
306 P(se.nr_failed_migrations_hot);
307 P(se.nr_forced_migrations);
308 P(se.nr_forced2_migrations);
309 P(se.nr_wakeups);
310 P(se.nr_wakeups_sync);
311 P(se.nr_wakeups_migrate);
312 P(se.nr_wakeups_local);
313 P(se.nr_wakeups_remote);
314 P(se.nr_wakeups_affine);
315 P(se.nr_wakeups_affine_attempts);
316 P(se.nr_wakeups_passive);
317 P(se.nr_wakeups_idle);
320 u64 avg_atom, avg_per_cpu;
322 avg_atom = p->se.sum_exec_runtime;
323 if (nr_switches)
324 do_div(avg_atom, nr_switches);
325 else
326 avg_atom = -1LL;
328 avg_per_cpu = p->se.sum_exec_runtime;
329 if (p->se.nr_migrations)
330 avg_per_cpu = div64_64(avg_per_cpu, p->se.nr_migrations);
331 else
332 avg_per_cpu = -1LL;
334 __PN(avg_atom);
335 __PN(avg_per_cpu);
337 #endif
338 __P(nr_switches);
339 SEQ_printf(m, "%-35s:%21Ld\n",
340 "nr_voluntary_switches", (long long)p->nvcsw);
341 SEQ_printf(m, "%-35s:%21Ld\n",
342 "nr_involuntary_switches", (long long)p->nivcsw);
344 P(se.load.weight);
345 P(policy);
346 P(prio);
347 #undef PN
348 #undef __PN
349 #undef P
350 #undef __P
353 u64 t0, t1;
355 t0 = sched_clock();
356 t1 = sched_clock();
357 SEQ_printf(m, "%-35s:%21Ld\n",
358 "clock-delta", (long long)(t1-t0));
362 void proc_sched_set_task(struct task_struct *p)
364 #ifdef CONFIG_SCHEDSTATS
365 p->se.wait_max = 0;
366 p->se.sleep_max = 0;
367 p->se.sum_sleep_runtime = 0;
368 p->se.block_max = 0;
369 p->se.exec_max = 0;
370 p->se.slice_max = 0;
371 p->se.nr_migrations = 0;
372 p->se.nr_migrations_cold = 0;
373 p->se.nr_failed_migrations_affine = 0;
374 p->se.nr_failed_migrations_running = 0;
375 p->se.nr_failed_migrations_hot = 0;
376 p->se.nr_forced_migrations = 0;
377 p->se.nr_forced2_migrations = 0;
378 p->se.nr_wakeups = 0;
379 p->se.nr_wakeups_sync = 0;
380 p->se.nr_wakeups_migrate = 0;
381 p->se.nr_wakeups_local = 0;
382 p->se.nr_wakeups_remote = 0;
383 p->se.nr_wakeups_affine = 0;
384 p->se.nr_wakeups_affine_attempts = 0;
385 p->se.nr_wakeups_passive = 0;
386 p->se.nr_wakeups_idle = 0;
387 p->sched_info.bkl_count = 0;
388 #endif
389 p->se.sum_exec_runtime = 0;
390 p->se.prev_sum_exec_runtime = 0;
391 p->nvcsw = 0;
392 p->nivcsw = 0;