1 /* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 * This file is part of the SCTP kernel implementation
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, write to
20 * the Free Software Foundation, 59 Temple Place - Suite 330,
21 * Boston, MA 02111-1307, USA.
23 * Please send any bug reports or fixes you make to the
25 * lksctp developers <lksctp-developers@lists.sourceforge.net>
27 * Or submit a bug report through the following website:
28 * http://www.sf.net/projects/lksctp
30 * Written or modified by:
31 * Vlad Yasevich <vladislav.yasevich@hp.com>
33 * Any bugs reported given to us we will try to fix... any fixes shared will
34 * be incorporated into the next SCTP release.
37 #include <linux/types.h>
38 #include <linux/crypto.h>
39 #include <linux/scatterlist.h>
40 #include <net/sctp/sctp.h>
41 #include <net/sctp/auth.h>
43 static struct sctp_hmac sctp_hmac_list
[SCTP_AUTH_NUM_HMACS
] = {
45 /* id 0 is reserved. as all 0 */
46 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_0
,
49 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA1
,
50 .hmac_name
="hmac(sha1)",
51 .hmac_len
= SCTP_SHA1_SIG_SIZE
,
54 /* id 2 is reserved as well */
55 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_2
,
57 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
59 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA256
,
60 .hmac_name
="hmac(sha256)",
61 .hmac_len
= SCTP_SHA256_SIG_SIZE
,
67 void sctp_auth_key_put(struct sctp_auth_bytes
*key
)
72 if (atomic_dec_and_test(&key
->refcnt
)) {
74 SCTP_DBG_OBJCNT_DEC(keys
);
78 /* Create a new key structure of a given length */
79 static struct sctp_auth_bytes
*sctp_auth_create_key(__u32 key_len
, gfp_t gfp
)
81 struct sctp_auth_bytes
*key
;
83 /* Allocate the shared key */
84 key
= kmalloc(sizeof(struct sctp_auth_bytes
) + key_len
, gfp
);
89 atomic_set(&key
->refcnt
, 1);
90 SCTP_DBG_OBJCNT_INC(keys
);
95 /* Create a new shared key container with a give key id */
96 struct sctp_shared_key
*sctp_auth_shkey_create(__u16 key_id
, gfp_t gfp
)
98 struct sctp_shared_key
*new;
100 /* Allocate the shared key container */
101 new = kzalloc(sizeof(struct sctp_shared_key
), gfp
);
105 INIT_LIST_HEAD(&new->key_list
);
106 new->key_id
= key_id
;
111 /* Free the shared key stucture */
112 static void sctp_auth_shkey_free(struct sctp_shared_key
*sh_key
)
114 BUG_ON(!list_empty(&sh_key
->key_list
));
115 sctp_auth_key_put(sh_key
->key
);
120 /* Destory the entire key list. This is done during the
121 * associon and endpoint free process.
123 void sctp_auth_destroy_keys(struct list_head
*keys
)
125 struct sctp_shared_key
*ep_key
;
126 struct sctp_shared_key
*tmp
;
128 if (list_empty(keys
))
131 key_for_each_safe(ep_key
, tmp
, keys
) {
132 list_del_init(&ep_key
->key_list
);
133 sctp_auth_shkey_free(ep_key
);
137 /* Compare two byte vectors as numbers. Return values
139 * 0 - vectors are equal
140 * < 0 - vector 1 is smaller then vector2
141 * > 0 - vector 1 is greater then vector2
144 * This is performed by selecting the numerically smaller key vector...
145 * If the key vectors are equal as numbers but differ in length ...
146 * the shorter vector is considered smaller
148 * Examples (with small values):
149 * 000123456789 > 123456789 (first number is longer)
150 * 000123456789 < 234567891 (second number is larger numerically)
151 * 123456789 > 2345678 (first number is both larger & longer)
153 static int sctp_auth_compare_vectors(struct sctp_auth_bytes
*vector1
,
154 struct sctp_auth_bytes
*vector2
)
160 diff
= vector1
->len
- vector2
->len
;
162 longer
= (diff
> 0) ? vector1
->data
: vector2
->data
;
164 /* Check to see if the longer number is
165 * lead-zero padded. If it is not, it
166 * is automatically larger numerically.
168 for (i
= 0; i
< abs(diff
); i
++ ) {
174 /* lengths are the same, compare numbers */
175 return memcmp(vector1
->data
, vector2
->data
, vector1
->len
);
179 * Create a key vector as described in SCTP-AUTH, Section 6.1
180 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
181 * parameter sent by each endpoint are concatenated as byte vectors.
182 * These parameters include the parameter type, parameter length, and
183 * the parameter value, but padding is omitted; all padding MUST be
184 * removed from this concatenation before proceeding with further
185 * computation of keys. Parameters which were not sent are simply
186 * omitted from the concatenation process. The resulting two vectors
187 * are called the two key vectors.
189 static struct sctp_auth_bytes
*sctp_auth_make_key_vector(
190 sctp_random_param_t
*random
,
191 sctp_chunks_param_t
*chunks
,
192 sctp_hmac_algo_param_t
*hmacs
,
195 struct sctp_auth_bytes
*new;
199 len
= ntohs(random
->param_hdr
.length
) + ntohs(hmacs
->param_hdr
.length
);
201 len
+= ntohs(chunks
->param_hdr
.length
);
203 new = kmalloc(sizeof(struct sctp_auth_bytes
) + len
, gfp
);
209 memcpy(new->data
, random
, ntohs(random
->param_hdr
.length
));
210 offset
+= ntohs(random
->param_hdr
.length
);
213 memcpy(new->data
+ offset
, chunks
,
214 ntohs(chunks
->param_hdr
.length
));
215 offset
+= ntohs(chunks
->param_hdr
.length
);
218 memcpy(new->data
+ offset
, hmacs
, ntohs(hmacs
->param_hdr
.length
));
224 /* Make a key vector based on our local parameters */
225 static struct sctp_auth_bytes
*sctp_auth_make_local_vector(
226 const struct sctp_association
*asoc
,
229 return sctp_auth_make_key_vector(
230 (sctp_random_param_t
*)asoc
->c
.auth_random
,
231 (sctp_chunks_param_t
*)asoc
->c
.auth_chunks
,
232 (sctp_hmac_algo_param_t
*)asoc
->c
.auth_hmacs
,
236 /* Make a key vector based on peer's parameters */
237 static struct sctp_auth_bytes
*sctp_auth_make_peer_vector(
238 const struct sctp_association
*asoc
,
241 return sctp_auth_make_key_vector(asoc
->peer
.peer_random
,
242 asoc
->peer
.peer_chunks
,
243 asoc
->peer
.peer_hmacs
,
248 /* Set the value of the association shared key base on the parameters
249 * given. The algorithm is:
250 * From the endpoint pair shared keys and the key vectors the
251 * association shared keys are computed. This is performed by selecting
252 * the numerically smaller key vector and concatenating it to the
253 * endpoint pair shared key, and then concatenating the numerically
254 * larger key vector to that. The result of the concatenation is the
255 * association shared key.
257 static struct sctp_auth_bytes
*sctp_auth_asoc_set_secret(
258 struct sctp_shared_key
*ep_key
,
259 struct sctp_auth_bytes
*first_vector
,
260 struct sctp_auth_bytes
*last_vector
,
263 struct sctp_auth_bytes
*secret
;
267 auth_len
= first_vector
->len
+ last_vector
->len
;
269 auth_len
+= ep_key
->key
->len
;
271 secret
= sctp_auth_create_key(auth_len
, gfp
);
276 memcpy(secret
->data
, ep_key
->key
->data
, ep_key
->key
->len
);
277 offset
+= ep_key
->key
->len
;
280 memcpy(secret
->data
+ offset
, first_vector
->data
, first_vector
->len
);
281 offset
+= first_vector
->len
;
283 memcpy(secret
->data
+ offset
, last_vector
->data
, last_vector
->len
);
288 /* Create an association shared key. Follow the algorithm
289 * described in SCTP-AUTH, Section 6.1
291 static struct sctp_auth_bytes
*sctp_auth_asoc_create_secret(
292 const struct sctp_association
*asoc
,
293 struct sctp_shared_key
*ep_key
,
296 struct sctp_auth_bytes
*local_key_vector
;
297 struct sctp_auth_bytes
*peer_key_vector
;
298 struct sctp_auth_bytes
*first_vector
,
300 struct sctp_auth_bytes
*secret
= NULL
;
304 /* Now we need to build the key vectors
305 * SCTP-AUTH , Section 6.1
306 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
307 * parameter sent by each endpoint are concatenated as byte vectors.
308 * These parameters include the parameter type, parameter length, and
309 * the parameter value, but padding is omitted; all padding MUST be
310 * removed from this concatenation before proceeding with further
311 * computation of keys. Parameters which were not sent are simply
312 * omitted from the concatenation process. The resulting two vectors
313 * are called the two key vectors.
316 local_key_vector
= sctp_auth_make_local_vector(asoc
, gfp
);
317 peer_key_vector
= sctp_auth_make_peer_vector(asoc
, gfp
);
319 if (!peer_key_vector
|| !local_key_vector
)
322 /* Figure out the order in wich the key_vectors will be
323 * added to the endpoint shared key.
324 * SCTP-AUTH, Section 6.1:
325 * This is performed by selecting the numerically smaller key
326 * vector and concatenating it to the endpoint pair shared
327 * key, and then concatenating the numerically larger key
328 * vector to that. If the key vectors are equal as numbers
329 * but differ in length, then the concatenation order is the
330 * endpoint shared key, followed by the shorter key vector,
331 * followed by the longer key vector. Otherwise, the key
332 * vectors are identical, and may be concatenated to the
333 * endpoint pair key in any order.
335 cmp
= sctp_auth_compare_vectors(local_key_vector
,
338 first_vector
= local_key_vector
;
339 last_vector
= peer_key_vector
;
341 first_vector
= peer_key_vector
;
342 last_vector
= local_key_vector
;
345 secret
= sctp_auth_asoc_set_secret(ep_key
, first_vector
, last_vector
,
348 kfree(local_key_vector
);
349 kfree(peer_key_vector
);
355 * Populate the association overlay list with the list
358 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint
*ep
,
359 struct sctp_association
*asoc
,
362 struct sctp_shared_key
*sh_key
;
363 struct sctp_shared_key
*new;
365 BUG_ON(!list_empty(&asoc
->endpoint_shared_keys
));
367 key_for_each(sh_key
, &ep
->endpoint_shared_keys
) {
368 new = sctp_auth_shkey_create(sh_key
->key_id
, gfp
);
372 new->key
= sh_key
->key
;
373 sctp_auth_key_hold(new->key
);
374 list_add(&new->key_list
, &asoc
->endpoint_shared_keys
);
380 sctp_auth_destroy_keys(&asoc
->endpoint_shared_keys
);
385 /* Public interface to creat the association shared key.
386 * See code above for the algorithm.
388 int sctp_auth_asoc_init_active_key(struct sctp_association
*asoc
, gfp_t gfp
)
390 struct sctp_auth_bytes
*secret
;
391 struct sctp_shared_key
*ep_key
;
393 /* If we don't support AUTH, or peer is not capable
394 * we don't need to do anything.
396 if (!sctp_auth_enable
|| !asoc
->peer
.auth_capable
)
399 /* If the key_id is non-zero and we couldn't find an
400 * endpoint pair shared key, we can't compute the
402 * For key_id 0, endpoint pair shared key is a NULL key.
404 ep_key
= sctp_auth_get_shkey(asoc
, asoc
->active_key_id
);
407 secret
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
411 sctp_auth_key_put(asoc
->asoc_shared_key
);
412 asoc
->asoc_shared_key
= secret
;
418 /* Find the endpoint pair shared key based on the key_id */
419 struct sctp_shared_key
*sctp_auth_get_shkey(
420 const struct sctp_association
*asoc
,
423 struct sctp_shared_key
*key
;
425 /* First search associations set of endpoint pair shared keys */
426 key_for_each(key
, &asoc
->endpoint_shared_keys
) {
427 if (key
->key_id
== key_id
)
435 * Initialize all the possible digest transforms that we can use. Right now
436 * now, the supported digests are SHA1 and SHA256. We do this here once
437 * because of the restrictiong that transforms may only be allocated in
438 * user context. This forces us to pre-allocated all possible transforms
439 * at the endpoint init time.
441 int sctp_auth_init_hmacs(struct sctp_endpoint
*ep
, gfp_t gfp
)
443 struct crypto_hash
*tfm
= NULL
;
446 /* if the transforms are already allocted, we are done */
447 if (!sctp_auth_enable
) {
448 ep
->auth_hmacs
= NULL
;
455 /* Allocated the array of pointers to transorms */
456 ep
->auth_hmacs
= kzalloc(
457 sizeof(struct crypto_hash
*) * SCTP_AUTH_NUM_HMACS
,
462 for (id
= 0; id
< SCTP_AUTH_NUM_HMACS
; id
++) {
464 /* See is we support the id. Supported IDs have name and
465 * length fields set, so that we can allocated and use
466 * them. We can safely just check for name, for without the
467 * name, we can't allocate the TFM.
469 if (!sctp_hmac_list
[id
].hmac_name
)
472 /* If this TFM has been allocated, we are all set */
473 if (ep
->auth_hmacs
[id
])
476 /* Allocate the ID */
477 tfm
= crypto_alloc_hash(sctp_hmac_list
[id
].hmac_name
, 0,
482 ep
->auth_hmacs
[id
] = tfm
;
488 /* Clean up any successfull allocations */
489 sctp_auth_destroy_hmacs(ep
->auth_hmacs
);
493 /* Destroy the hmac tfm array */
494 void sctp_auth_destroy_hmacs(struct crypto_hash
*auth_hmacs
[])
501 for (i
= 0; i
< SCTP_AUTH_NUM_HMACS
; i
++)
504 crypto_free_hash(auth_hmacs
[i
]);
510 struct sctp_hmac
*sctp_auth_get_hmac(__u16 hmac_id
)
512 return &sctp_hmac_list
[hmac_id
];
515 /* Get an hmac description information that we can use to build
518 struct sctp_hmac
*sctp_auth_asoc_get_hmac(const struct sctp_association
*asoc
)
520 struct sctp_hmac_algo_param
*hmacs
;
525 /* If we have a default entry, use it */
526 if (asoc
->default_hmac_id
)
527 return &sctp_hmac_list
[asoc
->default_hmac_id
];
529 /* Since we do not have a default entry, find the first entry
530 * we support and return that. Do not cache that id.
532 hmacs
= asoc
->peer
.peer_hmacs
;
536 n_elt
= (ntohs(hmacs
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
)) >> 1;
537 for (i
= 0; i
< n_elt
; i
++) {
538 id
= ntohs(hmacs
->hmac_ids
[i
]);
540 /* Check the id is in the supported range */
541 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
544 /* See is we support the id. Supported IDs have name and
545 * length fields set, so that we can allocated and use
546 * them. We can safely just check for name, for without the
547 * name, we can't allocate the TFM.
549 if (!sctp_hmac_list
[id
].hmac_name
)
558 return &sctp_hmac_list
[id
];
561 static int __sctp_auth_find_hmacid(__be16
*hmacs
, int n_elts
, __be16 hmac_id
)
566 for (i
= 0; i
< n_elts
; i
++) {
567 if (hmac_id
== hmacs
[i
]) {
576 /* See if the HMAC_ID is one that we claim as supported */
577 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association
*asoc
,
580 struct sctp_hmac_algo_param
*hmacs
;
586 hmacs
= (struct sctp_hmac_algo_param
*)asoc
->c
.auth_hmacs
;
587 n_elt
= (ntohs(hmacs
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
)) >> 1;
589 return __sctp_auth_find_hmacid(hmacs
->hmac_ids
, n_elt
, hmac_id
);
593 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
595 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
596 * algorithm it supports.
598 void sctp_auth_asoc_set_default_hmac(struct sctp_association
*asoc
,
599 struct sctp_hmac_algo_param
*hmacs
)
601 struct sctp_endpoint
*ep
;
606 /* if the default id is already set, use it */
607 if (asoc
->default_hmac_id
)
610 n_params
= (ntohs(hmacs
->param_hdr
.length
)
611 - sizeof(sctp_paramhdr_t
)) >> 1;
613 for (i
= 0; i
< n_params
; i
++) {
614 id
= ntohs(hmacs
->hmac_ids
[i
]);
616 /* Check the id is in the supported range */
617 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
620 /* If this TFM has been allocated, use this id */
621 if (ep
->auth_hmacs
[id
]) {
622 asoc
->default_hmac_id
= id
;
629 /* Check to see if the given chunk is supposed to be authenticated */
630 static int __sctp_auth_cid(sctp_cid_t chunk
, struct sctp_chunks_param
*param
)
636 if (!param
|| param
->param_hdr
.length
== 0)
639 len
= ntohs(param
->param_hdr
.length
) - sizeof(sctp_paramhdr_t
);
641 /* SCTP-AUTH, Section 3.2
642 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
643 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
644 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
645 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
647 for (i
= 0; !found
&& i
< len
; i
++) {
648 switch (param
->chunks
[i
]) {
650 case SCTP_CID_INIT_ACK
:
651 case SCTP_CID_SHUTDOWN_COMPLETE
:
656 if (param
->chunks
[i
] == chunk
)
665 /* Check if peer requested that this chunk is authenticated */
666 int sctp_auth_send_cid(sctp_cid_t chunk
, const struct sctp_association
*asoc
)
668 if (!sctp_auth_enable
|| !asoc
|| !asoc
->peer
.auth_capable
)
671 return __sctp_auth_cid(chunk
, asoc
->peer
.peer_chunks
);
674 /* Check if we requested that peer authenticate this chunk. */
675 int sctp_auth_recv_cid(sctp_cid_t chunk
, const struct sctp_association
*asoc
)
677 if (!sctp_auth_enable
|| !asoc
)
680 return __sctp_auth_cid(chunk
,
681 (struct sctp_chunks_param
*)asoc
->c
.auth_chunks
);
684 /* SCTP-AUTH: Section 6.2:
685 * The sender MUST calculate the MAC as described in RFC2104 [2] using
686 * the hash function H as described by the MAC Identifier and the shared
687 * association key K based on the endpoint pair shared key described by
688 * the shared key identifier. The 'data' used for the computation of
689 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
690 * zero (as shown in Figure 6) followed by all chunks that are placed
691 * after the AUTH chunk in the SCTP packet.
693 void sctp_auth_calculate_hmac(const struct sctp_association
*asoc
,
695 struct sctp_auth_chunk
*auth
,
698 struct scatterlist sg
;
699 struct hash_desc desc
;
700 struct sctp_auth_bytes
*asoc_key
;
701 __u16 key_id
, hmac_id
;
706 /* Extract the info we need:
710 key_id
= ntohs(auth
->auth_hdr
.shkey_id
);
711 hmac_id
= ntohs(auth
->auth_hdr
.hmac_id
);
713 if (key_id
== asoc
->active_key_id
)
714 asoc_key
= asoc
->asoc_shared_key
;
716 struct sctp_shared_key
*ep_key
;
718 ep_key
= sctp_auth_get_shkey(asoc
, key_id
);
722 asoc_key
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
729 /* set up scatter list */
730 end
= skb_tail_pointer(skb
);
731 sg_init_one(&sg
, auth
, end
- (unsigned char *)auth
);
733 desc
.tfm
= asoc
->ep
->auth_hmacs
[hmac_id
];
736 digest
= auth
->auth_hdr
.hmac
;
737 if (crypto_hash_setkey(desc
.tfm
, &asoc_key
->data
[0], asoc_key
->len
))
740 crypto_hash_digest(&desc
, &sg
, sg
.length
, digest
);
744 sctp_auth_key_put(asoc_key
);
749 /* Add a chunk to the endpoint authenticated chunk list */
750 int sctp_auth_ep_add_chunkid(struct sctp_endpoint
*ep
, __u8 chunk_id
)
752 struct sctp_chunks_param
*p
= ep
->auth_chunk_list
;
756 /* If this chunk is already specified, we are done */
757 if (__sctp_auth_cid(chunk_id
, p
))
760 /* Check if we can add this chunk to the array */
761 param_len
= ntohs(p
->param_hdr
.length
);
762 nchunks
= param_len
- sizeof(sctp_paramhdr_t
);
763 if (nchunks
== SCTP_NUM_CHUNK_TYPES
)
766 p
->chunks
[nchunks
] = chunk_id
;
767 p
->param_hdr
.length
= htons(param_len
+ 1);
771 /* Add hmac identifires to the endpoint list of supported hmac ids */
772 int sctp_auth_ep_set_hmacs(struct sctp_endpoint
*ep
,
773 struct sctp_hmacalgo
*hmacs
)
779 /* Scan the list looking for unsupported id. Also make sure that
782 for (i
= 0; i
< hmacs
->shmac_num_idents
; i
++) {
783 id
= hmacs
->shmac_idents
[i
];
785 if (SCTP_AUTH_HMAC_ID_SHA1
== id
)
788 if (!sctp_hmac_list
[id
].hmac_name
)
795 memcpy(ep
->auth_hmacs_list
->hmac_ids
, &hmacs
->shmac_idents
[0],
796 hmacs
->shmac_num_idents
* sizeof(__u16
));
797 ep
->auth_hmacs_list
->param_hdr
.length
= htons(sizeof(sctp_paramhdr_t
) +
798 hmacs
->shmac_num_idents
* sizeof(__u16
));
802 /* Set a new shared key on either endpoint or association. If the
803 * the key with a same ID already exists, replace the key (remove the
804 * old key and add a new one).
806 int sctp_auth_set_key(struct sctp_endpoint
*ep
,
807 struct sctp_association
*asoc
,
808 struct sctp_authkey
*auth_key
)
810 struct sctp_shared_key
*cur_key
= NULL
;
811 struct sctp_auth_bytes
*key
;
812 struct list_head
*sh_keys
;
815 /* Try to find the given key id to see if
816 * we are doing a replace, or adding a new key
819 sh_keys
= &asoc
->endpoint_shared_keys
;
821 sh_keys
= &ep
->endpoint_shared_keys
;
823 key_for_each(cur_key
, sh_keys
) {
824 if (cur_key
->key_id
== auth_key
->sca_keynumber
) {
830 /* If we are not replacing a key id, we need to allocate
834 cur_key
= sctp_auth_shkey_create(auth_key
->sca_keynumber
,
840 /* Create a new key data based on the info passed in */
841 key
= sctp_auth_create_key(auth_key
->sca_keylength
, GFP_KERNEL
);
845 memcpy(key
->data
, &auth_key
->sca_key
[0], auth_key
->sca_keylength
);
847 /* If we are replacing, remove the old keys data from the
848 * key id. If we are adding new key id, add it to the
852 sctp_auth_key_put(cur_key
->key
);
854 list_add(&cur_key
->key_list
, sh_keys
);
857 sctp_auth_key_hold(key
);
862 sctp_auth_shkey_free(cur_key
);
867 int sctp_auth_set_active_key(struct sctp_endpoint
*ep
,
868 struct sctp_association
*asoc
,
871 struct sctp_shared_key
*key
;
872 struct list_head
*sh_keys
;
875 /* The key identifier MUST correst to an existing key */
877 sh_keys
= &asoc
->endpoint_shared_keys
;
879 sh_keys
= &ep
->endpoint_shared_keys
;
881 key_for_each(key
, sh_keys
) {
882 if (key
->key_id
== key_id
) {
892 asoc
->active_key_id
= key_id
;
893 sctp_auth_asoc_init_active_key(asoc
, GFP_KERNEL
);
895 ep
->active_key_id
= key_id
;
900 int sctp_auth_del_key_id(struct sctp_endpoint
*ep
,
901 struct sctp_association
*asoc
,
904 struct sctp_shared_key
*key
;
905 struct list_head
*sh_keys
;
908 /* The key identifier MUST NOT be the current active key
909 * The key identifier MUST correst to an existing key
912 if (asoc
->active_key_id
== key_id
)
915 sh_keys
= &asoc
->endpoint_shared_keys
;
917 if (ep
->active_key_id
== key_id
)
920 sh_keys
= &ep
->endpoint_shared_keys
;
923 key_for_each(key
, sh_keys
) {
924 if (key
->key_id
== key_id
) {
933 /* Delete the shared key */
934 list_del_init(&key
->key_list
);
935 sctp_auth_shkey_free(key
);